Digital Analysis of Logical Equivalences

Nongjian Zhou

Abstract

This paper introduces a digital method for analyzing propositional logical equivalences. It
transforms the theorem-proof method from the complex statement-derivation method to
a simple number-comparison method. By applying the digital calculation method and the
expression-number lookup table, we can quickly and directly discover and prove logical
equivalences based on the identical numbers, no additional operations are needed. This
approach demonstrates significant advantages over the conventional methods in terms of
simplicity and efficiency.

Keywords: logic, proposition, truth value, mathematical logic, symbolic logic, proposi-
tional logic, Boolean logic

1 Introduction

Since the mid-19th century, George Boole established Boolean algebra and laid the foun-
dations for symbolic logic [I], and through the developments by Ludwig Wittgenstein
and others in the last century, truth tables were introduced [2], despite some significant
advancements have been made, the two conventional approaches have remained the dom-
inant methods in propositional logical reasoning: The first approach is a statement-based
method. It involves sequentially applying theorems, transforming symbols, and rewrit-
ing statements to reach a conclusion. The second approach is a table-based method: It
involves using a table (called truth table) to reach a reasoning result.

Zhou Nongjian proposed a number-based reasoning method named “Digital calculation
method” in his paper “A Digital Calculation Method for Propositional Logic” [3]. Zhou’s
method came from an idea: every logical expression has a truth value, and every truth
value can be represented by a digital number. By calculating and comparing these num-
bers, we can transform the statement-based reasoning or the table-based reasoning into
the number-based calculation. The digital calculation method demonstrates advantages
in simplicity and efficiency over the two conventional approaches, including that it pro-
vides a solution to store calculation results in the expression-number lookup tables for
data reuse and sharing.

Since each expression in the lookup tables has a truth value represented by a digital num-
ber, we can easily find and prove logical equivalences by comparing these numbers accord-

ing to the principle of “two expressions that have the same value are equivalent”.

In the following sections, we will apply the digital calculation method to analyze logical

Comments are welcome. Author email: nongjianz@hotmail.com

mailto:nongjianz@hotmail.com

equivalences.

2 Find Equivalences from Expression-number Lookup Table

2.1 A-B Equivalence Formulas

Looking at “4-digit Expression-Number Lookup Table” in the Appendix, we observe that
many items have identical numbers. For instance, in the A-B category columns, both
expressions (A — B) and (=A V B) share the numerical value 1011, demonstrating their
equivalence:

1011: (A —-B) < (-AVB) //Both have the same truth value 1011

This is just one example among the numerous cases of sharing numbers across expressions.
By analogy, we can find other seven equivalences. See the eight equivalences below:

1011: (A — B) < (A Vv B)
0111: (A - -B) + (-A vV =B)
1110: (-A — B) <> (A v B)
1101: (-A — =B) « (A VvV =B)

0110: (A ® B) < (-A @ —B)
1001: (A) —|B) > (—|A P B)
1001: (A < B) < (-A < —B)
0110: (A +» —B) < (A + B)

Since in each of the above equivalences, the left-hand side (LHS) and the right-hand
side (RHS) share the same number, the equivalence is logically proved according to the
principle of “two expressions that have the same value are equivalent”. No further proof
is needed.

However, to verify that this method works and that no additional operations are needed,
let’s test it by randomly selecting one of the equivalences above. To prove an equivalence,
let’s use the digital proof method [3] (Section 4 Proof Method and Criteria) with the truth
criterion number 1111 and the (<) calculation formulas:

(1+1)«1

(1+0)«<0

0+ 1)« 0

(04 0) « 1

Given: (A — B) «» (A Vv B)

1011 //(A — B)

1011 ¢ //(=A V B)

1111 //Proved to be true

The result is 1111, indicating that the equivalence is proved to be true.

The digital proof method illustrates that, for any expressions, if they have the same
digital number, then they are equivalent. Therefore, by looking up identical numbers in
an expression-number lookup table, we can quickly and directly discover all equivalence
formulas. No further proof is needed.

2.2 A-B / B-A Equivalence Formulas

In the same lookup table, when comparing the numbers of the A-B expressions with the
numbers of the B-A expressions, we can find the following 20 equivalences:

1000: (AAB) < (BAA)

0100: (AAN-B)+ (-BAA)
0010: (-A AN B) < (B A—-A)
0001: (=A A =B) < (=B A -A)
1110: (AVB)«< (BVA)

1101: (AV -B) < (-BVA)
1011: (mAV B) < (BV —A)
0111: (mAV -B) < (=B Vv —A)
1011: A—B)+ (-B—-A
0111: A— -B)+< (B—-A

()
()
1110: (A — B) & (-B = A)
1101: (-A — -B) «+ (B = A)

0110 (A®B)+ (Ba A)
1001: (A @ -B) < (-B® A)
1001: (-A @ B) < (B @ —A)
0110: (-A @ -B) > (-B @ -A)

1001: (A< B) < (B+ A)

0110: (A< —B) & ("B < A)
0110: (mA < B) & (B« —A)
1001: (A <> —=B) > (-B < —A)

2.3 A-B / =(A-B) Equivalence Formulas

When comparing numbers of the A-B expressions with numbers of the =(A-B) expressions
in the lookup table, we can find the following 48 equivalences:

1000: (A AB) + =(-A vV —B)
0100: (A A -B) <« -(-AVB)
0010: (=A A B) & ~(A v -B)
0001: (=A A =B) < =(A Vv B)

1110: (AVB) < —=(-A AN —-B)
1101: (AV =B) < -(-A A B)
1011: (wA V B) < -(A A -B)
0111: (A VvV —=B) <> (A A B)

0110:
0110:
1001:
1001:

1001:
1001:
0110:
0110:

0110:
0110:
1001:
1001:

0110:
0110:
1001:
1001:

1011:
0111:
1110:
1101:

1000:
0100:
0010:
0001:

0110:
0110:
1001:
1001:

1001:
1001:
0110:
0110:

0110:
0110:
1001:
1001:

1001:
1001:
0110:

A & B) + =(A @& —-B)
A & B) < =(—-A & B)
A® -B) < ~(A & B)
A @ —B) + ~(-A @& —B)

PPy

(A < B) +» =(A + —B)
(A < B) <> =(-A < B)
(A < —B) & =(A < B)
(A < =B) & =(—-A < -B)

(=A + B) + —(A < B)

(A < B) & =(=A & —B)
(A < —B) < =(A + —B)
(A < —-B) < =(-A < B)

(=A @ B) & ~(A @ B)
(=A @ B) < —(=A @ -B)
(=A @ —B) © —(A ©-B)
(-A @ -B) + =(-A @© B)

(A —- B) < -(A A —B)
(A — -B) +> =(A A B)
(wA — B) &> =(=A A =B)
(—\A — —\B) > ﬂ(—\A A B)

(AAB) < =(A — —B)
(AAN-B) < =(A—B)
(wA A B) & =(-A — —-B)
(mA A =B) <> ~(-A — B)

A @ B) « =(A < B)

A @ B) & ~(-A < -B)
A @& -B) < (A <~ —B)
A& -B) < -(-A « B)

N N N

(A & B) & —(A @B)

(A < B) & -(—-A @ —B)
(A < -B) + —(A @ -B)
(A < -B) <> =(-A @& B)

(-A < B) & =(A @ —B)
(A + B) + =(=A @ B)
(A + —B) + =(A @ B)
(-A <> —B) > =(-A & —B)

(-A @ B) +> =(A + —B)
(=A @ B) +> =(—A < B)
(-A & —-B) <> =(A < B)

0110: (mA & -B) < =(-A <~ —B)
2.4 A-A Equivalence Formulas

In the A-A category of the lookup table, if we convert the 4-digit numbers to A, —A, 1
or 0, we can obtain the following 20 formulas:

1100: (ANA) < A
0000: (A A =A) <0
0000: (A AA) <0
0011: (—\A VAN —\A) — A
1100: (AVA)< A
1111: (AV -A) & 1
1111: (A VA) &1
0011: (mA V —A) & -A
1111: (A=A o1
0011: (A = =A) < -A
1100: (FA — A) < A
1111: (FA — —-A) & 1
0000: (A®A) <0
1111: (A®-A) &1
1111: (A @A) 1
0000: (~A & —-A) < 0
1111: (A A) o1
0000: (A —-A) <0
0000: (FA <+ A) <0
1111: (FA + -A) & 1

2.5 A-1 Equivalence Formulas

In the A-1 category of the lookup table, when converting the 4-digit numbers to A, —A,
1 or 0, we can obtain the following 20 formulas:

1100: (AA1) < A
1100: (IAA) < A
0011: (FA A1) ¢ —A
0011: (1 A-A) ¢ —A
1111: (AV1) 1
1111: (1VA) 1
1111: (FAV1) 1
1111: (1V-A) 1
1111: (A1) 1
1100: (1—-A) A

1111: (FA = 1) < 1

0011: (1 - -A) < —-A
0011: (A@1) ¢ -A
1100: (FA@1) < A
1100: (1@ -A) < A

1100: (
1100: (1 A) <A
0011: (
0011: (

2.6 A-0 Equivalence Formulas

And in the A-0 category of the lookup table, when converting the 4-digit numbers to A,
—A, 1 or 0, we can obtain the following 20 formulas:

0000: (AAD) <0
0000: (0AA)«0
0000: (~A A 0) 5 0
0000: (0 A =A) 5 0
1100: (AVO0) < A
1100: (OVA) <A
0011: (-A V 0) < -A
0011: 0V —A) ¢ —A
0011: (A= 0) < —-A
1111: (0—=A) 1
1100: (mFA = 0) < A
1111: (0 — =A)

1100: (A®0) < A
1100: 0@ A) & A
0011: (FA®0) < A
0011: (0 & —A) < —A
0011: (A< 0) < —-A
0011: (04 A) & -A
1100: (FA <~ 0) < A
1100: (0 -A) < A

2.7 1-0 Equivalence Formulas

And more, in the 1-0 category of the lookup table, if we convert the 4-digit numbers to
1 or 0, we can obtain the following 20 formulas:

1111: (1A1) &1

0000: (1A0)0

0000: (0A1) <0
0000: (0OA0)« 0
1111: (1Vv1)«1
1111: (1V0) 1
1111: OV1) 1
0000: 0V 0) <0
1111 1=1) 1
0000: (1—=0)<0
1111: (0—1) 1
1111: (0—=0)«1
0000: (1e1)«0
1111: (1®0) 1
1111: O@1) 1
0000: (0@ 0) 0
1111: (1+1)«1
0000: (1450) <0
0000: 0+ 1)«<0
1111: (0 0) <1

We may notice that the above 1-0 formulas are exactly the same as the five sets of
digital calculation formulas [3] (Section 2 Digital Calculation Formulas and Calculation
Method).

3 Group Expressions and Equivalences by Digital Numbers

3.1 Group Basic Expressions by Sixteen Digital Numbers

Although we can discover hundreds of equivalences from the lookup table based on nu-
merical values, the total numerical values in two-element expressions are only sixteen.
Let’s group all the basic expressions by the digital numbers:

Table 3.1: Basic Expressions Listed in Sixteen Number Groups

Num | +/- | A/B A \% — (&) -
0000 | O (A A-A), (AD A), (A & -A)
(A A0), (-A @ -A)
(A ADQ)
0001 (-RAA-B) | ~(AVB) —(—A — B),
~("B—A)
0010 (A AB) -(Av-B) | —~(~A— —B),
~(B—A)
0011 SA | GAASA), | (FAV-A), | (A - —A), (1 - —A), (-A @ 0), (A & 1),
(-A A1) (-A Vv 0) (A —0) (AD1) (A 0)
0100 (A A-B) -(-AVB) | =(A — B), (-B — —A)
0101 -B
0110 (A @ B), (A < -B),
(-A & -B), (-A < B),
=(A @ -B), -(A < B),
-(-A © B) =(=A< -B)
0111 -(A A B) (-AvV-B) | (A——B),(B——A)
1000 (A AB) =(=AV -B) | ~(A — —B), (B — —A)
1001 (A ® -B), (A= B),
(-A @ B), (=A < -B),
-(A @ B), =(A < -B),
-(-A®-B) | ~(-A<B)
1010 B
1011 -(AA-B) | (FAVB) (A — B), ("B — —A)
1100 A | (AAA), (AVA), (A — A), (1 > A), (-A D 1), (A1),
(AAD) (Av0) (—A — 0) (A 0) (-A < 0)
1101 -(-AAB) | (AvV-B) (—A — —B), (B — A)
1110 -(-AA-B) | (AVB) (—A — B), ("B — A)
1111 |1 (AV-A), (A — A), (FA - —A), (AP -A) (A A),
(Av 1), (A—1),(~A—1), (A & -A)

(FA V1)

00— A), (0—>—A)

Note, this table can be downloaded from: https://doi.org/10.7910/DVN/DS8XHSP

In the table above, expressions with identical numbers are in the same row, indicating
that all expressions within a row are equivalent. This allows us to identify equivalences
directly by their numbers. For instance, expressions (A A 1) and (=A <> 0) are in Row
1100, indicating they are equivalent:

(AA1) < (A < 0) //Both have the same truth value 1100

No additional operations are needed for proving it. By this way, we can directly find
equivalences without performing complex statement-based reasoning or truth table anal-
ysis.

It should be noted that there are three omissions in the table above:

1. Omission of B-A expressions: Except for the “—” relations, in all other relations, the
B-A expressions are omitted because in those relations, the numerical value remains the
same when interchanging the positions of A and B.

2. Omission of negative expressions in columns A, B, +/=, A-A, A-1, A-0 and 1-0: This
involves 6 numbers: 1111, 0000, 1100, 1010, 0011 and 0101.

3. Omission of expressions for B and —B: In the table above, there is no equivalence
expression for B and —B. They are omitted. Because when the object is a one-element
expression, A is sufficient as a representation, making B redundant. Using B instead of A
would yield the same result. For instance, if we replace “A” in the formula (A < A) <
1 with “B”, the formula becomes (B <+ B) <> 1. The result remains the same. Another
example, if we replace “A” in the formula (A A A) <> A with “B”, the formula becomes
(B A B) <+ B. and the essence would remain unchanged.

3.2 Group Basic Equivalences by Fourteen Distinct Truth Values

In the table above, the basic expressions are grouped by numbers. Now let’s group all
basic equivalences (instead of basic expressions). In the following table, we will discover
all basic equivalences of two-element relations.

Note, since there is no equivalence expression for B and =B in the table above, we will
have fourteen number groups in the following list:

1111:

(AV-A) &1 //Complement Law
(AV1 &1 //Annulment Law
(FA V1) <1

(A=A o1
(
(
(

https://doi.org/10.7910/DVN/D8XHSP

(0= A) &
(0 — —A)
(A@ -A) <
(A A) «
(—|A<—>—|A)
(1A])«
(1V1) <«
(1VO0) <«
(1—>1)e>1
0—=1)«1
(0—>0)e>1
1le®
(
(

0) <

)

1 1 1
0« 0)

&~
1
0000:

AAN-A) <0 //Complement Law
AAN0D)«<0 //Annulment Law
“AAN0) 0

A®A) 0

—A@-A) <0

Ao -A)«0

1AO0)«0

0A0) <0

.

ANA) <A //ldempotent Law
AANT) < A //1dentity Law
AVA)< A //Idempotent Law
AV0) < A //Identity Law

—(-A) < A //Double Negation Law

0011:

10

A1)« -A
ﬁAEBO)(-)—!A
A+ 0) < -A
A1) -A

(A®B) < (-A @ —-B)
(A®B) < —(A @ -B)
-(A @ -B) + =(-A @ B)
(A~ -B) < (Ao B)

(A < —B) & (WA «< B)
(A < -B) + —(A < B)
—(A < B) < =(—A < —B)
1001:

(A®-B) & (-A @ B)
(A® -B) < -(A & B)
-(A & B) + =(-A ¢ —-B)
(A< B)« (A® —B)

(A < B) < (-A < —B)
(A < B) < (A < —B)
—(A < —-B) & —(-A & B)

1000:

(AAB) < (BAA) //Commutative Law
(AAB) < =(A— —-B)
(AAB) < ~(-A vV —B)

0100:

(AA-B)« (-BAA)

(A A -B) < -(-AVB)

(AAN-B) < =(A—B)

0010:

(=A A B) < =(A Vv —-B)
(-A A B) & =(-A — —-B)

11

(A A -B) <> (A V B) //de Morgan’s Law
(-A AN =B) <> =(-A — B)

(mAV -B) <> =(A A B) //de Morgan’s Law
(mA VvV =B) < (A — -B)

(A - —-B) +> =(A A B)

(A —- -B) + (B — —-A)

—A V B) <> =(A A —-B)
-AVB) <+ (A—B)

A — B) & —(A A -B)
A — B) & (-B — —A)

o~ o~~~

(AVv -B) < (-BVA)
(AV -B) < =(-A AB)
(A V —\B) — (—\A — —\B)
(-A — -B) < -(-A A B)
(-A — -B) + (B — A)

(AVB)« (BVA) //Commutative Law
(AV B) < =(-A AN —B)
(AVB) < (-A — B)

(mA — B) <> =(=A A =B)

(FA —- B) & (-B = A)

The table above divides all equivalences into fourteen groups based on identical numerical

values.

Using the digital analysis method and the expression-number lookup table, we can quickly
and directly discover all the equivalence formulas, including those theorems of Boolean

logic and propositional logic.

It should be noted that, this paper focuses on analyzing the basic expressions that are no
more than two elements (AB), including the expressions in A-B, B-A, =(A-B), =(B-A),
A-A, A-1, A-0, and 1-0 categories and their 16 truth values. Due to space limitations,
the 256 truth values and their relations of the three-element (ABC) expressions are not

addressed.

12

4 Appendix

4.1 The 4-digit Expression-Number Lookup Table

Table 4.1: The 4-digit Expression-Number Lookup Table

A B @ 0
Expression | Num | Expression | Num | Expression | Num | Expression | Num
A 1100 B 1010 + 1111 - 0000

-A 0011 -B 0101
A-B B-A —(A-B) —(B-A)

Expression | Num | Expression | Num | Expression |Num | Expression | Num
(AAB) [1000| (BAA) [1000] —~(AAB) |0111| —=(BAA) |0111
(AA=B) | 0100 (-BAA) | 0100 (A A—-B) [1011| =(-B A A) | 1011
(A AB) |0010| (BA—=A) |0010| =(-A AB) [1101| (B A—-A) |1101
(=A A =B) | 0001 | (=B A =A) | 0001 | =(=A A =B) | 1110 | =(=B A =A) | 1110
(AvB) |[1110, (BVA) |[1110| —(AvB) |0001| —=(BWVA) |0001
(Av-B) | 1101 | (-BV A) |1101 | =(A Vv =B) [0010| —=(=B Vv A) |0010
(A v B) |1011| (BVv —A) |1011| =(=A Vv B) [0100| —=(BV —=A) | 0100
(mA v =B) | 0111 | (=B v =A) | 0111 | =(=A v =B) | 1000 | =(=B Vv —=A) | 1000
(A—-B) |1011| (B—A) |1101| —-(A —B) |0100| —=(B — A) |0010
(A—-B) |0111 | (-B — A) | 1110 | =(A — —B) [1000 | —=(=B — A) | 0001
(A — B) |1110| (B —- —=A) | 0111 | =(-A — B) | 0001 | =(B — —=A) | 1000
(-A — =B) | 1101 | (=B — —=A) | 1011 | =(=A — —=B) | 0010 | =(—=B — —A) | 0100
(A@B) |0110] (B® A) |0110| —~(A®B) |[1001| —~(B® A) |1001
(A®-B) [1001| (-B® A) |1001| (A @® —-B) |0110| =(-B @ A) | 0110
(A @®B) [1001| (B® —-A) |1001| ~(-A @ B) |0110| (B & —A) | 0110
(-A @ —B) | 0110 | (-B & —A) | 0110 | =(=A & —B) | 1001 | =(-B & —A) | 1001
(A<~ B) |1001| (B« A) [1001| —(A<«+ B) |0110| —=(B<+ A) |0110
(A < —-B) |0110| (-B <+ A) | 0110 | =(A +» —=B) | 1001 | =(=B «+ A) | 1001
(mA + B) [0110 | (B «» =A) | 0110 | =(—=A + B) [1001 | =(B «+ —=A) | 1001
(A + —=B) | 1001 | (=B <> =A) | 1001 | =(=A + =B) | 0110 | =(—B <> —A) | 0110

A-A A-1 (A-0) (1-0)
Expression | Num | Expression | Num | Expression |Num | Expression | Num
(AANA) 1100 (AAD) 1100 (A ANDO) 0000 (IA1) 1111
(AA=A) {0000 (1AA) 1100 (0N A) 0000 (1 AD0) 0000
(A AA) | 0000 (A A1) |0011 (=A A 0) {0000 (0OA1) 0000
(=A A —=A) [0011| (1 A-A) |0011 (0 A =A) {0000 (0 A 0) 0000
(AVvA) |1100| (AV1) 1111 (A V0) 1100 (1v1) 1111
(Av-A) | 1111 (1VA) 1111 0V A) 1100 (1VvO0) 1111
(mFAVA) |1111] (FA V1) | 1111 (=A v 0) |0011 0OV 1) 1111
(mAVv -A) [0011] (1Vv—-A) |[1111 (0 v —=A) |0011 (0 v 0) 0000
(A—A) 1111 | (A—1) |1111 (A —0) 0011 (1—=1) 1111
(A——-A) |0011| (1 —A) |[1100 (00— A) 1111 (1 —0) 0000
(-A — A) | 1100 | (-A — 1) |1111| (=A —0) |[1100 (0—1) 1111
(mA — —-A) | 1111 | (1 — =A) |0011| (0 — —A) |1111 (0 —0) 1111
(A®A) (0000 (Ae1) |0011 (A @ 0) 1100 (1e1) 0000

13

(A@®-A) [1111] (1@ A) J001l|] (@@ A) [1100] (I1&0) 1111
(FAGA) [1111] (A& 1) |1100] (-A®0) |0011| (0 1) |1111
(=A@ -A)[0000| (1@ -A) [1100] (0@ —A) |0011] (0®0) |0000
(A< A) [1111] (A< 1) |1100] (A< 0) |0011| (L« 1) |1111
(A< —=A) |0000| (1<+ A) |1100] (0« A) |0011| (L<>0) |0000
(=A< A) [0000 | (@A <> 1) |0011| (-A <> 0) |1100| (0<>1) |0000
(=A< —A) [1111 | (1 —A) |0011| (0« —A) [1100]| (0« 0) |1111

This dataset is sourced from https://dataverse.harvard.edu/dataverse/digital-logic:

Two-element Relational Expression-number Lookup Table for Propositional Logic

https://doi.org/10.7910/DVN/HWRWSR

A-A, A-1, A-0 and 1-0 Relational Expression-number Lookup Table for Propositional
Logic https://doi.org/10.7910/DVN/OCN14M

5 Conclusion

This paper introduces a digital method for analyzing propositional logical equivalences. It
transforms the theorem-proof method from the complex statement-derivation method to
a simple number-comparison method. By applying the digital calculation method and the
expression-number lookup table, we can quickly and directly discover and prove logical
equivalences based on the identical numbers, no additional operations are needed. This
approach demonstrates significant advantages over the conventional methods in terms of
simplicity and efficiency.

Conflict of Interest Statement

The author declares no conflicts of interest.

Data Availability Statement

The author confirms that all data generated or analysed during this study are included
in this article. Furthermore, all sources and data supporting the findings of this study
were all publicly available at the time of submission.

References
[1] Nahin, Paul J. (2012). The Logician and the Engineer: How George Boole and Claude

Shannon Created the Information Age. Princeton University Press.

2] Anellis, Irving H. (2012). Peirce’s Truth-Functional Analysis and the Origin of the
Truth Table. History and Philosophy of Logic. 33 (1): 87-97.

[3] Zhou, Nongjian (2024). A Digital Calculation Method for Propositional Logic. URL:
https://philsci-archive.pitt.edu/id/eprint /24527

Comments are welcome. Author email: nongjianz@hotmail.com

https://dataverse.harvard.edu/dataverse/digital-logic
https://doi.org/10.7910/DVN/HWRWSR
https://doi.org/10.7910/DVN/OCN14M
https://philsci-archive.pitt.edu/id/eprint/24527
mailto:nongjianz@hotmail.com

	Introduction
	Find Equivalences from Expression-number Lookup Table
	A-B Equivalence Formulas
	A-B / B-A Equivalence Formulas
	A-B / ¬(A-B) Equivalence Formulas
	A-A Equivalence Formulas
	A-1 Equivalence Formulas
	A-0 Equivalence Formulas
	1-0 Equivalence Formulas

	Group Expressions and Equivalences by Digital Numbers
	Group Basic Expressions by Sixteen Digital Numbers
	Group Basic Equivalences by Fourteen Distinct Truth Values

	Appendix
	The 4-digit Expression-Number Lookup Table

	Conclusion

