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Abstract. The past few years have witnessed a growth in the interest on the historical and philosophical 

dimensions of bioinformatics as a discipline. Despite the importance of bioinformatics in addressing 

the issues raised by the growing amount of biological data, data management is often seen as all it has 

to offer to biology. However, the emphasis on data management may come at the expense of 

understanding how bioinformatics generates genuine biological knowledge beyond its instrumental 

value for bench biologists. Some authors have moved the first steps beyond data management, and 

towards the characterization of bioinformatics as a unique epistemic endeavor, by stressing how its 

experimental practices can be conducive to biological knowledge. In this article, we build upon these 

attempts, and by using a detailed case study from the field of single cell transcriptomics (i.e., RNA 

velocity), we provide a fully-fledged characterization of bioinformatics as an experimental discipline. 
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1. INTRODUCTION 

Computers have been used since the 1950s in various biological contexts, including molecular 

biology. Key pioneering figures include people such as Robert Ledley, Joshua Lederberg, and 

Walter Goad, who attempted to develop simulations and data modeling techniques to answer 

biological questions (November 2012; Stevens 2013; Strasser 2017). However, as documented 

by Stevens (2013) and Strasser (2017), many molecular biologists were initially reluctant to 

use computers, deeming them pointless and thus hindering early attempts at introducing 

computational projects in biology. But since the data deluge started in  the early 1980s, 

computational assets such as databases started to attract the interest of molecular biologists, to 

the extent that a new discipline called ‘bioinformatics’2 has slowly emerged. While the data 

 
1 Corresponding author, mnl.ratti@gmail.com 
2 The term “bioinformatics” is used here as a stand-in for all the other definitions used in the community: 

computational biology, systems biology, etc. We are aware that the community does not always view these 

terms interchangeably, with some considering “bioinformatics” as the aspects merely related to software 

engineering (thus pertaining more to computer scientists), and “computational biology” as a more rounded way 

of studying biology using computational tools and methods (see 

https://www.kennedykrieger.org/sites/default/files/library/documents/research/center-labs-

https://www.kennedykrieger.org/sites/default/files/library/documents/research/center-labs-cores/bioinformatics/bioinformatics-def.pdf
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management dimension has played a central role, the development of early computational 

projects based on software and tools to model biological data has nonetheless continued in 

parallel. However, historical investigations have focused especially on the data management 

and sequence analysis aspects of bioinformatics, and to our knowledge, a detailed history of 

other dimensions of bioinformatics has yet to be written.  

The situation is slightly better in philosophy of science. Philosophical works engaging 

with the epistemology of computationally-driven disciplines such as genomics have only very 

recently started to discuss bioinformatics as a discipline per se, without implicitly assuming 

that it is just a set of tools and solutions to store and sometimes analyze data. In particular, 

recent works by Leonelli (2016; 2019), Strasser (2017), and Stevens (2013), while describing 

the epistemic ramifications of data management practices in the biological context in great 

detail, have also attempted to go a step beyond the view of bioinformatics as data management 

and automated analysis, by emphasizing the experimental dimension3 and the proper goals of 

this discipline (see Appendix 1 for an overview of these positions). By building on these 

attempts, the goal of this article is to develop a full-blown account of bioinformatics as an 

endeavor with its own epistemic goals. In our work, bioinformatics is understood as a discipline 

that, by engaging in experimental activities with virtual experimental systems (whose origin is 

nonetheless material) through the development of new computational4 tools, generates new 

kinds of data that wet-lab biologists cannot create. Our account coherently integrates the 

aspects described by Stevens, Leonelli, and Strasser, with novel facets of bioinformatics 

practices in the molecular biological context. By doing so, we shed new light on bioinformatics 

as a unique epistemic and experimental culture. 

 

1.1 Motivations 

The motivations for the present work are two. 

One motivation is to fill a gap in the philosophical, historical and sociological literature 

on the nature of bioinformatics. This has been often seen in relation to other biological 

disciplines, with only recent works trying to characterize bioinformatics in its own right (as 

 
cores/bioinformatics/bioinformatics-def.pdf). They are, however, often used interchangeably especially in the 

context of multidisciplinary laboratories and collaborations. We acknowledge that the differences underlying 

these terms can be relevant, but for the sake of simplicity and in keeping with the dynamics in multidisciplinary 

environments we will use one umbrella term. 
3 An isolated case in which the experimental dimension of bioinformatics is (Boem and Ratti 2016) 
4 ‘Computational’ here is synonymous with ‘data-intensive’, ‘Big Data’, or ‘AI’: they are different words to 

refer to the same class of tools 

https://www.kennedykrieger.org/sites/default/files/library/documents/research/center-labs-cores/bioinformatics/bioinformatics-def.pdf
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discussed in Appendix 1). By building on these attempts, this paper should be seen as 

contributing to the philosophical, historical, and sociological understanding of a discipline that 

has been often considered ancilla biologiae, rather than a proper subfield of biology. 

The second motivation comes from an unfavorable situation in which many 

bioinformaticians work, which, to be improved, requires a richer epistemic account of 

bioinformatics practices. In particular, we refer to what has been called ‘the trapped 

bioinformatician5’ or ‘the pet bioinformatician6’ syndrome. There is a tendency in laboratory-

based groups to consider bioinformaticians as valuable resources to manage, curate, and 

analyze the data that “wet-lab” biologists generate, but not so much as pursuers of genuine 

biological questions themselves. This implies that bioinformaticians will have difficulties in 

completing their own projects, which often require bench biologists to reciprocate the time that 

bioinformatics practitioners have spent in analyzing data belonging to wet-lab projects. This 

culture reflects a view of bioinformatics practice as mere ‘red button-pushers’ that initiate 

automated analysis procedures7. This situation, we claim, generates a divide. On the one hand, 

wet-lab biologists think about bioinformatics mostly in instrumental terms as data management 

and analysis, while bioinformaticians feel that they generate genuine biological knowledge 

themselves. On the other hand, wet-lab biologists who generate large amounts of data in high 

throughput experiments often lack the expertise to analyze such datasets, thus having to rely 

on bioinformaticians for important steps, decisions and biological interpretation of these 

experiments, but the nature of such decisions and its impact is underestimated. We call this 

divide epistemic alienation: bioinformaticians generate genuine biological knowledge, but they 

are excluded from the intellectual category of ‘knowledge makers’; at the same time, wet-lab 

biologists cannot make sense of important parts of their own work as they need 

bioinformaticians’ inputs to interpret their own experiments. The divide, which implies a 

subordination of bioinformaticians to wet-lab biologists, has been well documented by the 

massive, decade-long STS study of bioinformatics culture by Andrew Bartlett, Bart Penders, 

Jamie Lewis, and others (Lewis and Bartlett 2013; Bartlett et al 2016; Lewis et al 2016; Bartlett 

et al 2017). One highlight of their studies is that “many view bioinformatics as a ‘service’, 

rather than a scientific field in its own right (...) [this] renders the intellectual contribution of 

bioinformaticians invisible, hidden in the ‘black-box’” (Bartlett et al 2017, p 2). One 

 
5 http://davidsdatablog.blogspot.com/2018/12/trapping-pet-bioinformatician-for-lab.html 
6 http://www.opiniomics.org/a-guide-for-the-lonely-bioinformatician/ 
7 See for instance this ironic post by Torsten Seeman 

https://x.com/torstenseemann/status/433448248921956352?prefetchTimestamp=1732106085400 
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consequence of this view is a shady distribution of credits among wet-lab scientists and 

bioinformaticians. The results of this study are supported by an impressive variety of empirical 

evidence8, corroborated by more insights (Markowetz 2017; Grabowski and Rappsilber 2019; 

Way et al 2021), though with recent slight improvements (Calder et al 2021).  

Epistemic alienation has a strong sociological and political component. As Bartlett et 

al (2017) say, science is necessarily tied to “institutional and organizational arrangements” (p 

2) which shape power dynamics. From this point of view, there is not much that we can do 

with the present article. However, what we can do is to dismantle philosophical prejudices 

lying at the roots of epistemic alienation. Therefore, we argue against the prejudices that 

bioinformaticians do mostly data management and that their work can be increasingly 

automated, and most importantly that they cannot produce novel biological knowledge by 

working on purely computational projects. An epistemic account of bioinformatics practice can 

show that there is more to this discipline than just data management and automated data 

analysis, and that bioinformatics is indeed an experimental science, as much as molecular 

biology is. The emphasis on ‘experimental’ is essential, given the old illustrious theme in 

molecular biology (Strasser 2017) that those who generate genuine biological knowledge are 

the ones doing the experimental work.   

 

1.2 The structure of the article 

The structure of the article is as follows. In Section 2 we identify the philosophical assumptions 

behind epistemic alienation and the idea that bioinformatics should be subordinated to wet-lab 

biologists. We introduce the concept of ‘epistemic driver’, which designates those scientific 

actors leading a research project and co-opting other people's labor to achieve their own 

epistemic goals. We explain how in biology being an epistemic driver is strictly connected to 

the role of experimenting, understood as a particular kind of material intervention aimed at 

creating new data types or new data that are indications of biological phenomena. But, a 

popular view claims, bioinformaticians do not do that: they only manage data and initiate 

automated procedures. What impedes bioinformaticians to be epistemic drivers is then a 

twofold problem: they do not do experiments, and they do not have material access to 

phenomena. In Section 3, we delineate in detail the case of RNA velocity as a paradigmatic 

example of bioinformatics experimentation, by showing how the model and data type of RNA 

 
8 This includes including content-analysis of bioinformatics articles, ethnographic fieldwork, interviews of 

almost 100 bioinformatics, and a survey of 300 bioinformaticians 
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velocity is actually discovered by intervening in various formal ways on data that have been 

‘converted’ from ‘real-world data’. In Section 4 we develop our own account of bioinformatics 

as an experimental practice by showing in which sense cases like RNA velocity are instances 

of biological experimentation, and by distinguishing two types of ‘experiments’ in 

bioinformatics that we call ‘strong’ and ‘hard’. Finally, in Section 5, we address the concern 

about the missing materiality of bioinformatics experimentation. All in all, this will show that 

bioinformaticians can be epistemic drivers. 

 

2. PHILOSOPHICAL ASSUMPTIONS BEHIND EPISTEMIC ALIENATION 

Our starting point is the notion of ‘epistemic driver’. We define an epistemic driver in a 

scientific group as an individual who, in leading a research project, produces scientific 

knowledge and co-opts other individuals’ expertise to achieve his/her own epistemic goals. An 

epistemic driver controls the unfolding of a scientific project. This is akin to making ‘path-

dependent’ decisions that ended up framing the general discovery strategy of a scientific 

project. Concretely, this means deciding the experiments to perform, how results should be 

interpreted, and how the efforts of other individuals should be allocated to achieve an epistemic 

goal that he/she chooses. Furthermore, this is also going to influence the ‘story’ or the 

‘narrative’ that will be written in scientific articles9. When we argue that epistemic drivers are 

‘co-opting’ other people’s work, we are not saying that they force other individuals. As we will 

see, in biological labs there are different projects, and hence different epistemic drivers, and by 

offering one’s own services for another project, reciprocity is expected (Knorr-Cetina 1999). 

A realistic picture is that, within each laboratory, there is an intricate network of projects and 

hence of epistemic drivers. It is possible to ‘zoom-out’ and identify groups of individuals that 

can be in principle epistemic drivers, and groups of individuals that cannot. For example, in a 

biological laboratory PhD students and postdocs usually lead their own projects, and hence 

have their own epistemic goals, while technicians do not. This means that PhD students or 

postdocs can become, at least in principle, epistemic drivers, while technicians cannot because 

they only provide a service to epistemic drivers. In this context, bioinformaticians have 

struggled to be recognised as ‘epistemic drivers’. 

 The concept of “epistemic driver” is useful to describe general situations in 

experimental research, regardless of the field of study. Highly collaborative research groups - 

 
9 This is especially true for postdocs, and to a lesser extent for PhD students. But in all these cases, the PI has 

also a significant role in directing the discovery strategy, as well as deciding on the final ‘narrative’ (indeed, 

there are laboratories where PIs write all the articles), 
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including consortia - will have different projects where an individual (or, more rarely, a group 

of individuals) has a specific research question, studies the existing literature to identify 

relevant gaps, designs and executes experiments, interprets the data and compiles these 

interpretations in a communicable form such as visualizations or reports.  

 

2.1 Epistemic Drivers in Macromolecular Biology 

In order to understand how bioinformaticians may be denied the role of epistemic drivers, it is 

important to describe exactly in which sense traditional bench biologists can be defined as such. 

Three aspects must be emphasized at the onset. 

First, the figure of the epistemic driver can be investigated from two perspectives. On 

the one hand, there is a socio-cultural point of view, emphasizing the power dynamics leading 

some specific professional, academic, and scientific figures to become ‘driver’ rather than 

others. A second angle concerns the ‘characteristics’ of epistemic drivers as such, in particular 

in the context of molecular biology or, to use Morange’s expression (2008), macromolecular 

biology, which includes disciplines developed from the molecular vision, such as systems 

biology, the various -omics, etc. We are interested in the latter angle, even though there might 

be much to say about the former.  

Second, to understand the epistemic reasons for being epistemic drivers in 

macromolecular biology, we have also to consider (a) the environment in which biologists 

work, and (b) the conditions of possibility for discovering how biological phenomena are 

constituted.         

Let us start with (a), namely the laboratory. An important ethnographic study 

investigating the epistemic dimension of macromolecular biological labs is Knorr-Cetina’s 

classic Epistemic Cultures (1999), which we use as a starting point. According to Knorr-Cetina, 

macromolecular biology is a discipline characterized by ‘object-oriented processing’, which is 

the continuous manipulation and production of material objects, such as plasmids, cell lines, 

etc., that are generated and used following protocols. The laboratory has a two-tier structure 

that is characterized by material objects. The first provides and maintains the materials 

necessary in a laboratory, while members of the second use the working material for 

experimental work in ways that are dictated by their epistemic goals.  

We need to ‘zoom-in’ to the second layer in order to grasp (b), namely the conditions 

of possibility for discovering how biological phenomena are constituted, to which only certain 

practitioners (i.e. the epistemic drivers) have access. In this layer, there are “massive 

transformations [brought] to bear on objects” (p 85). In her rich description of the nature of 
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object-oriented processing, Knorr-Cetina emphasizes the importance of the experiences, the 

body, and the senses of biologists. In order to be a good biologist, one has to develop 

sophisticated experimental skills, which means being able to tinker with experimental systems 

in efficient ways. The lives of biologists are characterized by “daily interactions with material 

things, (…) the need to establish close relationships with the materials” (1999, p 86). Good 

biologists have to develop a deep personal knowledge of their own experimental systems 

(Rheinberger 1997). This is because protocols have to be adapted to the specificities of the 

materials biologists are working with, requiring an ability to ‘feel’ the experimental system 

(Keller 1983) in a way that protocols have to “be negotiated in practice with obdurate materials 

and living things” (Knorr Cetina 1999, p 88). In this context, a necessary condition for being 

an epistemic driver is having access to experimental systems and being able to manipulate 

them. In other words, the concreteness and materiality of experiments seem to play a central 

role. 

2.1.1 Experimental activities, materiality, and epistemic drivers 

Let us start with ‘experiment’ and ‘experimental’. It is beyond the scope of this article to 

provide a precise account of ‘experiments’ – the topic and the literature would require a 

separate book-length treatise. What we do here is to highlight a few aspects associated with 

experiments that are important in this context.  

There is a general way of understanding ‘experimental’ (Strasser 2017), which 

designates a “broad range of research practices, including both experimentation intended to 

control and experimentation intended to analyze” (p 14). Here we especially emphasize the 

‘intervention/manipulation’ aspect of experimentation by focusing on aspects of laboratory 

science that “interfere with the course of that aspect of nature that is under study” (Hacking 

1992, p 33). Parker (2009) characterizes experiments as investigative activities involving 

intervention “on a system in order to see how properties of interest of the system change”, 

where an intervention is ”an action intended to put a system into a particular state” (p 487). 

Knorr-Cetina captures this specificity in biology, noticing that many experiments subject 

“specimens to procedural manipulations (...) experiments deploy and implement a technology 

of intervention” (1999, pp 36-37). Rheinberger (1997) also emphasizes the 

intervention/manipulation dimension of experimentalists, by stressing that experimentalists (in 

his case, molecular biologists) are ‘tinkerers’ rather than engineers (1997, p 32). But just 

tinkering is not enough. Tinkering with biological systems is a necessary aspect of 

experimental activities, but one can tinker in non-experimental ways. Experimenting is (a) 

tinkering with a system’s parts in a controlled setting, (b) recording unforeseen consequences 
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in order to understand parts’ behavior, (c) with some biological questions in mind. Tinkering 

without a question or interest in mind is not experimenting, as it is not experimenting just 

tinkering with known consequences (like repairing a system we understand perfectly) or 

without controls. The mention of controls is particularly salient, because experimenting is not 

mindless tinkering; it needs ‘confidence-building’ strategies (Franklin 1986; Parker 2008), 

namely ways of checking whether the experimental activity is at least internally valid – this 

requires practices of calibration, consistency of results with known intervention or even with 

theory, robustness, etc. 

Let us now turn to the ‘concreteness’ or ‘material’ component. Experiments defined in 

this way are central because the way biological phenomena are produced and/or maintained 

cannot be directly observed, and biologists have to find ‘creative’ (though reliable!) ways to 

‘force’ experimental systems to ‘reveal’ something about biological phenomena. One central 

way in which this is done is by manipulating experimental systems in order to generate either 

novel data types or simply new data that can constitute evidence for phenomena (Leonelli 

2016; Bogen and Woodward 1988). On this account, data are “the marks that some section of 

the world [i.e. in this case, specific biological phenomena] makes when it moves through some 

recording field” (Lowrie 2017, p 9). Biologists manipulate experimental systems in ways that 

will ‘force’ the phenomenon to leave new types of traces (especially if they want to discover 

something new) or just specific traces that they know are indicative of a specific phenomenon10. 

In the tradition of macromolecular biology as depicted by Knorr Cetina, these experimental 

activities have an important material dimension: new data types or specific traces are created 

by materially manipulating experimental systems. To take a common example, in order to 

study the biological phenomenon we call ‘genome’, researchers have to literally shear genomic 

DNA molecules into fragments using enzymes (restriction endonucleases), insert these 

fragments into circular DNA molecules that can be amplified by bacteria (plasmids), and insert 

plasmids into specialized bacteria strains (transformation). These are subjected to several 

amplification processes, including one that emits a specific fluorescent signal for each of the 

 
10 One reviewer noticed that this account might not be compatible with the relational view of data argued for by 

Leonelli (2016). At first glance, this might be the case: one can say that ‘sections of the world’ leaving ‘marks’ 

by interacting with measuring instruments might imply the idea that data can potentially ‘represent’ one and one 

phenomenon only, and hence that data only provide evidence for scientific claims about the specific situation in 

which they have been generated. But this need not be the case: one can say that data can be potentially used for 

a wide range of scientific claims well beyond the given circumstances in which they have been generated (as 

Leonelli does), without denying that the first ‘appearance’ of data is the result of the interaction between some 

specific sections of the world and a measuring instrument. In other words, Lowrie’s definition does not deny the 

possibility that data could be subjected to the processes that Leonelli describes in the so-called ‘data journeys’, 

and the resulting evidential scope be greatly enlarged as a consequence. 
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A, C, T, G nucleotides, thus resulting in a sequence of light signals that are detected by a 

machine, and converted to sequences by an image recognition software. Genomes as biological 

phenomena are thus (as Rheinberger would say) brought to light by tinkering with biological 

systems in a way that certain new types of marks/signals/data indicating characteristics of 

genomes are created. Without material engagement, knowledge cannot be created.  

To sum up, there are some epistemic requirements for being an epistemic driver in 

macromolecular biology. In particular, one has to be able to engage in experimental activities 

in the way defined above, which means being able to generate new data types (or at least data 

we know are indications of phenomena) by means of intervening (in the way defined above) 

materially on experimental systems. Take a fictional, though realistic example. Consider a 

laboratory where Alice, a postdoctoral wet-lab researcher is carrying out a research project 

based on an idea that she has discussed with her supervisor. Alice develops a sense of 

ownership of the project: she studies, prioritizes experimental work, designs individual 

experiments, and interprets data either on her own or in a discussion with other colleagues, 

including her supervisor. Her material work and her choices shape the narrative of the project 

in that they represent a logical and biologically motivated ordering of steps, connected by 

deductive and inductive activity. She is the one who, beyond taking these steps, is tracing them 

and choosing a path forward with more or less support and guidance from her supervisor. Alice 

is, in brief, driving her project.  

 

2.2 Consequences for Bioinformatics 

There is a sense in which bioinformaticians are not epistemic drivers, which is when 

theyprovide support for projects of wet-lab biologists. This includes tasks like aligning reads 

to an annotated genome, performing quality controls, performing hypothesis testing using 

statistical methods, etc. The computational biologist can merely act as support to help a 

macromolecular biologist reach their own epistemic goal, e.g. knowing the transcriptional 

response to the knock-out of a particular transcription factor. This is not something specific to 

bioinformaticians. Indeed, it is typical of wet-lab biologists as well, for instance when 

providing orthogonal validation, i.e. an attempt at confirming a result using different molecular 

techniques or perturbing a system in a different way.  

But it is possible to deny, on epistemic grounds, the status of epistemic drivers to 

bioinformaticians qua bioinformaticians. This is reflected in the view that data management 

and automated data analysis is all that bioinformatics can possibly offer. More explicitly, this 

can be expressed by saying that bioinformaticians (1) do not do experiments, and (2) do not 
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have access to the ‘material’ world of biological phenomena. 1 and 2 are indeed strictly 

connected: in order to have access to ‘biological phenomena’, you need to have material access 

to them, and in order to do this, ‘experiments’ are required. To put it differently, if the epistemic 

goals of macromolecular projects (i.e. inferring the configurations of biological phenomena by 

collecting novel data or generating new types of data) can only be achieved by having a material 

access to those phenomena, and in order to have this you need to engage in direct experimental 

activities (in the way defined above), then a bioinformatician is cut out by definition (or at 

least, under the conception that bioinformatics is only about data management). Because of the 

lack of material interaction with experimental systems and the inability to do any tinkering (in 

the way defined in 2.1.1), bioinformaticians cannot generate especially new data types. In other 

words, bioinformaticians cannot even in principle discover how biological phenomena are 

constituted, and hence they cannot be epistemic drivers. This epistemic preconception is prior 

to obstacles related to the social structure of biology that make it hard for bioinformaticians to 

be epistemic drivers – before even discussing the latter, the epistemic matter has to be 

addressed. 

These considerations are compatible with the evidence gathered by STS studies 

mentioned in the introduction (e.g. Lewis and Bartlet 2013; Lewis et al 2016). The 

subordination of bioinformaticians to bench biologists can be summarized by saying that 

“bioinformaticians do not perform experiments (…) [T]heir practice involves the manipulation 

of the primary inscriptions produced by biologists, rather than the transformation of the natural 

world through inscriptions” (2013, p 249). This suggests that materially and directly 

‘transforming’ the natural world through a system of experiments is seen as a necessary 

condition to be an epistemic driver in macromolecular biology in the first place. The lack of 

experiments challenges the possibility for computational biologists to be epistemic drivers, and 

to have their own epistemic goals like wet-lab biologists do.      

 In summary, there is a view according to which bioinformaticians cannot be, in 

principle, epistemic drivers, because of their inability to engage materially in experimental 

activities (as defined above) to construct new types of data that can become evidence for 

answering biological questions.       

 

3. RNA VELOCITY AS AN EXAMPLE OF BIOINFORMATICS 

EXPERIMENTATION 

In the previous section, we have reconstructed the view that bioinformaticians cannot be 

epistemic drivers. This is based on the assumption that bioinformaticians do not engage in 
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material experimental activities, and what they do is just data management and superficial 

analyses. The emphasis on the ‘material’ and the ‘experimental’ is motivated by the particular 

context of this article: macromolecular biology and the prominent role that experimenting has 

played in it11. To counteract this view, we need to rebut both the charge against the lack of 

‘experimental activities’ and against lack of ‘material engagement’. In order to argue for these 

things, we will use a specific case study, namely RNA velocity (La Manno et al. 2018). This is 

an important case for a variety of reasons. First, the computational model of RNA velocity as 

revealing stable features of a genuine biological phenomenon stems from unique properties of 

gene expression rather than being the rote application of a model borrowed from other 

disciplines. Second, the single steps taken by the investigators who created RNA velocity 

amount to a form of intervention (as defined in Section 2) in an experimental fashion. Third, 

this experimental intervention happened in silico, but traces of materiality can indeed be found, 

showing that bioinformatics is not as detached from the ‘material’ as wet-lab biologists seem 

to think. Fourth, the outputs of RNA velocity go beyond a simple analytical application of 

statistical models but actually bring forth a new kind of biological datum.   

This is how we proceed. In 3.1 and 3.2, we illustrate the main aspects of this case study. 

In 3.3, we introduce some preliminary considerations as to how RNA velocity is a case of 

bioinformatics experimentation. This is before elaborating a full-blown account of 

bioinformatics experimentation (Section 4) that is also sensitive to the ‘materiality concern’ 

(Section 5).  

 

3.1 What is RNA velocity?      

To discuss RNA velocity we need to briefly look at the dynamics of gene expression. For every 

given transcript in the majority of cell types, the temporal sequence of events (transcription, 

splicing, modification, export, translation, degradation) is completed in a matter of hours, with 

transcription and splicing being the longest processes. The different rates at which each of these 

events happens depend on many biophysical parameters that are both influenced by a cell’s 

current state (e.g., in terms of pH, temperature, concentrations of ions, type and amount of 

proteins, etc.) and by locus- and transcript-specific features (e.g., sequence, length, subcellular 

localization, etc.). Greatly simplifying, the relative importance of each of these steps can be 

classified as follows: if a cell transcribes a gene G at a transcription rate that exceeds the 

 
11 The emphasis on the context is important; in other fields (e.g. physics, astronomy, etc), issues related to 

experimentation might not cause the same tensions between computational and non-computational scientists as 

they do in macromolecular biology 
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degradation rate, then this gene is being up-regulated. If the gene G is produced at a rate that 

matches the degradation rate, it is at a steady state, as its amount does not change in time. 

Finally, if G is degraded at a faster pace than it is produced, it is down-regulated.  

Given this picture, some researchers (see Zeisel et al. 2011; Gray et al. 2014; Gaidatzis 

et al. 2015) had an intuition: if intronic RNA (i.e. the abundance of unspliced, immature RNA) 

and exonic RNA (i.e. the abundance of mature, already-spliced RNA) could be measured 

separately for every single transcript that is being made by the cell at a given time, then it is 

possible to infer how new a transcript is, using the ratio between spliced (“older”) and unspliced 

(“newer”) transcript as a proxy for their relative age, and its degradation dynamics. This 

intuition is based on the knowledge accumulated by macromolecular biology on these 

phenomena. If the relationship between unspliced and spliced transcripts holds and reveals a 

temporal trend, it should be possible to 1) model the relationship over time by observing its 

change across samples taken at different time points and therefore 2) predict the amount of a 

spliced transcript at a future time point. Given sequencing results at different time points, 

quantities for spliced and unspliced transcripts can be plugged in a model of gene expression 

that makes use of ordinary differential equations to describe the relationship between rates of 

transcription, splicing, and degradation.  

RNA velocity is a computational model expressing the relationship over time between 

unspliced and spliced transcripts. The relation is expressed in such a way that the model can 

predict the amount of a spliced transcript at a given time. The phenomenon that RNA velocity 

models is, more precisely, the trajectory of the gene expression state of a cell.  

It is important to be more precise on how RNA velocity is related to data, phenomena, 

and theory, and in which sense RNA velocity creates a new kind of datum. We can understand 

the relation between RNA velocity, data, and phenomena by considering how these fit into a 

widely known account, such as Bogen and Woodward’s famous view (1988). The phenomenon 

here is the set of dynamics governing gene expression in a cell, which is a process characterized 

by stable features that can be identified across different experimental contexts. As a process, 

gene expression is explained by a number of well-characterized mechanistic models (that, 

together, constitutes the theory of molecular biology, see Ratti 2020). The trajectory of gene 

expression is one aspect of the general phenomenon of gene expression. The way this trajectory 

is represented in the model of RNA velocity is influenced by those mechanistic models. By 

using RNA velocity, a new type of ‘datum’ is created, namely data about the trajectory of gene 

expressions. The idea is that RNA velocity ‘models’ data on transcripts. One might be tempted 

to think of this data as ‘raw’, but data on transcript is nonetheless ‘data model’, at least in the 
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sense of “corrected, rectified, regimented, and in many instances idealized version of the data” 

(Frigg and Hartmann 2020), that we gain from certain experimental procedures. By modeling 

these ‘data models’ on transcripts, RNA velocity generates a new kind of data model that 

provides evidence for a specific aspect of the biological phenomenon of gene expression (that 

is, its trajectory). 

Now that the general framing is clear, let us consider the nature of RNA velocity in 

depth. 

 

3.2. Discovering through computational tinkering 

In order to characterize more precisely the biological phenomenon captured by RNA velocity, 

bioinformaticians have created a new data type by experimenting computationally, rather than 

materially. Here we describe the steps of this experiment activity (La Manno et al. 2018).  

If we consider a specific unspliced transcript U, and follow its maturation at time t as 

the first derivative of U in dt, it will be characterized by a first order differential equation: 

 

𝑑𝑈

𝑑𝑡
= 𝛼(𝑡) − 𝛽(𝑡)𝑈(𝑡) (1) 

 

where 𝛼 is the rate at which U is transcribed, and 𝛽 is the rate at which U is spliced. As time 

passes, the total amount of U decreases, as unspliced transcripts are continuously being spliced. 

This means that another measurable quantity, that of spliced transcripts S, will increase with 

time according to another differential equation: 

𝑑𝑆

𝑑𝑡
= 𝛽(𝑡)𝑈(𝑡) − 𝛾(𝑡)𝑆(𝑡) (2) 

where the rate of production of the spliced transcript S is exactly the rate of splicing of the 

unspliced transcript U. Additionally, spliced transcripts are also continuously being degraded 

at a degradation rate 𝛾; the amount of degraded transcript depends on both the degradation rate 

and the current amount of spliced transcript.   

Assumption 1: the rates are not time-dependent, meaning that for any given time t, the 

values of 𝛼, 𝛽, 𝛾 are constant. Following these assumptions, the first two equations can be 

rewritten as: 
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𝑑𝑈

𝑑𝑡
= 𝛼 − 𝛽𝑈(𝑡);

𝑑𝑆

𝑑𝑡
= 𝛽𝑈(𝑡) − 𝛾𝑆(𝑡) (3) 

 

Quantifications undergo total depth normalization, in which each read count for each 

gene in each cell is divided by the total amount of read counts in the cell. This yields 

comparable quantities ui and si.  

Assumption 2: La Manno and colleagues assume that the splicing rate 𝛽 is the same 

for all transcripts, so it is considered to be 𝛽  = 1. While this is not exactly true, as splicing can 

be influenced by several factors, it is a necessary simplification to be able to use the 

instantaneous measurements (i.e. without temporal information) of u and s. This also means 

that all the other rates will be expressed as units of the splicing rate.  

The goal of this model is to be able to model the “RNA velocity”, expressed as the first 

derivative of the amount of spliced transcript with respect to time, dS/dt. If the model holds, it 

becomes possible to extrapolate the amount of spliced transcript S at a (not too distant) time t 

even if the time is not observed. To be more precise, the model allows us to predict with 

reasonable levels of confidence the expression dynamics (spliced mRNA) of genes in the near 

future, thus indicating a direction of change for these genes. The “near future” is limited by the 

biophysical dynamics of transcription and splicing, i.e. these predictions hold for changes to 

happen in a few hours.  

Taking assumptions 1-2 together, deriving the value of s at a given time t is achieved 

by solving the equations for u and s: 

𝑢(𝑡) = 𝛼(1 − 𝑒−𝑡) + 𝑢0𝑒−𝑡 (4) 

𝑠(𝑡) = 𝑒−𝑡(1+𝛾)  (5) 

 

With u0 and s0 being the initial unspliced and spliced quantities.  

 

Assumption 3: at steady state there is no change in spliced transcript abundance; 

mathematically: ds/dt = 0.  

Taken together, assumptions 2-3 result in 𝛾 = u/s and 𝛼 = u. If these assumptions were 

compatible with the complexity and biological features of the phenomena of interest, 

extrapolating spliced transcript quantifications would be trivial. However, the steady state 
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assumption (assumption 3) only holds for cells or tissues that do not undergo changes such as 

differentiation or response to a stimulus. RNA velocity becomes interesting only in a dynamic 

picture, such as a developmental process; in fact, it would allow researchers to extrapolate 

“future states” of gene expression based on the data currently available. Moreover, the 

production rate 𝛼 is unknown and difficult to measure without specialized experiments. For 

these reasons, La Manno and colleagues drop assumption 3 and a constant value of 𝛼 from 

assumption 1, and make another set of two alternative models, each with its own assumptions. 

  

Model I: velocity is constant, i.e.:  

𝑠(𝑡) = 𝑠0 + 𝑣𝑡 (6) 

 

This model introduces the velocity parameter as a constant, 𝜈 , which bears the following 

relation to the other parameters of the model according to equation (1): 

𝑣 = 𝛾𝑠 − 𝑢 (7) 

Under Model I, and knowing 𝜈, extrapolating the amount of spliced transcript at time t becomes 

trivial according to equation (6).  

 Model II: the amount of unspliced transcripts is constant, i.e.: 

𝑢(𝑡) = 𝑢0 (8) 

meaning that equation (2) can be reduced to a much simpler form: 

𝑑𝑠

𝑑𝑡
= 𝑢0 − 𝛾𝑠(𝑡) (9) 

whose solution for s(t) is also simpler: 

𝑠(𝑡) = 𝑠0𝑒−𝛾𝑡 +
𝑢0

𝛾
(1 − 𝑒−𝛾𝑡) (10) 

Both models I and II effectively require the development of a computational procedure to 

estimate the gene-specific degradation parameter 𝛾 to extrapolate s(t) and determine gene-

specific velocity values. 



16 

At a steady state, i.e. working under assumption 2, thus setting the velocity to 0, it is 

possible to estimate 𝛾 as setting v = 0 in equation (7) gives  

𝑢 = 𝛾𝑠 (11) 

meaning  𝛾 can be found using a simple linear regression, using the quantities of u and s across 

different samples or cells. However, as explained earlier, assumption 2 only holds under 

specific biological conditions.  

The dynamics of each specific transcript can be represented as the progression of the 

combination of spliced and unspliced quantities, i.e. different solutions to a system of 

differential equations. The geometrical representation of these solutions constitutes a phase 

portrait (Figure 1). More precisely, for every acceptable pair of ui and si  values - that is, for 

every pair that can represent a solution to these equations - there is a point in space; connecting 

these points along their variation in time creates the phase portrait. This representation is useful 

to understand the relationship between the parameters, the quantities, and their progression in 

time. According to equation (11), equilibrium points (i.e. points where velocity is 0) are 

reached where 𝛾 is equal to u/s, or where both u and s are 0, or when 𝛼 =u. Then, the fit of a 

regression line going through the diagonal of the phase portrait represents the steady state 

approximation for 𝛾 (Figure 1A); in other words, a simple linear regression coefficient will be 

accurate if and only if all samples are at the equilibrium points of the phase portrait. However, 

as discussed previously, samples/cells undergoing differentiation or responding dynamically 

to a stimulus will be populating many other parts of the phase portrait, making a linear fit on 

their s and u values severely biased. 

 Accordingly, the RNA velocity authors use an “extreme quantile fit”: rather than trying 

to calculate the coefficient using all points in the phase portrait, they only consider points that 

lie at the extreme of their distribution (Figure 1B), thus getting closer to the steady state 

assuming degradation rates do not change along the trajectory. 

This procedure, however, only works well when the extreme quantiles are close to the 

steady state. There may be genes that are up-regulated late or down-regulated early, so that we 

do not observe their steady state in the time period sampled in the experiment; in this case, their 

extreme quantiles will lie in the middle of the phase portrait, meaning the fitted 𝛾 will be still 

biased (Figure 1C, D). For these cases, the authors developed yet another model termed 

“structural fit”, which accounts for the number of exons, length of introns, and number of 

internal priming sites that can be captured by the sequencing technology.  
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Building these models require an understanding of the unique properties of transcripts 

and of the sequencing procedure. Thus we can see how so far the development of RNA velocity 

as an approach requires a high degree of data analytics (data processing, transformation, 

modelling with different mathematical approaches) but also of software development (coding 

all these implementations in an efficient and usable way for other practitioners): La Manno et 

al. had to write code to perform data preprocessing, phase portrait estimation, model fitting, 

estimation of the velocity vectors and their visualization, in a programming interface that can 

be applied to commonly used data representations for single cell RNA-seq.  

 

Indeed, it can be useful to pause at this point to reflect on how the calculations undertaken 

under different assumptions, resulting in two alternative models, and the different attempts at 

fitting linear models to derive degradation rates amount to experimental tinkering. While the 

intuition of modeling gene expression using simple differential equations is far from new, there 

are a few important novel aspects in this approach.  

The first is the concept of RNA velocity itself, which finds an important application in 

the field of single cell transcriptomics - an important intuition by Sten Linnarsson and Peter 

Kharchenko. As it is widely known, the innovation of single-cell transcriptomics lies in its 

ability to capture a large number of individual cells within a tissue/organ, as opposed to the 

“bulk” sequencing of the transcriptome of a tissue/organ. Therefore, analyzing a population of 

cells that is undergoing a transition in an un-synchronized fashion, such as a developmental 

process, means collecting a snapshot comprising different phases of the process itself, within a 
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reasonable time frame. Conversely, in a “bulk” setting where the transcriptome of each cell is 

mixed, there is only one such average phase per sample. It becomes evident that population-

level temporal dynamics (often called “pseudo-temporal”) can be inferred in a single cell 

dataset by virtue of these cells being, individually, at different stages of their progression along 

a specific biological trajectory – which is described by RNA velocity.  

The second important innovation by the authors of the original RNA velocity paper lies 

in the techniques for the visualization of velocity. The opportunity to derive cell-specific 

velocity vectors within a dataset at single cell resolution brings forth an additional layer of 

complexity to the canonical single cell data analysis outputs. Originally, the visualization of 

single cell data posed an important challenge: if each cell is embedded in a space according to 

its gene expression values, meaning every cell is represented by a point, the coordinates of this 

point will be determined by the numeric expression values of n genes: points will exist in an n-

dimensional space. For this reason, dimensionality reduction techniques have been leveraged 

to reduce complexity while retaining meaningful relationships in a two- or three-dimensional 

representation: in other words, points (cells) that are close together in this visual space are 

supposed to be similar, while points that are far away are supposed to be different. Several 

techniques have been proposed, at different levels of granularity: t-stochastic neighbor 

embedding (t-SNE, van der Maaten 2008), uniform manifold approximation projection 

(UMAP, McInnes 2018), partition-based graph abstraction (PAGA, Wolf 2019), similarity 

weighted nonnegative embedding (SWNE, Wu 2018), diffusion pseudotime (Haghverdi 2016), 

to name a few. And, as researchers routinely discover, visualization techniques may be biased, 

imprecise, or contain assumptions that are at odds with what we know about the biological 

systems they are meant to represent, giving way to new, improved visualizations that should 

be “more faithful” to the underlying biology. Visualization of high dimensionality data is an 

active field of experimentation in computational biology (and machine learning in general) and, 

as every experimental field, it proposes partial solutions with advantages and pitfalls (see Chari 

and Pachter 2023 for the case of UMAP). These representations play a central role in the 

analysis of single cell data, as they are not only ways of summarizing an analysis output, but 

they are also de facto data models that are used for discovery, inference, and validation of 

hypotheses – a point emphasized by Stevens in his ethnography of bioinformatics (2013). One 

of the most important outputs of the RNA velocity procedure can be considered an 

enhancement to these visualizations: a two-dimensional representation of the velocity vectors, 

pointing to the future state of single cells, within the “transcriptional space”. The authors of 

RNA velocity devised a technique to draw velocity arrows on top of two-dimensional 
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visualizations that were previously created, either at the level of single cells, or as a “vector 

field” that shows a summary of local velocity at every point of the transcriptional space. Thus, 

by looking at a UMAP visualization of single cells and overlaying their velocity vector field, 

researchers can literally see whether a certain cell population is progressing towards another, 

thus inferring that a differentiation progress is taking place with a certain directionality and 

intensity.  

 

3.3 RNA Velocity and Experimental Activities 

What we think RNA velocity shows is that bioinformaticians engage in experimental activities, 

understood as investigative activities involving interventions that, by manipulating existing 

data, can even create new data types, exactly like traditional macromolecular biologists.  

The estimation of RNA velocity vectors is non-trivial, and presents many challenges to 

the original authors of the method. They make use of several models, alternative ways to fit 

degradation coefficients, and simulations that test the extent to which their models hold given 

differences in gene expression levels, equation rates, and their temporal dynamics. There was 

no a priori guarantee that RNA velocity would represent a relevant biological phenomenon 

once single cell transcriptomic data was used and processed. Comparisons to real-world 

datasets with different levels of ground truth are included as a validation of their experimental 

procedure.  

Taking these considerations together, it can be argued that 1) the quantification of 

transcriptional dynamics in single cell data does not require ad hoc experimental procedures, 

rather a repurposing of existing data; 2) the extrapolation of a cell’s future transcriptional state 

is not only a biophysically motivated ordering of cells along a trajectory, but also a 

measurement of an unobserved instantiation of such a trajectory; 3) extensive tinkering with 

different models and assumptions was required to arrive at a final, usable data model. But RNA 

velocity is being investigated also by other groups, in direct competition with the original 

picture. As it happens for the discovery and characterization of other new biological 

phenomena, the publication of the RNA velocity paper sparked many enthusiastic reactions, 

and the community quickly started building on top of the original models and results. In fact, 

several alternative versions of RNA velocity estimation were published, which made use of 

different assumptions, different models, different representations and had different software 

implementations. The corpus of experimental work on the field of RNA velocity is growing – 

estimating RNA velocity, as an experimental activity, has a life of its own.  
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A large and complex study (Gorin et al., 2022) published a few years after the first 

RNA velocity paper aims at laying down more rigorous foundations for the method, which 

implies an inevitable critique of the original work and most of its derivatives. We will not go 

through the details of the study as it is a very exhaustive treatise of the biophysical foundations 

of the model, but we want to highlight what we perceive to be important contributions, both to 

the field per se and to our argument in particular: the RNA-velocity strategy generates a new 

type of biological datum that is evidence for a specific biological phenomenon worthy of 

studying in its own right. The Gorin et al. study highlights the great potential of RNA velocity 

approach(es), but at the same time sheds light on several issues, motivated by a computational 

experiment: the same dataset analyzed through two different RNA velocity implementations 

yields two very qualitatively different results (Soneson et al. 2021; Gorin et al. 2022). The first 

issue is the definition of RNA velocity itself, which can be interpreted in seven different ways. 

The second issue concerns different processing pipelines which potentially render some of the 

assumptions invalid, in particular considering spliced and unspliced molecules two mutually 

exclusive species and thus over-simplifying the complexity of alternative splicing. Then, 

assumptions made by different implementations are also quite diverse. Additionally, they 

critique the visualization of RNA velocity itself, following previous work by the same authors 

in which they address the larger issue of whether a visualization through severe dimensionality 

reduction is properly representing a biological phenomenon or not. (Chari and Pachter, 2023) 

Chari and Pachter go through a rigorous study of these assumptions performing other 

computational experiments (such as the application of RNA velocity estimation to a dataset 

with no differentiation or stimulus) and conclude that the current implementations of RNA 

velocity reduce the complexity of the quantities they are trying to model, are lacking in 

biophysically motivated foundations, require restrictive assumptions, make use of arbitrary 

parameters and as a consequence do not result in reliable estimations of a future cell state; their 

critique of current implementations goes as far as questioning whether RNA velocity can be 

useful at all or whether something can be salvaged by asking the Biblical question: “is there 

no balm in Gilead?”. In the last few years, the Pachter group has worked on more biophysically 

motivated models of transcriptional activity which show, by the application of different models 

and mathematical frameworks, how genes can be classified in different ways (Gorin et al. 

2022), and how a precise modelling of stochasticity in gene expression and its measurement is 

required to describe transcription mechanistically using single cell sequencing data (Gorin et 

al. 2023). Interestingly, in this article Gorin and colleagues explicitly mention tinkering with 
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their virtual system by way of “manipulation of generating functions”  (Gorin 2023) in purely 

experimental ways. 

To summarize, RNA velocity has been developed through computational 

experimentation, made available as an analysis tool, been experimented with and heavily 

refined (with some refutation of its assumptions and models) as a result of both additional 

experimentation and mathematical formalization, and has taken on a life of its own. We argue 

thus that through RNA velocity a new type of biological datum is constructed that does not 

stem from modifications in wet-lab experimental procedures, but rather from an elegant and 

complex in silico system of experiment. By creating a new type of biological datum that can 

provide evidence for a specific biological phenomenon (i.e. the trajectory of gene expression 

states), the computational work seems to achieve the same kind of result that material tinkering 

performed by wet-lab biologists can achieve. 

 

4. AN EXPERIMENTAL ACCOUNT OF BIOINFORMATICS  

In the previous section, we have reconstructed an example of bioinformatics practice where a 

new data type providing evidence for a specific biological phenomenon is created through 

various experimental activities done in silico. In this section, we describe these activities at a 

more general level, by constructing a comprehensive account of the dimensions of 

bioinformatics as an experimental discipline consisting of three dimensions (data management; 

analytics, development). This account builds on previous analyses and observations of 

bioinformatics, most notably (Stevens 2013; Leonelli 2016; Strasser 2017) and discussed in 

Appendix 1. The facets of our account will be illustrated by referring back to the example of 

RNA velocity.  

4.1 Bioinformatics: a Tripartite Account 

Our account of bioinformatics counts three dimensions. 

First, there is data management. As mentioned earlier, this is a central aspect of 

bioinformatics practice, given the importance of databases. It includes those practices geared 

at creating, maintaining, interfacing with and creating connections among biological databases 

in virtual spaces. Data management thus consists of creating standard formats, an easily 

accessible and navigable infrastructure, secure storage and updated records; from an end user 

perspective, it is the management of laboratory archives with special regard for high throughput 

data, making sure that datasets are properly stored and shared together with their metadata, and 
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ensuring the reproducibility of the raw data processing steps12. In the case of RNA velocity, 

the practices associated to the management of single cell transcriptomics (which have been 

built on the foundations of the transcriptomics data management ecosystem) are instrumental 

in creating reproducible analyses, such as the storage and distribution of spliced and un-spliced 

count matrices. 

A second dimension of bioinformatics is analytics, which is the application of more or 

less established statistical models and computational procedures to gain a first level of 

biological interpretation of a given experimental outcome. Analytics include processing raw 

data into quantities of features of interests (such as genes, proteins, chromatin regions, etc.); 

applying quality control procedures to distinguish signal from noise, rule out technical artifacts, 

and remove systematic biases; applying mathematical frameworks to identify patterns and 

score relevant differences between experimental conditions, together with a measure of their 

uncertainty; visualizing results in a clear and informative way; etc. These aspects have been 

also emphasized by Stevens (2013) in his analysis of the epistemic roles of data visualization, 

and more recently by Leonelli (2019) in her ethnography of the SureRoot project. What these 

– and other examples – show is that modern analytics consists of different steps that can be 

combined together in different and novel ways; far from being ‘automated’, analytics allows 

the creation of analytical pipelines with varying degrees of flexibility. In the case of RNA 

velocity, analytics is a critical aspect, as it is a specific combination of several processing and 

mathematical modeling steps that creates a new data type, and has become after its 

development a rather standardized step in several single cell transcriptomics analysis pipelines. 

Finally, development consists in the invention and programming of new mathematical 

and statistical frameworks, or the optimization of previously available frameworks, with a 

specific type of biological question in mind. A bioinformatician involved in development aims 

at writing software that tackles extant challenges in the generation and interpretation of results, 

such as identifying and implementing the use of  the correct statistical distribution for a certain 

type of datum; integrating different data modalities to enhance the discovery of biologically 

relevant phenomena; using “first level” analytical results to predict more complex behaviors of 

a biological system, or non-trivial ways in which this system can be modified, and so forth. 

Writing software not only entails the theoretical exercise of finding the most appropriate 

models, operations or representations for the data, but also the practical aspect: implementing 

 
12 The data management dimension of bioinformatics has received significant attention both from a historical 

point of view (see in particular Stevens 2013; Strasser 2017) as well as from the point of view of the creation of 

new scientific roles such as data curators (Leonelli 2016) 
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the algorithms, optimizing them, creating a usable interface and its documentation. A few 

examples of these new frameworks and implementations will be discussed in section 4.2. There 

is empirical evidence suggesting that development is experiencing an exponential growth: even 

just considering the short time frame between 2017 and the first quarter of 2024, and limiting 

ourselves to the field of single cell biology, the number of bioinformatics tools has quickly 

surpassed 1700 units (Figure 2A, Zappia 2018). Similarly, when querying the number of R 

packages distributed from the Bioconductor project’s first release in 2002, we observe a similar 

trend (Figure 2B). In the case of RNA velocity, the implementation and optimization of the 

processing and modeling steps, together with the creation of a user-friendly software interface 

(and several other improvements and iterations from other computational biology groups) that 

we have described in the previous section is a classic example of development..  

 

 

These three aspects (i.e. management; analytics; development) are fundamental 

integrated ingredients of bioinformatics as a discipline. As such, they often complement each 

other and coexist within many declinations of bioinformatics practice, as Strasser, Leonelli, 

and Stevens have noted, even though without using the terminology employed here. 

For instance, management can imply development, as bioinformaticians who want to 

distribute their software to a large community should, at a minimum, provide thoroughly tested 

software that has as few problems as possible, make it easily accessible and easily findable 

through metadata, provide clear documentation and instructions on how to use it, and - if the 

software is released as open source, which is in most cases - store the source code in repositories 

that allow version control. In order to make this collective endeavor easier and standardized, 

bioinformatics developers started projects such as Bioconductor (Gentleman 2004; Huber 
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2015), which hosts more than 1250 packages for biological data analysis and is maintained by 

the community on a volunteer basis13.  

Analytics and data management are intertwined as well, especially regarding the 

reproducibility of data analysis. Whereas wet-lab experimental procedures are usually 

succinctly described in the methods section of a paper, leaving their complete description to 

protocols (commercially or academically published), the gold standard for analytics reporting 

is to provide other researchers with the exact steps, i.e. the code used for the analysis, together 

with the expected outputs and the necessary inputs. This, in turn, requires bioinformaticians to 

provide their colleagues with access to the same software they used, as some outputs could 

depend heavily on the software version that was used. Thus, analysts need to manage 

representations of their workflows - aptly named “notebooks” - and digital snapshots of the 

software they used - “images” or “containers” - to ensure that their results are reproducible by 

anyone with sufficient skills.  

But the most interesting integration is the one between analytics and development. On 

the one hand, developers usually master some facets of the analysis toolkit, even just to be able 

to benchmark the results of their newest algorithm against gold standard applications, or to 

generate data representations upstream or downstream of their inventions. On the other hand, 

analysts can combine different tools crafting pipelines which, at some levels of complexity, 

can be considered akin to development. In fact, analysis tools are often developed with the 

Unix philosophy in mind: programs should do one thing, and do it well (McIlroy 1978). This 

translates to a highly modular analysis workflow in which every step can be carried out by 

several alternative approaches and/or tools. An expert analyst combines these tools and, in 

many instances, refines their input writing code that can be in the same language as the one of 

the tools they use. In some cases, entire analysis workflows can be packaged as single one-stop 

solutions, showing how blurry the line between analytics and development can be.  

 

4.2 Soft and hard experiments in bioinformatics 

We have mentioned throughout this article that bioinformatics should be considered an 

experimental science, as much as macromolecular biology. But how exactly? We claim that 

the integration of analytics and development plays a central role.  

 
13 Bioconductor provides an infrastructure for storing, distributing, updating and checking the integrity of a 

wealth of bioinformatics software.  
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First, let us draw a parallel between the ‘wet-lab’ biology pipeline and the 

computational one (Figure 3). In the case of macromolecular biology, the starting point is a 

question about how biological phenomena are produced and/or maintained, as these are often 

opaque. A material experimental system (which is taken to materially embed the biological 

phenomenon a biologist wants to explain) is perturbed or tinkered with certain inputs (e.g. 

reagents, conditions). The results of this tinkering are output data that are taken to be evidence 

for certain claims or mechanistic models (Craver and Darden 2013) about the biological 

phenomenon under scrutiny. As noticed in Section 2, this is not mindless tinkering. In fact, 

conditions of calibration, robustness, internal/external consistency, and specific biological 

questions will constraint the tinkering. In the case of bioinformatics, an analogous dynamic is 

at play. Consider the case of RNA velocity. The material experimental system is converted into 

a virtual system - by digitizing some of its features and embedding them in an appropriate 

numerical representation - but it is tinkered with anyway. This is not necessarily a specific 

aspect of virtualisation. In fact, any experiment consists in isolating specific, robust signals 

from a (biological) system and recording them through an apparatus. However, recording a 

high amount of observations in parallel and embedding them into a virtual system - what 

biologists call ‘high throughput’ technologies - allows to retain several ‘hidden’ relationships 

between data points or features for which we do not necessarily know the data generating 

process. In this virtual system it is possible to do new work that is experimental - though not 

material - to identify new relationships, new signals, new secondary inscriptions through new 

techniques. These novel biological insights are particularly interesting because they retain a 

‘semi-material’ property given the material origin of the virtual system, and their reliability is 
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almost always confirmed by comparing them to a material experiment. Bioinformaticians 

interact with such a system by modifying inputs and/or rules, and monitoring changes in 

outputs. The way bioinformaticians interact with such systems makes ample use of the 

‘confidence-building’ strategies exemplifying good experimental activities in material systems 

as emphasized in Section 2, including calibration, robustness analysis, and checking for 

consistency. Following these strategies reflects the notion of experimenting that we have 

formulated previously: bioinformatics is not just tinkering; rather, it involves controlled 

settings (which allow monitoring), biological hypotheses entertained, and recorded unforeseen 

consequences and effects. For instance, bioinformaticians do not know a priori what kind of 

statistical distribution or differential equation best fits the description of a particular biological 

phenomenon; indeed, they always clarify certain assumptions that make their models tractable, 

and test a set of proposed models with respect to “ground truth” data. However, ground truth 

is not always, if at all, attainable in biology, forcing researchers to use reasonable 

approximations or resort to orthogonal validation. Thus, bioinformaticians deal with data 

models that have potentially surprising behaviors due not only to their non-deterministic nature, 

but also to unobservable variables. As an example linked to the case of RNA velocity, consider 

the cellular composition of a tissue as inferred through single cell RNA sequencing and 

unsupervised clustering. Most currently utilized clustering algorithms do not require the user 

to specify how many clusters are expected, nor their size, or their degree of separation. A 

clustering algorithm that operates in ideal conditions should be able to partition the data in 

biologically relevant (and, possibly, experimentally separable through other means) units such 

as “cell types” or “cell states”. A surprising behavior thus would be the identification of a 

previously unobserved (and unexpected) intermediate state between two well characterized 

differentiated cell types, or the existence of a continuum bridging what were previously thought 

to be isolated, highly stable transcriptional profiles. More precisely, what is surprising here is 

the fact that a specific novel clustering algorithm may or may not reveal “new” biologically 

plausible aspects of the virtual system that other algorithms could not reveal before. Tinkering 

on the data with different clustering techniques, or inventing an entirely new clustering 

technique, is what we refer to as experimental in this setting. Several approaches can be used 

to estimate or infer the unobservable variables of interest, which can then be correlated with 

the biological nature (e.g. whether these variables overlap with a disease or mutant state 

compared to a healthy/wild type control). Changes in algorithms, models, parameters all 

amount to different experimental procedures on the same data model, resulting in different 

outcomes. The evolution of bioinformatics tools - through analytics and development - shows 



27 

that indeed our understanding of the same data can be furthered by testing and refining 

procedures. For instance, in the context of RNA-sequencing and differential expression 

analysis several authors over the years have suggested different statistical distributions and 

models to deal with read count data (Marioni et al. 2008; Anders and Huber 2010; Robinson et 

al. 2010; Trapnell et al. 2010; Law et al. 2014): using t-tests, linear models, generalized linear 

models for Poisson-distributed data, Negative Binomial GLM, etc. Eventually, after several 

experiments and benchmarking studies (Robles et al. 2012; Soneson et al. 2013; Germain et al. 

2016), the field appears to largely favor the use of linear models and/or negative binomial 

generalized linear models with variance shrinkage, although it has been argued that other 

methods are more precise and reliable in particular settings (Li et al 2022). This type of 

tinkering is done by integrating and modifying analytical tools and developing new software 

or computational infrastructures that can host the right set of tools. These are all forms of 

experimental activities.  

We can be even more precise and distinguish between soft and hard forms of 

experimentation. Soft experiments in bioinformatics are the attempts at using new (or old, but 

refined) approaches and techniques to gain deeper understanding of data: existing approaches 

are being repurposed or extended to deal with biological data beyond their original scope, with 

no a priori guarantees regarding their reliability, robustness, fidelity to the natural process or 

interpretability. It is tinkering in a controlled setting by recording unforeseen consequences. 

Bioinformaticians operating on data models by applying analytical steps that create new 

representations of the model and new data types is the hard experimental nature of 

bioinformatics14. In the soft experimental framework, the novelty lies in the use of the tool, and 

not in the tool itself. Conversely, in the hard experimental framework, the novelty lies in the 

tool itself and in the new type of data generated that can constitute indications for claims about 

biological phenomena. Regardless of whether an approach is soft or hard, it should be 

considered experimental by virtue of the tinkering, possibility of unexpected results, internal 

cohesiveness of the digitalized experimental system, and biological focus. 

There are several examples in the history of bioinformatics that can be described using 

our framework of hard and soft experimentation. Take for instance the creation of differential 

expression tools such as DESeq2 (Love et al 2014). This is a soft experimental activity: the use 

 
14 Please note that saying that these bioinformatics activities create ‘models’ does not exclude that the activities 

are ‘experimental’. To paraphrase Parker (2009), models are types of representation, while experiments are 

investigative activities involving intervention. As such, there is an experimental side of modeling (Peschard and 

Van Fraassen 2018), and it should not be very surprising.  



28 

of generalized linear models and Bayesian variance shrinkage greatly predates RNA 

sequencing, but its application and successful implementation required tinkering and 

innovation. The resulting data, i.e. fold changes (effect sizes) and corresponding statistical 

significance values, do not belong to novel data types as they are basically the same type of 

result one would construct from other tests in which group means are compared, with or 

without computational tools (e.g. in the case of qPCR). This is why we can consider the 

invention of these tools as a case of soft experimentation. The case of Gene Set Enrichment 

Analysis (Subramanian et al. 2005), instead, constitutes a hard experiment (as it is the case of 

RNA velocity): ranked gene lists were tinkered with in ways that created a new data type, the 

Enrichment Score, a numeric value whose sign and magnitude is indicative of the activity of a 

pathway in the comparison of global gene expression programs across conditions. The 

Enrichment Score is also constructed by comparing observed data to an empirical null 

distribution built by random permutation of rankings, a common approach in statistical testing 

that is akin to constructing a virtual negative control.  

Enumerating which bioinformatics tools constitute hard or soft experimental 

approaches is beyond the scope of this article, but we supply a table with a small subset of 

examples spanning the domain of transcriptomics and other high-dimensional genomics data 

analysis tasks. 
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5 WHAT ABOUT MATERIALITY? 

By conjuring the possibility of hard and soft experiments in bioinformatics, we want to argue 

that bioinformaticians can indeed be epistemic drivers, because they generate new data or even 

new types of data that can potentially constitute new biological knowledge, and they do this by 

experimenting in an analogous way to how macromolecular biologists do. 

However, remember that the argument against bioinformaticians being epistemic 

drivers was not only about experiments; ‘materiality’ was also involved. Maybe 

bioinformaticians do experiments; but given that they do not materially manipulate and 

generate data (or, to use Lewis and Bartlett’s conceptual apparatus, they do not generate 

primary inscriptions), then they cannot be epistemic drivers. By relying again on the case study 

of RNA velocity, our response to the ‘materiality’ concern is twofold. First, we show that the 

importance assigned to ‘materiality’ is misleading. Second, even if materiality was indeed that 
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important, there is still space for something that we call semi-materiality, which basically 

applies to what biologists do, at all levels, be they wet-lab biologists or in silico biologists.   

 Let us start by showing how misleading the idea of ‘materiality’ can be. Intuitively, 

materiality is deemed important because it provides a ‘more direct’ access to biological 

phenomena. Given that bioinformatics lack this ‘direct access’, then they do not have the same 

grasp of biological phenomena that wet-lab biologists have. However, it is just not the case that 

it is in virtue of materiality that we have a more or less mediated access. In fact, the case of 

RNA velocity shows that, while we need a preliminary ‘material origin’, virtualizing the data 

(or making them ‘semi-material’, as explained below) is what provides us a better access to the 

phenomenon itself – just with traditional material access, the phenomenon captured by RNA 

velocity is inaccessible. Moreover, consider the variety of experimental systems that biologists 

use: in vivo, in vitro, animal models, etc; these are often only proxies for various biological 

phenomena, and hence one may say that the access to phenomena is nonetheless mediated, and 

materiality plays no substantial role in making these systems more inferentially reliable. 

But let’s say that materiality is indeed important (even if the ‘importance’ is vague). 

How should we address this? Our response is that we are not advocating for an exclusively in-

silico knowledge generation process: the origin of the data is always material, unlike in some 

cases of computer simulations. This aspect is not appreciated enough. We can draw a parallel 

to so-called ‘virtually, experiments’, namely nonmaterial experiments on semi-material 

objects. In (2003), Morgan describes computational experimental activities to investigate the 

strength of bones. Given the challenges of assessing strength in ‘material’ settings, one line of 

investigation was to convert a real cow hipbone into a computerized image – cutting bones into 

thin slices, taking specific pictures of them, re-assemble these in high-quality 3-d computerized 

images, and then intervening on them by means of various models. Morgan emphasizes how 

this process “retains a high degree of verisimilitude of structure for each particular bone 

sample” (p 223). By conserving important structural features of bones in the process of 

recording and converting, those computerized images have a ‘semi-material status’: 

intervening on the 3-d images is de facto an experimental activity, where mathematical models 

are used as experimental instruments. Virtual experimental systems are akin to semi-material 

objects: biological features are recorded, then converted, but nonetheless conserved. In the case 

of RNA velocity, we have seen that certain ‘physical’ aspects of data sets are conserved in the 

virtual experimental systems, such as the differences in spliced and un-spliced transcript 

abundances in single cells. 
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The material origin of data has other consequences too. Given that ‘aspects’ of 

materiality are conserved, there is the risk of importing factors that may be confounding – , to 

paraphrase Morgan, bioinformaticians have to consider “all conditions and factors that are 

likely to interfere with the process of interest” (Morgan 2003, p 219), exactly as traditional 

experimenters. In the case of RNA velocity, these confounding factors are the stochastic 

aspects of transcript quantification given by the material process of transcript capture and 

reverse transcription of a very low input; the presence of dying/stressed cells whose gene 

expression does not represent a physiologically relevant cellular state; the lack of complete 

knowledge of the structure of transcripts and their spliced forms. Moreover, the material origin 

comes with the possibility of ‘discovering’ something hidden in the data that, for various 

reasons, could not be separated materially. This is noteworthy in contemporary biology: in 

cases like high-throughput recordings, an impressive amount of observations is recorded, and 

these observations have hidden relations for which data generation processes are unknown. 

‘Virtualizing’ such high-throughput experimental systems means recording (by means of 

conversion) these ‘hidden relations’ on a virtual experimental system, and transforming signals 

to create new data or new data types, as we have shown. Tinkering with multi-dimensional data 

within a controlled virtual experimental system means being able to separate signals that, in 

the normal material laboratory setup, would just be impossible to distinguish. As much as in 

normal laboratory conditions results are ‘produced’ by intervening on a (material) system, here 

results (e.g. new data or new data types) are produced by intervening on the (virtual/semi-

material) experimental systems, unlike typical cases of modeling where one derive results just 

by means of mathematics (Morgan 2003). And it is in virtue of the fact that something is 

conserved in the transition from ‘material’ to ‘virtual’ that inferences based on computational 

experimental activities can be, at least in principle, reliable. Of course, this does not mean that 

reliability is established purely in silico – in fact, orthogonal and functional validation from 

wet-lab biologists is still required (but this is true of any paradigm, even in the wet one). 

But one can push the ‘materiality’ argument further, in somewhat unreasonable ways.  

One way to do this is by appealing to the intuitive distinction between ‘primary’ and ‘secondary 

inscriptions’ (Lewis and Bartlett 2013). The idea is that bioinformatics data might have the 

‘semi-material’ dimension we have argued for, but they are still ‘secondary inscriptions’ -  by 

not being able to generate ‘primary inscriptions’, bioinformaticians cannot in principle meet 

the epistemic desiderata for being drivers. This is a strong claim, likely to end any discussion. 

However, the distinction between primary and secondary inscriptions (Lewis and Bartlett 

2013) is misleading. For instance, in sequencing a sample, which ‘data’ is considered a primary 
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inscription? Is the sample itself? But the ‘sample’ per se does not constitute a datum, and in 

order to become data (e.g. a sequencing read) is manipulated by various technicians, including 

computational technicians (Stevens 2013). Therefore, the primary inscription is a sample 

manipulated to become sequencing data. This shows that primary inscriptions are both material 

and in silico at the same time, and that they are co-produced both by traditional biologists and 

bioinformaticians. This means that there is not really any substance to the ‘primary vs 

secondary’ distinction: all data is likely to be semi-material. But if this is the case, then in 

principle there is no difference between the data used by bioinformaticians, and data used by 

wet-lab biologists, at least from this perspective. In conclusion, this shows that even the second 

concern (the materiality concern) has not any robust substance, and hence there is in principle 

no reason why bioinformaticians cannot be epistemic drivers. 

 

6. CONCLUSION 

The fundamental role played by computational biology in most life sciences projects has grown 

at a quick pace, so much that international consortia such as the Human Cell Atlas (Regev et 

al 2017) require an effort in coordinating, developing, testing and communicating 

computational methods for data storage, analysis and visualization that is far beyond the - still 

impressive - work required to generate all the single cell atlases. In increasingly more cases 

computational biologists use the generation of an atlas as a good testing ground for a new 

computational method (e.g. Stephenson et al 2021), or they drive highly complex analysis 

efforts to establish best practices in the field with no additional data generation required (e.g. 

Luecken et al 2021). These computational scientists do control the narrative of their projects 

and are fully equipped by their environment to be epistemic drivers: this is, we claim, 

bioinformatics as a proper discipline, rather than just support for wet-lab biologists. This article 

is only a first step towards a comprehensive characterization - both philosophical, historical, 

and institutional - of bioinformatics.  

To conclude this piece and introduce future works, we formulate in the remaining space 

one open question that we did not address in depth for the sake of brevity, but still deserve a 

mention in our conclusions, and further elaboration in its own merit.  

We have motivated the need for a complete account of bioinformatics practice by 

mentioning the problem of epistemic alienation. We have co-opted the term alienation directly 

from Karl Marx’s posthumous Economic and Philosophic Manuscripts of 1844, where 

alienation (Entfremdung) is defined in terms of the estranged relationship between (1) the 

laborer and the act of production, (2) the laborer and the product itself, and (3) the laborer and 

https://www.nature.com/articles/s41591-021-01329-2
https://www.nature.com/articles/s41592-021-01336-8
https://www.nature.com/articles/s41592-021-01336-8
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their very own essence (Gattungswesen). Often, there are power dynamics in the biological 

community preventing bioinformaticians from having access to important decisions regarding 

experimental design, hypotheses to be tested, and raw data generation procedures, (1); the 

bioinformatician thus receives data that they are supposed to analyze and convert into 

biological knowledge, with little room for original interpretation and contribution to the 

narrative of the study, or freedom to suggest additional experiments (2); thus, the 

bioinformatician is systematically denied the status of epistemic driver, although they still 

consider themselves (and expect to be considered) scientists (3). Our intuition is that the same 

Marxist lens allows us to look at the opposite face of the coin as well: a wet-lab scientist who 

produces high throughput data is often unable to follow it up through its analysis, leaving 

important choices in the hands of bioinformaticians (1), who are still required to translate the 

wet-lab’s scientist experiment into biological knowledge (2); without this intermediation, the 

wet-lab scientist cannot carry out their project and control its narrative, a fundamental aspect 

of epistemic drivers (3). The open question regards the standing of our theory in the real world: 

does recognizing the experimental nature of bioinformatics provide a cogent and natural 

justification for bioinformaticians to become epistemic drivers? Are some bioinformaticians 

more experimental than others, and does this correlate with their ability to become epistemic 

drivers? And, if a transformation could be brought upon the field by shifting norms and 

practices, would the epistemic alienation experienced by both wet-lab and computational 

scientists be greatly reduced, if not entirely dissolved, creating more collaborative and 

harmonious research environments? 
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