
Nothing Matters

Shelly Yiran Shi

University of California San Diego

Forthcoming in Philosophy of Science. Please cite the published version.

Abstract

One challenge to relationism in general relativity is that the metric field is

underdetermined by the stress-energy tensor. This is manifested in the existence of

distinct vacuum solutions to Einstein’s field equations. In this paper, I reformulate

the problem of underdetermination as a problem from vacuum solutions. I call this

the vacuum challenge and identify the gravitational degrees of freedom (associated

with the Weyl tensor) as the “source” of the challenge. The Weyl tensor allows for

gravitational effects that something outside of a system exerts on the system. I

provide a relationist response to the vacuum challenge.
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1 Introduction

Suppose that you’re in a room with a lightbulb. A curtain is drawn between you and the

lightbulb. The lightbulb cannot be seen, but some light still filters through the curtain

into the room. You and your friend Feld have a disagreement. Feld thinks that there can

be free (i.e., sourceless) fields, whereas you hold that all electromagnetic (EM) radiation

is sourced. Feld claims that the room you’re in is evidence that she is correct, for one can

model just the room with the curtain as a boundary condition and the representation of

that scenario corresponds to a solution of the relevant laws of nature. That

argumentative move feels too cheap, you say. All Feld did was replace the source with an

incomplete model possessing a special boundary condition: the state of the curtain.

That state carries upon it an echo or trace of the real source. The free solution exists as

an artifact of modeling, but in the real world radiation may be sourced, or so you think.

In the debates between substantivalists and relationists in general relativity (GR),

the existence of distinct vacuum solutions to Einstein’s field equations (EFE) is often

taken to present a quick and serious challenge to relationism. For example, Minkowski

and Schwarzschild spacetimes have different metric fields but are both vacuum solutions

with the same matter content. Their existence suggests that the metric field is

underdetermined by the matter content, which would conflict with versions of

relationism that claim that the metric is always “sourced” by matter. In what follows I

will argue that one can respond to this famous threat to relationism in a similar way to

how one may respond to the above challenge to the claim that all radiation is sourced.

The boundary condition contains suspicious “echoes” of forgotten material sources. This

response will not prove that relationism is true any more than the earlier move proved
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that all radiation is sourced. But it will, I think, deflate one worry about relationism.

To see the general idea, note that the Schwarzschild solution is Ricci-flat but not

Riemann-flat. Minkowski is both. What makes Schwarzschild not Riemann-flat is that it

has non-vanishing Weyl curvature. The Weyl curvature tensor can be thought to

represent the “free” gravitational degrees of freedom whereas Ricci represents the

“source” degrees of freedom. Yet, just like in our imagined dialogue above, one might

look with suspicion upon Schwarzschild. The Schwarzschild solution is an exact solution

of EFE regarding the outside of a spherical mass, often used to model static objects. All

we’ve done is draw a curtain around the matter to make it a vacuum, yet we do this for

the sake of modeling. The boundary conditions contain the trace of ignored material

sources. Relationists can argue that the underdetermination arises from this modeling.

The paper proceeds as follows. Section 2 makes the challenge posed to relationism

from vacuum solutions precise. I call this the vacuum challenge. Section 3 then moves to

provide a relationist response to the challenge. Section 3.1 begins with the Schwarzschild

solution. In this case, I argue that boundary conditions can be viewed as stand-ins for a

source, either a distant star or a singularity. Section 3.2 then moves to what is perhaps

the most hostile environment for my view, the Ozsváth-Schücking metric. This solution

describes a pp-wave spacetime containing only gravitational radiation. Here I suggest two

available responses. First, I show that the dimensional parameters of the model can be

viewed as echoes of forgotten matter. Second, I show that one can pose a dilemma based

on the Ehlers-Kundt conjecture and a theorem by Penrose to argue that the spacetime is

either incomplete or a mere idealization. If one of these responses is successful, then even

the most hostile vacuum solution can be made compatible with relationism.
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2 Does Tµν fully determine gµν?

Spacetime curvature and matter fields in GR are deeply connected yet utterly distinct

entities. Einstein analogized the left-hand side of his field equations to fine marble, while

considering the right-hand side as low-grade wood. The original non-augmented field

equations (without the cosmological constant) read,

Rµν −
1

2
gµνR = κTµν . (1)

John Wheeler famously captures the essence of GR with the succinct statement: “matter

tells spacetime how to curve, and spacetime tells matter how to move.”1 The

metaphysical debate revolves around two conflicting viewpoints concerning the nature of

spacetime. Substantivalism claims that spacetime is fundamental, existing as a distinct

substance. Relationism posits that only matter is fundamental, with properties of

spacetime (such as the metric) being derived from the relational distribution of matter.2

The debate between substantivalists and relationists traces back to the seventeenth

century in the renowned Leibniz-Clarke correspondence, and found a new voice in

Mach’s 1883 “fixed stars” response. However, it has become significantly more

convoluted in response to modern theories of gravity. Some suggest we should refrain

from imposing the categories of seventeenth-century metaphysics onto a theory that has

outgrown them,3 while others have proposed alternative formulations of GR to revive

Mach’s principle.4

1See Misner, Thorne, and Wheeler (1973, 5) and Wheeler and Ford (2000, 235).
2See Lehmkuhl (2018) for a third alternative – super-substantivalism.
3See Rynasiewicz (1996, 2000).
4Sciama (1953), Barbour and Bertotti (1982), and Raine (1995).
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In this section, I revisit and clarify the problem of matter-metric determination in

GR. The problem has been articulated by many based on a prevalent formulation of

Mach’s principle, which requires the metric field gµν to be fully determined by the

stress-energy tensor Tµν .
5 Call this Mach’s Principle-T. It is both mathematically and

physically correct that GR does not satisfy Mach’s Principle-T. In this paper, I

reformulate this problem as a problem from vacuum solutions. According to Pooley,

relationists in GR grapple with the fact that “the dynamically significant chronometric

facts outstrip the chronometric facts about matter, as is most vividly illustrated by the

abundance of interesting vacuum solutions” (2013, 578). Call this the vacuum challenge.

Vacuum solutions are solutions to EFE with a vanishing stress-energy tensor (i.e.,

Tµν = 0). The vacuum challenge offers a clear and sharp way of formulating the problem

of underdetermination: differences in metrics given “the same” matter content.

To delineate the scope of my argument, I begin with two disclaimers. First, I only

focus on the problem of non-Minkowski vacuum solutions and restrict my discussion to

the non-augmented EFE, which admit the Minkowski solution.6 Arguably, Minkowski

spacetime can take on a relationist interpretation if one adopts a dynamical approach to

GR.7 In this paper, I table the matter of Minkowski spacetime to focus on a more

pressing concern. To that effect, my argument is based on what is commonly referred to

as “Mach’s Principle-3” formulated by Pirani (1956, 199), which says that spacetime

should be Minkowskian in the absence of matter. In this context, I will henceforth use

relationism and Machianism interchangeably. Second, I take it for granted that gauge

5See Einsten (1918, 241-42), Weingard (1975, 427), Callender and Hoefer (2002, 176), and Lehmkuhl
(2011, 455).

6See Earman (2003) for considerations regarding the cosmological constant.
7See Brown (2005), Brown and Pooley (2006).
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freedom does not cause trouble for relationism. Between 1913 and 1914 when the failure

of general covariance in the Entwerf theory still bothered Einstein, his commitment to

Mach’s principle led him to the hole argument and made him believe there was a deeper

reason – the metric gµν could not be fully determined by the stress-energy tensor Tµν in

any generally covariant theory.8 We now understand this underdetermination as a

feature not a bug. The Bianchi identity implies that there are four out of ten equations

in the EFE that lack second-order time derivatives of the metric. In the 3+1

decomposition, these four equations are constraints (of elliptic type), signifying gauge

freedom. We cannot determine the solutions to more than up to diffeomorphism. The

failure of the EFE to determine gµν uniquely is analogous to the failure of Maxwell’s

equation to determine the electromagnetic potential Aµ uniquely.

Relationists’ challenge in GR is associated with another kind of underdetermination

manifested in the existence of multiple vacuum solutions. In four or more dimensions,

the Ricci tensor Rµν is not sufficient to describe the curvature of the space. The full

Riemann tensor Rρσµν is needed. On a common view, “matter” only couples with the ten

algebraically independent components captured by the Ricci tensor, that is, the trace of

the Riemann curvature tensor. The other ten components come from the Weyl tensor

Cρσµν , representing the “free” gravitational field present in vacuum region (not directly

tied to the regional distribution of mass-energy). To satisfy the EFE in a vacuum region

where Tµν = 0, only Ricci-flatness, i.e., Rµν = 0 is required. There are Ricci-flat solutions

that are not conformally-flat, i.e., solutions where the Weyl curvature is non-vanishing.

The gravitational potential gµν and the stress-energy tensor Tµν are analogous to the

8See Einstein’s letter to de Sitter, 4 November 1916 (CPAE 8, Doc. 273). See also Norton (1984, 1993),
Maudlin (1990), and Hoefer (1994).
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electromagnetic potential Aα and the charge-current vector Jα in electromagnetism

(EM), respectively. Both gµν and Aα represent the potential, whereas both Tµν and Jα

can represent the source. On the other hand, the Weyl tensor Cρσµν , in analogy to the

trace-free Maxwell field tensor Fαβ, describes the trace-free part of the Riemann tensor.

It captures the curvature in the Riemann tensor but with the “Ricci part” removed:

Cρσµν = Rρσµν − gρ[µRν]σ + gσ[µRν]ρ +
1

3
gρ[µgν]σR. (2)

Mathematically, the Riemann tensor is decomposed into three irreducible parts (the

Ricci scalar, the trace-removed Ricci tensor, and the Weyl tensor). Physically, the Weyl

tensor is the only surviving part in source-free regions. It encapsulates the gravitational

degrees of freedom. While Rµν and Tµν are algebraically related through (1), the relation

between Cρσµν and Tµν is less explicit. It involves a first-order differential equation

obtained from the Bianchi identity and the EFE:

∇ρCρσµν = κ
(
∇[µTν]σ +

1

3
gσ[µ∇ν]T

)
. (3)

One can see a close resemblance to EM by comparing (3) with Maxwell’s equation

∇µFνµ = Jν . Indeed, (3) can describe the propagation of gravitational waves. The

freedom in the choice of Cρσµν means that given Tµν , multiple solutions exist, each

specified by particular boundary conditions.9 Not all components in Cρσµν contribute to

dynamical degrees of freedom though. In linearized gravity, the gauge and residual gauge

conditions cut down 4× 2 = 8 degrees of freedom from 10 equations, leaving 2 degrees of

9See Carroll (2004, 169-70).
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freedom for a propagating spin-2 field.10

Without the later terminology from Weyl’s (1918) work available to him, Einstein

was aware of the problem of boundary conditions in his Machian pursuit. In a letter to

Lorentz in January 1915, Einstein claims that centrifugal and Coriolis forces are

determined by the boundary conditions and field equations. He interprets the boundary

conditions as a stand-in for the distant stars supposedly epistemically inaccessible to us,

while admitting it’s “awkward that the boundary conditions must be picked out

suitably.”11 He was concerned about the arbitrariness involved in stipulating spacetime

properties at infinity. His goal between 1916 and 1919 was to find Machian boundary

conditions that are compatible with observations of the actual universe.

Now we are ready to state the problem of underdetermination in GR more precisely.

Similar to how degrees of freedom in electromagnetic potential Aα can be broken down

into gauge, source (Jα), and field (Fαβ) components, degrees of freedom in gravitational

potential gµν can also be decomposed into gauge, source (Rµν), and gravitational (Cρσµν)

components (Table 1). While the gauge degrees of freedom based on the hole argument

might help to reject the existence of spacetime as a fundamental and distinct substance,

the gravitational degrees of freedom associated with the Weyl tensor seem to require it. I

will show that the partial determination of gµν from the source (after gauge fixing) does

not automatically favor substantivalism, that the question remains as to what else is

needed to determine gµν . Is the extra ingredient “source from elsewhere” or

“substantival spacetime”? It follows from my analysis that Mach’s Principle-3 might be

upheld in GR even though Mach’s Principle-T fails.

10See Wald (1984, ch.10) for counting degrees of freedom in the initial value formulation.
11CPAE 8, Doc.47, translated by Ann Hentschel.
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Physical
Interpretation

EM GR Degrees of Freedom

Source Ja Tµν (Rµν) Source degrees of freedom

Trace-free part Fab Cµνλσ Field degrees of freedom

Potential Aa gµν
Gauge + field + source

degrees of freedom

Table 1: Degrees of Freedom in EM and GR

3 Echoes of Hidden Matter

When Machianizing boundary conditions at infinity turned out to be trickier than

Einstein initially thought, he came up with an alternative solution: eliminate infinity. He

introduced the cosmological constant and advocated a closed spherical universe, later

known as the Einstein universe (1917). He defended Machianism in his extensive

correspondence with de Sitter between 1916 and 1919, only to relinquish it in his later

years. However, as Hoefer (1994) suggests, the historical intricacy of Einstein’s Machian

pursuit presents various possibilities for implementing Mach’s ideas in GR, rather than

justifying Einstein’s own reason for abandonment. The purpose of this section is to

provide such a possibility.

Two exact solutions to the EFE are particularly apt for the purpose – Schwarzschild

metric and Ozsváth-Schücking metric. The historical significance of Schwarzschild

spacetime lies in Einstein’s quest to establish Machian boundary conditions as a

replacement for the Minkowskian boundary used in the Schawarzschild solution. I

demonstrate that this transition is not a major concern. Another brilliant yet less

well-known example of vacuum solutions was proposed by Ozsváth and Schücking (1962)
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in their paper titled “An Anti-Mach-Metric”. It describes a singularity-free spacetime

with gravitational waves. The Ozsváth-Schücking metric may seem to pose the biggest

challenge to relationism. Nevertheless, I show that relationists have two available

responses.

3.1 Schwarzschild Spacetime

Solving the EFE is difficult, but simple solutions can be found if symmetry conditions

eliminate some degrees of freedom. A symmetric metric tensor written in a matrix form

has 10 slots to be determined in the 4× 4 matrix. In Schwarzschild spacetime, isotropy

and staticity simplify the metric so that after applying harmonic gauge in polar

coordinates (t, r, θ, ϕ), the line element becomes A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdϕ2).

Only two slots A(r) and B(r) need to be determined. One piece of information comes

from the Newtonian limit about the mass of the central object, which solves A(r). The

other comes from the Minkowski limit regarding the asymptotic behavior far away from

the central object. As r approaches infinity, the metric approaches the Minkowskian

limit. That is, A(r) → −1 and B(r) → 1 as r → ∞. These two pieces of information

together with the EFE give us the Schwarzschild solution in its familiar form:

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (4)

where G is the gravitational constant, M is the mass of the central object.

The standard interpretation is that the M in the Schwarzschild metric manifests a

geometric property instead of the existence of matter, because the solution can model

the gravitational field of a star as well as a black hole. One can always curtain a source
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and replace it with boundary conditions, but “this is purely a matter of taste” (“um eine

reine Geschmacksfrage”), to borrow Einstein’s words.12 While de Sitter preferred to

leave inertia unexplained, Einstein preferred to explain inertia via matter.13 The

standard geometrical interpretation may be appealing to substantivalists, but for

relationists, Mach’s explanans are better – there are effects “which masses outside of the

system exert on its parts” (1893/1919, 288 emphasis in original).

In fact, it was the Minkowskian limit rather than the Newtonian limit that bothered

Einstein, since singularities could be viewed as a “placeholder” or “surrogates for

matter”.14 Einstein attributed the non-Machian characteristics in Schwarzschild

spacetime to the fact that Minkowskian boundary conditions are stipulated in a specific

coordinate system, hence not generally covariant. To find boundary conditions that are

invariant under coordinate transformations meant to find a metric whose components are

either 0 or ∞. According to de Sitter, Einstein found the metric that takes on degenerate

values at infinity (gi4 = g4i = ∞ for i = 1, 2, 3, g44 = ∞2, and all other components equal

to zero) but eventually abandoned it because it conflicted with observations.15

From a modern perspective, since gauge fixing is always required to express any

solution, it is interesting, if not puzzling, that Einstein required Machian boundary

conditions to be generally covariant. A change in perspective may circumvent the worry

about boundary conditions. Instead of requiring the metric to approach the

Minkowskian limit at infinity, we can find source-carrier parameters that, if vanished,

result in the vanishing of the Riemann tensor. Vishwakarma (2015b) proposed a

12CPAE 8, Doc. 273.
13CPAE 8, Doc. 272.
14See Lehmkuhl (2017, 212) and Norton (2023, §10.4).
15See de Sitter (1916, fn.2) and Hoefer (1994, 304-16).
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systematic way to define the source of curvature in vacuum solutions in terms of

dimensional parameters. These parameters correspond to observable quantities such as

energy, momentum, angular momentum and their densities. Based on this formulation,

by requiring gravitational field to reduce to Newtonian potential in the limit, the

source-carrier parameter L in Schwarzschild spacetime can be determined by the source

mass: L = −2GM
c2

, so (4) can be rewritten as

ds2 = −
(
1 +

L

r

)
c2dt2 +

(
1 +

L

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (5)

If L vanishes, the Riemann curvature also vanishes, reducing the solution to Minkowski

spacetime. The idea aligns naturally with the perturbation theory. Minkowski spacetime

as a Riemann-flat solution has no gravitational field. Introducing some matter to it

alters the metric, and this deviation is described by the source-carrier L.

The Schwarzschild solution is only valid outside a spherically symmetric mass. The

boundary at the Schwarzschild radius (just like the state of the curtain) depends on the

property of the source, be it a singularity or a star. The Minkowski boundary assumes

effectively that there are no other masses in spacetime, or if there are, they are too

distant to make a difference. The boundary conditions in Schwarzschild spacetime are

not arbitrary but effective, determined by the external source (or its absence).

3.2 Ozsváth-Schücking Spacetime

In 1962, Ozsváth and Schücking proposed an ultimate anti-Machian metric. They

adopted Pirani’s formulation of Mach’s Principle-3, which says spacetime should be

Minkowskian in the absence of matter, where they interpreted “the absence of matter”
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as the absence of any form of source-matter, including singularities (1962, 339). The

Ozsváth-Schücking (O-S) metric is an exact vacuum solution that is singularity-free and

not asymptotically flat. The line element is given by

ds2 = −(dx1)
2 + 4x4dx1dx3 − 2dx2dx3 − 2(x4)

2(dx3)
2 − (dx4)

2. (6)

Unlike the Schwarzschild solution, it doesn’t approximate Minkowski spacetime at

infinity. Rather, it describes a pp-wave (plane-fronted waves with parallel propagation)

spacetime filled up with gravitational radiation but nothing else.

This is different from the weak-field case, where gravitational waves are produced by

a massive spinning object or a compact binary system. Under weak-field assumptions,

the far zone allows the gravitational radiation to be meaningfully calculated just like EM

radiation.16 While the background metric is determined by Tµν = 0 in the far zone, the

stress-energy tensor of the source in the near zone is non-vanishing. Since the waves in

the far zone are effectively treated as plane waves, the information about the location of

source is hidden. Curtaining the lightbulb doesn’t mean light is sourceless though. The

dynamics is determined by the vacuum background and the non-trivial stress-energy

tensor in the near zone.

In weak-field approximations, the source appears once the curtain that separates the

far zone and the near zone is removed. But the O-S solution, being geodesically

complete, does not describe a scenario where a source is hidden by a curtain. Rather, it

describes a case where there is light in the room, the curtain is removed, and you can see

everywhere yet there is still no lightbulb. How is that possible?

16See Gomes and Rovelli (2023).

13



Vishwakarma (2015b) suggests one way to find the hidden matter using dimensional

parameters and identifies a family of vacuum solutions, in which the angular momentum

density sources the curvature. Among them there is the O-S spacetime, sourced by a

particular value of a parameter l, related to the angular momentum density J by

l = GJ
c3

. The O-S solution (6) can be rewritten in new coordinates as

ds2 =

(
1− l2x2

8

)
c2dt2 − dx2 − dy2 −

(
1 +

l2x2

8

)
dz2 + lx(cdt− dz)dy +

l2x2

4
cdtdz, (7)

where l = 2
√
2. Similar to the Schwarzschild case, if l vanishes, the solution reduces to

Minkowski spacetime. Thus, it is the source-carrier l, or the angular momentum density,

which explains the non-vanishing Riemann tensor. While the stress-energy tensor cannot

fully represent the source in the spacetime, dimensional parameters can reveal the hidden

matter. Vishwakarma argues that his method Machianizes Ozsváth and Schücking’s

anti-Mach metric – “if the presence of source in the vacuum solutions is defined by the

presence of such parameters...all the solutions become Machian!”(2015b, 1109)

Representing the source of curvature in terms of angular momentum density may be

taken with a pinch of salt. While Vishwakarma (2015a) suggests that (7) results from a

rotating matter distribution, the attribution of angular momentum density remains

unclear. At the very least, this approach offers an alternative interpretation that

circumvents reliance on the geometric property to explain the metric. If shoe-horning

dimensional parameters into sources seems unconvincing, one can also represent sources

by constructing an effective stress-energy tensor (known as the Bel-Robinson tensor)

from the Weyl tensor. Goswami and Ellis (2018) showed that such a construction is

always possible for radiation-like Petrov type N spacetimes, which include the O-S
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spacetime.

There is yet another response that relationists can offer. The short version simply

asserts that the situation is “unphysical” if there is light in the room and when the

curtain is removed, there is no lightbulb. The longer version appeals to a conjecture

posed by Ehlers and Kundt (1962, 97) that the plane waves are the only geodesically

complete pp-waves17, in combination with Penrose’s (1965) theorem that the plane waves

are not globally hyperbolic. Considering plane waves as mathematical idealizations, the

Ehlers-Kundt conjecture suggests that any other pp-wave spacetime is incomplete, with

the source left out in modeling.

Ozsváth and Schücking regard their solution as a real threat to Machianism precisely

because it is complete. Since complete spacetimes are inextendible, we are not just

curtaining the part of the spacetime that contains a source. However, the O-S solution is

a plane-wave solution. Penrose (1965) shows that embedding a plane wave globally

within any hyperbolic normal pseudo-Euclidean space is impossible due to the absence of

an adequate spacelike hypersurface in the spacetime for the global specification of

Cauchy data. The absence of global hyperbolicity alone may not render a spacetime as

unphysical, provided it can be extended, repairing its global hyperbolicity. However, if

the spacetime is also complete, it is inextendible. Roche et al. (2023), following Flores

and Sánchez (2020), regard the conjunction of being complete and not globally

hyperbolic as indicative of the spacetime being “unphysical” (or a mere idealization).18

The essence of the Ehlers-Kundt conjecture, as interpreted by Flores and Sánchez

(2020), is that source-free dynamics fall under one of two possibilities: either the

17No counterexample to this conjecture has been identified.
18See Manchak (2011) for different views on “physically-reasonable” spacetimes.
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spacetime is incomplete, or it represents a mere idealization. Accordingly, relationists

can either remove the curtain to reveal the source, or claim that it is unphysical.

Finally, it isn’t surprising that GR fails to satisfy Mach’s Principle-T, because Tµν

has limitations in describing the global matter distribution. It can represent uniform and

homogeneous matter distribution globally but falls short when matter clusters, as in the

early universe. Penrose (1981, 1986) proposed a cosmological initial condition Cρσµν ≈ 0,

known as the Weyl curvature hypothesis.19 The freedom to stipulate vanishing Weyl

curvature would prima facie bother relationists. However, the worry removes itself if we

follow Penrose’s description of the early Universe, in which Ricci curvature represents

the uniform matter and Weyl curvature represents “the clumped matter” (2007, 766).

When cosmic structures form, the stress-energy tensor represents the “regional source”,

whereas the Weyl tensor models the “external source” such as stars and blackholes. The

degrees of freedom in the Weyl tensor simply allow “the external” to affect “the

regional”. This is compatible with what Barbour (2010) called Mach’s dictum of the All,

which takes into consideration “things which for the time being we left out of account”

(Mach 1883/1919, 235).

4 Conclusion

Many successful defenses of relationism have been put forth in the context of Newtonian

physics and Special Relativity, but the same strategies are known to face significant

challenges when extending to GR due to the problem of underdetermination. In this

19It parallels Ritz’s hypothesis, which eliminates electromagnetic degrees of freedom by postulating the
cosmological initial condition Fαβ = 0. For Zeh (2007, 138), the Weyl hypothesis is analogous to
Aα

incoming = 0, but I use Fαβ , because Fαβ is analogous to Cρσµν .
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paper, I reformulated the problem of underdetermination as the vacuum challenge.

While some relationists have addressed this challenge by excluding “unphysical” vacuum

solutions by fiat, I offered a richer story by recognizing the modelling artifacts involved.

The metric field is underdetermined by the stress-energy tensor because an extra

ingredient, the Weyl tensor, is needed. Decomposing the degrees of freedom in the

metric into gauge, “source”, and gravitational degrees of freedom, I identified the

gravitational degrees of freedom (associated with the Weyl tensor) as the “cause” of the

problem of underdetermination.

There is nothing intrinsically substantival about the Weyl tensor. It allows for

gravitational effects that something outside of a system exerts on the system. On my

interpretation, the vacuum challenge originates from the assertion that there are

gravitational effects from nothing outside. The boundary problem arises when we rely on

boundary conditions to do the heavy-lifting of sourcing without permitting anything to

exist on the opposite side of the boundary. I then proposed a relationist response: “free”

gravitational degrees of freedom are only free modelling artifacts. I did not, however,

argue that relationsim is correct. There are further interpretive questions regarding the

nature of the propagating degrees of freedom in the context of energy conservation in

GR. But at least for the vacuum challenge, relationists can respond: nothing matters

because in nothing we find matter.
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