
– PREPRINT –

ON VARIABLE NON-DEPENDENCE OF FIRST-ORDER FORMULAS

KOEN LEFEVER AND GERGELY SZÉKELY

Abstract. In this paper, we introduce a concept of non-dependence of variables in formulas.
A formula in first-order logic is non-dependent of a variable if the truth value of this formula
does not depend on the value of that variable. This variable non-dependence can be subject
to constraints on the value of some variables which appear in the formula, these constraints
are expressed by another first-order formula. After investigating its basic properties, we apply
this concept to simplify convoluted formulas by bringing out and discarding redundant nested
quantifiers. Such convoluted formulas typically appear when one uses a translation function
interpreting a theory into another.

First-Order Logic · Algebraic Logic · Model Theory · Cylindric Algebras · Simplification
Rules · Translation Functions · Logical Interpretation · Nested Quantifiers

1. Introduction

In general, it is not possible to bring out and discard nested quantifiers from formulas in
first-order logic. In this paper, we will however present some cases in which this is possible.
In order to do so, we introduce the notion of variable non-dependent1 formulas.

We are going to call a formula φ non-dependent of variable x if the truth or falsity of formula
φ does not depend on how variable x is interpreted, i.e., which value we assign to x. To achieve
non-dependence, we may need to put restrictions on the scope of interpretation of x and that of
other variables. So in general, we say that φ is non-dependent of variable x in a model provided
some condition captured by another formula θ, for a precise definition, see Definition 2 on p.6.

There are various ways in which a formula can be non-dependent of variable x:2

• The formula does not contain x, e.g., 1 ≤ y ≤ 2 as illustrated3 on the right in Figure 1
is non-dependent of x in every model for any language containing binary predicate ≤.

• The formula contains x, but x is bounded (i.e., it does not occur free) in the formula,
e.g., ∃x(y ̸= x) is non-dependent of x in every model.

Date: January 27, 2025.
1We use the term non-dependent to avoid confusion with other usages of the term independent in logic and

with the term independent variable which in mathematics is used for a symbol that represents an arbitrary
value in the domain of a function, see, e.g., (Stewart 2011, Section 1.1).

2While the examples here are from mathematics and assume that the variables are numbers, we do not
make that assumption on the nature of the variables in our definitions and theorems below: “x is human”
is dependent of x; “k is an inertial observer according to observer x” is non-dependent of x (in classical and
relativistic kinematics).

3In Figure 1 we present the main concepts and ideas in a naive and intuitive way, simplified to two numerical
dimensions. In following figures, we will use our formal framework more rigorously and also allow infinitely
many variables of any kind.
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Figure 1. Here the grey color represents values which make the formulas true and white
represents values which make the formulas false.
On the left we have the formula x ≥ y of which the truth value is dependent of both the
variables x and y. Only changing the value of x while keeping y constant can change the truth
value of this statement.
On the right we have the formula 1 ≤ y ≤ 2 which is variable non-dependent of x. Whatever
value we choose for x, the truth value of that statement does not change since it is only
dependent of the value of y.

• The formula contains x, but is always true or always false, e.g., ∃y(y ̸= x) is non-
dependent of x in every model (it is always true if the model has at least two elements
and false otherwise).

• The formula contains x and is not always true or false, but is non-dependent of the
value of x, e.g., (x2 + 1)(y2 − y) > 0 is non-dependent of variable x in the ordered field
of real numbers.

• The formula is non-dependent of x provided some condition, e.g., x(y2 − y) ≥ 0 is
non-dependent of variable x in the ordered field of real numbers provided x is positive.

In general, mathematical theorems can be viewed as special cases of variable non-dependence.
For example, by Fermat’s little theorem,4 formula ∃x(x·p = ap−a) is non-dependent of variable
p (in the ring of integers) provided that p is a prime number.

Mathematical translation functions, which accept a well-formed formula in one formal lan-
guage and mechanographically transform it into a formula in another formal language, rarely
produce esthetically pleasing results. This is partly due to the fact that they have to add con-
ditions to the formula which take the constraints of the theories behind the languages between
which is being translated into account.

4See Pierre de Fermat’s letter to Frénicle de Bessy, dated October 18, 1640 in (Fermat et al. 1894, pp. 206-
212).
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For example, in (Lefever 2017) and (Lefever and Székely 2018),5 an axiom system for spe-
cial relativity was interpreted6 into the language of late classical kinematics by a translation
function. The translation function has to add the condition to each inertial observer that
they have to go slower than light, which results in convoluted nested formulas if the original
formula includes multiple inertial observers. This condition was expressed in the ether frame
of refence. To simplify translations, since all observers representing the ether frame are at rest
relative to each other, we were allowed to assume that all inertial observers chose the same
ether-representing observer when the formula was built up from relations whose meaning was
non-dependent of the choice of this ether-representing observer. For example, that “the speed
of something is v according to the ether-representing observer” is not dependent of the ether-
representing observer, but that “the speed of the ether-representing observer is v according to
some other observer” is not.

Let us consider as an illustration the axiom AxSelf, which states that every inertial observer
is stationary in its own coordinate system:7

(∀k ∈ IOb)(∀t, x, y, z ∈ Q)
[
W (k, k, t, x, y, z) ↔ x = y = z = 0

]
.

If we translate this axiom from special relativity to classical kinematics we get8

(∀k ∈ IOb)(∀e ∈ Ether)
(
speed e(k) < c

→
(
∀t, x, y, z ∈ Q

)
(∀e ∈ Ether)

[
W

(
k, k, Rad−1

v̄k(e)
(k, k, t, x, y, z)

)
↔ x = y = z = 0

])
.

Note that (∀e ∈ Ether) occurs twice9 in the translated formula. With the methods developed
in (Lefever 2017, § 11 Appendix) and with the more generic method we present in the current

5Our work is part of a broader tradition of using methods from mathematical logic to compare scientific
theories in general, and relativity theories in particular. See, e.g., (Andréka et al. 2002), (Manchak 2010),
(Szabó 2011), (Stannett and Németi 2014), (Friend 2015), (Govindarajalulu et al. 2015), (Hudetz 2016), (Friend
and Molinini 2016), (Weatherall 2016), (Barrett and Halvorson 2016b), (Luo et al. 2016), (Das et al. 2019),
(Halvorson 2019), (Khaled et al. 2020), (Andréka and Németi 2021), (Formica and Friend 2021), (Khaled and
Székely 2021), (Weatherall 2021), (Humberstone and Kuhn 2022), (Madarász et al. 2022), (Meadows 2023),
(Weatherall and Meskhidze 2024), (Van Bendegem 2024), (Enayat and  Le lyk 2024), (Khaled and Székely 2024),
and (Aslan et al. 2024).

6For a discussion on the relation between translations, interpretations and definitional equivalence, see e.g.,
(Henkin et al. 1971), (Pinter 1978), (Visser 2006), (Andréka and Németi 2014), (Barrett and Halvorson 2016a),
(Lefever and Székely 2019), or (McEldowney 2020).

7See, e.g., (Andréka et al. 2006, p. 160). In this axiom, IOb is the set of inertial observers, Q is the set of
quantities (where ⟨Q ,+, ·,≤⟩ is an Euclidean Field), and W is the worldview relation capturing coordinatiza-
tion. The axiom intuitively says that all inertial observers measure their own postion relative to themselves at
coordinates (t, 0, 0, 0) at any time t.

8See (Lefever 2017): p. 12 for the definition of the speed of observer k relative to the ether speede(k), p. 19
for the definition of the set of all ether observers Ether , p. 30 for the definition of the radarization function
Radv̄ (this is used to transform between classical and relativistic co-ordinates: it is in essence a Galilean
transformation followed by a Lorentz transformation, its inverse Rad−1

v̄ is a Lorentz transformation followed
by a Galilean transformation), pp. 33-35 for the definition of the translation function, p. 35 for a discussion on
the translation of the speed of light c, and p. 78 for a discussion on the simplification of the translated axiom
AxSelf.

9The first is generated by the translation of IOb, the second is generated by the translation of W .
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paper10 we can simplify this to

(∀k ∈ IOb)(∀e ∈ Ether)
(
speed e(k) < c

→
(
∀t, x, y, z ∈ Q

)[
W

(
k, k, Rad−1

v̄k(e)
(k, k, t, x, y, z)

)
↔ x = y = z = 0

])
because the statement does not depend on which ether observer e is chosen. This simplified
translation is a lot easier to prove11 than the original mechanographical translation containing
redundant nested quantifiers.

This idea of variable non-dependence naturally appears in certain formalizations of Einstein’s
Special Principle of Relativity, see (Madarász 2002, §2.8.3) and (Madarász et al. 2017). Using
their formal language, the formalizations there can be reformulated in terms of variable non-
dependence because their formulation intuitively says that the truth or falsity of a formal
description φ(k, x̄) of a physical experiment is non-dependent of variable k provided k is an
inertial observer.

2. Formal framework

Our framework is a fairly standard combination of model theory12, definability theory13 and
Tarskian algebraic logic14, with some minor variations to the notation to suit our needs.

We use the following set of basic logical symbols for first-order predicate logic with equality

Log
def
= { ∃,∧,¬, (, ),= }

and assume that there is a countable set Var of variables.

Convention 1. We usually refer to arbitrary elements of Var by using indexes. For the sake
of simplicity, we fix a concrete ordering v1, v2 . . . , vi, . . . of the variables. When we would like
to talk about n-many arbitrary variables from Var, we use double indexes i1, . . . , in. Some-
times the list of variables vi1 , . . . , vin is abbreviated to v̄ and quantifiers ∀vi1 , . . . ,∀vin to ∀v̄.
Sometimes, when the concrete value i is not important, we use metavariables such as x, y, z
to denote vi for some i.

A signature15 of language L is a pair ⟨PredL, arL⟩ of the set PredL of predicates16 (relation
symbols) and the arity function arL which assigns an arity17 to elements of PredL. Formulas
of language L are built up recursively from alphabet PredL ∪ Log ∪ Var in the usual way and
their set is denoted by FormL. A model M = ⟨M, ⟨pM : p ∈ PredL⟩⟩ of language L consists of

10See Theorem 2 in Section 4 below.
11See (Lefever 2017, p. 39) for a proof (using the simplification from this example) that AxSelf translated

from special relativity to classical kinematics is a theorem in classical kinematics, which is one of the steps in
showing that the given translation is an interpretation.

12See, e.g., (Hodges 1993) or (Hodges 1997).
13See, e.g., (Andréka and Németi 2014).
14See (Henkin et al. 1971), (Henkin et al. 1981), (Henkin et al. 1985), (Monk 2000), and (Andréka et al.

2022).
15A signature is also called a vocabulary.
16Note that we allow PredL to be infinite.
17The arity is the number of variables in the relation, it is also called the rank, degree, adicity or valency of

the relation.
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a non-empty underlying set M , and for every predicate p of L, a relation pM ⊆ Mn with the
arity arL(p) = n.18

By āib let us denote the sequence which is the same as ā = (a1, a2, . . . , an, . . . ) except at i
where it is b, i.e., āib = (a1, . . . , ai−1, b, ai+1, . . . ). When using a metavariable, say x abbreviating
vi, we talk about the x-th component of ā meaning the i-th component, and also use notation
āxb instead of āib in the same spirit.19

To recall the notion of semantics, let M be a model, let M be the underlying set of M, let
φ be a formula and let ā ∈ Mω be an infinite sequence of elements of M then we inductively
define that ā satisfies φ in M, in symbols M |= φ[ā], as:

(i) For predicate p, M |= p(vi1 , vi2 , . . . , vin)[ā] holds if
(
ai1 , ai2 , . . . , ain

)
∈ pM,

(ii) M |= (vi = vj)[ā] holds if ai = aj holds,
(iii) M |= ¬φ[ā] holds if M |= φ[ā] does not hold,
(iv) M |= (ψ ∧ θ)[ā] holds if both M |= ψ[ā] and M |= θ[ā] hold,
(v) M |=

(
∃ vj ψ

)
[ā] holds if there is an element b ∈M , such that M |= ψ

[
ājb
]
.

M |= φ[ā] can also be read as φ[ā] being true in M. That φ is true in M for all evaluations of
variables is denoted by M |= φ.

Remark 1. We use φ∨ψ as an abbreviation for ¬ (¬φ∧¬ψ), φ→ ψ for ¬φ∨ψ, φ↔ ψ for
(φ→ ψ) ∧ (ψ → φ), and ∀vi φ for ¬∃ vi ¬φ.

Let M be a model and φ be a formula of its language. Then the meaning of φ in M is
defined as the set of sequences from M satisfying φ, i.e.,

JφKM def
= {ā ∈Mω : M |= φ[ā]}.

Let x be a variable, let M be a model, and let φ and ψ be a formulas of the language of M.
Then, by the definition of meaning, we have

J∀xφKM ⊆ JφKM ⊆ J∃xφKM ,

as illustrated in Figure 2.

Remark 2. There is a set theoretic operation corresponding to every logic operation behaving
nicely with meanings:

• complement to negation J¬φKM = Mω \ JφKM, we will abbreviate this as − JφKM,

• intersection to conjunction Jφ ∧ ψKM = JφKM ∩ JψKM,

• union to disjunction Jφ ∨ ψKM = JφKM ∪ JψKM,
• existential quantifiers to cylindrifications20

J∃xφKM = Cx JφKM =
{
ā ∈Mω : āxb ∈ JφKM for some b ∈M

}
,

see Figure 2.

18The underlying set M is also called the universe, the carrier or the domain of model M. Mn denotes the
Cartesian power set of set M .

19See Figure 3 below for an example on the usage of āib.
20For further discussion of the cylindrification Cx see, e.g., (Monk 2000, p. 452, section 2).



– PREPRINT – ON VARIABLE NON-DEPENDENCE OF FIRST-ORDER FORMULAS 6
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Figure 2. Let the medium grey JφKM be the set of all values of x and ȳ in Mω for which
φ is true. On the right, the meaning of “exists” (light grey rectangle, actually a cylinder with
an infinite number of dimensions) and “for all” (dark grey rectangle) are added, illustrating

that J∀xφKM ⊆ JφKM ⊆ J∃xφKM. Note that the axis ȳ is represented as a vector because there
are an infinite number of dimensions in Mω.

3. Definitions and Theorems

Throughout this section, let M be a model, x and y be variables, and let φ, ψ and θ be
formulas in the language of M.

Definition 1. We say that φ is non-dependent of variable x in model M iff for all
sequences of elements ā ∈Mω and b ∈M ,

M |= φ[ā] ⇐⇒ M |= φ[āxb ].

Let us note that we have the following equivalent21 formulations of variable non-dependence:

φ is non-dependent of x in M ⇐⇒ J∀xφKM = JφKM ⇐⇒ JφKM = J∃xφKM ,

and hence
φ is non-dependent of x in M ⇐⇒ M |= ∃xφ↔ ∀xφ.

This is a corollary of Proposition 1 below, and it can be proven by choosing θ to be a tautology
in that statement.

Let us note that if variable x does not occur free in φ, then φ is non-dependent of variable
x in every model. However, the converse does not hold: for example, the formula x = x is
non-dependent of variable x in every model, but x does occur free in it.

Definition 2. We say that φ is non-dependent of variable x in model M provided θ
iff, for all sequences of elements ā ∈Mω and b ∈M ,

(1) M |= θ[ā] and M |= θ[āxb ] =⇒ ( M |= φ[ā] ⇐⇒ M |= φ[āxb ] ),

see Figure 3.

Remark 3. It is straightforward to check the following observations from the definitions:

• θ is non-dependent of x in M provided θ,
• ∃xφ is always non-dependent of x in M,

21While we use single-line arrows ↔ and → for equivalence and implication in the object language, we use
double-line arrows ⇐⇒ and =⇒ in the meta-language.
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Figure 3. On the left hand, we see a formula φ which is not non-dependent of x: changing
the x-value from ai into b changes the truth value of φ. However, on the right we see that
adding an extra condition θ does make φ non-dependent of x provided θ: changing the x-value
does never change the truth value of φ as long as the evaluations of variables remain inside

the area defined by JθKM.

• if φ is non-dependent of x in M provided θ, then so is ∃yφ,
• Boolean-closedness: if φ and ψ are non-dependent of x in M provided θ, then so are
¬φ and φ ∧ ψ,

• monotonicity: if φ is non-dependent of x in M provided θ and θ̂ implies θ in M, then
φ is non-dependent of x in M provided θ̂.

Remark 4. By Boolean-closedness and monotonicity, we have the following: In any model, if
φ1 is non-dependent of x provided θ1 and φ2 is non-dependent of x provided θ2, then φ1 ∗ φ2

is non-dependent of x provided θ1 ∧ θ2 for any binary Boolean-definable logical connective ∗.

For arbitrary formulas ϕ and φ, we are using bounded quantifiers as follows:22

(2) (∀u ∈ ϕ)φ
def⇐⇒ ∀u(ϕ→ φ) and (∃u ∈ ϕ)φ

def⇐⇒ ∃u(ϕ ∧ φ).

Proposition 1. The following statements are equivalent:

(i) φ is non-dependent of x in M provided θ,

(ii) Jθ ∧ (∃x ∈ θ)φ)KM = Jθ ∧ φKM,

(iii) Jθ ∧ (∀x ∈ θ)φ)KM = Jθ ∧ φKM,

(iv) Jθ → (∀x ∈ θ)φ)KM = Jθ → φKM, and

(v) Jθ → (∃x ∈ θ)φ)KM = Jθ → φKM.

Let us note here that

(3) Jθ ∧ ∃x(θ ∧ φ)KM ⊇ Jθ ∧ φKM ⊆ JφKM ⊆ Jθ → φKM ⊇ Jθ → ∀x(θ → φ)KM

holds in general.

22We here use a notation for bounded quantifier where the bounds are other formulas viewed as parametricaly
defined subsets of the model where we interpret them. An advantage of this notation is that it makes the ideas
behind some formulas easier to grasp. Similar notation can be found in, e.g., (Andréka et al. 2002) and
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(i)(ii) (iii)

(iv)

(v)

Figure 4. This figure illustrates the order of proving the equivalences between
the items of Proposition 1. We need to prove “(iii) =⇒ (i)” directly because in
the proof of “(iii) =⇒ (v)” we use the equivalence of (iii) and (i).

Proof. Proof of “(i) =⇒ (ii)”: By (3) and (2), it is enough to show that Jθ ∧ ∃x(θ ∧ φ)KM ⊆
Jθ ∧ φKM. To do so, let ā ∈ Jθ ∧ ∃x(θ ∧ φ)KM. Then ā ∈ JθKM and ā ∈ J∃x(θ ∧ φ)KM, the latter

means that there is b ∈ M such that āxb ∈ JθKM ∩ JφKM. From this, by Definition 2, follows

that ā ∈ JφKM. Consequently, ā ∈ Jθ ∧ φKM, and this is what we wanted to show.
Proof of “(ii) =⇒ (i)”: We are going to prove the contraposition of the statement. So assume

that (i) does not hold, i.e., there is ā ∈ Mω and b ∈ M such that M |= θ[ā], M |= θ[āxb ],

M |= φ[āxb ], but M ̸|= φ[ā]. Then ā ̸∈ Jθ ∧ φKM, but ā ∈ J∃x(θ ∧ φ)KM. Hence, by M |= θ[ā],

we get ā ∈ Jθ ∧ ∃x(θ ∧ φ)KM. Thus Jθ ∧ ∃x(θ ∧ φ)KM ̸= Jθ ∧ φKM. Proving that if (i) does not
hold, then (ii) also does not hold. Consequently, (ii) implies (i) as stated.

Proof of “(ii) =⇒ (iv)” after using equation (2) to unpack the bounded quantifier:

Jθ → ∀x(θ → φ)KM

= J¬θ ∨ ¬∃x¬(¬θ ∨ φ)KM by the definitions of ∀ and →.

=
q
¬
(
θ ∧ ∃x(θ ∧ ¬φ)

)yM
by De Morgan twice and double negation.23

= − Jθ ∧ ∃x(θ ∧ ¬φ)KM by Remark 2.

= − Jθ ∧ ¬φKM by item (ii) on ¬φ, (ii)⇔(i) and Remark 3.

= J¬θ ∨ ¬¬φKM by Remark 2 and De Morgan.

= Jθ → φKM by double negation and definition of →.

(Andréka et al. 2007); we already used this similar notation in the translation examples in the introduction,
for example, (∀k ∈ IOb)φ instead of ∀k(IOb(k) → φ).

23See, e.g., (Hinman 2005, p. 34) for tautologies in propositional logic that we use, including De Morgan’s
laws, double negation, excluded middle, associativity, distributivity, exportation, and idempotency.
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Proof of “(iv) =⇒ (iii)” after unpacking the bounded quantifier:

Jθ ∧ ∀x(θ → φ)KM

= Jθ ∧ (θ → ∀x(θ → φ))KM by identity A ∧B ≡ A ∧ (A→ B).

= Jθ ∧ (θ → φ)KM by item (iv).

= Jθ ∧ φKM by identity A ∧ (A→ B) ≡ A ∧B.

Proof of “(iii) =⇒ (i)”: we prove the contraposition of the statement. To do so, assume that
(i) does not hold, i.e., there is ā ∈Mω and b ∈M such that M |= θ[ā], M |= θ[āxb ], M ̸|= φ[āxb ],

but M |= φ[ā]. Then ā ∈ Jθ ∧ φKM, but ā ̸∈ J∀x(θ ∧ φ)KM, and hence ā ̸∈ Jθ ∧ ∀x(θ ∧ φ)KM.

Thus Jθ ∧ ∀x(θ ∧ φ)KM ̸= Jθ ∧ φKM, and this is what we wanted to show.
Proof of “(iii) =⇒ (v)” after unpacking the bounded quantifier:

Jθ → ∃x(θ ∧ φ)KM

= J¬θ ∨ ∃x(θ ∧ φ)KM by the definition of →.

=
q
¬
(
θ ∧ ¬∃x(θ ∧ φ)

)yM
by De Morgan and double negation.

= − Jθ ∧ ∀x¬(θ ∧ φ)KM by Remark 2 and quantifier negation law.24

= − Jθ ∧ ∀x(θ → ¬φ)KM by De Morgan and the definition of →.

= − Jθ ∧ ¬φKM by item (iii) on ¬φ, (iii)⇔(i) and Remark 3.

= J¬θ ∨ ¬¬φKM by Remark 2 and De Morgan.

= Jθ → φKM by double negation and definition of →.

Proof of “(v) =⇒ (ii)” after unpacking the bounded quantifier:

Jθ ∧ ∃x(θ ∧ φ)KM

= Jθ ∧ (θ → ∃x(θ ∧ φ))KM by identity A ∧B ≡ A ∧ (A→ B).

= Jθ ∧ (θ → φ)KM by item (v).

= Jθ ∧ φKM by identity A ∧ (A→ B) ≡ A ∧B.

□

Proposition 2. If φ is non-dependent of x in M provided θ, then J(∃x ∈ θ)¬φ)KM is the

complement of J(∃x ∈ θ)φ)KM relative to J∃xθKM, i.e.,

J(∃x ∈ θ)¬φ)KM = J∃xθKM − J(∃x ∈ θ)φ)KM

in other words

J(∃x ∈ θ)¬φ)KM = J∃xθ ∧ ¬(∃x ∈ θ)φ)KM .

24See, e.g., (Hinman 2005, p. 99) for equivalences in first-order logic that we use, including negation and
distributivity of quantifiers.
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Proof. If φ is non-dependent of x in M provided θ, then

J(∃x ∈ θ)φ)KM ∩ J(∃x ∈ θ)¬φ)KM = ∅.

This is so because, if there was an ā ∈ J∃x(θ ∧ φ)KM∩J∃x(θ ∧ ¬φ)KM, then there would also be
b and c such that āxb and āxc satisfy θ, and M |= φ[āxb ], but M |= ¬φ[āxc ]. This would contradict
the assumption that φ is non-dependent of x in M provided θ. Hence the intersection of
J∃x(θ ∧ φ)KM and J∃x(θ ∧ ¬φ)KM has to be empty.

To complete the proof, now we are going to show their union is J∃xθKM.

J∃x(θ ∧ φ)KM ∪ J∃x(θ ∧ ¬φ)KM

= J∃x(θ ∧ φ) ∨ ∃x(θ ∧ ¬φ)KM by Remark 2.

=
q
∃x

(
(θ ∧ φ) ∨ (θ ∧ ¬φ)

)yM
by the distributivity of ∃ over ∨.

=
q
∃x

(
θ ∧ (φ ∨ ¬φ)

)yM
by the distributivity of ∧ over ∨.

= J∃xθKM by excluded middle.

□

Remark 5. Let us recall the following facts from the literature:25 If variable x does not occur
free in ϕ, then we have the following logical equivalences:

(i) ∃x(ϕ ∧ ψ) ≡ ϕ ∧ ∃xψ,
(ii) ∀x(ϕ ∨ ψ) ≡ ϕ ∨ ∀xψ,

(iii) ∃x(ϕ→ ψ) ≡ ϕ→ ∃xψ,
(iv) ∀x(ϕ→ ψ) ≡ ϕ→ ∀xψ,
(v) ∀x(ψ → ϕ) ≡ ∃xψ → ϕ.

Proposition 3. If φ is non-dependent of x in M provided θ, then

J(∀x ∈ θ)¬φ)KM = J∃xθ → ¬(∀x ∈ θ)φ)KM .

25See, e.g., (Hinman 2005, p.99).
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Proof. If φ is non-dependent of x in M provided θ, then after unpacking the bounded quantifier

J∀x(θ → ¬φ)KM

= J¬∃x¬(¬θ ∨ ¬φ)KM by the definitions of ∀ and →.

= J¬∃x(θ ∧ φ)KM by De Morgan, and double negation.

= − J∃x(θ ∧ φ)KM by Remark 2.

= −
q
∃x

(
θ ∧ ∀x(θ → φ)

)yM
by (iii) of Proposition 1.

= −
q
∃x

(
θ ∧ ¬∃x¬(¬θ ∨ φ)

)yM
by the definitions of ∀ and →.

= −
q
∃x

(
θ ∧ ¬∃x(θ ∧ ¬φ)

)yM
by De Morgan and double negation.

= − J∃xθ ∧ ¬∃x(θ ∧ ¬φ)KM by (i) of Remark 5.

=
q
¬
(
∃xθ ∧ ¬∃x(θ ∧ ¬φ)

yM
by Remark 2.

= J¬∃xθ ∨ ∃x(θ ∧ ¬φ)KM by De Morgan and double negation.

= J¬∃xθ ∨ ¬∀x¬(θ ∧ ¬φ)KM by double negation and definition of ∀.

= J¬∃xθ ∨ ¬∀x(¬θ ∨ φ)KM by De Morgan and double negation.

= J∃xθ → ¬∀x(θ → φ)KM by definition of →.

□

From Propositions 2 and 3, we get the following:

Corollary 1. If φ is non-dependent of x in M provided θ and M |= ∃xθ, i.e., J∃xθKM = Mω,
then

J¬(∃x ∈ θ)φKM = J(∃x ∈ θ)¬φ)KM , and

J¬(∀x ∈ θ)φKM = J(∀x ∈ θ)¬φ)KM .

Proposition 4. If φ is non-dependent of x in M provided θ and M |= ∃xθ, then

J(∃x ∈ θ)φKM = J(∀x ∈ θ)φ)KM .

Proof. Let ā ∈ J(∃x ∈ θ)φKM. Then, for some b ∈ M , āxb ∈ JθKM ∩ JφKM by definitions.
Let c ∈ M be arbitrary. Since φ is non-dependent of x in M provided θ, we have that if
āxc ∈ JθKM, then āxc ∈ JφKM as āxb ∈ JθKM and āxb ∈ JφKM. Then, since either āxc ∈ J¬θKM or

āxc ∈ JθKM, we have āxc ∈ J¬θKM ∪ JφKM = Jθ → φKM. Because c was arbitrary, this means that

ā ∈ J∀x(θ → φ)KM = J(∀x ∈ θ)φ)KM. This proves inclusion J(∃x ∈ θ)φKM ⊆ J(∀x ∈ θ)φ)KM.

To prove the other inclusion, let ā ∈ J(∀x ∈ θ)φ)KM, i.e., for all c ∈ M , if āxc ∈ JθKM holds,

then so does āxc ∈ JφKM. By assumption M |= ∃xθ, there is some b ∈ M such that āxb ∈ JθKM.

By the above, for this b, we also have āxb ∈ JφKM. In other words, ā ∈ J∃x(θ ∧ φ)KM =

J(∃x ∈ θ)φKM, which proves the other inclusion J(∃x ∈ θ)φKM ⊇ J(∀x ∈ θ)φ)KM. □

We note that condition M |= ∃xθ is needed for inclusion J(∃x ∈ θ)φKM ⊇ J(∀x ∈ θ)φ)KM

and the non-dependence condition is needed for inclusion J(∃x ∈ θ)φKM ⊆ J(∀x ∈ θ)φ)KM.
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Proposition 5. Bounded universal quantifiers distribute over conjunction, i.e.,

(∀x ∈ ϕ)(φ ∧ ψ) ≡ (∀x ∈ ϕ)φ ∧ (∀x ∈ ϕ)ψ, and hence

J(∀x ∈ ϕ)(φ ∧ ψ)KM = J(∀x ∈ ϕ)φ ∧ (∀x ∈ ϕ)ψKM .

Proof. After unpacking the bounded quantifiers, the statement can be proved26 as:

∀x
(
ϕ→ (φ ∧ ψ)

)
≡ ∀x

(
¬ϕ ∨ (φ ∧ ψ)

)
by the definition of implication.

≡ ∀x
(
(¬ϕ ∨ φ) ∧ (¬ϕ ∨ ψ)

)
by the distributivity of ∨ over ∧.

≡ ∀x(¬ϕ ∨ φ) ∧ ∀x(¬ϕ ∨ ψ) by the distributivity of ∀ over ∧.

≡ ∀x(ϕ→ φ) ∧ ∀x(ϕ→ ψ) by the definition of implication.

□

In general, quantifiers do not distribute over logic operators. For example, ∀x
(
ϕ(x)∨ ψ(x)

)
has a different meaning than ∀x

(
ϕ(x)

)
∨ ∀x

(
ψ(x)

)
, which is clear when we consider that “all

numbers are odd or even” is very different from “all numbers are odd or all numbers are
even”. However, under certain conditions, using Proposition 6 below, it is possible to bring
out quantifiers which are nested within operators — in the case of the above example, if ϕ and
ψ are non-dependent27 of x, by assigning the function f

(
ϕ(x), ψ(x)

)
in Proposition 6 to the

logical or ∨.
Now, in Proposition 6, we are going to prove that bounded universal quantifier (∀x ∈ θ) can

be brought out from arbitrary boolean combination of formulas if they are non-dependent of
variable x provided θ.

Proposition 6. Let f be any boolean expression, then

q
∃xθ → f

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
= J(∀x ∈ θ)f(φ1, . . . , φn)KM

if all φi are non-dependent of x in M provided θ.

Proof. We prove the statement by induction on the complexity of f(φ1, . . . , φn). Let us first
show that the statement holds for each φi in f(φ1, . . . , φn). Let φ be any of those φis. By

Remark 2, we have Jθ ∧ ¬φKM = JθKM∩J¬φKM. So Jθ ∧ ¬φKM ⊆ JθKM. From this, by Remark 2,

we get J¬∃x(θ ∧ ¬φ)KM ⊇ J¬∃xθKM. Which is the same as J∀x(θ → φ)KM ⊇ J¬∃xθKM by the

definitions of → and ∀, De Morgan and double negation. Hence J∀x(θ → φ)KM = J¬∃xθKM ∪
J∀x(θ → φ)KM. Which is J∀x(θ → φ)KM = J¬∃xθ ∨ ∀x(θ → φ)KM by Remark 2. From this, by

the definition of → and (2), we get the desired identity J(∀x ∈ θ)φKM = J∃xθ → (∀x ∈ θ)φKM.
Since, by Remark 1, f is equivalent to an expression in which only negation and conjunction

is used, it is enough to show the induction steps for these two connectives.

26While the proof of this is straightforward, we include it here due to our peculiar use of bounded quantifiers.
27This is obviously not the case for “x is odd” and “x is even”.
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Let us first assume that f is of the form f = g∧h such that we already know the statement
for g and h, i.e., the followings hold

J(∀x ∈ θ)g(φ1, . . . , φn)KM =
q
∃xθ → g

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
, and(4)

J(∀x ∈ θ)h(φ1, . . . , φn)KM =
q
∃xθ → h

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
.(5)

q
(∀x ∈ θ)

(
g(φ1, . . . , φn) ∧ h(φ1, . . . , φn)

)yM

= J(∀x ∈ θ)g(φ1, . . . , φn)KM ∩ J(∀x ∈ θ)h(φ1, . . . , φn)KM by Prop. 5 and Rem. 2.

=
q
∃xθ → g

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM

∩
q
∃xθ → h

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
by ind. hypotheses: (4) and (5).

=
q(
¬∃xθ ∨ g((∀x ∈ θ)φ1, . . . )

)
∧
(
¬∃xθ ∨ h(. . . )

)yM
by the definition of → and Rem.2.

=
q
¬∃xθ ∨

(
g((∀x ∈ θ)φ1, . . . )

)
∧ h((∀x ∈ θ)φ1, . . . )

)yM
by the distributivity of ∨ over ∧.

=
q
∃xθ → (g ∧ h)

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
by the definition of →.

Let us now assume that f is of the form f = ¬g such that we already know the statement
for g.

J(∀x ∈ θ)¬g(φ1, . . . , φn)KM

= J∃xθ → ¬(∀x ∈ θ)g(φ1, . . . , φn)KM by Prop. 3 on g(φ1...) and Remark 3.

= − J∃xθKM ∪ − J(∀x ∈ θ)g(φ1, . . . , φn)KM by Remark 2 and the definition of →.

= − J∃xθKM ∪ −
q
∃xθ → g

(
(∀x ∈ θ)φ1, . . .

)yM
by induction hypothesis: (4).

=
q
¬∃xθ ∨ ¬

(
¬∃xθ ∨ g

(
(∀x ∈ θ)φ1, . . .

))yM
by the definition of → and Remark 2.

=
q
¬∃xθ ∨

(
∃xθ ∧ ¬g

(
(∀x ∈ θ)φ1, . . .

))yM
by De Morgan and double negation.

=
q
(¬∃xθ ∨ ∃xθ) ∧

(
¬∃xθ ∨ ¬g((∀x ∈ θ)φ1, . . . )

)yM
by the distributivity of ∨ over ∧.

=
q
¬∃xθ ∨ ¬g

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
by excluded middle.

=
q
∃xθ → ¬g

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
by the definition of →.

□

Lemma 1. Assume that φ is non-dependent of x in M provided θ and none of variables in z̄
occur free in θ. Then

(6) J∀x∃z̄(θ → ψ)KM = J∃xθ → ∃z̄(∀x ∈ θ)ψ)KM ,

and hence,

(7) J∀x∃z̄(θ → ψ)KM = J∃z̄(∀x ∈ θ)ψ)KM if M |= ∃xθ.
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Proof.

J∀x∃z̄(θ → ψ)KM

=
q
∀x∃z̄

(
θ → ∀x(θ → ψ)

)yM
by item (iv) of Prop.1.

=
q
∀x

(
θ → ∃z̄∀x(θ → ψ)

)yM
by (iii) Remark 5.

= J∃xθ → ∃z̄∀x(θ → ψ)KM by (v) Remark 5.

□

Now we are going to show that bounded quantifier (∀x ∈ θ) can be brought out from any
formula built up from subformulas all of which are non-dependent of x provided θ. We only
need to prove this for formulas in prenex normal form, since every formula of first-order logic
can be written as such, see Theorem 2.2.34 in (Hinman 2005, p.111).

Theorem 1. Let f be any boolean expression, let θ be formula such that no variables of
z1, . . . , zm occur free in θ, and let Q1, . . . , Qm be an arbitrary series of universal and existential
quantifiers. Then, if all φi are non-dependent of x in M provided θ,

q
∃xθ → Qmzm . . . Q1z1f

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM

= J(∀x ∈ θ)Qmzm . . . Q1z1f(φ1, . . . , φn)KM ,

and hence, if M |= ∃xθ, then

q
Qmzm . . . Q1z1f

(
(∀x ∈ θ)φ1, . . . , (∀x ∈ θ)φn

)yM
= J(∀x ∈ θ)Qmzm . . . Q1z1f(φ1, . . . , φn)KM .

Proof. We prove the statement by induction on the number m of (nonbounded) quantifiers. If
m = 0, we have the statement by Proposition 6. Now assume that we have the statement for
some m = k, and prove that we have it for m = k + 1.

There are two cases:

1.) either Qk+1 = ∃, and then

q
∀x

(
θ → ∃zk+1Qkzk . . . Q1z1f(φ1, . . . , φn)

)yM

=
q
∀x∃zk+1

(
θ → Qkzk . . . Q1z1f(φ1, . . . , φn)

)yM
by (iii) of Remark 5.

= J∃xθ → ∃zk+1(∀x ∈ θ)Qkzk . . . Q1z1f(φ1, . . . , φn)KM by Lemma 1 and Remark 3.

=
q
∃xθ → ∃zk+1

(
∃xθ → Qkzk . . . Q1z1f

(
(∀x ∈ θ)φ1, . . .

)yM
by induction hypothesis.

=
q
∃xθ →

(
∃xθ → ∃zk+1Qkzk . . . Q1z1f

(
(∀x ∈ θ)φ1, . . .

)yM
by (iii) of Remark 5.

=
q
∃xθ → ∃zk+1Qkzk . . . Q1z1f

(
(∀x ∈ θ)φ1, . . .

)yM
by exportation and idempotency.
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2.) or either Qk+1 = ∀, and then
q
∀x

(
θ → ∀zk+1Qkzk . . . Q1z1f(φ1, . . . , φn)

)yM

=
q
∀x∀zk+1

(
θ → Qkzk . . . Q1z1f(φ1, . . . , φn)

)yM
by (iv) of Remark 5.

= J∀zk+1(∀x ∈ θ)Qkzk . . . Q1z1f(φ1, . . . , φn)KM by quantifier interchange and (2).

=
q
∀zk+1

(
∃xθ → Qkzk . . . Q1z1f

(
(∀x ∈ θ)φ1, . . .

)yM
by induction hypothesis.

=
q
∃xθ → ∀zk+1Qkzk . . . Q1z1f

(
(∀x ∈ θ)φ1, . . .

)yM
by (iv) of Remark 5.

□

Remark 6. By Proposition 4 and Remarks 3 and 4, if the conditions of Theorem 1 hold
and M |= ∃xθ, then also the existential quantifiers (∃x ∈ θ) can be brought out from the
corresponding formula, i.e.:
q
Qmzm . . . Q1z1f

(
(∃x ∈ θ)φ1, . . . , (∃x ∈ θ)φn

)yM
= J(∃x ∈ θ)Qmzm . . . Q1z1f(φ1, . . . , φn)KM .

Moreover, any of the quantifiers (∃x ∈ θ) can freely be replaced by quantifiers (∀x ∈ θ) in this
equation above.

4. Applications

A main source of applications of these results is simplifying translations of formulas, where
bounded quantifiers appear redundantly after some translation. Such a situation occurred
when special relativity was interpreted into classical kinematics, see (Lefever 2017) and (Lefever
and Székely 2018). Here we generalize the simplification rules used there without taking any
special restrictions on the formulas φ, ι and ε apart from the variable non-dependence condition
introduced in this paper and that the provided condition is of the form θ = ι ∧ ε.

For example, in (Lefever 2017, § 11 Appendix), we define for classical kinematics that formula
φ is ether-observer-independent in variable b provided that k1, . . . , kn are inertial observers if
the truth or falsehood of φ does not depend on to which ether observer we evaluated b:

EOIk1,...,knb [φ]
def⇐⇒ ClassicalKin ⊢ (∀k1, . . . , kn ∈ IOb)(∀e1, e2 ∈ Ether)[φ(e1/b) ↔ φ(e2/b)],

where φ(e/b) means that b gets substituted by e in all free occurrences of b in φ.
Here, (∀k1, . . . , kn ∈ IOb) is shorthand using bounded quantifiers for ∀k1 . . . ∀kn

(
IOb(k1) ∧

. . . ∧ IOb(kn) → . . .
)
, which corresponds to ι and which asserts that k1, . . . , kn are inertial

observers. (∀e1, e2 ∈ Ether) is shorthand for ∀e1∀e2
(
Ether(e1) ∧ Ether(e2) → . . .

)
, which

here is ε and which postulates that e1 and e2 are Ether-observers. So, if we can replace b in
φ by any ether observer, and k1 . . . kn occuring in φ are inertial observers, then φ is indeed
ether-observer-independent in b.

As another example, one of the formulations of the principle of relativity in (Madarász et al.
2017, Section 4.1) states that the truth of certain formulas φ(b, x̄) describing experimental
scenarios with numerical parameters x̄ does not depend on the choice of inertial observer b.
This is formulated as an axiom scheme SPR+ consisting formulas of the form

IOb(k) ∧ IOb(h) → (φ(k, x̄) ↔ φ(h, x̄)),

where φ(k, x̄) and φ(h, x̄) are the formula φ(b, x̄) but variable b is substituted by k and h,
respectively.
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Let us first connect these notions of independence from both examples above to the non-
dependence one introduced in this paper. We will use the following notation for Tarski’s
substitution:28

(8) φx
y

def⇐⇒ ∃x(x = y ∧ φ).

Remark 7. Let us note that, by (8) and the definition when ā satisfies formula φ in model
M, we have M |= φx

vj
[ā] iff M |= φ[āxaj ].

Proposition 7. Formula φ is non-dependent of x in M provided θ iff

(9) M |= (θxy ∧ θxz ) → (φx
y ↔ φx

z)

for some variable y and z that occur neither in φ nor in θ.

Proof. Let x = vi, y = vj and z = vk.
By Remark 7 and the definition of when a sequence of elements satisfies a formula in a

model, (9) is equivalent to that, for all c̄ ∈Mω,

(10) M |= θ[c̄xcj ] and M |= θ[c̄xck ] =⇒ (M |= φ[c̄xcj ] ⇐⇒ M |= φ[c̄xck ]).

Now assume that φ is non-dependent of x in M provided θ. Then when substituting ā = c̄xcj
and b = ck to (1) of Definition 2, we get (10) since āxb = (c̄xcj)

x
ck

= c̄xck . This proves the “ =⇒ ”
direction.

To show the other direction, let ā ∈ Mω and b ∈ M such as M |= θ[ā] and M |= θ[āxb ]. Let
c̄ be the sequence that we get form ā by changing the j-th element of ā to ai and the k-th
element of ā to b, i.e.,

c̄
def
= (āyai)

z
b = (a1, . . . , ai−1,

i
ai, ai+1, . . . , aj−1,

j
ai, aj+1, . . . , ak−1,

k

b, ak+1, . . . ).

Since satisfiability depends only on the evaluations of free variables, and variables y = vj
and z = vk are not free in θ and φ, and sequences c̄ and ā differ only in the j-th and k-th
coordinate, we have that M |= θ[ā] iff M |= θ[c̄xcj ], M |= φ[ā] iff M |= φ[c̄xcj ], M |= θ[āxb ] iff

M |= θ[c̄xck ] and M |= φ[āxb ] iff M |= φ[c̄xck ]. Consequently, (10) reduces to (1), and hence (9)
implies Definition 2, and this is what we wanted to show. □

Now that we have connected the substitution of variables from the above examples to our
notion of non-dependence, and we have established the condition θ as the conjunction ι ∧ ε,
we can proceed to show how we apply non-dependence to simplify formulas.

Lemma 2. Let φ, ι and ε be formulas such that variable x does not occur free in ι. Then

ι→ ∀x(ι ∧ ε→ φ) ≡ ι→ ∀x(ε→ φ) and

ι ∧ ∀x(ι ∧ ε→ φ) ≡ ι ∧ ∀x(ε→ φ).

28This definition of substitution is equivalent to Tarski’s definition φ(x/y)
def⇐⇒ ∀x(x = y → φ) in (Tarski

1964, p. 62), however we use Enderton’s notation φx
y from (Enderton 2001, p. 112) in stead of Tarski’s φ(x/y).

Enderton’s definition is equivalent with Tarski’s for proper substitution, see (Enderton 2001, p. 130).
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ȳ

x

JφKM

JιKM

JεKM

Mω

Figure 5. This figure illustrates the special case used in Section 4, i.e., when the provided
condition is of the form θ = ι ∧ ε for some formulas such that x does not occur free in ι
and certain bound variables of φ do not occur free in ε and ι. Here JθKM = JιKM ∩ JεKM is
represented by the area inside the dashed rectangle.

Proof.

ι→ ∀x(ι ∧ ε→ φ)

≡ ¬ι ∨ ∀x(¬ι ∨ ¬ε ∨ φ) by the definition of → and De Morgan.

≡ ¬ι ∨ ¬ι ∨ ∀x(¬ε ∨ φ) by (ii) of Remark 5.

≡ ι→ ∀x(ε→ φ) by indempotency and definition of →.

ι ∧ ∀x(ι ∧ ε→ φ)

≡ ι ∧ ∀x(¬ι ∨ ¬ε ∨ φ) by the definition of → and De Morgan.

≡ ι ∧
(
¬ι ∨ ∀x(¬ε ∨ φ)

)
by (ii) of Remark 5.

≡ ι ∧ ∀x(ε→ φ) by the distributivity of ∧ over ∨ and identity (A ∧ ¬A) ∨B ≡ B.

□

Lemma 3. Let f be any Boolean expression, let ι, ε and φ1, . . . , φn be formulas such that
variable x does not occur free in ι. Then

(∀u ∈ ι)f
(
∀x(ε→ φ1), . . . ,∀x(ε→ φn)

)
≡ (∀u ∈ ι)f

(
∀x(ι ∧ ε→ φ1), . . . ,∀x(ι ∧ ε→ φn)

)
,

(11)

(∃u ∈ ι)f
(
∀x(ε→ φ1), . . . ,∀x(ε→ φn)

)
≡ (∃u ∈ ι)f

(
∀x(ι ∧ ε→ φ1), . . . ,∀x(ι ∧ ε→ φn)

)
.

(12)
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Proof. Since (∀u ∈ ι)φ abbreviates ∀u(ι→ φ) and (∃u ∈ ι)φ abbreviates ∃u(ι∧φ), it is enough
to prove that

ι→ f
(
∀x(ε→ φ1), . . . ,∀x(ε→ φn)

)
≡ ι→ f

(
∀x(ι ∧ ε→ φ1), . . . ,∀x(ι ∧ ε→ φn)

)
,(13)

ι ∧ f
(
∀x(ε→ φ1), . . . ,∀x(ε→ φn)

)
≡ ι ∧ f

(
∀x(ι ∧ ε→ φ1), . . . ,∀x(ι ∧ ε→ φn)

)
.(14)

We are going to prove this by a parallel induction on the complexity of f(φ1 . . . φn). By
Lemma 2, we have the statements (13) and (14) for each φi.

Let us first assume that f is of the form f = g ∧ h, and we already know the statements
(13) and (14) for g and h, i.e.,

ι→ g
(
∀x(ε→ φ1), . . .

)
≡ ι→ g

(
∀x(ι ∧ ε→ φ1), . . .

)
(15)

ι ∧ g
(
∀x(ε→ φ1), . . .

)
≡ ι ∧ g

(
∀x(ι ∧ ε→ φ1), . . .

)
(16)

ι→ h
(
∀x(ε→ φ1), . . .

)
≡ ι→ h

(
∀x(ι ∧ ε→ φ1), . . .

)
(17)

ι ∧ h
(
∀x(ε→ φ1), . . .

)
≡ ι ∧ h

(
∀x(ι ∧ ε→ φ1), . . .

)
.(18)

Then we have (13) for f because of the following.

ι→
(
g(∀x(ε→ φ1), . . . ) ∧ h(∀x(ε→ φ1), . . . )

)
≡

(
ι→ g(∀x(ε→ φ1), . . . )

)
∧
(
ι→ h(∀x(ε→ φ1), . . . )

)
by the distributivity of → over ∧.

≡
(
ι→ g(∀x(ι ∧ ε→ φ1), . . . )

)
∧
(
ι→ h(. . . )

)
by hypotheses (15) and (17).

≡ ι→
(
g(∀x(ι ∧ ε→ φ1), . . . ) ∧ h(∀x(ι ∧ ε→ φ1), . . . )

)
by the distributivity of → over ∧.

And we have (14) for f because of the following.

ι ∧
(
g(∀x(ε→ φ1), . . . ) ∧ h(∀x(ε→ φ1), . . . )

)
≡

(
ι ∧ g(∀x(ε→ φ1), . . . )

)
∧
(
ι ∧ h(∀x(ε→ φ1), . . . )

)
by idempotency and associativity.

≡
(
ι ∧ g(∀x(ι ∧ ε→ φ1), . . . )

)
∧
(
ι ∧ h(. . . )

)
by hypotheses (16) and (18).

≡ ι ∧
(
g(∀x(ι ∧ ε→ φ1), . . . ) ∧ h(∀x(ι ∧ ε→ φ1), . . . )

)
by idempotency and associativity.

Let us now assume that f is of the form f = ¬g, and we already know the statements for
g. Then we have (13) for f because of the following.

ι→ ¬g(∀x(ε→ φ1), . . . )

≡ ¬ι ∨ ¬g(∀x(ε→ φ1), . . . ) by the definition of →.

≡ ¬
(
ι ∧ g(∀x(ε→ φ1), . . . )

)
by De Morgan.

≡ ¬
(
ι ∧ g(∀x(ι ∧ ε→ φ1), . . . )

)
by hypothesis (16).

≡ ι→ ¬g(∀x(ι ∧ ε→ φ1), . . . ) by De Morgan and definition of →.
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And we have (14) for f because of the following.

ι ∧ ¬g(∀x(ε→ φ1), . . . )

≡ ¬
(
¬ι ∨ g(∀x(ε→ φ1), . . . )

)
by double negation and De Morgan.

≡ ¬
(
ι→ g(∀x(ε→ φ1), . . . )

)
by the definition of →.

≡ ¬
(
ι→ g(∀x(ι ∧ ε→ φ1), . . . )

)
by hypothesis (15).

≡ ¬
(
¬ι ∨ g(∀x(ι ∧ ε→ φ1), . . . )

)
by the definition of →.

≡ ι ∧ ¬g(∀x(ι ∧ ε→ φ1), . . . ) by De Morgan and double negation.

Since we have proven this for ∧ and ¬, it follows from Remark 1 that we have proven this for
all logical connectives. □

Theorem 2. Let M be a model, let f be any Boolean expression, let ι and ε be formulas
such that variable x does not occur free in ι, and let φ1, . . . , φn be formulas such that each of
φ1, . . . , φn is non-dependent of variable x in M provided ι∧ε and M |= ∃xε, and let Q1, . . . , Qk

as well as Q̄ be arbitrary series of universal and existential quantifiers29, then

q
(Q1u1 ∈ ι) . . . (Qkuk ∈ ι)Q̄z̄f

(
(∀x ∈ ε)(φ1), . . . , (∀x ∈ ε)(φn)

)yM

=
q
(Q1u1 ∈ ι) . . . (Qkuk ∈ ι)(∀x ∈ ε)Q̄z̄f

(
φ1, . . . , φn

)yM

if no variables of z̄ occur free in ι and ε.

Proof. Since x does not occur free in ι and M |= ∃xε, by Remarks 5 and 2, we have

(19) J∃x(ι ∧ ε) → ψKM = J(ι ∧ ∃xε) → ψKM = Jι→ ψKM

for any formula ψ. Similarly,

(20)
q
ι ∧

(
∃x(ι ∧ ε) → ψ

)yM
= Jι ∧ ψKM

because
q
ι ∧

(
∃x(ι ∧ ε) → ψ

)yM
=

q
ι ∧

(
(ι ∧ ∃xε) → ψ

)yM
since x is not free in ι.

= Jι ∧ (ι→ ψ)KM since ∃xε is true in M.

= Jι ∧ ψKM by identity A ∧ (A→ B) ≡ A ∧B.

By Theorem 1 applied on θ = ι∧ ε and the definition (2) of bounded quantifiers, we get the
following:

(21)
q
∃x

(
ι ∧ ε

)
→ Q̄z̄f

(
∀x(ι ∧ ε→ φ1), . . . ,∀x(ι ∧ ε→ φn)

)yM

=
q
∀x

(
ι ∧ ε→ Q̄z̄f(φ1, . . . , φn)

)yM
.

29We only care about the individual quantifiers Q1, . . . , Qk. Since the quantifiers in Q̄ are never refered to
individually, we do not need to number them (but we could have numbered them, say as Qk+1, . . . , Qk+m).
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If Qk = ∀, we get the statement as follows:

q
(∀uk ∈ ι)Q̄z̄f

(
(∀x ∈ ε)(φ1), . . . , (∀x ∈ ε)(φn)

)yM

=
r
∀uk

(
ι→ Q̄z̄f

(
∀x(ι ∧ ε→ φ1), . . . )

))zM

by (2) and Lemma 3.

=
r
∀uk

(
∃x(ι ∧ ε) → Q̄z̄f

(
∀x(ι ∧ ε→ φ1), . . .

))zM

by equation (19).

=
q
∀uk∀x

(
ι ∧ ε→ Q̄z̄f(φ1, . . . , φn)

)yM
by equation (21).

=
q
∀uk∀x

(
ι→ (ε→ Q̄z̄f(φ1, . . . , φn))

)yM
by exportation.

=
q
∀uk

(
ι→ ∀x(ε→ Q̄z̄f(φ1, . . . , φn))

)yM
by (iv) of Remark 5.

=
q
(∀uk ∈ ι)(∀x ∈ ε)Q̄z̄f(φ1, . . . , φn)

yM
by (2).

If Qk = ∃, we get the statement as follows:

q
(∃uk ∈ ι)Q̄z̄f

(
(∀x ∈ ε)(φ1), . . . , (∀x ∈ ε)(φn)

)yM

=
r
∃uk

(
ι ∧ Q̄z̄f

(
∀x(ι ∧ ε→ φ1), . . .

))zM

by (2) and Lemma 3.

=
r
∃uk

(
ι ∧

(
∃x(ι ∧ ε) → Q̄z̄f

(
∀x(ι ∧ ε→ φ1), . . .

)))zM

by equation (20).

=
r
∃uk

(
ι ∧ ∀x

(
ι ∧ ε→ Q̄z̄f(φ1, . . . , φn)

))zM

by equation (21).

=
q
∃uk

(
ι ∧ ∀x

(
ι→ (ε→ Q̄z̄f(φ1, . . . , φn))

))yM
by exportation.

=
q
∃uk

(
ι ∧

(
ι→ ∀x(ε→ Q̄z̄f(φ1, . . . , φn))

))yM
by (iv) of Remark 5.

=
q
∃uk

(
ι ∧

(
¬ι ∨ ∀x(ε→ Q̄z̄f(φ1, . . . , φn))

))yM
by definition of →.

=
q
∃uk

(
(ι ∧ ¬ι) ∨

(
ι ∧ ∀x(ε→ Q̄z̄f(φ1, . . . ))

))yM
by distributivity of ∧ over ∨.

=
q
∃uk

((
ι ∧ ∀x(ε→ Q̄z̄f(φ1, . . . , φn))

))yM
by identity (A ∧ ¬A) ∨B ≡ B.

=
q
(∃uk ∈ ι)(∀x ∈ ε)Q̄z̄f(φ1, . . . , φn)

yM
by idempotency and (2).

□

Instead of the Lemmas of (Lefever 2017, § 11 Appendix), Theorem 2 provides a generic
alternative for simplifying translations of formulas to their desired form in the interpretations
used in (Lefever 2017) and (Lefever and Székely 2018).

In relation to the SPR+ formulation of the principle of relativity from (Madarász et al.
2017, Section 4.1), our approach gives an alternative point of view, namely understanding
the principle of relativity as a simple variable non-dependence of certain formulas describing
experiments. By Proposition 7, in terms of variable non-dependence, SPR+ basically states
that any formula φ describing an experimental scenario for x with some numerical parameters
ȳ (assuming all the free variables of φ are among x and elements of ȳ) is non-dependent of
variable x provided x is an inertial observer.
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We believe the above results can be useful in other situations where automatically generated
formulas need to be cleaned up, as well as for the developments of algorithms for simplifying
formulas.
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I. and Tőke, C. (2002), On the logical structure of relativity theories, Research report, Alfréd
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