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Abstract

Bell’s conclusion from his famous inequality was that any hidden variable theory that satisfies Local
Causality is incompatible with the predictions of Quantum Mechanics (QM) for Bell’s Experiment.
However, Local Causality does not appear in the derivation of Bell’s inequality. Instead, two other
assumptions are used, namely Factorizability and Settings Independence. Therefore, in order to establish
Bell’s conclusion, we need to relate these two assumptions to Local Causality. The prospects for doing
so turn out to depend on the assumed location of the hidden states that appear in Bell’s inequality.
In this paper, I consider the following two views on such states: (1) that they are states of the two-
particle system at the moment of preparation, and (2) that they are states of thick slices of the past light
cones of measurements. I argue that straightforward attempts to establish Bell’s conclusion fail in both
approaches. Then, I consider three refined attempts, which I also criticise, and I propose a new way of
establishing Bell’s conclusion that combines intuitions underlying several previous approaches.

1 Introduction

Einstein et al. (1935) famously argued that Quantum Mechanics (QM) cannot be regarded as a complete
theory—there should exist some additional (“hidden” in the sense of not being captured by the quantum
state) variables that explain in a local way the correlations that occur in quantum experiments. A major
contribution to the investigation of theories postulating such variables (called “hidden variable theories”, in
short “HVTs”) was made by Bell (1964), who proposed a general framework in which one can analyse all
such theories at once. Within this framework, he derived an inequality (called “Bell’s inequality” or “Bell’s
theorem”) that constrains the expectation values for the results of a special spin measurement experiment
(which is now called “Bell’s Experiment”). Bell’s inequality is violated by QM predictions for Bell’s exper-
iment, but it is satisfied by a class of HVTs, which Bell identifies with the class of local HVTs. Therefore,
Bell’s own interpretation of his result was that it allows us to exclude all local HVTs by virtue of their being
inconsistent with the predictions of QM for Bell’s Experiment. Since the results of actual realisations of
Bell’s Experiment turned out to confirm QM predictions and violate Bell’s inequality, this interpretation—if
correct—would lead to the conclusion that Nature itself is non-local, contrary to what Einstein expected (cf.
Norsen 2009 and 2011, Maudlin 2014).

Locality is understood here in a way closely related to relativity: roughly, as the claim that no event can
be causally influenced by anything from the outside of its past light cone. However, the exact formulation
of this principle is a subtle issue. In his last paper, Bell’s preferred formulation of locality was the principle
he called “Local Causality” (see section 7.1 for details), so his conclusion from his theorem can be stated as
follows:

Bell’s Conclusion: All HVTs that satisfy Local Causality are inconsistent with the predictions
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of QM for Bell’s Experiment.1

However, Local Causality is not used in the proof of Bell’s inequality. Instead, two other assumptions are
used: Factorizability and Settings Independence (see section 5 for details). Therefore, in order to retain Bell’s
Conclusion, we need to relate Local Causality to these two assumptions. In this paper, I will investigate the
prospects of doing this, but we will see that this task is far from trivial.

This paper is organised as follows. After introducing some basic concepts and notation (section 2), I will
review two examples of HVTs (section 3) and provide a typology of such theories (section 4), in which of
special interest will be locally deterministic theories, a distinguished subclass of locally causal theories. Next,
I will recall the standard presentation of the assumptions of Bell’s theorem (section 5). The central topic of
this paper will be the question of what exactly the hidden states invoked in Bell’s theorem encompass. The
two main options considered in the literature are the hidden states of the two-particle system at the moment
of preparation (section 6) and the hidden states of thick slices of the past light cones of measurements
(section 7). In both cases, there are certain obstacles to establishing Bell’s Conclusion. However, there are
some upgraded versions of both approaches that aim to overcome these obstacles, which will be the subject
of section 8. My own proposal, presented in section 9, will build upon the insights of both approaches. The
results of the current paper will be summarised in section 10.

One terminological remark is in place here. The terms “hidden variables” and “hidden states” can
be misleading in at least three ways. First, the word “hidden” suggests that the postulation of these
variables/states does not lead to any observable predictions. Although this might be the case for some
HVTs, this is by no means a defining feature of hidden variables/states. Second, one might suppose that
HVTs do not exhaust all theories that are alternatives to the standard QM. The argument for this claim
would be that some such theories may not postulate hidden variables/states. However, the word “hidden”
here merely indicates that the postulated variables/states involve something that is not captured (or at
least not fully captured) by the quantum state and either supplements or replaces it. Clearly, every theory
that attempts to account for the same phenomena as the standard QM but differs from it at the level of
ontology must postulate some hidden variables/states in this sense. Third, the formulation of Bell’s theorem
in terms of HVTs may misleadingly suggest that we can avoid the conclusion of non-locality by rejecting
the assumption of the existence of hidden variables/states. However, this reasoning ignores the fact that the
standard QM itself is non-local in some sense (although this issue is subtle; see section 4.1), so if there is
any way to account for quantum phenomena in a local way, it requires some hidden variables/states in our
sense. Despite these confusing connotations of the word “hidden”, I use the terms “hidden variables” and
“hidden states” because this terminology has become widespread, and it makes the connection of this paper
with the literature on Bell’s theorem more conspicuous.

2 Some basic concepts and notation

Since the concern with locality is motivated by relativity, our stage will be a spacetime with the Minkowski
metric, which is used to define the light cone structure in the standard way. Additionally, we will refer to
some fixed slicing of this spacetime (given by simultaneity hypersurfaces in some chosen inertial reference
frame) and associated time parameter t. If an HVT is relativistic, in the end all its physical results must be
independent of the choice of slicing.

Let R be a bounded spatiotemporal region, and let “t < R” mean that time t is below R (i.e., the spatial
slice at t lies below any spatial slice that intersects R). We define ΣR,t as the intersection of the spatial
slice at t with the past (if t < R) or future (if R < t) light cone of R. If t < R, then for any t′ < t we also
define C(ΣR,t,ΣR,t′) to be the part of the past light cone of R that lies between the surfaces ΣR,t and ΣR,t′ ,
including those surfaces themselves (such regions will informally be called “thick slices”).

We will be interested in accounting for Bell’s Experiment, in which a pair of particles is prepared in an

1In this paper, I will use the expression “Bell’s Conclusion” as a label for this statement. This is not meant to suggest that
this is the only conclusion that Bell derived from his theorem.
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Figure 1: My notation for regions (left) and states (right); CΣR,t,ΣR,t′ covers only the shaded region.
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Then, each of these particles moves from the source to one of two remote detectors, where spin in a chosen
direction is measured on each of these particles. We will assume that one of two choices of direction can be
made at each station (but the allowed choices do not need to be the same for both stations). The variable
a will range over such possible choices in the left station, whereas b will range over the possible choices
in the right station. Analogously, the variable A will range over possible outcomes of the measurement
of spin in direction a, and B will range over possible outcomes of the measurement of spin in direction b
(the values of the outcomes are, by convention, ±1). We will denote the different choices of measurement
settings with primes: a′ 6= a and b′ 6= b; relatedly, A′/B′ will range over the possible outcomes of spin
measurement in directions a′/b′. By Ra and Rb, we will denote the spatiotemporal regions in which the
respective choices of settings are made, whereas by RA and RB we will denote the spatiotemporal regions in
which the measurements are performed and the outcomes are obtained (in a single run of the experiment).
An additional assumption is that Ra and RA are spacelike related to Rb and RB (and, of course, Ra/Rb is
in the causal past of RA/RB).

We will be interested in the following question posed by Bell: what constraints on possible HVTs can we
derive from QM predictions for Bell’s Experiment? For this purpose, we will introduce hidden states λ (the
space of such states will be denoted by Λ), which might be different for different HVTs. Such λ encompasses
all hidden variables considered in a given theory. For λ, Bell also used the term “the beables of the theory”,
which he defines as “those entities in [the theory] which are, at least tentatively, to be taken seriously, as
corresponding to something real” (Bell, 1990, p. 234). In other words, beables are “what some candidate
theory posits as being physically real” (Norsen, 2009, p. 279), without the assumption that this theory is
correct.

We will later need to ascribe such states to various regions of spacetime and space. For any spatiotemporal
region R, by λR we denote a possible complete specification of hidden variables (of a given HVT) in R.
Different such possible specifications will be denoted with primes (i.e., our convention is that λ′R 6= λR).
Analogously, we can talk about complete specifications of hidden variables on spatial slices (denoted by
λΣR,t

) or on thick slices (denoted by λC(ΣR,t,ΣR,t′ )
). Finally, λt means the hidden state of the entire space

at time t. My notation for regions and states is illustrated in Fig. 1.

3 Two examples of HVTs: True Spin Theory and Bohmian me-
chanics

The simplest and most natural candidate for hidden variables in the case of spin measurements is just the
“true” values of spin in every direction that are possessed by each particle. As far as I know, the theory with
such hidden variables has not received a name in the literature; I will call it “True Spin Theory”. According
to this theory, when QM describes the spin in direction a of a pair of particles by means of an entangled state
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(such as (1)), in which case no definite value of spin in direction a is ascribed to any of these particles, then
the description provided by QM is incomplete. As such, it should be completed by ascribing to each of these
particles a hidden state λ that consists of this particle’s spin in direction a (and in any other direction). In
particular, if we consider measurements of spin in directions a, a′, b and b′, then the part of λ that is relevant
to determining the outcomes of these measurements will consist of four numbers corresponding to the values
of spin in these four directions.

True Spin Theory can be shown to be inconsistent with the predictions of QM by using a reasoning that
is generalised in the proof of Bell’s theorem (see, e.g., Norsen 2017, pp. 215–227). It should be stressed
that True Spin Theory, as presented here, is not really a fully developed theory. For example, we have not
said anything about how definite values of spin possessed by particles might change in interactions (if at
all)—that is, we have not introduced any dynamical laws. For this reason, True Spin Theory should be
regarded not as a single theory but as a family of possible theories that account for Bell’s Experiment in
the way described above. The mentioned reasoning shows that this entire class of HVTs can be excluded as
inconsistent with the predictions of QM.

However, True Spin Theory is not the only possible HVT. Another example of an HVT is Bohmian
mechanics (see, e.g., Goldstein 2024), which, in contrast to True Spin Theory, is a fully developed theory
with specified ontology and dynamical laws. In Bohmian mechanics, hidden variables are the true positions
of particles. In the standard QM, the wave function only provides probabilities for finding a particle in a
given region of space; so, if QM is a complete theory, then we need to abandon the idea that all particles at all
times have definite positions, as was presupposed by classical physics. However, this idea of classical physics
is restored by Bohmian mechanics, according to which the wave function guides how particles move, but any
particle at any time has a definite position and not only a probability of being found in that position. The
dynamics of this theory consists of the Schrödinger equation of the standard QM and an additional guiding
equation which prescribes how the wave function influences the positions of particles.

These are only two examples of HVTs, but we can use them to illustrate the crucial point of Bell’s
enterprise. Bohmian mechanics is consistent with the predictions of QM, but it is known to be non-local:
if two particles are entangled, then what happens with one of them can have an immediate effect on what
happens with the second one. (Of course, this is not the precise formulation of what locality means, on which
more later.) On the other hand, True Spin Theory is supposed2 to be local: the true spins are introduced
in order to account for the outcome of the measurement on one of the entangled particles without referring
to the other one. However, True Spin Theory is inconsistent with the predictions of QM. The interesting
question is whether there exists a theory that has both virtues—that is, it is both local and consistent with
the predictions of QM. Bell’s approach promises to give an answer (a negative one) to precisely this question.
Before going into the details, let us say more about possible types of HVTs.

4 A typology of HVTs

In this section, I will distinguish some important types of HVTs: locally determinate vs. locally indetermi-
nate, deterministic vs. indeterministic, and locally deterministic.

4.1 Locally determinate and locally indeterminate HVTs

Our notation for hidden states presupposes that they are locally determinate: if we can write λR for any
spatiotemporal region R, this means that for any such region a hidden state in that region is well-defined.
However, not all theories are like this. In particular, QM states are not locally determinate: if a pair of
particles is in a state (1), then we cannot ascribe any spin state to one of these particles considered in
isolation. Therefore, if an HVT includes ψ in an ineliminable way, then its ontology as a whole is locally
indeterminate, even if the λ-part of that ontology is locally determinate.

This means that we can distinguish two types of HVTs. (1) Locally determinate HVTs: for any spa-
tiotemporal region R and any possible state of that region, the restriction of that state to any subregion of R

2I say this in a cautious way because this is not a fully-developed theory.
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is well-defined. In such theories, ψ must be eliminable (or at least excluded from the variables of the theory)
and all the physical content of the theory must be captured by (locally well-defined) λ’s, which might then
be called “complete states”. (2) Locally indeterminate HVTs: ψ is not eliminable and the physical content
of the theory has two parts: λ (locally determinate) and ψ (locally indeterminate). For example, Bohmian
mechanics is locally determinate if considered as a theory in which the only real physical quantity is the
positions of particles (cf. Esfeld et al. 2014). However, Bohmian Mechanics might also be conceived of as a
theory in which particles are described by both their true position and the QM state, in which case it would
be an example of a locally indeterminate HVT.

Where should we locate the standard QM in this picture? I think that two variants of the standard
QM need to be distinguished that differ in the ontological status they assign to the quantum state. If the
quantum state is regarded as a beable of the standard QM, then this theory is locally indeterminate. This
route is taken, among others, by Norsen (2017, p. 127), who emphasises that being locally indeterminate is
a stronger kind of non-locality than causal non-locality:

[...] it would probably be most accurate to summarize the situation by describing quantum
mechanics here as “not even non-local”. Remember what “locality” means: the causal influences
that objects, moving and interacting in three-dimensional space, exert on one another, always
propagate at the speed of light or slower. A theory which fails to provide a clear ontology of
objects moving and interacting in three-dimensional space [...] doesn’t even rise to the level
of making the question, of whether causal influences always propagate at the speed of light or
slower, or not, meaningful.

An alternative route, which excludes the quantum state from the beables of the standard QM, is taken
by Bell himself. For him, the beables in ordinary QM are only “experimental procedures and experimental
results” and the wave function is “a convenient but inessential mathematical device for formulating correla-
tions” between such beables (Bell, 1976, p. 53). Since the mentioned beables are local, the standard QM,
understood in this way, is locally determinate but at the price of excluding the quantum state from the
ontology while retaining it in the formalism.

Thus, it seems that we have two very different readings of the standard QM: either

(1) the quantum state is a beable, in which case the standard QM is not locally determinate and, as
suggested by Norsen, it is “not even [causally] non-local” or

(2) the quantum state is not a beable, in which case the only beables are the experimental settings and
preparations, and the standard QM is not locally causal (in the sense of late Bell, see Definition 5), as
argued by Bell (1976, p. 55 and 1990, pp. 240–241).

Since “the standard QM” is a rather vague term, both of these readings are acceptable, and we should
consider two variants of this theory separately.

In what follows, I will restrict my considerations to locally determinate HVTs only. Perhaps my reasonings
could also be applied, with some modifications, to locally determinate parts of locally indeterminate theories.
However, the philosophical relevance of such an application would be unclear, given that such theories are
already non-local in the sense that is stronger than causal non-locality. An immediate worry might be that
the scope of my considerations will be, due to the mentioned restriction, too narrow. However, as we have
seen, even the standard QM can be understood as a locally determinate theory if we reinterpret the role
of the wave function in a way consistent with its not being a beable. (Importantly, this does not exclude
its playing a role in determining the probabilities within that theory.) Similarly, any variant of QM that
does not remove the wave function from the formalism can be understood as either locally indeterminate
(if the wave function is included in the beables) or locally determinate (if the wave function is excluded
from the beables), provided that all other beables are local. For example, some Bohmians have proposed
understanding the wave function as “a component of physical law rather than of the reality described by the
law” (Dürr et al., 1997, p. 33), which makes this variant of Bohmian mechanics locally determinate.
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4.2 Deterministic, indeterministic and locally deterministic HVTs

Another important division of HVTs is between deterministic and indeterministic ones. For the purpose
of defining them, we will use the concept of a solution of a theory T , which is any specification of hidden
variables of T in the entire spacetime that is compatible with the laws of T , where “compatible” means
simply “logically consistent”. Then, we can define:

Definition 1. If T is a locally determinate HVT, then T is deterministic iff for any t0 and any λt0 , there is
exactly one solution that is compatible with λt0 . Otherwise T is indeterministic.

In our terminology, “exactly one solution that is compatible with λt0” means “exactly one specification of
hidden variables of T in the entire spacetime that is logically consistent with the laws of T and λt0”.

The above definition is (modulo differences in formulation and pace certain subtleties, which will not be
discussed here3) standard in the contemporary literature about determinism and indeterminism (see, e.g.,
Earman 1986 and Butterfield 1998). However, it should be noted that in the literature about Bell’s theorem,
deterministic HVTs are often defined in a different way, namely as theories that predict the measurement
outcomes with probability 1, given the state of the system and the measurement settings.4 These two senses
of determinism should not be conflated because, as we will see later (in the third paragraph of section 6),
they are not equivalent.

An especially interesting subclass of deterministic theories is locally deterministic theories (cf. Bell 1976,
p. 53). From the definition of determinism, it follows that for any region R, the physical contents of this
region are uniquely determined by the full specification of the state of the world at some moment t < R.
However, this does not exclude the possibility that what happens in R might depend on what happens at
t arbitrarily far away spatially from R, which is in tension with the relativistic idea that what happens
in R should not depend on what happens outside its past light cone. This leads to the concept of locally
deterministic theories, in which to determine the physical contents of R, the information about the entire
spatial slice at some t < R is not needed and the part of that information that is confined to the intersection
of the past light cone of R with the spatial slice at t suffices. More formally,

Definition 2. If T is a locally determinate HVT, then T is locally deterministic iff for any bounded spa-
tiotemporal region R, for any t0 such that t0 < R or t0 > R and for any λΣR,t0

, there exists λR such that all
solutions compatible with λΣR,t0

are also compatible with λR.

Since we have universal quantification over solutions, it follows from this definition that for any other
λ′R 6= λR, all solutions compatible with λΣR,t0

are not compatible with λ′R (a solution on the entire spacetime
cannot be compatible with different states of some region of this spacetime). One can show that local
determinism defined in this way entails determinism, so locally deterministic theories indeed form a subclass
of deterministic theories (for the proof see Appendix A.1):

Theorem 1. Any locally determinate HVT that is locally deterministic is also deterministic.

This theorem is not as trivial as its verbal formulation might suggest because “local determinism” has
not been defined as a conjunction of “determinism” and “locality” but by a condition that does not explicitly
mention determinism. Later, we will see that any locally deterministic theory is also local in the sense of
satisfying Local CausalityC(Σ,Σ) (see Theorem 2 in section 7.2).

3One such subtlety is the physical equivalence of different solutions that are related by the symmetries of the theory. If a
theory involves local symmetries (i.e., symmetries that are not the same at every spacetime point), such as diffeomorphisms in
General Relativity and gauge symmetries in Electrodynamics, then there will be spurious witnesses of indeterminism—that is,
solutions of the theory that are symmetry-related and identical on some initial segment but not identical overall. In such cases,
the definition of determinism should be modified by taking into account the physical equivalence of such solutions (see, e.g.,
Butterfield 1989, pp. 7–9).

4This terminology was used by Bell in later commentaries on his 1964 paper (e.g., 1971 and 1981). However, in the 1964
paper itself, he talks only about measurement outcomes being predetermined or determined by settings together with λ; the
words “determinism” or “deterministic” do not appear there. Some other authors use terminology that indicates the difference
between this concept of determinism and the usual one, such as “quasi-determinism” Malament (ated) or “outcome determinism”
(Myrvold et al., 2024).
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There exist both deterministic and indeterministic alternatives to the standard QM. For example, GRW
(see, e.g., Ghirardi and Bassi 2024) is an indeterministic theory. True Spin Theories might be or might not
be deterministic, depending on the details of their dynamics. What we know is only that they predict unique
results of spin measurement. Bohmian mechanics is deterministic but not locally deterministic. This fact
made this theory unattractive to Einstein, even though it was a proposal for how to complement QM, which
is what he sought. This fact also led Bell to ask whether any possible completion of QM must be non-local.
However, in order to pose this question properly, he needed to formulate a general definition of locality that
can be applied to both deterministic and indeterministic theories, which he did using probability calculus
(cf. section 7).

In order to apply any condition expressed in terms of probabilities to a deterministic theory, we would need
a bridge principle that relates the two. Intuitively, deterministic theories are extreme cases of probabilistic
theories, in the sense that in the former all probabilities are 0 or 1. However, this relation is not so
straightforward because a deterministic theory might not mention probabilities at all. For example, in
classical mechanics of pointlike particles there are no probabilities; instead, there are dynamical laws in the
form of differential equations, which for many initial conditions have a unique solution. Moreover, it does not
make any sense to ask what the probability of such-and-such behaviour of a particle is simpliciter. A particle
is determined to either behave in this way or not, depending on the initial conditions; however, without
the full initial conditions, there is not enough information to determine how it will behave. The moral is as
follows: that a theory is deterministic does not mean that any probability we can think of has value 0 or 1
(cf. Norsen 2017, p. 17). Only conditional probabilities that are conditioned on sufficient information about
initial conditions can be said to have values 0 or 1 (although this will usually be a proper extension of the
language of a deterministic theory). This leads to the following Bridge Principle:5

Definition 3. Bridge Principle Between Determinism and 0-1 Probability: For any theory T and for
any regions Ri and Rf , if all solutions that are compatible with λRi are also compatible with λRf

, then
P (λRf

|λRi
) = 1 according to T ; analogously, if all solutions that are compatible with λRi

are not compatible
with λRf

, then P (λRf
|λRi

) = 0 according to T .

Conditional probabilities of other events might be introduced in a different way (e.g., by specifying the
probability density over the initial states, as in Bohmian mechanics), but they might be not defined at all.

5 Assumptions of Bell’s theorem

There are several versions of Bell’s theorem, each of which involves a different inequality or set of inequalities.
The most famous of them is the Bell-CHSH inequality, named after Bell, Clauser, Horne, Shimony and
Holt (Clauser et al., 1969). The proofs of these various inequalities use two assumptions, which are called
Factorizability and Settings Independence:6

Factorizability: P (A,B|a, b, λ) = P (A|a, λ) · P (B|b, λ).

Settings Independence: P (λ|a, b) = P (λ).

5What would a probability space look like in such cases? Presumably, we should regard entire solutions of T as elementary
events; an event corresponding to λR would then be the set of all solutions that ascribe state λR to region R. In what follows,
we will write states (complete or coarse-grained) as arguments of a probability function, with the risk that such expressions
will not always be well-defined. Another technical problem is that λ is continuous in some HVTs (e.g., in Bohmian mechanics,
since particle positions are given by real numbers). This means that in many places we should use probability density instead
of probability. For example, fine-grained formulation of Local CausalityC(Σ,Σ) (i.e., Eq. (2)) should be in terms of probability
densities, whereas coarse-grained formulation (i.e., Eq. (3)) should be in terms of probabilities obtained by integrating the
respective probability densities. For reasons of space, I will not fully do justice to this problem here.

6Since we are considering only situations in which the experiment takes place, P (λ) should be non-zero only for those λ that
are consistent with Bell’s Experiment being performed, which entails that every λ with non-zero probability (density) should
be consistent with at least one choice of measurement settings. For this reason, we can think of P (λ) as being a conditional
probability P (λ|Bell’s Experiment).

7



Starting with the latter, Settings Independence expresses the independence of the hidden state λ from the
measurement settings a and b.7 It is also called “statistical independence”, “measurement independence”,
“no conspiracy” and even “free will” or “free choice”. The latter two names are motivated as follows:
measurement settings are chosen by humans, so if these choices are free, then they should not depend on the
hidden state that is measured. The hidden state being such-and-such cannot prevent us from choosing these
particular settings rather than others; moreover, it should not even influence the probability of our choice of
these particular settings.

Factorizability is usually regarded as derived from some more basic principles. Jarrett (1984) suggested
that Factorizability should be viewed as derived from two principles, which Shimony (1986) called “Param-
eter Independence” and “Outcome Independence” (Jarrett called them “locality” and completeness”, but
Shimony’s terminology has become more popular). As far as I know, this view on Factorizability as deriv-
ing from Parameter Independence and Outcome Independence was never endorsed by Bell. Instead, in his
last paper (Bell, 1990), he regards Factorizability as derived from another principle, which he calls Local
Causality. Its initial formulation is as follows (Bell, 1990, p. 239):8

The direct causes (and effects) of events are near by, and even the indirect causes (and effects)
are no further away than permitted by the velocity of light.

Subsequently in that paper, Bell provides a more precise formulation of this principle, which will be analysed
in detail in section 7.1. The Bell-CHSH inequality, which follows from Factorizability and Settings Indepen-
dence, turns out to be violated by the predictions of QM. Moreover, experimental tests have confirmed its
violation in a way predicted by QM (starting with Aspect et al. 1982; for an overview see Myrvold et al.
2024, sections 4 and 5). Therefore, we need to conclude that at least one of our assumptions (which are, to
recall, Factorizability and Settings Independence) is false. Most commentators, including Bell and Clauser
et al. (1969), regard Settings Independence as well justified on independent grounds, so their conclusion is
that Factorizability is false. However, according to Bell (1990), the proper conclusion should be that Local
Causality is false, which indeed follows if Factorizability can be derived from Local Causality. The aim of
the rest of this paper will be to investigate how one can retain Bell’s Conclusion.

In the above considerations, we did not specify to what exactly the hidden state λ is ascribed (i.e., what
the bearer of this state is). It turns out that, in the literature, there are two main ways of thinking about λ:
it is regarded either as a state of the two-particle system at the moment of preparation, or as a state of the
thick slices of the past light cones of measurements. The next two sections, 6 and 7, will analyse these two
options in more detail.

6 Hidden state as a state of the two-particle system at the moment
of preparation

The first option for the choice of λ is to take it to be the state of the measured system only. For example,
Myrvold et al. (2024) write:

This conceptual framework first of all postulates an ensemble of pairs of systems, the individual
systems in each pair being labeled as 1 and 2. Each pair of systems is characterized by a “complete
state” λ which contains the entirety of the properties of the pair at the moment of generation.

We will denote this state by λtP ,1,2, to be read as “the hidden state of the system consisting of particles
1 and 2 at the time of preparation of this system for Bell’s Experiment, tP ”. This expression should not

7 Technically, Settings Independence is a statement about the probability (density) of λ conditioned on settings, not the
other way around. So, literally it says that the probability of λ does not depend on settings, not that the probability of settings
does not depend on λ. However, this does not mean that the violation of this condition would be a causal influence of settings
on the hidden state (such an influence, if it occurred, would be retrocausal because the hidden state is provided at a time before
the choice of settings). This is just a probabilistic independence condition, which is, as such, symmetric, so the direction of
conditionalization in the formula does not need to be aligned with the direction of causation in the case of the violation of this
condition (cf. footnote 12).

8All page references to Bell’s papers are from the 2004 reprint.
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be understood as presupposing the existence of localised, classical-like particles; “the system consisting of
particles 1 and 2” might be a physical system of any kind that corresponds, in a given HVT, to what we
ordinarily recognise as two particles on which the measurement is performed. What matters for our purposes
is that λtP ,1,2 is the state of the measured system at the moment of preparation, which is located in the
intersection of the light cones of measurements (see Fig. 4). I prefer the term “preparation” over “generation”
because the latter suggests that the particles did not exist before tP , which might or might not be the case.
This way of thinking about the hidden state agrees with “early” Bell (1964, p. 15 and 1971, p. 36) and with
many of his followers and commentators, including Clauser et al. (1969, p. 881), Shimony (1993, p. 130),
van Fraassen (1982, p. 32) and many others. It seems that identifying λ in Bell’s theorem with λtP ,1,2 is
predominant in the literature, but this is difficult to assess due to the large size of that literature. The idea
behind this choice of λ is that the correlations between the outcomes of measurements on remote particles
can be explained by the particles’ interaction in the past, the results of which are encoded in the subsequent
states of each of them.

The problem with this choice of λ is that the explanation of correlations between measurement outcomes
by the properties of the measured system at the time of preparation does not exhaust all possibilities for local
explanation of such correlations. Only in some special cases can we be sure that there are no other possible
local explanations. In True Spin Theory, according to which hidden variables are the true values of spin in
every direction possessed by each particle, it is arguably sufficient to consider λtP ,1,2. This is the case at
least if we assume that (i) the measurement of spin reveals its true value and (ii) this value does not change
between the time of the preparation of the system and the time of measurement. Assumption (i) seems
to be justified just by the definition of spin measurement (at least under True Spin Theory’s assumption
that every particle has a definite spin all the time), whereas assumption (ii) follows from assuming that the
system is appropriately isolated between its preparation and measurement. The latter does not mean that
the state of the system does not change at all during this interval; in particular, particles are supposed to
move (from the source to the detector), so their positions do change during that interval (or rather, what
changes is the wave function that prescribes the probabilities of particles being found in various positions
if measured, unless we consider a variant of True Spin Theory that postulates that particles have definite
positions in addition to definite values of spin in all directions). What is required to not change between
the time of preparation and the time of measurement is only the particles’ true values of spin. If we accept
these assumptions, then probabilities of the form P (A|a, λtP ,1,2) and P (B|b, λtP ,1,2) all have values 0 or 1.
This is because the outcome of spin measurement should only depend on the direction in which we measure
spin and the particle’s true value of spin in that direction; however, this true value is the same at the time
of measurement as it was at the time of preparation.

However, assumptions (i) and (ii) cease to be valid if hidden variables are different from the true values of
spin. An example here is Bohmian Mechanics. In this theory, it is not the case that the hidden state of the
two-particle system at the time of preparation together with the choice of the direction of spin measurement
uniquely determine the outcome of that measurement; moreover, the hidden state of the two-particle system
will change between the time of preparation and the time of measurement. That hidden state, to recall, is
the true positions of the two particles; since these particles need to move from the source to the detector,
λtP ,1,2 will be different from λtM ,1,2, where tM is the time of measurement.9 Moreover, even though λtM ,1,2

is uniquely determined by λtP (because Bohmian mechanics is deterministic), it is not uniquely determined
by λtP ,1,2 or even by λΣRA,tP

∪ΣRB,tP
(because Bohmian mechanics is not locally deterministic).10 Therefore,

by our Bridge Principle Between Determinism and 0-1 Probability (Definition 3), in Bohmian mechanics it
is not the case that probabilities P (A|a, λtP ,1,2) and P (B|b, λtP ,1,2) have values 0 or 1. This means that

9 There are several subtleties related to tM that will not matter for our discussion in the main text. First, it will typically
not be the case that both measurements happen at exactly the same time (in a given reference frame). To avoid ambiguity, we
can define tM to be the time of the first of the two measurements (or of the last of them). Second, in different reference frames
the temporal relation between the two measurements will be different. However, now we are working with a fixed reference
frame.

10I consider here the version of Bohmian mechanics according to which the wave function is not a beable but has a lawlike
status because the version including the wave function as a beable is not locally determinate (see section 4.1). The failure
of local indeterminism is due to the fact that in Bohmian mechanics the motion of a given particle can be influenced by the
positions of arbitrarily remote particles.
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Bohmian mechanics is not outcome deterministic despite being deterministic.
In general, P (A|a, λtP ,1,2) and P (B|b, λtP ,1,2) having values 0 or 1 in accordance with T is not guaranteed

by T being deterministic. If T is locally deterministic, then λtM ,1,2 is uniquely determined by λΣRA,tP
∪ΣRB,tP

but still not by λtP ,1,2.11

Let us use “FactorizabilitytP ,1,2” and “Settings IndependencetP ,1,2” to denote the conditions of Factoriz-
ability and Settings Independence introduced in section 5, in which “λ” is substituted with “λtP ,1,2”. Settings
IndependencetP ,1,2 seems very plausible: its violation would mean that the state of the measured system is
correlated with the choices of measurement settings, so for some states of the system we cannot make or at
least are less likely to make some types of measurements on it. If λtP ,1,2 lies in the causal past of Ra and
Rb, it can influence the events that happen in these regions; however, the point is that there are so many
other events in the causal past of the choices of settings that the influence of λtP ,1,2 becomes insignificant
(unless there exists some specific causal linkage between the preparation of the system and the choice of
settings, which seems unlikely; cf. Shimony et al. 1976). It is also possible (at least in principle) to delay
the preparation of the system so that it is spacelike related to the choices of measurement settings (see, e.g.,
Müller and Placek 2023, Fig. 6), in which case nothing that happens in regions Ra and Rb can be influenced
by λtP ,1,2 in a locally causal way. Some authors regard the violation of this variant of Settings Independence
(i.e., Settings IndependencetP ,1,2) as an option worth considering,12 but for now let us assume that it holds.
Then, from Bell’s theorem it follows that there is no HVT that reproduces the predictions of QM and sat-
isfies FactorizabilitytP ,1,2. However, this does not answer the question of whether there exists an HVT that
reproduces the predictions of QM and satisfies Factorizability with a different choice of λ (i.e., encompassing
more than the measured system but not confined to the past light cones of RA and RB , so that it remains
relevant for local explanation of quantum correlations). Moreover, it is not clear how FactorizabilitytP ,1,2
could be derived from Local Causality and why Factorizability with this particular choice of λ (and not some
other) should be derivable from Local Causality. However, such a derivation (for some λ) is indispensable
for establishing Bell’s Conclusion.

At this point, one could respond that the proof of Bell’s theorem works in the same way, no matter what
λ exactly is, so the verdict for any variant of Factorizability will be the same as for FactorizabilitytP ,1,2.
However, we will see that for some choices of λ, Settings Independence becomes less plausible. In particular,
it will be shown that for λ that encompasses full thick slices of the past light cones of measurements, any
locally deterministic theory violates Settings Independence.

7 Hidden state as a state of thick slices of the past light cones of
measurements

The second option for the choice of λ is to take it to be the state of thick slices of the past light cones of
measurements. This option was favoured by late Bell, and it is analysed in this section.

11In the superdeterministic models LPWf, C-LPWf, LPWp and C-LPWp developed by Ciepielewski et al. (2021), which are
locally deterministic, λtM ,1,2 is uniquely determined by λtP ,1,2. However, this is not a typical feature of locally deterministic
theories. The mentioned models possess this feature because, in these models, any point (~x, t) is associated with a copy of
the entire state of the universe at t, which evolves in accordance with the dynamics of Bohmian mechanics. Since the latter
is deterministic, the laws of these models together with the state at any single spacetime point determine the evolution of the
entire universe (under an additional assumption that the copies of the entire state of the universe are identical at every point).

12 There are two variants of this view, depending on the direction of causal influence. According to superdeterminism,
causation is directed towards the future (i.e., either λtP ,1,2 influences the settings, or something in their common past is
responsible for the correlation between them). According to retrocausal approaches, causal influence travels into the past from
settings to λtP ,1,2. Superdeterminism is considered, for example, by Hossenfelder and Palmer (2020) and Ciepielewski et al.
(2021); retrocausality is considered, for example, by Price (1994) and Adlam (2022) and reviewed by Wharton and Argaman
(2020) and Friederich and Evans (2023).
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7.1 Late Bell’s concept of Local Causality

Bell (1976, p. 53) introduces the concept of Local Causality as the generalisation of the concept of local
determinism that is also applicable to indeterministic theories. In his last paper, Bell (1990, p. 239) formulates
this principle as follows:

The direct causes (and effects) of events are near by, and even the indirect causes (and effects)
are no further away than permitted by the velocity of light.

He then provides a more precise formulation of it (1990, pp. 239–240):

A theory will be said to be locally causal if the probabilities attached to values of local beables
in a space-time region 1 are unaltered by specification of values of local beables in a space-like
separated region 2, when what happens in the backward light cone of 1 is already sufficiently
specified, for example by a full specification of local beables in a space-time region 3 (Fig. 4).

Figure 2: From Bell (1990, pp. 240 and 242).

To this formulation, Bell adds the following commentary (Bell, 1990, p. 240):

It is important that region 3 completely shields off from 1 the overlap of the backward light
cones of 1 and 2. And it is important that events in 3 be specified completely. Otherwise the
traces in region 2 of causes of events in 1 could well supplement whatever else was being used for
calculating probabilities about 1. The hypothesis is that any such information about 2 becomes
redundant when 3 is specified completely.

This is in striking disagreement with the choice of λ as λtP ,1,2, which lies in the overlap of the past light
cones of RA and RB , that is, Bell’s “overlap of the backward light cones of 1 and 2” (cf. Fig. 4).13

Here is a proposal for how to formulate this condition mathematically (cf. a similar formulation in Norsen
2009, p. 277):

Definition 4. Local CausalityC(Σ,Σ), fine-grained version: For any bounded region R and any bounded
region R′ that is space-like related to it, for any t, t′ < R that lie above the intersection of the past light
cones of R and R′ and such that t′ < t, and for any λR, λR′ and λC(ΣR,t,ΣR,t′ )

,14

P (λR|λC(ΣR,t,ΣR,t′ )
, λR′) = P (λR|λC(ΣR,t,ΣR,t′ )

). (2)

13That Bell’s formulation of his theorem and its assumptions changed over time has been recognised in the literature (see,
e.g., Wiseman 2014 and Brown and Timpson 2016). However, the difference that is most often pointed out is that early Bell
was concerned only with local HVTs that are “deterministic” in the sense of predicting the outcomes of spin measurements
uniquely (and, relatedly, he considered only the quantum states that lead to the prediction of perfect (anti-)correlations, since
these are the states relevant for the EPR argument), whereas later he wanted to also encompass local HVTs that give only
probabilistic predictions. Here, I have assumed from the start that Bell’s theorem should be applicable to theories of both
types; the differences between early and late Bell that I discuss are only those regarding the localisation of λ.

14The quantification over λR is the quantification over all hidden states of a given HVT that can be ascribed to region R
(other quantifiers are understood analogously). To make this fully rigorous, we should proceed as follows: define function λ
from the set of regions to all hidden states of a given HVT and replace “for all λR” with “for all λ1 ∈ λ(R)”.
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Figure 3: Relations between the regions mentioned in the formulation of Local CausalityC(Σ,Σ). In the proof
of FactorizabilityC(Σ,Σ), we substitute for R either region of the choice of settings (i.e., Ra/Rb) or the region
of measurement together with the region of the choice of settings (i.e., RA ∪ Ra/RB ∪ Rb). For details see
Appendix A.2.

t

t′

tP

A

a

λtP ,1,2

λΣRA,t

λΣRA,t
′

λC(ΣRA,t
,ΣRA,t

′)

B

b

λΣRB,t

λΣRB,t
′

λC(ΣRB,t
,ΣRB,t

′)

Figure 4: Comparison of two different choices of λ in Bell’s theorem, λtP ,1,2 vs. λC(Σ,Σ).

The respective regions are depicted in Fig. 3. Regions R and R′ are assumed to be bounded but not
necessarily connected, which will be exploited later (see Appendix A.2). Notice that in concrete calculations
this principle can be used in two ways: either “from left to right” (i.e., we can remove conditionalization on
what happens in R′) or “from right to left” (i.e., we can harmlessly add conditionalization on what happens
in R′).

The main difference with Bell’s (1990) formulation is that the above formulation uses a fixed slicing in
order to define the region that is supposed to screen off the region RA from the region RB . This might seem
to be in tension with relativity, which rejects the existence of a distinguished slicing; however, if we add the
requirement that Local CausalityC(Σ,Σ) should be satisfied in any slicing, then the tension disappears. We
could also consider regions of more “wavy” shapes, as depicted in Fig. 2, but I prefer using ΣR,t to define
these regions because this will make it easier to relate Local CausalityC(Σ,Σ) to locally deterministic theories.

The above version is not quite suitable for our purposes because all arguments of the probability function
are complete specifications of hidden variables (beables) in respective regions, whereas we are interested
in representing more coarse-grained specifications. For example, we are not interested in all differences
between possible specifications of beables in the region Ra (i.e., possible λRa

’s), so we should consider their
equivalence classes (each of which corresponds to one choice of measurement setting in region Ra) instead
of single such specifications. In order to capture this, we will introduce a further piece of notation. Let da
be a (coarse-grained) description of an event that can happen in a region Ra that can be formulated within
a given HVT. Then, by λRa;da we denote the set of all and only those λRa ’s in which da is true. Notice that
since we use da to define λRa;da , not all sets of states count as coarse-grained states but only those definable
within the theory. This leads to another version of Local Causality:
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Definition 5. Local CausalityC(Σ,Σ), coarse-grained version: For any bounded region R and any bounded
region R′ that is space-like related to it, for any t, t′ < R that lie above the intersection of the past light
cones of R and R′ and such that t′ < t, for any λR, λR′ and λC(ΣR,t,ΣR,t′ )

, and for any coarse-grainings

λR,dR and λR′,dR′ ,

P (λR,dR |λC(ΣR,t,ΣR,t′ )
, λR′,dR′ ) = P (λR,dR |λC(ΣR,t,ΣR,t′ )

). (3)

Notice that all complete specifications of beables are now replaced by coarse-grained ones, except for
the region C(ΣR,t,ΣR,t′), where we want to retain a complete specification of beables, in agreement with
Bell. For any coarse-grained state, what matters are not the probabilities associated with complete states
that fall under it, but only the probabilities associated with the entire equivalence class. In our description
of experiments, instead of the above complex notation for coarse-grained states, we will use the values of
chosen settings and the values of obtained outcomes, which will be denoted, as previously, by a, b, A,B etc.

It can be shown (see Appendix A.2) that Local CausalityC(Σ,Σ) (in the coarse-grained version) entails
FactorizabilityC(Σ,Σ), that is,

P (A,B|a, b, λC(Σ,Σ)) = P (A|a, λC(Σ,Σ)) · P (B|b, λC(Σ,Σ)), (4)

where λC(Σ,Σ) denotes the pair consisting of λC(ΣRA,t,ΣRA,t′ )
and λC(ΣRB,t,ΣRB,t′ )

.

We can also define a variant of Settings Independence for our choice of hidden variables:

Definition 6. Settings IndependenceC(Σ,Σ):

P (λC(Σ,Σ)|a, b) = P (λC(Σ,Σ)). (5)

This completes our formulation of the assumptions of Bell’s theorem for hidden states encompassing
entire thick slices in the past light cones of measurement regions RA and RB .

7.2 Locally deterministic theories vs. Local CausalityC(Σ,Σ) and Settings IndependenceC(Σ,Σ)

One can show that any locally deterministic HVT satisfies Local CausalityC(Σ,Σ) but violates Settings
IndependenceC(Σ,Σ). This is the content of the following two theorems (for proofs see Appendix A.3):

Theorem 2. Any locally deterministic HVT satisfies Local CausalityC(Σ,Σ).

Theorem 3. Any locally deterministic HVT violates Settings IndependenceC(Σ,Σ).

In fact, all locally deterministic theories violate even a much weaker condition, which might be called
Settings CompatibilityC(Σ,Σ) and which states that any λC(Σ,Σ) is compatible with any choice of settings in
Ra∪Rb. In locally deterministic theories, any λC(Σ,Σ) is compatible with exactly one choice of such settings.

One can object to the above reasoning by pointing out that it relies on the following two additional
implicit assumptions:

Physical Nature of Human Choices: Human choices are physical processes.

Universality of Laws: The laws of T apply to all physical processes.

If the Universality of Laws holds, then all physical processes must conform to the laws of T . If, in addition,
the Physical Nature of Human Choices holds, then, in particular, the choice of measurement settings by
human experimenters must conform to the laws of T . This is precisely what we assumed implicitly in the
proof of Theorem 3 when we applied the laws of T to the physical contents of regions Ra and Rb. Therefore,
our conclusion that any locally deterministic theory violates Settings IndependenceC(Σ,Σ) can be avoided by
rejecting one of these assumptions.

If we reject the Universality of Laws (while retaining the Physical Nature of Human Choices), then a
locally deterministic theory can be made consistent with Settings IndependenceC(Σ,Σ), provided that the
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domain of application of the laws of T is appropriately restricted.15 More specifically, we need to assume
that T does not apply to some types of physical processes, which include choices of measurement settings.
Importantly, rejecting the Universality of Laws does not need to mean that we just create a gap in the
natural order to make room for humans’ freedom as there might be other types of physical processes that
are not subject to the laws of T , some of which might not be in any way related to humans.

The drawback of this strategy is that by rejecting the Universality of Laws we also block our proof that
any locally deterministic theory satisfies Local CausalityC(Σ,Σ). This is because this proof assumes that the
laws of such a theory apply to all physical processes that happen in the region consisting of RA ∪ RB and
the part of the past light cones of RA and RB lying above ΣRA,t ∪ ΣRB ,t (including ΣRA,t ∪ ΣRB ,t itself).
Therefore, this strategy is not helpful for establishing Bell’s Conclusion.

We can also reject the Physical Nature of Human Choices while retaining the Universality of Laws. The
problem with this option is that in most actual realisations of Bell’s Experiment, the measurement settings
are not chosen by humans but by means of some physical processes (an exception is an experiment done by
The BIG Bell Test Collaboration, see Abellán et al. 2018). This would mean that only experiments involving
human choices are actual tests of Local Causality and all others are not, which might seem surprising given
that both types of experiments yield the same results (namely, violation of the Bell-CHSH inequality in
agreement with QM predictions).

Some statements made by Bell himself might be interpreted as the rejection of either the Physical Nature
of Human Choices or the Universality of Laws (or both). For example, Bell (1976, p. 61) writes:

It has been assumed that the settings of instruments are in some sense free variables—say at
the whim of experimenters—or in any case not determined in the overlap of the backward light
cones.

In a subsequent paper, he elaborates on this fragment as follows (Bell, 1977, p. 101):

A respectable class of theories, including contemporary quantum theory as it is practised, have
‘free’ ‘external’ variables in addition to those internal to and conditioned by the theory. These
variables are typically external fields or sources. They are invoked to represent experimental
conditions. They also provide a point of leverage for ‘free willed experimenters’, if reference to
such hypothetical metaphysical entities is permitted. I am inclined to pay particular attention
to theories of this kind [...]

If the mentioned external parameters are irreducibly external in the sense that they cannot be explained by
applying the theory to a larger system, then this indeed looks like a violation of the Universality of Laws.

However, soon after, Bell weakens the assumption that the experimental settings are free to the as-
sumption that they are effectively or sufficiently free “for the purpose at hand”. He invokes the example
of a deterministic number generator (Bell 1977, pp. 102–103; this is also the line that he takes in his last
paper—see Bell 1990, p. 244):

A particular output is the result of combining so many factors, of such a lengthy and complicated
dynamical chain, that it is quite extraordinarily sensitive to minute variations of any one of many
initial conditions. It is the familiar paradox of classical statistical mechanics that such exquisite
sensitivity to initial conditions is practically equivalent to complete forgetfulness of them. To
illustrate the point, suppose that the choice between two possible outputs, corresponding to a
and a′ depended on the oddness or evenness of the digit in the millionth decimal place of some
input variable. Then fixing a or a′ indeed fixes something about the input—i.e., whether the
millionth digit is odd or even. But this peculiar piece of information is unlikely to be the vital
piece for any distinctively different purpose [...]

15This seems to be somehow similar to the approach of Müller and Placek (2023), with their distinction between nature-
induced indeterminism and agent-induced indeterminism. However, this is not quite the same because they do not talk about
laws.
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Bell does not specify which particular “distinctively different purpose” is relevant for establishing Bell’s
Conclusion. If we take it to be “rendering the far-away outcome B and setting b redundant for the task
of determining the probabilities of obtaining A” (Seevinck and Uffink, 2011, p. 445), then we obtain the
approach that will be discussed in section 8.2.

7.3 Further discussion of the violation of Settings IndependenceC(Σ,Σ) in locally
deterministic theories

The fact that all locally deterministic theories violate Settings IndependenceC(Σ,Σ) (and even a much weaker
condition of Settings CompatibilityC(Σ,Σ)) might be worrying because Settings Independence is sometimes
argued to be indispensable for experimental practice. If these arguments were able to establish that Set-
tings IndependenceC(Σ,Σ) holds, then we could exclude all locally deterministic theories without using Bell’s
theorem, merely on the basis of Theorem 3. However, under closer scrutiny such typical arguments against
Settings Independence turn out to be much less convincing in the case of Settings IndependenceC(Σ,Σ) than
in the case of Settings IndependencetP ,1,2.

Let us briefly look at four such arguments. The first argument is that Settings Independence is indis-
pensable for the procedure of randomization in empirical sciences such as medicine. Goldstein et al. (2011)
give the following example:

[...] if you are performing a drug versus placebo clinical trial, then you have to select some group
of patients to get the drug and some group of patients to get the placebo. The conclusions
drawn from the study will necessarily depend on the assumption that the method of selection is
independent of whatever characteristics those patients might have that might influence how they
react to the drug.

However, they clearly have in mind Settings IndependencetP ,1,2 rather than Settings IndependenceC(Σ,Σ).
This is visible in another fragment of Goldstein et al. (2011) (emphasis mine):

in practice, one assesses the applicability of [Settings Independence] to a given experiment by
examining the care with which the experimental design precludes any non-conspiratorial depen-
dencies between the preparation of the systems and the settings of instruments.

Moreover, medicine, biology and social sciences are usually or even always interested in coarse-grained
variables, not in full specifications of the physical state of the systems they are investigating, whereas
Settings IndependenceC(Σ,Σ) asserts the dependence of the choice of settings on the full specification of the
state in C(Σ,Σ). Even if there is a correlation of the form P (placebo|λpatient1,t) 6= P (placebo|λpatient2,t),
where λpatient,t is the full specification of the physical state of the patient at the time when the assignment to
drug/placebo groups is made, this does not undermine the results of such studies because λpatient,t contains
a lot of information that is causally irrelevant for the process of patients’ recovery.

The second argument is that “it is wrong on methodological grounds to worry seriously about [violation
of Settings Independence] if no specific causal linkage is proposed” (Shimony et al. 1976; cited from Shimony
1993, p. 168). Again, these authors clearly have in mind Settings IndependencetP ,1,2 and their argument
cannot be extended to Settings IndependenceC(Σ,Σ). In the latter case, we do not have a “causal linkage”,
but the dependence of the choice of settings on λC(Σ,Σ) is guaranteed by the laws of the locally deterministic
theory.

The third argument, which also has its roots in the paper by Shimony et al. (1976), is that rejecting
Settings Independence amounts to abandoning “in advance the whole enterprise of discovering the laws of
nature by experimentation” (cited from Shimony 1993, p. 168). The issue of discovering physical laws is
more relevant for the discussion of Settings IndependenceC(Σ,Σ) because we test hypotheses about such laws
by preparing a system in some initial state and checking whether its evolution agrees with that prescribed
by these hypothetical laws, so the full specification of a physical state (and not merely a coarse-grained one)
becomes important. In order to learn about the laws of nature from such experiments, it has to be possible
to measure any aspect of the final state of the system, no matter what its initial state is (and perhaps also
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our likelihood of measuring this particular aspect should not depend on the initial state, although this is
less clear). If this condition were violated, then it could happen that for any initial state we cannot measure
exactly those aspects of the final state which disagree with these hypothetical laws. However, as before, this
requires only Settings IndependencetP ,1,2 and not Settings IndependenceC(Σ,Σ).
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The fourth argument is that violation of Settings Independence “requires an atypical fine-tuning of the
initial state of the universe” (see, e.g., Baas and Bihan 2023, p. 10). Again, this might be true for Settings
IndependencetP ,1,2 (although one can construct a theory in which the correlations between settings and
λtP ,1,2 are lawlike and, as such, independent of the initial state; see, e.g., Ciepielewski et al. 2021) but not
for Settings IndependenceC(Σ,Σ). This is reflected in the fact that our proof of Theorem 3 does not make
any assumptions about the initial state of the universe.

8 Attempts at improvement

The results of sections 6 and 7 pose a serious threat to Bell’s Conclusion. We have considered two possible
choices of λ, neither of which leads straightforwardly to any conclusion about Local CausalityC(Σ,Σ):

� If we consider λ = λtP ,1,2, then we do not take into account other possible local explanations of
correlations between measurement outcomes. Moreover, the relationship between FactorizabilitytP ,1,2
and Local CausalityC(Σ,Σ) is not clear.

� The choice of λ = λC(Σ,Σ) might seem better because FactorizabilityC(Σ,Σ) follows from Local CausalityC(Σ,Σ),
but then we cannot run the proof of Bell’s theorem for locally deterministic theories (which form an
important subclass of locally causal theories) because they violate Settings IndependenceC(Σ,Σ) (at
least if we assume the Universality of Laws and the Physical Nature of Human Choices).

As far as I can see, there are four possible ways to try to recover Bell’s Conclusion in the face of these
difficulties:

� just regard FactorizabilitytP ,1,2 rather than Local CausalityC(Σ,Σ) as the proper formulation of Local
Causality;

� instead of complete states λC(Σ,Σ), use states λ specified incompletely (so that Settings Independenceλ
is satisfied) but sufficiently (so that Factorizabilityλ is satisfied);

� derive FactorizabilitytP ,1,2 from Local CausalityC(Σ,Σ), perhaps using some additional but plausible
assumptions;

� consider some different localisations of hidden states.

The first three options will be analysed in the following subsections. Notice that the first and third options
regard λtP ,1,2 as the proper choice of λ for Bell’s theorem; the second option uses λC(Σ,Σ) but takes a
coarse-graining of it, whereas the last option looks for yet another choice of λ.

8.1 Local Causality is FactorizabilitytP ,1,2

Why can we not be content with showing that FactorizabilitytP ,1,2 is false? Can this principle (instead of
Local CausalityC(Σ,Σ)) be regarded as the proper formulation of Local Causality? Bell (1990, p. 243) was
clearly unwilling to accept this, since he writes:

Very often such factorizability is taken as the starting point of the analysis. Here we have
preferred to see it not as the formulation of ‘local causality’, but as a consequence thereof.

16There are other problems with testing HVTs in this way; for example, for some such theories we might not be able to know
the complete initial and final state of the system sufficiently well to test the predictions derived from the hypothetical laws.
However, this problem has nothing to do with Settings Independence.
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He does not provide an in-depth justification for this conceptual choice, but I believe that he had good
reasons for it.

Bell’s focus on Local CausalityC(Σ,Σ) seems to be in line with his broader views about physics. FactorizabilitytP ,1,2
is a condition that is applicable only to situations of a very special type—namely, the instances of Bell’s Exper-
iment (and other appropriately similar experiments). This is because, in its formulation, FactorizabilitytP ,1,2
involves concepts such as measurement settings and measurement outcomes, and presupposes a certain struc-
ture of the experiment. In contrast, Local CausalityC(Σ,Σ) is a very general physical principle—in fact, it is
applicable to any physical situation. Moreover, Local CausalityC(Σ,Σ) does not involve in its formulation the
concept of measurement, and one needs to remember that for Bell, the use of the concept of measurement in
the formulation of the Copenhagen interpretation of QM was its main disadvantage (cf. Bell 1989). For this
reason, Local CausalityC(Σ,Σ) seems more relevant for the foundations of physics than FactorizabilitytP ,1,2.

Another possible objection to FactorizabilitytP ,1,2 is that it relies not only on the idea of locality but
also on the common cause principle (cf. Barandes 2024, pp. 8–9). This principle, which was formulated by
Reichenbach, asserts that whenever events A and B are correlated, that is,

P (A,B) 6= P (A) · P (B), (6)

then there exists another event C such that

P (A,B|C) = P (A|C) · P (B|C) (7)

(for the full statement, see Hitchcock and Rédei 2021).
In contradistinction to FactorizabilitytP ,1,2, Local CausalityC(Σ,Σ) does not involve the concept of common

cause in any way. In Definitions 4 and 5, λC(ΣR,t,ΣR,t′ )
is not supposed to be a common cause of some two

events but a cause of events in region R. The exact justification that formulas (2) and (3) correctly capture
the intuitive idea of local causality is another matter. One possible justification relies on analogical reasoning.
In the case of locally deterministic theories, state λC(ΣR,t,ΣR,t′ )

uniquely determines state λR, so information
about state in any other region is redundant for λR given λC(ΣR,t,ΣR,t′ )

. Now, Local CausalityC(Σ,Σ) is

supposed to be the generalisation of this idea to theories that are locally causal (in an intuitive sense) but not
necessarily locally deterministic. If we replace “unique determination of state” with “unique determination
of the probability of state”, we obtain Definitions 4 and 5 (but now we must remember that information
about events lying within the light cone of R after t might not be redundant).

8.2 The idea of an incomplete but sufficient specification of hidden states

The idea of considering coarse-grained versions of λC(Σ,Σ) arises from Bell’s expression “what happens in the
backward light cone of 1 is already sufficiently specified, for example by a full specification of local beables in
a space-time region 3” (cf. the full quote in section 7.1). We obtained the result that any locally deterministic
theory violates Settings IndependenceC(Σ,Σ) because we have taken λ to be the complete specification of the
physical contents of the region C(Σ,Σ). However, Bell might be understood as saying only that λ should be
a sufficient specification; it might be, for example, a complete specification, but perhaps some incomplete
specifications are sufficient as well. This idea appears in Norsen’s (2009, p. 283 and 2011, p. 1266) analysis
of Bell and was taken up by Seevinck and Uffink (2011). The latter authors propose a precisification of the
concept of sufficiency. The crucial question is, of course, for what purpose should the specification of λ be
sufficient? Their answer is that it should be sufficient “for the purpose of rendering the far-away outcome B
and setting b redundant for the task of determining the probabilities of obtaining A” (Seevinck and Uffink,
2011, p. 445). This means that we should consider λ’s that satisfy the following condition (cf. Seevinck and
Uffink 2011, p. 445):

P (A|a, b, B, λ) = P (A|a, λ) and P (B|a, b, A, λ) = P (B|b, λ). (8)

Clearly, something less than the full λC(Σ,Σ) might satisfy this condition. For example, in a locally
deterministic theory,

λ =

{
{λC(ΣRA,t,ΣRA,t′ )

, λC(ΣRB,t,ΣRB,t′ )
}, {λ′C(ΣRA,t,ΣRA,t′ )

, λ′C(ΣRB,t,ΣRB,t′ )
}
}

(9)
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where λC(ΣRA,t,ΣRA,t′ )
is consistent with a, λC(ΣRB,t,ΣRB,t′ )

is consistent with b, λ′C(ΣRA,t,ΣRA,t′ )
is consistent

with a′ 6= a and λ′C(ΣRB,t,ΣRB,t′ )
is consistent with b 6= b′, is sufficient in this sense. This example also shows

that incomplete specifications of the physical contents of some region R can be constructed by taking classes
of λR’s instead of separate such states.17 The hope is that we can impoverish our complete states (by
replacing them with classes of such states) so that they will still be sufficient, but by omitting information
we will lose the correlation between these states and the choice of settings.

There are two problems with the above concept of sufficient specification. The first is that, in general,
we do not even know whether the complete specification is sufficient! In a non-local theory, the complete
specification of beables in the region C(Σ,Σ) is not sufficient in the above sense—this is the whole point
of the theory being non-local. Therefore, a fortiori, we cannot exclude that no incomplete specification is
sufficient. We need to phrase our question differently: Is it the case that for any HVT that satisfies Local
CausalityC(Σ,Σ), there exists a coarse-graining of Λ (call it Λ), such that the elements of Λ satisfy sufficiency

condition (8) and Settings Independenceλ? If so, then we can run Bell’s theorem with this λ and show that
any such HVT is inconsistent with the predictions of QM.

The second problem with the proposal of Seevinck and Uffink (2011) is that their sufficiency condition
is unnecessarily strong. This is because what we really want is to make Bell’s theorem applicable to any
HVT that satisfies Local CausalityC(Σ,Σ), and for this purpose, it is sufficient that at least one version of

Factorizability and Settings Independence (but with the same λ!) is satisfied by this HVT. Therefore, I
suggest that instead of (8) we should just use Factorizabilityλ.

With these amendments, the reasoning one can use to exclude all HVTs that satisfy Local CausalityC(Σ,Σ)

as inconsistent with empirically confirmed predictions of QM is as follows. Assume that for any theory sat-
isfying Local CausalityC(Σ,Σ), there exists Λ ( P(Λ) such that

⋃
Λ = Λ, the elements of Λ are pairwise

disjoint, and both Factorizabilityλ and Settings Independenceλ hold. Let T be any theory satisfying Lo-
cal CausalityC(Σ,Σ). Then, there exists Λ such that both Factorizabilityλ and Settings Independenceλ are
satisfied (by our assumption). However, Factorizabilityλ and Settings Independenceλ entail Bell’s inequal-
ity, which is violated. Therefore, T cannot be true. Since T was an arbitrary HVT that satisfies Local
CausalityC(Σ,Σ), we have excluded in this way all HVTs that satisfy Local CausalityC(Σ,Σ).

The problem with this reasoning is that it is not obvious that for every theory satisfying Local CausalityC(Σ,Σ)

at least one such Λ exists. Could it be the case that whenever we coarse-grain our hidden states so that they
satisfy Settings Independenceλ, they also cease to satisfy Factorizabilityλ? It seems that one might as well
run the reasoning that is opposite to that in the previous paragraph: if our theory reproduces the predictions
of QM, then its coarse-grained states cannot satisfy both Settings Independenceλ and Factorizabilityλ. How
can one break the impasse between these two lines of reasoning?18

One possible response has been proposed by Goldstein et al. (2011). Although they do not use the
terminology of incompleteness and sufficiency, their proposal is effectively the same as the one described
above. Instead of talking about coarse-grained versions of λC(Σ,Σ), they consider λC(Σ,Σ) as divided into
several beables, some of which are irrelevant for the measurement outcome, while the others either influence
the outcome only via their influence on measurement settings or in some other way (the latter correspond
to our λ). Their solution to our problem is that theories in which λC(Σ,Σ) cannot be divided in this way are
called “conspiratory” and are excluded from the scope of Bell’s theorem. However, one might worry that in
this approach, Bell’s theorem would be inapplicable to an excessively large class of theories, some of which
cannot be excluded on independent grounds. The crucial question is whether we have equally strong reasons
for Settings Independenceλ as we had for Settings IndependencetP ,1,2. This is unclear because the arguments

17This distinguishes my approach from that of Seevinck and Uffink (2011), who prefer to talk in terms of variables instead
of in terms of classes of complete states. However, any statements made within the former approach can be translated into
statements within the latter approach because any specification of some variables of a theory T in a region R corresponds
to a class of possible complete states of region R. Another difference is that Seevinck and Uffink regard a and b as labels of
probability functions, while I keep the convention that they are arguments of a single probability function.

18Hofer-Szabó (2015) argues that it is logically possible that the required coarse-graining exists. However, our question is
different: does the required coarse-graining exist for all HVTs that satisfy Local CausalityC(Σ,Σ) (or at least for a large class
of them, which leaves outside only those HVTs satisfying Local CausalityC(Σ,Σ) that are implausible for some independent
reason)?
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for the latter (see section 7.3) concern λtP ,1,2, which is the state of the measured system at the moment
of preparation, whereas λ is a much more encompassing state with a different localisation in spacetime, so
these arguments cannot be adapted straightforwardly to support Settings Independenceλ. However, other
equally strong arguments may exist; one argument sketched by Bell (see the last quotation in section 7.2)
can be read as supporting Settings Independenceλ.

8.3 Attempts to derive FactorizabilitytP ,1,2 from Local CausalityC(Σ,Σ)

The motivation for the next approach can be formulated as follows. Settings IndependencetP ,1,2 is plausible,
so if we could derive FactorizabilitytP ,1,2 from Local CausalityC(Σ,Σ), then we could show that all locally
causal theories are excluded as inconsistent with QM by the following reasoning:

Local CausalityC(Σ,Σ) ⇒ FactorizabilitytP ,1,2
Settings IndependencetP ,1,2(
FactorizabilitytP ,1,2 ∧ Settings IndependencetP ,1,2

)
⇒ Bell’s inequality

¬ Bell’s inequality
¬Local CausalityC(Σ,Σ)

The problematic step in this reasoning is, of course, the first one. It is clear that FactorizabilitytP ,1,2
does not follow logically from Local CausalityC(Σ,Σ) because they involve different states (i.e., λtP ,1,2 and
λC(Σ,Σ), respectively) that are ascribed to different regions and are not definitionally related to each other.
Therefore, if there is any chance of saving the first step, this would require some additional assumptions. Of
course these additional assumptions should be independently plausible and have some physical meaning; for
example, just adding “Local CausalityC(Σ,Σ) ⇒ FactorizabilitytP ,1,2” as an additional assumption would not
do the job. On the other hand, the additional assumptions should not entail FactorizabilitytP ,1,2 on their
own, independently of Local CausalityC(Σ,Σ), since it is the latter principle that is our proper subject.

An attempt to derive FactorizabilitytP ,1,2 from Local CausalityC(Σ,Σ) has been made by Ciepielewski et al.
(2021). They propose decomposing λC(Σ,Σ) into four parts: λC(Σ,Σ),1,2 (which pertains to the measured
system), λC(Σ,Σ),a and λC(Σ,Σ),b (which influence or determine the settings a and b, respectively), and
λC(Σ,Σ),E (i.e., everything else). Then, FactorizabilityC(Σ,Σ),

P (A,B|a, b, λC(Σ,Σ)) = P (A|a, λC(Σ,Σ)) · P (B|b, λC(Σ,Σ)), (10)

becomes

P (A,B|a, b, λC(Σ,Σ),E , λC(Σ,Σ),a, λC(Σ,Σ),b, λC(Σ,Σ),1,2) =

P (A|a, λC(Σ,Σ),E , λC(Σ,Σ),a, λC(Σ,Σ),b, λC(Σ,Σ),1,2) · P (B|b, λC(Σ,Σ),E , λC(Σ,Σ),a, λC(Σ,Σ),b, λC(Σ,Σ),1,2).
(11)

Now, assuming that (i) λC(Σ,Σ),E is irrelevant, whereas (ii) λC(Σ,Σ),a and λC(Σ,Σ),b influence the outcome
only via a and b, which were already taken into account, they conclude that only λC(Σ,Σ),1,2 remains relevant,
so from (11) they obtain

P (A,B|a, b, λC(Σ,Σ),1,2) = P (A|a, λC(Σ,Σ),1,2) · P (B|b, λC(Σ,Σ),1,2). (12)

However, this reasoning is contestable. Ciepielewski et al. (2021, p. 11) justify (i) by saying that λE “is
irrelevant by definition”. This is true only if the measurement outcomes depend only on the measurement
settings and the state of the system at the time of preparation. However, they might also be influenced
by other factors, such as the microstates of the measurement devices or some details of the environment.
Moreover, the state of the system might change between the time of preparation and the time of measurement,
being influenced by λC(Σ,Σ),E (among other things). Also (ii) might be false because the same factor can
influence both the measurement settings and something else that influences the measurement outcomes (not
via the settings).

Importantly, what they ultimately want to derive is not (12) but FactorizabilitytP ,1,2, which is

P (A,B|a, b, λtP 1,2) = P (A|a, λtP ,1,2) · P (B|b, λtP 1,2). (13)
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This is because for the proof of Bell’s theorem to work, we need the same λ in both Factorizability and
Settings Independence. However, (12) and (13) are not equivalent. As already observed, the state of the
measured system might change between the time of preparation and the time of measurement. Therefore,
λC(Σ,Σ),1,2 might not be the same as λtP ,1,2 (and if position is one of the hidden variables, they surely will
be different). Denoting the state of the system just by λ, without any indices, obscures this issue.

The above-mentioned problem with (i) was recognised by Ciepielewski and Okon (2022), which motivated
them to make a different attempt to derive FactorizabilitytP ,1,2 from Local CausalityC(Σ,Σ) (cf. also their
criticism of some previous derivations by other authors, pp. 6–14). This time, their starting point is not
FactorizabilityC(Σ,Σ) but the following mathematical fact:

P (A,B|a, b, λtP ,1,2) = P (A|B, a, b, λtP ,1,2) · P (B|a, b, λtP ,1,2). (14)

The main idea of this new derivation is as follows (Ciepielewski and Okon, 2022, p. 15):

[...] assuming the principle of local causality, under what circumstances would it be illegitimate
to remove b or B from the first term on the right-hand side of [(14)]? For that to be the case,
two conditions are required. First, there must be something, besides a and λ, which is relevant
for the prediction. Second, that something must be (at least partially) encoded in b or B.

Then they claim that the first assumption is plausible, whereas the second amounts to the violation of what
they call “Microstate Independence”:

P (λA|b, B) = P (λA) and P (λB |a,A) = P (λB), (15)

where λA is everything that influences the outcome A besides a and λtP ,1,2 (and analogously for λB). But
what exactly does it mean to say that λA is “everything that influences the outcome A besides a and λtP ,1,2”?
How to express this idea in terms of probabilities? Ciepielewski and Okon (2022) do not give the answer.
Perhaps this can be captured by the following condition, which is similar to Seevinck and Uffink’s sufficiency
condition:

P (A|a, b, B, λC(Σ,Σ), λA, λtP ,1,2) = P (A|a, λA, λtP ,1,2) and P (B|a, b, A, λC(Σ,Σ), λB , λtP ,1,2) = P (B|b, λB , λtP ,1,2).
(16)

Therefore, instead of assuming the existence of λ that satisfies both Factorizabilityλ and Settings Independenceλ,
we need to assume the existence of some λA and λB that satisfy (15) and (16). But are these assumptions
more plausible?

Even more importantly, does FactorizabilitytP ,1,2 follow from these assumptions? Ciepielewski and Okon
(2022, p. 17) claim that it does:

[...] the principle of local causality implies that anything outside of the past light cone of 1, which
does not enhance the prediction for A given a and λ, can be removed from the conditional in
the probability of A (and similarly for region 2). Then, we notice that, because of microstate
independence, this is the case for b and B in the first term on the right and for a in the second,
so such terms can be removed, leading to factorizability.

However, Local CausalityC(Σ,Σ) allows for removing factors from the conditional probability of A only if
there is another appropriate factor that we condition upon, which needs to cover the entire thick slice of the
past light cone of RA. This is not satisfied here because Eq. (14) does not involve any factor that covers the
entire thick slice of the past light cone of RA. Notice also that λA does not appear anywhere in (14), so it
is not clear how (15) and (16) could justify removing any terms from (14).

9 A new proposal

The proposal for establishing Bell’s Conclusion that I want to put forward here is in some sense a combination
of the second, third and fourth strategies listed in the second paragraph of section 8. It is the closest to the
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third strategy: we will derive something close to FactorizabilitytP ,1,2 from Local CausalityC(Σ,Σ). However,
instead of λtP ,1,2, we will use a bit more encompassing state (the fourth strategy), and we will also appeal
to a coarse-graining in order to bypass the problem of the possible changes of λtP ,1,2 in time (the second
strategy).

Let us begin with the following observation. In principle, some factors different from the state of the
two particles at tP , the effects of which are encoded in their subsequent states, could explain the correlation
between the outcomes of measurements made on them (cf. the fourth paragraph in section 8.3). But what
else could these be? All other factors, except for the arrangement of the measurement devices and the state-
preparing device, could be different in every run of Bell’s Experiment, so they cannot be responsible for the
statistical regularities in the outcomes. Butterfield (1992, pp. 39–40) formulates this idea in the following
way:

Consider an experiment that gets repeated many times. Its repetitions will not share all their
properties; any two are liable to differ in myriad ways (such as temperature and humidity). But
it may be that no property divides the class of repetitions into those with the property and
those without it so as to give different statistics in the two subclasses. In such a case, call the
experiment’s statics “homogeneous”. [...] The more the repetitions vary among themselves while
the statistics nevertheless remain homogeneous, the more we expect that the properties common
to all the repetitions are exactly all the properties on which the chances of the phenomena at
issue depend.

Therefore, when looking for the causes of the correlation between measurement outcomes, it is reasonable
to restrict ourselves to the two-particle system at tP , or at least to a close neighbourhood of it (in case it is
the state-preparing device or something always present in its immediate vicinity rather than the two-particle
system itself that causes the correlation). We will call this state λtP ,1,2,+; it includes λtP ,1,2 and presumably
something more, but it is located entirely within the intersection of the past light cones of RA and RB at
time tP .

Let us turn to our argument. Assume for reductio that Local CausalityC(Σ,Σ) holds (i.e., that some
HVT satisfying CausalityC(Σ,Σ) is true). From Local CausalityC(Σ,Σ), we can derive FactorizabilityC(Σ,Σ)

(see section 7.1),
P (A,B|a, b, λC(Σ,Σ)) = P (A|a, λC(Σ,Σ)) · P (B|b, λC(Σ,Σ)). (17)

Let Λ1,2,+ be the set of possible states of our enlarged system (including two particles and “something

more”) at a single time. Assume that there exists19 a coarse-graining of Λ1,2,+, denoted by Λ̃1,2,+, such that
in Bell’s Experiment,

(A1) the aspects of the state of our enlarged system captured by this coarse-graining do not change in time,
that is,

∀t′′∈[tP ,tM ] λ̃t′′,1,2,+ = λ̃tP ,1,2,+, (18)

where tM is the time of measurements (cf. footnote 9), and

(A2) those aspects of the state of our enlarged system are also the only aspects of λC(Σ,Σ) that are relevant
for probabilities of measurement outcomes conditioned on measurement setting and λC(Σ,Σ), that is,

P (A,B|a, b, λC(Σ,Σ)) = P (A,B|a, b, λ̃t,1,2,+) = P (A,B|a, b, λ̃tP ,1,2,+), (19)

P (A|a, λC(Σ,Σ)) = P (A|a, λ̃t,1,2,+) = P (A|a, λ̃tP ,1,2,+) (20)

and
P (B|b, λC(Σ,Σ)) = P (B|b, λ̃t,1,2,+) = P (B|b, λ̃tP ,1,2,+). (21)

19It should be stressed that the assumption here is that there exists at least one such coarse-graining, not that any coarse-
graining satisfies (A1)–(A2). For this reason, we should not be worried about Simpson-like effects, which in our case would
amount to possible violations of (A1)–(A2) by other coarse-grainings.
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The second equality in each of (19), (20) and (21) is justified by (A1): since tP < t < tM , we have
λ̃t,1,2,+ = λ̃tP ,1,2,+.

Now, if we apply (19) to the LHS of (17), and (20) together with (21) to the RHS of (17), we obtain
Factorizability∼

tP ,1,2,+
, that is,

P (A,B|a, b, λ̃tP ,1,2,+) = P (A|a, λ̃tP ,1,2,+) · P (B|b, λ̃tP ,1,2,+). (22)

If we additionally assume Settings Independence∼
tP ,1,2,+

,

P (λ̃tP ,1,2,+|a, b) = P (λ̃tP ,1,2,+), (23)

then we will have the full package of assumptions that are needed to derive Bell’s inequality with λ = λ̃tP ,1,2,+
(i.e., Factorizability∼

tP ,1,2,+
and Settings Independence∼

tP ,1,2,+
). Since Bell’s inequality is violated, either

Local CausalityC(Σ,Σ) is false or there is no coarse-graining Λ̃1,2,+ that satisfies (A1), (A2) and Settings
Independence∼

tP ,1,2,+
.

Why should we believe that such a coarse-graining exists? Let us begin with observing that Settings
IndependenceλtP ,1,2,+

, that is,
P (λtP ,1,2,+|a, b) = P (λtP ,1,2,+), (24)

is already plausible (even without taking a coarse-graining of λtP ,1,2,+). The justification for Settings
Independence∼

tP ,1,2,+
is the same as the justification for Settings IndependenceλtP ,1,2

. The entire state

λtP ,1,2,+ is confined to the intersection of the light cones of RA and RB at tP . Therefore, the past light
cones of Ra and Rb include plenty of factors that belong to neither the region covered by λtP ,1,2,+ nor its
causal future, so they are able to interfere with the influence of λtP ,1,2,+ on the measurement settings. After
coarse-graining, this version of Settings Independence becomes even more plausible: if there were any factors
in λtP ,1,2,+ correlated with the choices of measurement settings, they could be lost by taking an equivalence
class of such states, but no new correlations can be introduced in this way.20

What about (A1) and (A2)? An important role is played in their justification by common-cause-like
intuitions and continuous-action intuitions.21 First, whatever is responsible for the correlation between
measurement outcomes should lie in the common past of the two measurements, that is, in the intersection
of the past light cones of RA and RB . Otherwise it could influence at most one of the measurement outcomes
but not both; however, the correlation involves both outcomes. A factor that lies outside of the intersection
of the past light cones of RA and RB could spoil the correlation between the two particles, but it cannot
create any correlation between them because it can influence at most one of them. Second, we have observed
that λtP ,1,2 can change between tP and tM ; a fortiori this is true about λtP ,1,2,+. However, this aspect
of λtP ,1,2,+ that is responsible for the correlation should better last unchanged until the measurements on
both wings are made, since otherwise its influence on measurement outcomes would require some kind of
action at a temporal distance (cf. Adlam 2018).22 The idea that causation between temporally distant
events needs to always be mediated by intermediate events is known in the literature about Bell’s theorem
as “action-by-contact” (Evans et al., 2013) or “continuous action” (Wharton and Argaman 2020 and Adlam

20This part of my reasoning can be underpinned formally. Assume that X and X′ are such that (i) X ∩ X′ = ∅, (ii)
P (X|Y ) = P (X) and (iii) P (X′|Y ) = P (X′). Let their coarse-grained counterpart be X̃ = X ∪ X′. We have P (X̃|Y ) =
P (X ∪X′|Y ) = P (X|Y ) +P (X′|Y ) = P (X) +P (X′) = P (X̃) (where the second and the last equality comes from (i), whereas
the third equality comes from (ii) and (iii)). This can be generalised to any X̃ that consists of more than two events.

21Importantly, however, we do not assume that λtP ,1,2,+ is a common cause in the sense of satisfying Factorizability∼
tP ,1,2,+

because this would render Local CausalityC(Σ,Σ) redundant in the derivation of Bell’s inequality, which would again block our
attempt to establish Bell’s Conclusion.

22Adlam (2018, p. 2) defines the condition of Temporal Locality in the image of Factorizability, not Local CausalityC(Σ,Σ).
However, we can easily find a formulation of Temporal Locality that is closer to the latter:

Temporal LocalityC(Σ,Σ), fine-grained version: For any bounded region R, for any t < R and any t′ < t, for any
λR and λC(ΣR,t,ΣR,t′ )

, for any bounded region R′′ < t′ and any λR′′ ,

P (λR|λC(ΣR,t,ΣR,t′ )
, λR′′ ) = P (λR|λC(ΣR,t,ΣR,t′ )

). (25)
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2022). Notably, this idea is clearly present in Bell’s (1990, p. 239) initial formulation of Local Causality
(“[t]he direct causes (and effects) of events are near by”), but it is not reflected in Local CausalityC(Σ,Σ),
which does not prohibit events in the remote past but lying in the past-light cone of R to influence the
probability of a given state in R.

I do not know whether the existence of a coarse-graining that satisfies (A1) and (A2) can be derived in a
formal way from some more basic principles, so I will leave the justification of this assumption in the above
form.

10 Summary

In this paper, an important ambiguity in the understanding of hidden states in the literature about Bell’s
theorem has been analysed. Hidden states in the context of Bell’s theorem are usually considered either
as the states of the two-particle system at the moment of preparation or as the states of thick slices of the
past light cones of measurements. In both cases, there are problems with establishing Bell’s Conclusion,
which states that all HVTs that satisfy Local Causality are inconsistent with the predictions of QM for
Bell’s Experiment. In the first approach, the link between FactorizabilitytP ,1,2 and Local CausalityC(Σ,Σ)

is missing. In the second approach, Settings IndependenceC(Σ,Σ) is violated by all locally deterministic
theories (unless we reject either Physical Nature of Human Choices or the Universality of Laws, but this
also undermines the proof that all locally deterministic theories satisfy Local CausalityC(Σ,Σ)). Since the
condition of Local CausalityC(Σ,Σ) was intended by Bell to be a generalisation of local determinism, locally
deterministic theories form a very important (even a paradigmatic one) subclass of locally causal theories.
Therefore, the failure to establish Bell’s Conclusion for this class of theories cannot be ignored.

Three possible ways of improving this situation have been identified. One can stay with λ = λtP ,1,2
and try to derive FactorizabilitytP ,1,2 from Local CausalityC(Σ,Σ). This, however, requires some additional
assumptions, and it is not clear what they should be. One can also stay with λ = λC(Σ,Σ) and consider
coarse-grained versions of these states. However, to establish Bell’s Conclusion, we need to assume that there
exists a coarse-graining Λ for which both Factorizabilityλ and Settings Independenceλ hold, and it is not
clear how to justify this assumption. Finally, one can consider some other choices of λ. My own proposed
approach combines the ideas of all three strategies.

Let me list what I think are the major results of this paper. First of all, our considerations show that it
does matter where exactly the λ that occurs in Bell’s theorem is located. Second, we have pointed out that the
relationship between deterministic theories and 0-1 probabilities is not straightforward, and we have proposed
the Bridge Principle, which allows us to relate them (Definition 3). Third, we have provided a precise
definition of locally deterministic theories (Definition 2) and shown that they are deterministic (Theorem
1), that they satisfy Local CausalityC(Σ,Σ) (Theorem 2) and that they violate Settings IndependenceC(Σ,Σ)

(Theorem 3); the latter two results are based on the aforementioned Bridge Principle. Fourth, this Bridge
Principle has also allowed us to distinguish clearly between deterministic and outcome deterministic theories
(see the third paragraph of section 6). Finally, it seems that there is at least one plausible way of establishing
Bell’s Conclusion; the one that I have presented relies on some additional assumptions that allow one to
derive the relevant variant of Factorizability from Local CausalityC(Σ,Σ) (see section 9).

Assuming that the above considerations are correct, let us reflect on the scope of the conclusions that
we can derive from Bell’s theorem. If “non-local” means “either locally indeterminate or locally determinate
but violating Local CausalityC(Σ,Σ)”, then we can strengthen what we called “Bell’s Conclusion” as follows:

Strengthened Bell’s Conclusion: All HVTs consistent with the predictions of QM for Bell’s
Experiment are non-local.

Temporal Locality does not play any official role in our reasoning that leads to Bell’s Conclusion, but the underlying idea is
used in our justification of (A1) and (A2). Moreover, it is interesting for us because it allows one to reconcile the satisfaction
of Factorizability∼

tP ,1,2,+
with the violation of FactorizabilityC(Σ,Σ): we can explain this by assuming that λ̃tP ,1,2,+ acts at a

distance directly on measurement outcomes, without the mediation of anything in the region C(Σ,Σ).
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If a given HVT is locally indeterminate, this follows from the above definition of non-locality; and if a given
HVT is locally determinate, this follows from Bell’s Conclusion. Since Nature realises the predictions of
QM for Bell’s Experiment, if we assume that one of HVTs needs to be a true description of Nature, we can
conclude that Nature itself is non-local in the above sense. However, I want to emphasise that this concept
of non-locality is not just the violation of Local CausalityC(Σ,Σ) but a disjunction whose second disjunct is
an even deeper form of non-locality—namely, the failure of local determinateness.
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D., Mataloni, P., Máttar, A., Mazzera, M., Mirin, R. P., Mitchell, M. W., Nam, S. W., Oppliger, M.,
Pan, J.-W., Patel, R., Pryde, G. J., Rauch, D., Redeker, K., Rieländer, D., Ringbauer, M., Roberson, T.,
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A.1 Locally deterministic theories are deterministic

Theorem 1. Any locally determinate HVT that is locally deterministic is also deterministic.

Proof. Let T be a locally determinate HVT that is not deterministic. This means that there exists time
t0 and state λt0 such that two different solutions, λspacetime 6= λ′spacetime, are compatible with λt0 and the
laws of T . Since λspacetime and λ′spacetime are different, there exists a spatiotemporal region R on which they
differ. That is, λspacetime is compatible with some λR and λ′spacetime is compatible with some λ′R such that
λR 6= λ′R. If region R partially overlaps with Σt0 , then there exists a bounded and connected region R′

such that R′ ( R, R′ does not overlap with Σt0 and the restrictions of λspacetime and λ′spacetime to R′ are
different (i.e., λR′ 6= λ′R′). This is because λspacetime and λ′spacetime by definition do not differ on Σt0 but do
differ on R, so they must differ on some part of R that does not overlap with Σt0 . If R does not overlap
with Σt0 , let R′ be any bounded and connected subregion of R on which λspacetime and λ′spacetime differ.
Since R′ does not overlap with Σt0 and is bounded and connected, it must be wholly located either below
or above Σt0—that is, t0 < R′ or t0 > R′. Assume without loss of generality that t0 < R′ (the other case
is analogous). Consider our initial conditions λt0 restricted to the intersection of the past light cone of R′

with Σt0—that is, λΣR′,t0
. Since there exist two different specifications of hidden variables in region R′ that

are compatible with λΣR′,t0
(namely, λR′ and λ′R′), our theory T is not locally deterministic. Therefore,

T not being deterministic entails that it is also not locally deterministic. By contraposition, if T is locally
deterministic, then it is also deterministic.

A.2 Derivation of FactorizabilityC(Σ,Σ) from Local CausalityC(Σ,Σ)

We will derive some consequences for Bell’s Experiment from the coarse-grained version of Local CausalityC(Σ,Σ),
which will enable us to prove FactorizabilityC(Σ,Σ). Consider any times t and t′ such that t′ < t, Ra and
Rb lie above t, and t′ is above the intersection of the past light cones of RA and RB . Let a and b be
possible experimental settings chosen in regions Ra and Rb, and let A and B be their possible outcomes
obtained in regions RA and RB . By a, b, A and B we also denote the equivalence classes of λRa

, λRb
, λRA

and λRB
, which correspond to the respective settings and outcomes. Additionally, λC(Σ,Σ) denotes the pair

consisting of λC(ΣRA,t,ΣRA,t′ )
and λC(ΣRB,t,ΣRB,t′ )

, and C(Σ,Σ) denotes the respective region. From Local

CausalityC(Σ,Σ) it follows that for any λC(ΣRA,t,ΣRA,t′ )
and any λC(ΣRB,t,ΣRB,t′ )

,

P (A, a|B, b, λC(ΣRB,t,ΣRB,t′ )
, λC(ΣRA,t,ΣRA,t′ )

) = P (A, a|λC(ΣRA,t,ΣRA,t′ )
). (26)

In more detail, in the transition from the LHS to the RHS, we have used Eq. (3) with the following
substitutions: RA ∪ Ra for R, A and a for λR,dR , RB ∪ Rb ∪ C(ΣRB ,t,ΣRB ,t′) for R′, and finally, B, b and
λC(ΣRB,t,ΣRB,t′ )

for λR′,dR′ . Notice that under these choices, regions R and R′ are bounded (as they must

be) but not connected.
It also follows from Local CausalityC(Σ,Σ) that for any λC(ΣRA,t,ΣRA,t′ )

and any λC(ΣRB,t,ΣRB,t′ )
,

P (a|b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

) = P (a|λC(ΣRA,t,ΣRA,t′ )
). (27)

Finally, it follows from Local CausalityC(Σ,Σ) that for any λC(ΣRA,t,ΣRA,t′ )
and any λC(ΣRB,t,ΣRB,t′ )

,

P (A, a|λC(ΣRA,t,ΣRA,t′ )
) = P (A, a|λC(ΣRA,t,ΣRA,t′ )

, λC(ΣRB,t,ΣRB,t′ )
) (28)

and
P (a|λC(ΣRA,t,ΣRA,t′ )

) = P (a|λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

), (29)

where we harmlessly added the conditionalization on the second hidden state.
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From these we can prove FactorizabilityC(Σ,Σ):

P (A,B|a, b, λC(Σ,Σ)) = P (A,B|a, b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

) =

P (A,B, a, b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)

P (a, b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)
=

P (A, a|B, b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)P (B, b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)

P (a|b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)P (b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)
=

P (A, a|λC(ΣRA,t,ΣRA,t′ )
)P (B, b, λC(ΣRA,t,ΣRA,t′ )

, λC(ΣRB,t,ΣRB,t′ )
)

P (a|λC(ΣRA,t,ΣRA,t′ )
)P (b, λC(ΣRA,t,ΣRA,t′ )

, λC(ΣRB,t,ΣRB,t′ )
)

=

P (A, a|λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)P (B, b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)

P (a|λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)P (b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

)
=

P (A|a, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

) · P (B|b, λC(ΣRA,t,ΣRA,t′ )
, λC(ΣRB,t,ΣRB,t′ )

) =

P (A|a, λC(Σ,Σ)) · P (B|b, λC(Σ,Σ)).

(30)

In the consecutive steps of this derivation we have used the following: definition of λC(Σ,Σ); definition of
conditional probability; theorem about conditional probability; (26) and (27); (28) and (29); theorem about
conditional probability and definition of conditional probability; and finally, definition of λC(Σ,Σ).

A.3 Locally deterministic HVTs satisfy Local CausalityC(Σ,Σ) but violate Set-
tings IndependenceC(Σ,Σ)

Theorem 2. Any locally deterministic HVT satisfies Local CausalityC(Σ,Σ).

Proof. In a locally deterministic theory, P (λR|λC(ΣR,t,ΣR,t′ )
) is equal to 0 or 1 because λΣR,t

uniquely

determines the complete state in R (we use our Bridge Principle Between Determinism and 0-1 Probability,
Definition 3). Therefore, adding any further conditionalization either does not change the value of probability
or makes it ill-defined (the latter will happen if we add conditionalization over some λR′′ that is inconsistent
with λC(ΣR,t,ΣR,t′ )

). In particular, adding conditionalization in the same way as in the formulation of the
fine-grained version of Local CausalityC(Σ,Σ) will not change the value of conditional probability of λR.

Similarly, P (λR;dR |λC(ΣR,t,ΣR,t′ )
) equals 0 or 1 for any coarse-grained state λR;dR . This entails the coarse-

grained version of Local CausalityC(Σ,Σ).

Theorem 3. Any locally deterministic HVT violates Settings IndependenceC(Σ,Σ).

Proof. Assume that T is locally deterministic, and consider Bell’s Experiment with the usual notation.
Consider any states in regions Ra, Rb, ΣRA,t and ΣRB ,t, denoted by λRa , λRb

, λΣRA,t
and λΣRB,t

. Since
T is locally deterministic, λΣRA,t

is compatible with exactly one state in Ra, and analogously for λΣRB,t

and Rb. Therefore, any pair of states λΣRA,t
, λΣRB,t

is compatible with exactly one pair of states λRa
, λRb

.
A fortiori, any pair of states λC(ΣRA,t,ΣRA,t′ )

, λC(ΣRB,t,ΣRB,t′ )
is compatible with exactly one pair of states

λRa
, λRb

.
Assume without loss of generality that λC(ΣRA,t,ΣRA,t′ )

is consistent with a but not with a′, and λC(ΣRB,t,ΣRB,t′ )

is consistent with b but not with b′. Then, from our Bridge Principle Between Determinism and 0-1 Prob-
ability (Definition 3) it follows that P (λC(Σ,Σ)|a, b) 6= 0 and P (λC(Σ,Σ)|a′, b′) = 0. Therefore, they cannot
both be equal to P (λC(Σ,Σ)), which is a violation of Settings IndependenceC(Σ,Σ).

It is worth pointing out that Theorem 3 cannot be strengthened to “any deterministic HVT violates
Settings IndependenceC(Σ,Σ)”, where “locally deterministic” has been replaced with “deterministic”. In the

28



case of theories that are deterministic but not locally deterministic, it is the very first step of the proof that
will not work. This is because in such a theory, for any t below Ra ∪Rb,

P (λRa |λt) = 0/1 and P (λRb
|λt) = 0/1 (31)

but not necessarily
P (λRa |λΣRA,t

) = 0/1 and P (λRb
|λΣRB,t

) = 0/1. (32)

In other words, in a theory that is deterministic but not locally deterministic, all physical events in Ra∪Ra are
uniquely determined by the full initial conditions at t, but not necessarily by the part of these initial conditions
that is contained within ΣRA,t∪ΣRB ,t. However, this does not mean that the choices of measurement settings
are more “free” in theories that are deterministic but not locally deterministic. This only reveals the fact
that Settings IndependenceC(Σ,Σ) has built a certain kind of locality into its formulation: it states that the
choices of measurement settings are independent of the conditions in the past restricted to the past light
cone of measurement, and not that the choices of measurement settings are independent of the conditions in
the past, full stop.
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