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Problem?
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This paper is about a problem which arose in mathematics but is now widely con-
sidered by mathematicians to be a matter “merely” for philosophy. I want to show
what philosophy can contribute to solving the problem by returning it to mathemat-
ics, and I will do that by elucidating what it is to be a solution to a mathematical
problem at all.

The problem is Cantor’s Continuum Hypothesis (CH), the assertion that every
infinite set of real numbers has the same size as the natural numbers or the entire
real line. Classical results of Gödel and Cohen show that the standard axiomatic
framework for mathematics, Zermelo-Fraenkel set theory with the Axiom of Choice
(ZFC), cannot solve CH. Compounding the problem, Levy and Solovay showed CH
is unsolvable using widely accepted extensions of ZFC. Consensus has arisen that the
idea of solving CH is such a speculative enterprise that it is a philosophical problem.
This contrasts sharply with other famous open problems in mathematics like the
Riemann Hypothesis (RH), the Twin Prime Conjecture, or Goldbach’s Conjecture.1

These three problems of analytic number theory collectively constituted the eighth
of Hilbert’s 23 problems to guide mathematical research in the 20th century, and RH
is a Millennium Prize problem.2 CH was the first of Hilbert’s problems but—despite
being unsolved—is not a Millennium Prize problem.3

∗Acknowledgements: Thanks to Monroe Eskew, Warren Goldfarb, Peter Koellner, Benjamin
Siskind, John Steel, Riley Thornton, W. Hugh Woodin, and especially Justin Cavitt and an anony-
mous reviewer.

1The Reimann Hypothesis is the assertion that the nontrivial zeroes of the Riemann zeta function
are the complex numbers with real part 1

2 . The Twin Prime Conjecture is the assertion that for
any n there exist prime numbers p1, p2 > n such that p2 = p1 + 2. Goldbach’s Conjecture is the
assertion that any even natural number greater than 2 can be written as the sum of two primes.

2The Millennium Prize problems are seven problems to guide mathematical research in the 21st
century as chosen by the Clay Mathematics Institute. They come with a $1M reward.

3Feferman [10] cited CH’s exclusion from the Millennium Prize list as evidence that CH is
indefinite and that there’s a felt sense in the mathematical community that adjudicating presumed
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This is in part because CH is no longer seen as falling within the bounds of ordi-
nary mathematical inquiry. I’m going to argue that CH is an ordinary mathematical
problem like RH, the Twin Prime Conjecture, or Goldbach’s Conjecture. I’ll do this
in the course of countering two objections to an alleged solution to CH. This alleged
solution, I’ll argue, embodies the general form any solution to CH must take. From
this we’ll see what a solution to CH—if it admits one—must be like, and we’ll see
it’s just like what a solution to RH must be like.

1 Preliminaries

1.1 Aspects of mathematical problems and their solutions

Solutions to mathematical problems take diverse forms. We compute sums, integrate
functions, prove propositions using natural language arguments or diagrams, pro-
gram computers. The mathematical community has settled on a criterion for being a
solution: A solution is in principle formalizable in ZFC or some widely accepted exten-
sion thereof. Allow me to record a few observations. First, the open-endedness of the
resources which are admissible to use in a proof is exemplified by Wiles’ celebrated
proof of Fermat’s Last Theorem,4 which was proved using a framework developed
by Grothendieck assuming (the equivalent of) an extension of ZFC.5 Second, being
formalizable does not entail that there is no controversy or iota of doubt about a the-
orem, although it’s intended to put us in such an epistemic position. For example,
Hales’ 1998 computer-assisted proof of Kepler’s conjecture was largely formalized
when submitted to the Annals of Mathematics, but because of its complexity the
team of reviewers could only sign off on it up to a high degree of certainty. Third,
“in principle” does a lot of work in our criterion, as almost all mathematical research
has not been strictly formalized. One reason for this is that mathematicians have

solutions to CH will require deviation from the usual norms of mathematics.
4Fermat’s Last Theorem is the assertion that no natural numbers a, b, c > 0 are such that

an + bn = cn for any n > 2.
5When asked whether he thought Fermat’s Last Theorem is provable in a weaker theory, Wiles

has reportedly retorted, “Who cares?” This was related to the author by Menachem Magidor.
Experts believe that the elements of Grothendieck’s theory which Wile’s proof needs localize

in a way which does not require the strong extension. (Grothendieck apparently did not find his
assumption problematic.)

A more intriguing, less famous example is Richard Laver’s use of one of the most powerful
extensions of ZFC to prove results about the periods of finite Laver tables. It’s open whether ZFC
suffices to establish these properties of the tables, but it is not doubted that the tables have the
properties [8].

2



gone through what Tao calls the “post-rigorous” stage of their mathematical educa-
tion, where their training in the formal foundations of their research area has made
spelling out proof details, computations, etc. simply routine and understanding the
key ideas of claimed proofs sufficient to judge, with a high degree of accuracy, their
validity [44].6 Nonetheless, it is important to the mathematical community that there
be an idea of how an argument is formalizable.

It is important because a unifying property of solutions is their correctness. An
‘incorrect solution’ is an oxymoron, and it is this grammar that makes solutions
seem necessary. They could not be any other way than the way they are.7 Supposing
otherwise is nonsense. (Think of an assumption in a proof by contradiction.) Another
characteristic of solutions that is in a sense naive is that they are discoverable. Posed
with a problem, there is the sense that there is an answer for us to find. We do not
make the answer up according to our preferences. RH is either true or false, and
whichever it is will not depend on what number theorists find most elegant.

Theorems and exercises in textbooks and research articles are problems whose
solutions are known. Problems for which (as far as we know) no one in human history
up to the present has known the solution are open problems. Within the class of open
problems, there are problems which, if true, “provide the skeletal architecture of a
theory” [27, p. 198]. These are conjectures. Conjectures can serve as hypotheses in
conditional theorems, as if they are promissory notes, in serious research. CH and
RH are paradigmatic examples of conjectures.8

Finally, there is the question of what resources are required to obtain a solution.
For example, one cannot trisect arbitrary angles with a ruler and compass, but
one can solve the trisection problem if one helps oneself to additional tools, like
a collapsible compass. While some problems are specified with reference to a specific
set of admissible tools, they need not be. It didn’t matter what tools Andrew Wiles
availed himself of in solving Fermat’s Last Theorem as long as they were widely
accepted. The question of what tools are necessary for solving problems leads to

6Another is that in general, formal proofs do not help us understand mathematics or develop new
proof ideas. Harris emphasizes this in his essay “The Central Dogma of Mathematical Formalism”
[18], which denies the ‘Central Dogma’ that a theorem being proved informally is equivalent to its
being proved in a formal system.

7Within the theory used to get the solution. A theorem is an implication from a theory to a
statement in the language of that theory. For example, “Assume Peano Arithmetic. Then there are
infinitely many prime numbers.” is a theorem. When no ‘special’ resource is used, the theory being
assumed is often suppressed. Hence we say, with no qualification, that Fermat’s Last Theorem is
true, or has been solved.

8‘Hypotheses’ were conjectures a sufficient number of special cases of which were confirmed by
the time they were put forward.
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optimizing hypotheses and theorems of the form “If we could solve problem X, then
we could solve problem Y .”

I said at the outset that CH is unsolvable using ZFC or even more powerful,
widely accepted resources. A universe or model of set theory is a mathematical
structure satisfying the ZFC axioms. (The universe of sets is denoted V .) To show
that ZFC cannot solve CH, it suffices to show that there is a universe in which CH is
satisfied and a universe in which it is not. Gödel achieved the first task by defining
a ‘narrow’—in the sense that it does not contain all sets9—universe called L. L
is a canonical universe, which means that its theory is invariant no matter which
ambient universe it is defined in. As a consequence, L has such rich structure theory
that we can reasonably expect every mathematical question to be solvable using it.
(L shares this feature with the natural number structure, the canonical structure
par excellence.) As it happens, CH is true in L. To achieve the second task, Cohen
devised a general method for transforming a given universe into one in which CH
takes the opposite truth value it began with. The method is called generic extension.
L can be generically extended to a universe in which CH is false. Thus CH cannot
be solved in ZFC.10

It turns out that CH can fail in infinitely many ways, and these ways are realized
by generic extension.11 Generic extension can be iterated to achieve all of these

9The widely accepted resources extending ZFC which I’ve gestured at imply this. The statement
that this narrow universe is the universe of sets—the statement V = L—historically had some
proponents. Devlin wrote in 1977: “It is a natural axiom, closely bound up with what we mean
by “set”. [...] its assumption leads to the solution of many problems known to be unsolvable from
the Axiom of Choice alone. Time alone will tell whether or not this axiom is eventually accepted
as a basic assumption in mathematics” [9, p. IV]. Time told: the majority of the 24 articles in the
Handbook of Set Theory [12]—articles by experts and intended to get one to the research frontier—
are about structure and methods incompatible with V = L. The evidence is that we are on the
“0# exists” side of the Covering Lemma (see below). Jensen wrote in 1995: “[V = L] makes a
clear statement about the nature of the mathematical universe. It is mathematically fruitful in that
it solves many problems and leads to interesting new concepts and theories. It is philosophically
attractive for adherents of “Ockham’s razor,” which says that one should avoid superfluous existence
assumptions. I personally find it a very attractive axiom. Nevertheless, it has been rejected by the
majority of set theorists, beginning with Godel himself” [21, p. 398]. But Ockham’s razor does
not apply: There is mathematical structure which cannot exist in L. The hypotheses that enable
investigation of this structure are not superfluous.

10Independence proofs are another reason, beyond correctness, why formalizability is important.
If we want to show that a proposition is independent of our standardly accepted mathematics, we
need to know what “our standardly accepted mathematics” encompasses, and we need to put it in
a form that is amenable to the tools of mathematical logic.

11While our attention is on CH, there are infinitely many problems which are unsolvable using
ZFC and its widely accepted extensions.
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starting from an initial universe, generating the generic multiverse of universes which
generically extend the initial one.12

Already suspecting prior to Cohen’s work that CH is unsolvable, Gödel in his
paper “What is Cantor’s Continuum Problem?” [15] initiated a research program of
identifying new, well-justified axioms that solve CH. Compounding the Continuum
Problem further, many alleged solutions to CH inspired by Gödel’s program have
been put forward, and they are almost all mutually inconsistent.13 It seems to me
that this program got us off on the wrong foot—and invited the “relegation” of
CH to philosophy—by emphasizing justifications of axioms (1) without directing
attention to what conditions have to be in place for something to be a solution to
a mathematical problem to begin with and (2) at the expense of their content. The
present paper will hopefully close this gap and turn focus towards the content of
axioms, not merely their purported justifications.

1.2 Ordinary mathematical inquiry

In ordinary mathematical inquiry, mathematicians believe mathematically precise
statements have truth values, and they take themselves to be in the business of dis-
covering those truth values. In particular, they do not arbitrarily decide them. Usu-
ally, their discoveries are uncontroversial. Everyone agrees that what should qualify
as a solution to CH is controversial. This by itself does not mean CH is not an ‘or-
dinary’ problem like RH—Hales’ proof of the Kepler conjecture already shows that
problems solvable using our standard tools can be controversial.

What would make CH extraordinary would be if it admitted a solution but the
research program leading to that solution did not treat CH according to ordinary
mathematical inquiry. Lingamneni [26] claims that, while some alleged solutions to
CH are arrived at in accordance with ordinary mathematical inquiry, the only alleged
solution I believe might make a successful claim to being the solution is not. Similarly,
Feferman claims

the usual idea of mathematical truth in its ordinary sense is no longer
operative in the research programs [leading to the alleged solution] which,
rather, are proceeding on the basis of what seem to be highly unusual
(one might even say, metaphysical) assumptions. And even though the

12There are two notions of “the” generic multiverse in the literature, see [47] and [39].
13A non-exhaustive list of proposals: forcing axioms and related Baire category principles, the

Pmax axiom (∗) and its variations and generalizations, the Axiom of Constructibility V = L, V =
Ultimate L, generic elementary embeddings, real-valued measurable cardinals, Freiling’s Axiom of
Symmetry.
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experts in set theory may find such assumptions compelling from their
experience of working with them. . . the likelihood of their being accepted
by the mathematical community at large is practically nil. [10, p. 8]

I’m going to argue that [26] and [10] misconceive salient aspects of ordinary math-
ematical inquiry. Once we see how the conception of [26] and [10] goes wrong, we’ll
see that CH is an ordinary mathematical problem like RH, the Goldbach conjec-
ture, and the Twin Prime conjecture. With the clarified picture I will argue that
the canonical models solution embodies the only way to proceed in solving CH. In
particular, (1) I will be concerned with the form of the canonical models solution,
not with its content, and (2) none of the other alleged solutions could constitute the
solution (without significant supplementation).

In the next section, I will sketch the canonical models solution to CH and Lingam-
neni’s criticism that it is incapable of delivering an ordinary, non-arbitrary solution
to CH. In §3 I will begin the clarification. The general form of the solution to CH—if
there is one, which this paper leaves open—is given in §4.

2 The canonical models solution

The canonical models solution to CH is to define Ultimate L, a universe of sets that
admits a structural analysis so detailed that every question about the universe is
determinate and which is not ‘narrow’ like L. Then one uses the structural analysis
to solve CH in Ultimate L. CH is true in Ultimate L.

Then one must argue that CH being true in Ultimate L shows that CH is true
simpliciter. The immediate obstacle to this is that the truth value of CH varies across
the universes in the generic multiverse. But what if the generic multiverse contains
a universe from which all of the other universes are accessible by generic extension?
That universe would be the uniquely definable member of the generic multiverse,
a privileged universe, and the theories of all generic extensions would reduce to its
theory. Wouldn’t the unique definable universe in the multiverse just be V ? (Or
isn’t that what we mean when we use ‘V ’?) Usuba [45] showed that there is such a
universe. And Woodin showed that Ultimate L, if it exists, is the unique universe.
Thus Ultimate L satisfying CH is what it means for CH to be true, or to hold in
V . Even though CH is false in other universes in the generic multiverse, that fact is
irrelevant—they are not the privileged universe.

So the argument—which is not unanimously endorsed by set theorists—goes.
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2.1 Objection 1: Reframing

On Lingamneni’s reading, the foregoing argument “immediately belies its own claim
to have resolved CH” [26] because it admits that there are universes of set theory in
which CH is false. When RH is solved, on the standard view of ordinary mathematical
inquiry, there will be no models of arithmetic in which RH has the opposite truth
value. Reframing CH as a problem in the special universe in the generic multiverse
is just that—a reframing. Why accept that it supersedes the original question? To
accept it is to tacitly admit that there is no fact of the matter about CH.

Moreover, in other fields of mathematics, there are similar reframings, but answers
to reframed questions are not taken to be solutions to the original problems!14 The
reframing maneuver being legitimate would lend further credence to the claim that
CH lies outside the bounds of ordinary mathematical inquiry.

2.2 Objection 2: Arbitrary Decision

Lingamneni’s second objection is that there is insufficient reason to believe the uni-
verse of sets is fine structural,15 i.e. admits a detailed, quantifier-by-quantifier anal-
ysis, even if fine structure is the only known mechanism with which to answer open
questions:

The problem is that on this methodology, just as long as we get an answer,
any answer will do. . . There is a real and salient epistemic possibility that
despite our hopes, the Riemann Hypothesis could actually be false — so
much the worse for us! If there is no such fear to restrain us with regard
to CH, it must be because we do not really believe that there [is a fact
about it—we are free to adjudicate or even dismiss the question, rather
than being forced to discover its solution...]

Put another way, what distinguishes the answer-maximizing justification
for “V = Ultimate-L” from other extrinsic justifications is the lack of
accountability to an external criterion of set-theoretic truth. [26, p. 615,
my emphasis]

The canonical models approach provides answers to problems, but no guarantee
that its answers are solutions.

14They cannot be solutions in general. A salient example is the theorem [2] that relativizing the
Millennium Prize problem whether polynomial time is nondeterministic polynomial time to oracles
cannot solve it: there are oracles A,B such that PA = NPA and PB 6= NPB .

15Fine structure theory originates in work of Boolos and Putnam [4] analyzing when new reals
appear in L. Jensen [20] developed and applied the fine structure theory of L.
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3 Truth in mathematics

I will now rationally reconstruct the notion of mathematical truth operative in the
canonical models research program and its solution to CH. The notion is, I believe,
just the ordinary one, the one operative in analytic number theory or algebraic
topology. My reconstruction will draw on elements familiar from philosophy and
logic.

The first element is Tait’s observation that proof is our criterion for truth in
mathematics ; holding in an intended model is not [43]. In the sequel I will treat the
arguments of [43] as sound and the resolution to the Truth/Proof problem—“what
has what we have learned or agreed to count as a proof got to do with what obtains
in the system of numbers?” [43, p. 341]—as given:

This problem arises because there seem to be two, possibly conflicting,
criteria for the truth of a mathematical proposition: that it hold in the
relevant structure and that we have a proof of it. The first step of the
resolution is to see that the first criterion is not a criterion at all. The
appearance that it is arises from the myth of the Model-in-the-Sky, of
which we must—but do not seem to—have some sort of nonpropositional
grasp, with reference to which our mathematical propositions derive their
meaning and to which we appeal to determine their truth. The fact is that
there are no such Models; there are only models, i.e., structures that we
construct in mathematics. Our grasp of such a model presupposes that
we understand the relevant mathematical propositions and can determine
the truth of at least some of them - e.g., those whose truth is presupposed
in the very definition of the model. Thus, rather than saying that holding
in the model is a criterion for truth, we would better put it the other
way around: being true is a criterion for holding in the model.
[43, p. 355, emphasis mine]

Tait’s observation concentrates attention on the assertability conditions operative in
mathematics: One is warranted to claim that a proposition is true just in case one
can prove it. To return CH to mathematics—to treat it as an ordinary mathematical
problem, as I see the canonical models researchers as doing—we cannot deviate
from these assertability conditions when it comes to CH. In particular, justifying an
answer to CH by appealing to anything external to mathematical activity (like a
Model-in-the-Sky) against which that activity is to be compared so as to determine
its legitimacy violates the assertability conditions.

The second element is Carnap’s internal/external question distinction, about
which he writes:
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If someone wishes to speak in his language about a new kind of entities, he
has to introduce a system of new ways of speaking, subject to new rules;
we shall call this procedure the construction of a linguistic framework for
the new entities in question. And now we must distinguish two kinds of
questions of existence: first, questions of the existence of certain entities
of the new kind within the framework; we call them internal questions;
and second, questions concerning the existence or reality of the system
of entities as a whole, called external questions. Internal questions and
possible answers to them are formulated with the help of the new forms of
expressions. The answers may be found either by purely logical methods
or by empirical methods, depending upon whether the framework is a
logical or a factual one. [5]

External questions are “philosophical questions concerning the existence or reality
of the total system of the new entities. Many philosophers regard a question of
this kind as an ontological question which must be raised and answered before the
introduction of the new language forms” [5]. But external questions do not admit of
answers; they are really pragmatic questions about whether to accept new language
forms. “The acceptance cannot be judged as being either true or false because it
is not an assertion. It can only be judged as being more or less expedient, fruitful,
conducive to the aim for which the language is intended” [5].

I want to use the internal/external distinction because it is intended to apply
in the context of formal systems, and set theorists tacitly use the distinction when
answering questions about problems independent of ZFC. When asked “Do Suslin
trees exist?”,16 a set theorist will respond by internalizing the question to different
theories. Internal to the theory ZFC + V = L, there are Suslin trees; internal to the
theory ZFC+ Martin’s Axiom, there are none. There does not seem to be a sense in
which this question could be intended prior to internalizing to some theory. A lot
of theoretical apparatus has to be in place to even formulate the question.17 On the
other hand, it is trivial to prove in set theory that there are sets. Asking “But do

16A Suslin tree is a tree of height ω1 whose branches and antichains are all countable.
17Mathematics has been embedded in our ways of life for millennia. I view the mathematical

activity of the Babylonian surveyors, the human computers of ancient China, the Islamist mathe-
maticians in the middle ages, the Italian merchants of the Renaissance, the 19th century analysts,
and so on as contributing to pinning down and developing theories of arithmetic, geometry, anal-
ysis, etc. which are now formalizable in ZFC. Their mathematics, often computational rather than
proof-based, was carried out in informal theories which their problems were internalized to. The
theories may have evolved, but the correctness of their solutions seems not to have changed. This
stability of solutions gives mathematics its peculiar cumulative character, and distinguishes the
informal theories from theories in other fields like e.g. astronomy, geoscience, or literary criticism.
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sets really exist?” is to insist on the meaningfulness of an external question.
Finally, what theory should we internalize mathematical questions to by default?

We have come to internalize number theoretic questions to Peano Arithmetic, whose
intended interpretation18 is the natural number system. One reason we do this is
that intended interpretations are characteristically fully determinate. For example,
the (non-recursively enumerable) theory True Arithmetic is the set of sentences which
are true in the intended interpretation of Peano Arithmetic, and problems which are
formally independent of Peano Arithmetic are nonetheless believed to have truth
values when evaluated in the intended interpretation—they or their negations are
included in True Arithmetic. Evidence that we understand the intended interpreta-
tion of Peano Arithmetic includes the fact that there are no divergent arithmetics
and our recognition of the correct extensions of Peano Arithmetic (like Second Or-
der Arithmetic) that solve independent-from-Peano-Arithmetic problems (like the
Paris-Harrington principle19).

What if we were to do the analogous thing, internalizing set theoretic questions
to the theory of the intended interpretation of set theory? (We’d like to treat CH as
ordinarily as any number theoretic problem, after all.) A key point—crucial to Tait’s
observation above and to refuting Feferman’s claim that the canonical models solu-
tion rests on metaphysical assumptions—is that interpretations are specified within
mathematics.20 For example, Gödel’s universe L is an interpretation of the language
of set theory,21 and it is rigorously specifiable within an ambient set theory.

The idea I would like to pursue is that we are looking for a theory to internalize CH
to, and the mark of the right theory is its ability to specify the intended interpretation
of the language of set theory.

18The intended interpretation of a formal theory is the interpretation—the assignment of meaning
to the symbols of the theory’s signature—that motivates the study of the theory.

19For any integers n, k,m > 0 with m ≥ n, there is N > 0 such that for any coloring of the
n-element subsets of {1, 2, 3, . . . , N} with k-many colors, there is Y ⊆ {1, 2, 3, . . . , N} of size at
least m such that the coloring is homogeneous on Y and the number of members of Y is at least the
minimum element of Y . Paris and Harrington proved that this principle is independent of Peano
Arithmetic.

20The emphasis on theory keeps clear that we are not concerned with a Model-in-the-Sky, or
anything which we would require nonpropositional grasp of, only with models that can be built in
the theory. The theory the canonical models researchers are building both allows one to define the
intended interpretation and is satisfied in that intended interpretation. Since theories are ultimately
what mathematics is done in, that there may be e.g. countable models satisfying the theory of the
intended interpretation is immaterial under this methodology. It brackets philosophical questions
of determinate reference of mathematical language.

21Indeed, L is the intended interpretation of ZFC + V = L.
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3.1 A feedback loop

The only way to proceed in determining the intended interpretation is by working
from within, with set theory being our “Neurath’s boat.” In this process, a certain
kind of conjecture occupies a central role. On this sense of conjecture, Mazur writes:

These conjectures are expected to turn out to be true, as, of course, are
all conjectures; their formulation is often a way of “formally” packaging,
or at least acknowledging, an otherwise shapeless body of mathemati-
cal experience that points to their truth. From these conjectures, impli-
cations may be perfectly rigorously made. Best, if the conjectures are,
loosely speaking, “testable”, or “falsifiable” in the sense that they im-
ply a stream of particular, numerical perhaps, predictions many of which
may be directly checked. But these conjectures are architectural in that
they play the role of “joists” and “supporting beams” for some larger
mathematical structure yet to be made. These conjectures sometimes
round out a field by being clear, general (but not yet proved) statements
enabling one to understand where a certain amount of on-going, per-
haps fragmentary, specialized work is headed; they provide a focus. Their
formulation sometimes serve to “allow the field to proceed”: a research
program may continue, conditional on the truth of these statements, in
order to see what lies further down the road. One effect of the formaliza-
tion of Conjecture is to give concrete language—“a local habitation and
a name”—to expectations, analogies, hoped-for constructions, etc., long
before the methods needed for their elucidation are available, giving us a
rich source of palpable “historical artifacts” about ideas at an early stage
in their development. [27, p. 199]

The canonical models program is a theory building endeavor progress in which hinges
on programmatic, often dichotomous conjectures.22 They are what the canonical
model researchers “test against.” Architectural conjectures provide the link between
the mathematics and the philosophy of the canonical models program, which interact
in the following feedback loop:

1. theorems that tell us about the universe of sets induce
22For example, much of inner model theory is conditioned on some form of the iterability conjecture

(see e.g. [38, Conjecture 6.5]). The conjecture that the hereditarily ordinal definable sets of models
of the Axiom of Determinacy satisfy the Generalized Continuum Hypothesis [42, Conjecture 8.2]
is an example of a programmatic conjecture which seems out of reach but guides contemporary
research. The Mouse Set Conjecture (see §5.2.4) is a “supporting beam.” The canonical models
solution is contingent upon (some version of) Woodin’s Ultimate L Conjecture.
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2. a philosophical23 idea of the nature of the universe of sets, which is distilled to

3. mathematically precise conjectures and test questions which are proved or re-
futed in the form of more

4. theorems that tell us about the universe of sets, which induce stronger. . .

That the philosophy is so closely intertwined with the mathematics is evidenced by
the technical nature of the axioms arrived at via this process.

The qualification that the theorems be about the universe of sets is due to the
fact that many theorems in set theory establish the relative consistency of various
mathematical states of affairs; they rarely establish that those states of affairs must
unequivocally hold in the universe of sets. The feedback loop generates stronger and
stronger theorems about V , leading to more and more theory.

3.1.1 Feedback in the canonical models research program

In this section I will illustrate the feedback loop at different levels of resolution
by giving a quasi-chronological account of the development of the canonical models
solution to CH. In doing so, I will meet the following criticism due to Lingamneni:

In the case for large cardinals, one is (meant to be) persuaded by the
goal of maximizing interpretive power, which leads to belief in the large
cardinal axioms and the discovery of truths such as [Projective Determi-
nacy]. In another perspective on the case [Peter Koellner’s], one comes to
believe that PD is true (e.g., because PD’s regularization of descriptive
set theory makes it the correct venue for analysts), and then one comes
to accept large cardinals because they are natural hypotheses from which
determinacy can be derived. Nor is it necessary to choose one “direc-
tion” for the argument to the exclusion of the other; the “web of im-
plications”. . . between the two classes of hypotheses leads naturally to a
picture where the beliefs in them are mutually supporting. The point is
that the web is not “free-floating”, but is anchored somewhere to the
ground: it rests on some external reason or reasons to believe that in
adopting large cardinals and determinacy, rather than V = L and defin-
able failures of determinacy, we have arrived at the right answer. . .
But in the case for “V = Ultimate-L”, neither the proposed axiom nor its
conjectured consequences (including 2ℵ0 = ℵ1) have a suitable external

23For some value of “philosophical.” ‘Informal’ would work here in a lot of cases, but sometimes
the informal ideas grow into philosophical views like “V is like the HOD of a determinacy model.”
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ground. The justification for CH is then essentially circular: 2ℵ0 equals
ℵ1 because we want to fix a value for it, and any value will do. This is
not a realist attitude to the continuum problem. [26, p. 615]

The feedback loop will provide the mutually supporting web of implications Lingam-
neni thinks is absent in the canonical models solution.

We begin with two theorems about V as input to the feedback loop.24 Gödel’s
universe L is the minimal universe of set theory.25 A universe M of set theory is
Γ-correct if whenever a sentence ϕ is of complexity Γ, then M |= ϕ implies that ϕ is
true in V . Any universe of set theory is Σ1

1-correct.

Theorem 3.1 (Shoenfield). L is Σ1
2-correct.

Shoenfield’s theorem tells us about how L relates to V and allows us to leverage
that relationship in arguments: For logically simple enough problems ϕ, it suffices to
solve ϕ in L, where one can appeal to its fine structure. If one can show that L |= ϕ,
then Shoenfield’s theorem implies that ϕ is simply true.

The second theorem is again about how L and V relate. We say that a model M
of set theory computes successors of singular cardinals correctly if (κ+)M = κ+ when
κ is a singular cardinal. 0# is a real number that cannot exist in L (it is the least
witness to the fact that L is a narrow universe of sets).26

Theorem 3.2 (Jensen’s Covering Lemma). If 0# does not exist, then L computes
successors of singular cardinals correctly.27

The covering lemma also gives rise to a form of argument used to gauge the logical
strength of certain mathematical statements. One shows that if the statement holds,
then L does not compute successors of singular cardinals correctly, and hence 0#

exists and the statement has fairly substantial large cardinal strength. The point of
describing the patterns of argument which Jensen’s and Shoenfield’s theorems give
rise to is to emphasize that they are useful, and their utility suggests that more
general versions of them might hold and would be desirable to have.

24This thread of the rational reconstruction (through Woodin’s generalizations below) follows
Steel’s 2001 talk “Inner model theory.”

25If M is a universe of set theory, then L ⊆M .
260# codes the theory of a unique club class of indiscernibles for L, and it exists if and only if

there is a nontrivial elementary embedding from L to itself. (Such an embedding cannot exist inside
of L.) The definition generalizes to other inner models, and in fact sharps can, with hindsight, be
viewed as mice, see [33].

27This is really weak covering [28]. The standard covering lemma says that either 0# exists, or
for any set of ordinals x, there is a set y ∈ L such that x ⊆ y and |y| = |x|+ℵ1. Weak covering can
hold of larger inner models than L.
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In modern terminology, Jensen’s theorem says that if 0# does not exist, then L
is the core model. Generally, the core model, denoted K, is the maximal canonical
inner model under an anti-large cardinal hypothesis. As Mitchell writes,

“the core model” is always singular: there is at most one core model in
any given model of set theory, and in particular there is at most one true
core model in the true universe of sets [29, p. 1490].

Significantly for my purposes, K is unambiguous : it is rigid,28 absolute,29 and
definable.30

Shoenfield’s theorem inspires the philosophical idea that truths in V reflect into
canonical universes, which in turn gives rise to the conjecture that larger canonical
models extend Shoenfield’s theorem to more complicated quantificational structure.
Woodin confirmed the conjecture for projective truths.

Theorem 3.3 (Woodin). If Mn(x) exists, then Mn(x) is Σ1
n+1-correct.31

Jensen’s Covering Lemma inspires the philosophical idea that under more gen-
erous smallness assumptions, the universe is approximated by a canonical structure,
which in turn gives rise to the conjecture that V is saturated with sharps for models
with Woodin cardinals. Otherwise V would be K under some smallness condition
which, as a consequence of commitment to large cardinals, the universe of sets does
not satisfy. Woodin confirmed the conjecture.

Theorem 3.4 (Woodin). Assume M#
n (x) exists for all x ∈ R. If there is an x ∈ R

such that M#
n+1(x) does not exist, then there is a fine structural inner model K that

computes successors of singular cardinals correctly.

What about canonical models containing more than Woodin cardinals? The loops
up to the Mn’s inspire more general philosophical ideas:

1. Larger canonical models are correct for larger rank initial segments of the
universe of sets.

2. The core model under no anti-large cardinal hypothesis is the universe of sets.

28There is no nontrivial elementary embedding from K to itself.
29“[T]he core model is absolute for a class of sentences which falls just short of including the

sentence asserting that there is a set not in that core model” [29, p. 1491].
30“The core models are uniquely defined by a formula which is absolute under set generic exten-

sions” [29, p. 1491]
31Mn(x) denotes the minimal inner model over the real x containing n Woodin cardinals.
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Here the loop almost halted. The Mn models are pure extender models,32 and
pure extender models containing Woodin cardinals are non-trivial generic extensions
of inner models. Moreover, they are built using iteration strategies, definable objects
which they provably cannot contain. V should satisfy the Ground Axiom33 (otherwise
why isn’t the inner model V ?), and it’s nonsense to say that the universe of sets is
constructed using a set which the universe of sets cannot contain. V cannot be a
pure extender model.

In the early 1990s, Steel proved that the class of hereditarily ordinal definable sets
(HOD) of L(R), assuming the Axiom of Determinacy (AD), is a pure extender model
up to rank Vθ. Woodin showed that the full HODL(R) is a hod mouse, a pure extender
model together with enough fragments of its iteration strategy that the model can
see how it iterates.34 Hod mice satisfy the Ground Axiom and thus address the
deficiencies in pure extender models, and their theory has been developed sufficiently
so that HOD of much stronger models of determinacy than L(R) have been analyzed.

But then there was an argument, based on a theorem of Woodin,35 that hod mice
must be small, that they can only witness middling large cardinal axioms.36 So they
would be of limited utility in concretely realizing the first philosophical idea. And
there was still no suggestion that there could be a core model under no smallness
assumption. Every canonical model, whether a pure extender model or a hod mouse,
had an associated smallness theorem to the effect that some large cardinal could not
exist inside it.

In the mid-1990s, Woodin showed that if the nonstationary ideal is ω2-saturated37

and there is a measurable cardinal, then the second uniform indiscernible38 is ω2.
Hence under these hypotheses there is a definable witness to the failure of CH. This

32A pure extender model, or pure extender mouse, is a model of set theory of the form L[ ~E],

where ~E is a coherent sequence of extenders, which is iterable. We refer the reader to [41, §1.3,1.5]
to unpack the definition.

33The statement that V is not a generic extension of an inner model.
34The Steel-Woodin analysis is the subject of [42]. A hod mouse or strategy mouse is a model

of set theory of the form L[ ~E,Σ], where again ~E is a coherent sequence of extenders and Σ is an

iteration strategy for L[ ~E,Σ].
35Namely that no cardinal can be strong past a successor Solovay point θα+1 in HOD of a

determinacy model.
36It was thought they could not have extenders overlapping Woodin cardinals on their extender

sequences.
37The nonstationary ideal on ω1 is the set of all nonstationary (intuitively, ‘negligible’) subsets

of ω1. Its being ω2-saturated means that there is no family of ω2-many stationary subsets of ω1 all
of whose pairwise intersections are nonstationary.

38Suppose x# exists, for all reals x. (x# codes the theory of indiscernibles for L[x].) Then a
uniform indiscernible is an indiscernible for L[x], for all reals x.
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was achieved by forcing over the canonical model L(R), assuming ADL(R), in such a
way that the resulting generic extension remains canonical. The metamathematical
properties of the model established in [48] made it arguably the most compelling
alleged solution to CH to date. But a connection between the generic extension
of L(R), which is a narrow inner model, and V was lacking, and the theory of
the generic extension had counterintuitive consequences: The theory of third order
arithmetic in the model is Turing reducible to the theory of second order arithmetic.
The definable counterexample to CH is obtained, roughly, by greatly simplifying
third order arithmetic in the model. The idea that third order arithmetic is no more
complex than second order arithmetic seems to conflict with intuitions about how the
power set generates new complexity. It is notable that despite its counterintuitiveness,
this reducibility did not lead to the abandonment of the canonical ¬CH model.

Then in the 2000s, Woodin proved a theorem [49, Theorem 3.26] which opens the
door to the possibility of a core model with no anti-large cardinal hypothesis. It says
that if there is a canonical model that is “large enough,” then that model is “as large
as” V . Given the purported limitations on hod mice, however, the theorem could’ve
been vacuous.

A few years later, Sargsyan identified a gap in the argument that hod mice must
be small. The canonical ¬CH model was abandoned, hod mice pursued, and a general
correctness principle—the axiom V = UItimate L—formulated. The foreword to the
second edition of [48] is explicit:

recent results concerning the inner model program undermine the philo-
sophical framework for this entire work. The fundamental result of this
book is the identification of a canonical axiom for ¬CH which is char-
acterized in terms of a logical completion of the theory of H(ω2). . . But
the validation of this axiom requires a synthesis with axioms for V itself
for otherwise it simply stands as an isolated axiom. . . I remain convinced
that if CH is false then the axiom (∗) holds. . . But nevertheless for all the
reasons discussed at length in [47] I think the evidence now favors CH. . .

The picture that is emerging now. . . is as follows. The solution to the inner
model problem for one supercompact cardinal yields the ultimate enlarge-
ment of L. This enlargement of L is compatible with all stronger large
cardinal axioms and strong forms of covering hold relative to this inner
model. At present there seem to be two possibilities for this enlargement,
as an extender model or as a [hod mouse]. There is a key distinction
however between these two versions. An extender model in which there
is a Woodin cardinal is a (nontrivial) generic extension of an inner model
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which is also an extender model whereas a [hod mouse] in which there
is a proper class of Woodin cardinals is not a generic extension of any
inner model. The most optimistic generalizations of the structure theory
of L(R) in the context of AD to a structure theory of L(Vλ+1) in the
context of an elementary embedding,

j : L(Vλ+1)→ L(Vλ+1)

with critical point below λ require that V not be a generic extension of
any inner model which is not countably closed within V . Therefore these
generalizations cannot hold in the extender models and this leaves the
[hod mice] as essentially the only option. Thus there could be a compelling
argument that V is a [hod mouse] based on natural structural principles.
[48, p. 19, emphasis mine]

My emphases bear out the rational reconstruction regarding the pivot from axiom
(∗) and the primacy of hod mice. Without knowing that axiom (∗) could be forced
over V (“synthesized with axioms for V ”), the case for the alleged negative solution
to CH was incomplete. But the theorem that the inner model for a supercompact car-
dinal, if it exists, is the core model under no smallness assumption rendered this issue
moot. Woodin raises the ideas that V is a hod mouse and that this may follow from
a natural conception of the universe of sets which is grounded in the mathematics.

The change of mind recorded in this passage follows mathematical developments.
No pre-theoretic or external notions are appealed to; everything is internal to the
theory that’s being developed, and it’s concerned with building an intended inter-
pretation of set theory.

3.1.2 The first word

Why should the feedback loop be initiated on these as opposed to other first princi-
ples, theorems, and concepts? Transposing Austin [1], our common stock of first
principles—the ZFC and large cardinals axioms—embodies resources and modes
of reasoning mathematicians have found worth using and the theorems they have
thought worth proving in the lifetime of many academic generations. “They are
likely to be more numerous, more sound, since they have stood up to the test of
the survival of the fittest”—producing and systematizing good mathematics—“and
more subtle, at least in all ordinary and practical mathematical matters”—since they
arose in response to mathematical need—“than you or I are likely to think up in our
armchairs of an afternoon—the most favoured alternative method” [1, p. 130]. They
are the first word. (We have to start with something, after all.) They are not the
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last word: The feedback loop generates new concepts and conjectures and theorems
governing them. These new concepts are tethered; they do not come out of nowhere.
No mathematics comes out of nowhere.

What if set theory had evolved differently? Pudlák has us wonder

what would have happened if Cantor had not become interested in in-
finite cardinals, continued his research in analysis and discovered the
determinacy principle. Imagine that the Axiom of Determinacy had been
introduced first, and before the Axiom of Choice was stated the nice
consequences of determinacy, such as measurability of all sets, had been
proved. Imagine that then someone would come up with the Axiom of
Choice and the paradoxical consequences were proved. Wouldn’t the situ-
ation now be reversed in the sense that the Axiom of Determinacy would
be ‘the true axiom’, while the Axiom of Choice would be just a bizarre
alternative? [32, p. 221]

Doesn’t Pudlák’s thought experiment raise—without semantic ascent—a skeptical
worry about taking our concepts as given? Couldn’t we have different concepts and
intuitions?

I will address this with a point particular to AD, and then I will argue that the
point is, on our current state of knowledge, more general than it first seems. It will
be clear that I am skeptical of the import of such counterfactuals. (A “What if...?”
question about ways mathematics could have developed or how our mathematical
beliefs could purportedly have been different should be accompanied by a “Why
didn’t...?” or “Why don’t we...?” question.)

AD never inspired foundational conflict because it was from its inception conjec-
tured to hold in the inner model L(R). If AD had been discovered before Choice,
I’d expect a development symmetric to the actual development of set theory to take
place. We would work in a universe satisfying AD. In the course of developing deter-
minacy theory, it would be noticed that Choice holds in HOD.39 It would eventually
be proved that ωV1 is measurable in HOD. Further large cardinal properties of cardi-
nals in HOD would be researched. The discrepancies between measure large cardinals
under AD and embedding large cardinals under Choice would be scrutinized. If it was
observed that the embedding large cardinals “outstrip” AD in terms of consistency
strength,40 and the theorems saying that models of AD are “small” were proved, the

39HOD being the natural apotheosis of our concept of definability.
40The strongest determinacy theories known today are weaker than a Woodin limit of Woodin

cardinals, which is much weaker than a supercompact cardinal. It was conjectured that the theory
ZF + ADR + “ω1 is supercompact” is equiconsistent with a Woodin cardinal which is a limit of
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picture would likely invert: Choice holds in the ambient universe, which extends be-
yond the universe of AD we initially worked in. The reasons why Choice was actually
accepted—why shouldn’t we still want to prove Tychonoff’s theorem, in Pudlák’s
world?—would likely come into play.41

Even if the picture did not invert to what we have now, we already have a sense
of what it would be like if ZF + AD were our foundational theory, for the Cabal set
theorists produced an enormous body of celebrated AD research [22, 23, 24, 25].42

That research continues today. The canonical models program is an extension of it
[41, 49]. There is thus reason to believe that in Pudlák’s world, research effort would
eventually be directed at defining canonical models for large cardinals.

I do not see that we would have fundamentally different set theoretic concepts in
Pudlák’s world. (About intuitions, see the next remark.) Now for the general point.
There are few strong foundational theories which rest on fundamental conceptual
advances in set theory: large cardinals, inner models, determinacy, and forcing ax-
ioms. They and their relations with each other have been extensively studied by set
theorists. They are not disjoint; they are interwoven. While there is historical con-
tingency in the actual development of set theory, as in everything, that contingency
does not entail that the concepts themselves are contingent in the way the skeptical
worry suggests they might be. The worry would be more compelling if there were
more new fundamental ideas 1) embodied in strong foundational set theories but 2)
not interwoven with the others. Speculating about whether there are such ideas and
what that would entail for set theory is interesting, but one cannot do mathematics
with such speculations. They are not the first or the last or any word.

Remark 3.5. [6] identifies two ways in which Gödel may have led us down a gar-
den path: by adopting Russell’s regressive method and advocating for intuitions as
justifications for mathematical beliefs. In Russell’s regressive method, possible first
principles are adjusted in response to how well their implications fit with intuitions
in a supposed analogy with how physical laws are adjusted in response to how well
they fit observations. The authors of [6] claim “There is agreement on the data to
be systematized in the scientific case that has no analog in the mathematical one”

Woodin cardinals, or a proper class of such cardinals. This was recently refuted [identifying citation
removed]. Yet for all we know right now, determinacy theories may be cofinal in the consistency
strength hierarchy. If so, with sufficient resources devoted to AD research, perhaps they would be
discovered in Pudlák’s world, in which case we may skip to the next paragraph.

41It is significant that even the most vocal opponents of Choice like Baire, Borel, and Lebesgue
used Choice unwittingly in their mathematical work [30, §1.7], whereas I am not aware of anyone
unwittingly using AD in an argument.

42This is not to say that we know what e.g. topology looks like under AD to anywhere near the
extent that we should in Pudlák’s world.

19



[6, p.1]. [6, §9] concludes that rather than being akin to empirical science, mathe-
matics and philosophy are on a par as “armchair” endeavors because of what the
authors take to be essential reliance of justification in mathematics and philosophy
on conflicting intuitions.

But there is data about which there is widespread agreement and which needs
to be systematized in the mathematical case—namely, theorems! In my rational re-
construction, it is crucial that the feedback loop acts on theorems about V , that it
stakes its development on conjectures and theorems, that it operates internal to the-
ory. This eliminates the appeals to intuition that [6] argues do not form a common
ground among mathematicians in the way empirical observation does for researchers
in physical sciences. (Recall that the highly counterintuitive reducibility in the canon-
ical ¬CH model did not lead to its being abandoned.) The only intuitions that play
a role in the reconstruction are the intuitions that lead an advisor to think it is
reasonable to assign a problem to a PhD student, or which suggest a conjecture, a
strategy for tackling a problem, an estimation of how far current methods are from
yielding a proof of a conjecture, etc. Justifications of our mathematical beliefs do not
depend on systematizing these intuitions.

The feedback loop leading to the canonical models solution to CH is not an
instance of the regressive method, and the notion of solution below treats CH as
a paradigmatic mathematical problem. An implication of this paper, then, is that
philosophy and mathematics are not on a par, or at least not in virtue of mathe-
matical justification intrinsically involving conflicting intuitions or bottoming out in
disputes over them. (It would be more correct to say that many mathematicians,
when philosophizing, do what many philosophers do—appeal to their intuitions.) a

3.2 Responses to Lingamneni’s objections

The Arbitrary Decision objection assumes a pre-theoretic notion of mathematical
truth as in a correspondence theory of reference.43 Hence the insistence on an “ex-
ternal criterion of set theoretic truth” which a solution to CH should be answerable
to. On such a view, the canonical models solution seems to be a reframing, rather
than what I take it to be, namely a clarification.

The thrust of Tait’s observation is that there is no such external criterion of
mathematical truth. The criterion for truth is proof in the theory of the intended

43Feferman’s argument that CH is inherently vague [10] appeals explicitly to a pre-theoretic idea
of arbitrary set of natural numbers. According to Feferman, his idea cannot be faithfully internalized
to a theory; any internalization changes the subject. His argument depends on an external question
being meaningful.
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interpretation of the language. Once we eschew the idea of an external criterion,
we can better see what the canonical models solution does: It gives the criterion
of truth—proof in the theory of the intended interpretation, i.e. from the axiom V
= Ultimate L together with large cardinals—and the solution to CH in tandem. It
builds the apparatus necessary for something to even count as a solution to CH in
the course of deciding CH.

To ask “But is CH really true?” is to insist on the meaningfulness of an ex-
ternal question. There is no possibility of an answer which is not a “reframing.”
Every mathematical problem is internalized to, or mediated by, a theory. Theories—
whether pebble arithmetic or the strongest set theories—provide the resources to
even articulate problems.

An external criterion of truth is unnecessary for problems to have the character of
admitting discoverable solutions. What gives a mathematical problem the character
of discoverability is its being internalized to a theory in which the intended inter-
pretation of the relevant language is specifiable. The structural analysis Lingamneni
thinks our conception of the universe of sets does not support is our only known
means of achieving the determinateness that is required of an intended interpre-
tation of the language of set theory. To treat CH as an ordinary problem with a
discoverable solution, it is sufficient to admit a fine structural analysis. It is likely
fine structure is necessary for this purpose (see §5.2).

What of the fact that from Ultimate L one can in the generic multiverse access
universes of sets in which CH is false? The Reframing objection is that this leaves
CH open, for it seems to acknowledge that the problem has merely been reframed in
a designed situation. On the contrary, it shows that Ultimate L provides foundations
for the practice, which often involves studying aspects of problems by working under
various hypotheses. We will return to this in §4.1.

4 What it is to be a solution to the Continuum

Hypothesis

The solution to CH consists of

1. a fully determinate interpretation of the language of set theory,

2. argument for why it is the intended interpretation,

3. all of the mathematics needed to specify that interpretation,

4. a proof/refutation of CH in the theory of that interpretation, and
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5. a way of accessing models of incompatible/false theories.

A few remarks are in order.

Remark 4.1. Showing that the theory is implied by some of its signature
consequences—that it is necessary for those consequences—will justify the use of
the definite article. a
Remark 4.2. All that’s missing in the solution to RH is item 4. This is why number
theorists seem like fish in water, compared to set theorists—all the conditions that
need to be in place for us to have a notion of what a definite solution to a number
theoretic problem is are there. Number theorists do not have to think about them.
The situation with respect to RH would be exactly analogous to CH if a commu-
nity of mathematicians in the year 800 C.E.—largely prior to the actual historical
development of the informal theory that we have formalized as Peano Arithmetic—
developed all of the mathematics needed to obtain a solution to RH and solved it.
They would have to do what the canonical models set theorists are doing now—
develop mathematics sufficient to solve RH from within. a
Remark 4.3. This notion of “solution” is expansive. It is not just a proof in a for-
mal theory. It includes the justifications given for the theory used and puts strong
requirements on that theory. a

4.1 Ghosts in the house of mathematics

Conjectures can function as promissory notes, to be cashed later [27]. Until the
Riemann Hypothesis is proved, researchers may entertain both possible outcomes.
Littlewood assumed the Riemann Hypothesis and its negation in a proof by cases to
show that the differences between (a) the asymptotic estimates on the distribution
of prime numbers given by the prime number theorem and (b) the actual numbers
change sign infinitely often. Today, number theorists study strong counterexamples
to the Riemann Hypothesis called Siegel zeros or exceptional characters, despite the
widespread belief that they will, in the end, not exist. An interesting fruit of this
labor is Heath-Brown’s theorem [19] that either the Twin Prime conjecture is true,
or there are no Siegel zeroes.

But once the Riemman Hypothesis is resolved, on the standard picture the ex-
perience researchers have accrued investigating the outcome that does not obtain
will be revealed to have been illusory, like assumptions in reductios. Friedlander and
Iwaniec write

Sometimes it almost seems as though there is a ghost in the House of
Prime Numbers. Perhaps that will be ruled out some day. There are
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suggestions of a youngster who might do this, one who will come from
the Automorphic Room of the house. In the meanwhile, happy-go-lucky
prime counters remain temporarily free... to base some fantastic theorems
on either of the two assumptions (that exceptional characters exist or
don’t exist), whichever one their superstitions dictate. [13]

Once one of the assumptions is ruled out, we will see that, e.g., the distribution of
primes “necessarily” couldn’t be as chaotic as that entailed by the nonexistence of
Siegel zeros. Siegel zeros will be “wiped out,” revealed to be ghosts, and the theorems
proved assuming they exist will be vacuous. There is no divergence in number theory.

CH does not seem to conform to this picture. While one of RH or ¬RH is pre-
sumably inconsistent with the axioms of mathematics, ZFC + CH and ZFC + ¬CH
are each consistent if ZFC is. It is nearly trivial to transform a model of one to a
model of the other. There are thousands of theorems proved assuming hypotheses
that entail CH or ¬CH. If CH is true, are all of the ¬CH theorems really vacuous?
The feeling that they are not motivated Hamkins to issue the following challenge.

My challenge to anyone who proposes to give a particular, definite an-
swer to CH is that they must not only argue for their preferred answer,
mustering whatever philosophical or intuitive support for their answer as
they can, but also they must explain away the illusion of our experience
with the contrary hypothesis. Only by doing so will they overcome the
response I have described, rejection of the argument from extensive ex-
perience of the contrary. Before we will be able to accept CH as true, we
must come to know that our experience of the opposing ¬CH worlds was
somehow flawed; we must come to see our experience in those lands as
illusory. [17, p. 144]

The challenge as I understand it is to explain how the self-consistent scenarios in
which CH is false are in fact not possible. This accountability is very unlike what
will be required of a solution to RH. We seem to have identified the fundamental
distinction between RH and CH: The solution to CH must not “wipe out” the work
done under its contrary—there are no ghosts in set theory—whereas on the standard
view, the solution to RH will wipe out the work done under its contrary.

The standard view, however, is wrong. Suppose RH is true and is proved in ZFC.
RH is equivalent to a Π0

1-sentence [7], and hence it is provably equivalent in Peano
Arithmetic to Con(T ) for some formal theory T .44 Suppose for sake of argument that

44From the independence of a Π0
1-sentence we can essentially infer its truth: If RH is independent

of ZFC, then counterexamples cannot be found in ZFC. An independent Π0
2-sentence of intrinsic
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RH has enough logical strength that it is independent of the subsystem of second
order arithmetic ACA0. Then there is a model of ACA0 + ¬RH, and in that model
we can study the computable properties of the prime counting function, the rate of
growth of arithmetical functions, Siegel zeros, etc. All that distinguishes RH from
CH is the historical accident that RH is researched in an ambient theory in which

1. it promises to be determinate because the categorical intended interpretation
of the complex number structure is articulable, and

2. models of ACA0 + ¬RH are given.

That is, RH is investigated internal to the theory we intend, the one that accounts
for all the mathematics of the problem, whereas we’re still trying to figure out which
theory we mean when it comes to third order arithmetic (where CH “lives”) and
above. But there are weaker theories in which ¬RH can be meaningfully studied.
Once there is a ZFC-proof of RH, we will retroactively understand ¬RH research as
having taken place in models of such theories.45

Nothing I have said is particular to RH or CH, either. Call a mathematical prob-
lem almost analytic if its negation is refuted in the first theory it is expressible in.
In other words, a problem is almost analytic if we cannot meaningfully entertain its
negation.

Remark 4.4. Here are two examples of almost analytic problems.

1. The Strong Downward Directed Grounds Hypothesis is first statable and prov-
able in ZFC.

2. ATR0 and Σ1
1-Separation bear this relationship because they’re actually equiv-

alent [36, Theorem V.5.1], and ATR0 is essentially the first place where Borel
sets can be reasoned with. a

An almost analytic problems is nontrivial if it is not equivalent to a “comprehen-
sion jump.”

Conjecture 4.5. The nontrivial almost analytic problems are sparse in the space of
mathematical problems.

interest would arguably undermine the picture of unambiguous arithmetical truth, for this inference
doesn’t go through. Are there any?

45I say “will” because the Riemann Hypothesis is expressible but unlikely to be provable in I∆0.
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That is, almost all problems are like CH or RH in that the theory in which
they first become provable is much stronger than the theory in which they are first
expressible, and the experiences we have with the negations of their truth values as
in our default theory are captured in models of subtheories they are independent
over and in which they take the opposite truth value. We can meaningfully entertain
their contraries, even if we need bounded arithmetics to do so.46 There is nothing to
explain away.

4.2 Comparison with Hamkins’ notion of solution

The other notion of solution to CH in the literature is due to Hamkins.

On the multiverse view the continuum hypothesis is a settled question,
for the answer consists of the expansive, detailed knowledge set-theorists
have gained about the extent to which the CH holds and fails in the mul-
tiverse, about how to achieve it or its negation in combination with other
diverse set-theoretic properties. . . . the point is that the most impor-
tant and essential facts about CH are deeply understood, and
it is these facts that constitute the answer to the CH question.
[17, my emphasis]

As the challenge quoted above attests, Hamkins thinks any stronger or more tradi-
tional notion of solution will “wipe out” our experience in contrary universes of sets.
I’ve just argued that this aspect of the conception of ordinary mathematical inquiry
is mistaken. If I’m right, we can replace ‘CH’ with ‘RH’ in this passage. If having
models of a sentence and its negation means that there is no fact of the matter about
that sentence, then there is no fact of the matter about RH. The “solution” to RH
would then be all the ways of internalizing the question. But this is not at all what
mathematicians mean when they talk about solving RH. Hence it shouldn’t be what
we mean by “solving CH.” On my view, Hamkins’ notion confuses aspects of the
problem revealed in different ambient theories with the problem’s solution.

46[11] is an example of a the kind of research I am describing: Proofs of simple enough facts from
the (false) hypothesis that the unit ball in a Hilbert space is strongly compact can be correct, for
any proof that the unit ball is not strongly compact must be complicated. Working below that level
of complexity, one can derive true facts from the false hypothesis.

As another example, Nelson’s [31] develops mathematics in theories in which exponentiation is
not total. There are prospects for solving P vs NP—not merely studying aspects of the problem
but solving it—by studying the growth of functions in models of such theories.
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5 Conclusion

I’ve argued the Continuum Hypothesis is an ordinary mathematical problem in the
same sense that the Riemann Hypothesis is. In particular, it is not to be arbitrarily
decided by the mathematical community, and it does not require that the meaning of
“solution” be revised. And I’ve argued that the canonical models solution does not
arbitrarily decide CH. It provides the conditions that have to be in place for there
to be a solution, together with the solution.

The aim of this final section is to argue that even if Ultimate L does not exist, the
eventual solution to CH, if there is one, will be more like it than not: It must specify
the intended interpretation of the language of set theory. This is a controversial claim;
aside from the canonical models solution, no alleged solution to CH is global in this
sense. I will put forward some mathematical questions having to do with the vague
question whether the only way to specify the intended interpretation is to provide a
fine structure. §5.2 is much more technically demanding than the preceding.

5.1 Intended interpretations of nth order arithmetic

During the canonical ¬CH model phase, Woodin wrote

. . . the incremental approach [towards solving CH] comes with a
price. What about the general continuum problem; i.e. what about
H(ω3), H(ω4), H(ω(ω1+2010)), etc.? The view that progress towards resolv-
ing the Continuum Hypothesis must come with progress on resolving all
instances of the Generalized Continuum Hypothesis seems too strong.
The understanding of H(ω) did not come in concert with an understand-
ing of H(ω1), and the understanding of H(ω1) failed to resolve even the
basic mysteries of H(ω2). [46, p. 690]

The view I’m advocating is a strong view. Allow me to motivate it.
First, the notion of solution I’ve put forward is more expansive than “proof of

the relevant implication.” Our understanding of H(ω1) Woodin alludes to is given
by Projective Determinacy and involves, on my view, the Martin-Steel proof of PD
from large cardinals, the core model induction results that collectively imply that
essentially any theory as consistency-wise strong as PD implies that PD is true, and
so on. Thus the intended interpretation of second order arithmetic requires for its
specification large cardinals in V . The solution yields a local principle but is not
itself local to H(ω1).

Not only is PD not as local as it superficially seems, but its being implied by large
cardinals is atypical. Large cardinals do not settle the theory of H(ω2). Arguments for
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local principles deciding the theory of H(ω2) will be weaker, and it’s not guaranteed
that a given theory of H(ω2) will be compatible with the “best justified” theory of
H(ωn) in the way that the theory of H(ω1) is. They stand incomplete, and we don’t
know how or if they fit into the intended interpretation.

The looser relationship with large cardinals is part of what lies behind the second
reason for the global requirement: Various alleged local solutions to CH are mutually
incompatible. This state of affairs arises because the solutions do not put enough in
place. A pessimistic metainduction here tells us that we have no reason to believe
any of the local alleged solutions are on the mark. And a big reason for that lies
behind the third reason: Unlike first and second order arithmetic (analysis), third
order arithmetic isn’t entrenched in our way of (mathematical) life sufficiently that
we have intuitions to guide us in its development in isolation from the rest of set
theory. This is to say nothing of e.g. 12th order arithmetic.

Finally, given how long CH has been open, to work incrementally on CH, then
(2ω)+, then (2ω)++, and so on, is to punt on values of the continuum function beyond
some small finite number of successors of (2ω). It is to tacitly accept that higher set
theory is meaningless. That cannot be correct insofar as the local solutions require
resources from higher set theory for their justifications.

5.2 Fine structure

I will counter an immediate objection to the account in §5.2.1. The remainder of the
paper is a discussion of the following questions:

1. Is fine structure necessary for solving some particular problems?

2. Can something akin to fine structure arise from non-inner-model-theoretic or
non-invariant processes?

3. Must any invariant way of producing models be fine structural?

5.2.1 The L versus L[c] problem

Underlying Lingamneni’s arguments is the question: Why should a fine structural
interpretation of the language of set theory win by (what seems to be) default? I’ve
intimated the apparent uniqueness of fine structure as a means of eliminating ambi-
guity from the language of set theory and will expand on it below. It seems that fine
structure is constitutive of global alleged solutions, and I’ve argued that the solution
to CH will be global in character, if it exists.
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But there seems to be a further worry, namely that a fine structural interpreta-
tion of the language of set theory cannot win by default: Small generic extensions of
fine structural models inherit fine structure from the ground model. Let c be a real
which is Cohen generic over L. Then L[c] has a fine structure, and CH may be false
in L[c].47 Similarly, while CH is true in Ultimate L, it is false in the generic extension
of Ultimate L by ℵ2-many Cohen reals. Why is Ultimate L the privileged venue for
evaluating CH? Why one fine structural interpretation of set theory rather than the
other? All that I’ve pointed to is the determinateness of the intended interpretation
given by the canonical models solution, but if that solution pans out, we can gener-
ically extend it to a new determinate interpretation. This is the reframing objection
restricted to fine structural universes.

As with the original reframing objection, there are multiple reasons this incarna-
tion is not compelling. First, while it may be an interesting question whether there
are Ultimate L-generic Cohen reals, it’s not a question evidence will ever bear on.
We can dismiss it out of hand. Second, fine structural models are built without ar-
bitrarily coding information into their extender sequences. They’re ‘unbiased’. The
only reason to propose V = Ult− L[c] is if you’re biased towards ¬CH.48

Third, there is an asymmetry in that we can distinguish Ultimate L from its
generic extensions in a principled way. For example:

Theorem 5.1. Assume AD+. Suppose

HOD |= “there exist arbitrarily large Woodin cardinals.”

Let c be a Cohen real generic over HOD. Then

HODc |= V = Ult− L.

And in the Ult− L[x] case, where x is more complicated than a Cohen real,
HODUlt−L[x] will be a “corruption” of the usual fine structural HOD:

Theorem 5.2. Suppose V = Ult− L[x]. Then HOD is a hybrid mouse with an extra
Woodin cardinal at the bottom, together with a fragment of its iteration strategy at
its first Woodin cardinal.

47But the theory of L[x], for x ∈ R, stabilizes on a Turing cone, and CH is in this theory, so there
is a principled reason to dismiss L[c] as a viable candidate for V (apart from its smallness). We will
do the same for small generic extensions of Ultimate L below.

48I will use the notion V = Ult− L for the axiom V = Ultimate L to make statements of theorems
cleaner.
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Generally, we can distinguish the small forcing extensions of hod mice by the fact
that they do not satisfy the Ground Axiom:

Theorem 5.3. Assume AD+. Then for a Turing cone of x,

HODx 6|= the Ground Axiom.

Finally, there is a crucial methodological asymmetry: To define the generic ex-
tensions of a canonical model, we need to antecedently know the canonical model.
L[c] wasn’t discovered before L was defined, and that’s not an accident of forcing
being discovered after Gödel specified L. The natural model conceptually precedes
its generic extensions. It is also worth noting that once it is forced that V 6= L, it
cannot then be forced that V = L, and this generalizes to larger canonical models.

5.2.2 Is fine structure necessary for solving some particular problems?

It is mostly futile to predict methodological developments in mathematics, so I will
state two basic questions one can ask about a given model of set theory which so far
have exclusively been answered using fine structure.

(1) Does V = HOD hold?

With respect to the natural models in which V = HOD holds, the proofs utilize
fine structure. In many cases, like in AD+ models, HOD in turns satisfies V = HOD,
and the arguments establishing this are again fine structural. Unless V = HOD is
adopted as an axiom, it’s likely that any explanation of where the wellordering of
the reals comes from will need to appeal to fine structural analysis.

If V 6= HOD holds, what is HOD? Is it describable as a canonical structure?
What is HODHOD, and so on? For example, HODL[x] 6|= V = HOD, but it’s “HODs

all the way down” in the sense that in L[x], HOD 6= HODHOD 6= HODHODHOD

. . . The
problem in this situation is that the mantle of L[x] is not a ground.49 Sufficient large
cardinals rule this out and ensure that V = HOD persists to the mantle.

Theorem 5.4. Assume there is an extendible cardinal. If V = HODA for some set
A, then M |= V = HOD.

(2) Is there is a (Σ2
1)

Hom∞-wellordering of the reals?

49A transitive class W is a ground of V if there is a forcing notion P and a filter g ⊆ P generic
over V such that V = W [g]. The mantle is the intersection of all the grounds of V .
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Even if a theory does not imply there is a (Σ2
1)

Hom∞-wellordering of the reals,
there’s still the natural question How many (Σ2

1)
Hom∞-in-a-countable-ordinal reals

are there?, and it’s reasonable to believe that this can only be answered with a fine
structural analysis. This is not an idle question; for example, its solution can be
used to show that Martin’s Maximum does not imply generic absoluteness for the
universally Baire sets of reals.50

5.2.3 Can fine structure arise from a non-invariant method for producing
models?

Generic extensions do not admit a fine structural analysis in general. They do when
they arise from forcing over a canonical inner model, and as we said above, the
structural analysis of the generic extension traces back to that of the ground model.
Fine structure is not known to be forceable in the absence of fine structure in the
ground model. Is this necessarily the case? One near counterexample is the Shelah-
Stanley forcing principle equivalent to the existence of morasses in L [34, 35]. But
when it comes to properties like solidity of the standard parameter, condensation,
having a representation as a directed system of suitable iterable mice, or admitting
an analysis showing when new reals enter the model and computing the wellordering
of the reals, the potential relevance of forcing is unclear.

Is forceability of a property disqualifying of its being fine structural? For example,
it seems fair to say the combinatorial principle �κ, which is easy to force, is not fine
structural but that fine structure has been used to prove that �κ holds in a large
class of canonical models. On the other hand, �κ fails whenever κ is subcompact,
and hence at many cardinals in Ultimate L, which is fine structural (if it exists). I
think similar remarks apply to Local Club Condensation [14], which is essentially an
attempt at answering this section’s title.

Here are two conjectures whose purpose is to probe how hard it is to force fine
structural features “out of thin air.”

Strong Condensation

Woodin [48] defined a generalization of condensation in L. Let M be a rud-closed
transitive set and suppose F : Ord∩M →M is a bijection. Then F witnesses Strong
Condensation for M if for any X ≺ (M,F ),

FX = F � (Ord ∩X).

50Ultimate L has a (Σ2
1)Hom∞ -wellorder. Force MM++ over Ultimate L. Then the (Σ2

1)Hom∞-in-
a-countable-ordinal reals form an ω1-sequence of distinct reals, and hence L(Γ∞,R) 6|= AD+.
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If there is such a witness for M , then Strong Condensation holds for M . Wu and
independently Friedman and Holy [14] forced Strong Condensation for H(ω2).

Conjecture 5.5. There is no generic extension of V in which Strong Condensation
holds for H(ω3).

The Mantle Conjecture

The Mantle conjecture is intended to recover V = Ultimate L from some of its signa-
ture consequences. (Recall the remark about the definite article in §4.) Its relevance
here is that it illustrates how hard it is to obtain a pathological model of the Ultra-
power Axiom [16], a generalization of the comparison process of inner model theory.
Comparison generates fine structure.

Recall the mantle M is the intersection of all the grounds of V . Goldberg has
conjectured

Conjecture 5.6 (The Mantle Conjecture). Assume there are arbitrarily large ex-
tendible cardinals. Suppose

M |= “the Ultrapower Axiom.”

Then
M |= V = Ult− L.

Refuting the Mantle Conjecture seems to require forcing to create pathological
models of the Ultrapower Axiom.

5.2.4 Must any invariant way of producing models of set theory be fine
structural?

One way of making this question precise is as follows. An inner model operator [37]
is a Turing invariant function M : R→ ℘(R) assigning to each real x (1) a countable
Turing ideal Mx closed under Turing jump and containing x and (2) a wellorder of
Mx. The maps associating a real x to a canonical inner model over x (like L[x], HODx)
are the paradigmatic inner model operators. The notion is intended to characterize
natural models of set theory. Steel showed that assuming AD,51 for any inner model
operator M , either R ∩Mx ⊆ L[x], or x# ∈ Mx. This implies that many generic
extensions are not given by inner model operators.

An inner model operator is fine structural if and only if for a Turing cone of x
there is an ω1 + 1-iterable countable x-premouse Px such that Mx = R ∩ Px [40].

51AD is reasonable since we are concerned with invariant—hence definable—ways of producing
models of set theory.
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Conjecture 5.7 (AD). Every inner model operator is fine structural.

Let M ≤m N if for a Turing cone of x, Mx ⊆ Nx. Rudominer and Steel have
shown that assuming AD, if N is a fine structural inner model operator and M ≤m
N , then M is, too [40]. In the presence of AD, the full Conjecture 5.7 is equivalent
to one of the primary movers of the canonical models program.

Theorem 5.8 (B.-Siskind). Assume AD. Then every inner model operator is fine
structural if and only if the Mouse Set Conjecture holds.52

The main theorem of [3] is that assuming AD, if M is an inner model operator,
then for a Turing cone of x, Mx |= CH. Since I don’t want to put my thumbs on
the scales regarding CH, what if AD is dropped? Assuming ZF + DC and every real
has a sharp, Woodin has shown that there is an inner model operator Q such that
Qx |= 2ω2 > ω3 on a Turing cone of x by producing generics in a Turing invariant
way. What other inner model operators exist in this context? More broadly, is there
another way to characterize invariant ways of producing models of set theory?

Conclusion

Earlier I argued for the general form a solution to CH must take. In this section I have
defended the claim that fine structure, in some form, is essential to any claim to have
solved CH. For there are questions which seem to require fine structure to answer
(§5.2.2); and if the speculations of §5.2.3 are correct, then non-invariant methods for
building models of set theory—like generic extension—cannot replicate fine structure,
and hence they arguably cannot remove all ambiguity from the language of set theory;
and if §5.2.4 and, in particular, Conjecture 5.7 are correct, then every invariant
method for building models would seem to be fine structural. I tentatively conclude
that even if the canonical models solution doesn’t pan out, if there is an eventual
solution, it will provide a canonical theory of sets via something we would recognize
as fine structure.
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