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Abstract. The geometry of the universe is today widely believed to be flat based

on combined data obtained during the 2000s. Prior to this, the geometry of the

universe was essentially unknown. However, within the relevant literature one

finds claims indicating a strong preference for a (nearly) closed universe, based

on philosophical and other “non-experimental” reasons. The main aim of this

article is to identify these reasons and assess the extent to which philosophical

reasoning influenced the establishment of the dark matter hypothesis and the

development of models for a closed universe. Building on groundwork laid by

de Swart (2020), this study expands the discussion by (a) arguing that opinions

on the geometry of the universe during the 1970s and 1980s were more divided

than often assumed, (b) uncovering a lesser-known Machian argument for flat

geometry proposed by Dennis Sciama, and (c) presenting a fine-tuning argument

stemming from the ‘coincidence problem’ articulated by Robert Dicke. The study

provides a nuanced perspective on how philosophical considerations contributed

to shaping early views on cosmology and dark matter and highlights the significant

role philosophical reasoning can play in guiding scientific inquiry in physics.
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2 Whence the Desire to Close the Universe?

1. Introduction

In a seminal article on early dark matter theory, pioneering cosmologists

Jeremiah Ostriker, James Peebles, and Amos Yahil open their discussion with the

following observation:

There are reasons, increasing in number and quality, to believe that

the masses of ordinary galaxies may have been underestimated by a

factor of 10 or more. (Ostriker et al. 1974)

Shortly afterwards, they add this rather notable remark:

If we increase the estimated mass of each galaxy by a factor well in

excess of 10, we increase this ratio by the same amount and con-

clude that observations may be consistent with a Universe which is

“just closed” (Ω = 1) – a conclusion believed strongly by some (cf.

Wheeler 1973) for essentially nonexperimental reasons (ibid., empha-

sis added).

The authors then proceed to demonstrate that the calculated masses of spiral

galaxies correspond to a local mean mass density of Ω = 0.2, a result indicating that

the additional mass required to “close the Universe” is still unaccounted for. In the

absence of empirical data capable of definitively determining the geometry of the

Universe – data that would only become available several years later (e.g. Spergel

et al. 2003) – the authors essentially argue that the most plausible geometry of

the Universe, based on philosophical considerations, is a flat one. This conclusion

further implies that the mean mass density of the Universe must approximately

equal the critical density.

The ultimate goal of the present article is to identify and analyse the ‘non-

experimental reasons’ that shaped the preference of cosmologists for certain models

over others in the 1980s, and assess the extent to which certain philosophical consid-

erations influenced their reasoning. By doing so, we aim to show how the interplay

of philosophical arguments with empirical and theoretical developments of the time,

significantly shaped certain scientific developments that eventually led to the ac-

ceptance of dark matter as a central component of cosmology in the 1980s along

with the strong belief that the Universe is closed, or at least flat.

An important first step towards this direction has been made by de Swart

(2020) who presents a compelling argument showing how the presumably wide-

spread preference for additional matter to ‘close the Universe’ in the 1970s largely

motivated the establishment of dark matter on a cosmological level. His narrative is



Whence the Desire to Close the Universe? 3

focused on the landmark papers by Ostriker et al. (1974) and Einasto et al. (1974)

in which the authors argue that the total mass of galaxies is significantly underes-

timated and that additional mass-energy is required to achieve a total density of

Ω ≥ 1. According to de Swart (2020, p.268), this preference for a closed geometry

was widely shared by many cosmologists at the time and it was closely related to a

Machian conception of general relativity of which, as we shall see, John Archibald

Wheeler (1962; 1973) was a prime advocate. In de Swart’s historical account, the

realization that the observed mass density at the time appeared to be much less

than the required critical density to close the universe essentially made the obser-

vational anomalies of missing mass in clusters and flat rotation curves of stars in

galaxies relevant, giving birth to the concept of non-baryonic dark matter as we

know it today. The core idea was that the missing additional matter required to

have a closed Universe was the same ‘dark matter’ required to explain the velocities

of galaxies and the flat rotation curves of stars.

Our analysis expands on de Swart’s work by making three novel contribu-

tions. First, we argue that the consensus for a closed geometry was not so profound

as de Swart seems to imply and that opinions regarding the geometry of the Uni-

verse in the 1970s and 1980s were rather divided (Section 3). Nonetheless, as rightly

noted by de Swart, there was at the time a strong consensus that the mean mass

density of baryonic matter was insufficient to account for the available observations

and that additional matter was required, regardless of the actual geometry. Sec-

ond, in addition to the Machian argument due to Einstein and Wheeler for a closed

Universe (Section 4.1), we bring to the surface a lesser known Machian argument

from Dennis Sciama, which nonetheless leads to a different conclusion, namely a

preference for a Universe with flat geometry (Section 4.2). Finally, we also present

a markedly different argument based on fine-tuning considerations and the ‘coinci-

dence problem’ due to Robert Dicke, which, in a sense, was the predecessor of the

well-known flatness problem in cosmology (Section 4.3).

The analysis in Section 3 and the three philosophical arguments to be pre-

sented in Section 4, reveal the diverse motivations behind the scientific exploration

of cosmic geometry and the eventual establishment of dark matter as a cornerstone

of modern cosmology. They demonstrate how non-empirical considerations, such as

commitment to certain principles and scepticism towards fine-tuning, can guide the

development of scientific models in the absence of definitive observational data. By

examining these arguments in detail, we aim to illuminate the intellectual context

in which dark matter emerged as a solution to the challenges posed by cosmological
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anomalies. Ultimately, this historical perspective highlights the interplay between

philosophical reasoning and empirical science and offers significant insights into the

broader dynamics of theory choice in physics.

2. The geometry of the Universe

Before we delve into our main analysis, it is useful to present a brief in-

troduction to the concept of the geometry of space and its relation to the mean

energy-mass density of the Universe.

Two of the most important features of the Universe are its homogeneity and

isotropy when viewed at a sufficiently large scale. Homogeneity means that the

spatial distribution of matter is equally distributed and thus the Universe looks

the same at each point. Isotropy means that there is no geometrically preferred

spatial direction, and thus the universe looks the same in all directions. These

two properties, typically referred to as the cosmological principle, lie at the core

of the most important equation in cosmology, i.e. the Friedmann equation that

describes the evolution of the Universe. This is because the imposed symmetries

of the cosmological principle give rise to the Robertson-Walker metric (henceforth

RW metric). By plugging the RW metric in the Einstein field equations and taking

advantage of the symmetries in this solution, one is left with two independent field

equations from which the famous (first) Friedmann equation is obtained:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2

Here, H2 ≡ (ȧ/a)2 is the Hubble parameter, a is the scale factor of the

Universe describing how physical distances change with time, k is the curvature

term, ρ is the matter-energy density of the Universe, and G and c are constants

representing the gravitational constant and the speed of light respectively. Unlike

the scale factor and the matter energy density that are functions of the cosmic time

t, the curvature of the universe, k, is taken as a fundamental property that does not

evolve over time, but is rather fixed at a unique value by the initial conditions of

the Universe. Hence, under the assumption of the cosmological principle, the evolu-

tion of the Universe is represented as a time-ordered sequence of three-dimensional

space-like hypersurfaces with a fixed geometry, each of which is homogeneous and

isotropic. A great advantage of homogeneous and isotropic spaces is that they have

the largest possible symmetry group, which in three dimensions comprises three

independent translations and three rotations. These symmetries strongly restrict

the admissible geometries of such spaces allowing only three possibilities: (a) a flat
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geometry where k = 0, (b) a spherical geometry where k > 0, and (c) a hyperbolic

geometry where k < 0.

Although the human brain cannot visualize a three-dimensional curved

space, what really matters is that hypersurfaces in such spaces can have the same

properties as their two-dimensional counterparts, and these properties have nothing

to do with our (in)ability to grasp and visualize their shape. The best way to visu-

alise and understand these three-dimensional geometries is therefore by considering

their two-dimensional counterparts. The mathematical generalization from two to

three or more dimensions is relatively straightforward.

A universe with a flat geometry is the three-dimensional counterpart of a two-

dimensional plane with no curvature (k = 0) and in which the axioms of standard

Euclidean geometry hold. In this geometry parallel lines never meet, the angles of

a triangle add up to 180◦ and the circumference of a circle of radius r is 2πr. A flat

Universe, insofar as it has a simple topology,1 must be infinite in extent in order to

preserve isotropy: if there are definite ‘edges’, i.e. boundaries, at the end of this

three-dimensional plane, then the Universe will not look the same in all directions

to an observer standing on those boundaries.

A spherical geometry of space is best understood in terms of a two-

dimensional surface of a sphere in a Riemannian geometry. In this geometry, the

fifth Euclidean axiom stating that parallel lines always remain a fixed distance apart

is violated. Consequently, the angles of a triangle on such a surface add up to more

than 180◦ and the circumference of a circle is less than 2πR. The crucial point to

note however, is that if these triangles and circles are small compared to the size

of the surface, then Euclidean laws become a good approximation, for the same

reason that the angles of a drawn triangle on the surface of the Earth add up to

180◦ with a negligible deviation. Hence, a universe with spherical geometry might

actually appear to be flat to an observer making measurements in small scales, and

this is precisely one of the main difficulties in measuring the exact geometry of our

Universe; the measured region is only a miniscule fraction of the entire Universe.

Similarly to the two-dimensional surface of a sphere, a three-dimensional spherical

universe (often called a three-sphere) has a finite size but no boundaries, and for

this reason it is typically referred to as a closed universe. It is a three-sphere in

1Roughly speaking, geometry describes the local shape and properties of space, whereas topology
concerns the global properties of space on larger scales. General relativity captures very well the
way matter dictates the geometry of space, however, it does not say anything about the topology
of space on large scales. As we shall see below, it is possible that certain geometries are compatible
with more than one topology. For more details on cosmic topology see Lachieze-Rey and Luminet
(1995); Reboucas and Gomero (2004) and Luminet (2016).
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which light is restricted on its hypersurface and is not allowed to move towards or

away from its notional centre. No matter the direction, a light ray travelling in

a straight line would eventually arrive back to where it started from the opposite

direction.

Finally, the third possibility where k is negative, corresponds to a hyperbolic

geometry whose two-dimensional counterpart is usually represented by a saddle-

like surface. Unlike a Riemannian geometry where parallel lines converge, in a

hyperbolic geometry parallel lines diverge away from one another. Consequently, the

angles of a triangle in such a surface add up to less than 180◦ and the circumference

of a circle is greater than 2πr. And similarly to the flat geometry, insofar as the

Universe has a simple topology, such a universe must also be infinite in extent to

preserve isotropy, and it is thus often referred to as an open universe.

Flat and hyperbolic universes are most often understood as being infinite in

extent, however, as already mentioned, this is only true if the Universe has a simple

topology. If the Universe has a non-trivial topology, then flat and hyperbolic spaces

can also be finite, just like a spherical universe. For instance, the simplest topology

corresponding to a flat geometry is a three-dimensional surface, however the same

geometry is also compatible with a non-trivial topology of a torus, and even more

complex topologies such as a Clifford torus and a Poincaré dodecahedral space. This

means that flat space may have different properties on large scales depending on

whether its topology corresponds to a three-dimensional plane or a more complex

topology such as that of a torus. Similarly, a hyperbolic geometry corresponds

to a simple topology of a hyperbolic three-space but it is also compatible with

several non-trivial topologies such as a hyperbolic three-torus, a Klein bottle and

a hyperbolic honeycomb which all render the hyperbolic spaces finite. The upshot

is that flat and hyperbolic universes can be both finite or infinite depending on

the corresponding topologies. A closed universe is necessarily finite no matter the

topology.2

Before proceeding to the next section, it is important to clarify the relation-

ship between the curvature of space and the energy-matter density of the Universe

to appreciate the strong connection between dark matter and the geometry of the

Universe. As can be seen from the Friedmann equation, for a given value of the

Hubble parameter H, there is a special value of the matter density

2If the geometry of the universe is even slightly non-flat (as allowed by current observations), then,
in principle, it is possible to detect the effects of a non-trivial topology, depending on its scale.
No effects of non-trivial topologies have been detected so far however.
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Curvature Density parameter Geometry Type of universe

Simple Topology Non-trivial Topology

k > 0 Ω > 1 Spherical Closed/Finite Closed/Finite

k = 0 Ω = 1 Flat Open/Infinite Closed/Finite

k < 0 0 < Ω < 1 Hyperbolic Open/Infinite Closed/Finite

Table 1. Summary of types and geometries of universe depending on
curvature, density and topology.

(1) ρc(t) =
3H2

8πG

that renders the geometry of the Universe flat (k = 0). This is the so-called

critical density ρc, which essentially corresponds to the amount of matter necessary

to provide enough gravitational attraction to balance the expansion of the Universe.

For the current values of the Hubble constant h and the universal gravitational

constant G, its value becomes ρc(t0) = 1.88h2 × 1026 kg m−3. If the actual mean

matter density of the Universe ρ is less than the critical density, then the Universe

has a negative curvature and expands forever. If it is equal, then the Universe is

flat and ‘balanced’. If it is larger, then matter eventually halts and reverses the

expansion resulting in a closed Universe. These possibilities are typically expressed

in terms of the density parameter Ω(t) = ρ/ρc which is a dimensionless quantity

describing the ratio between the actual density of the Universe and the critical

density.3 Depending on the actual matter density of the Universe (and regardless

of the type of matter), the density parameter can be (i) 0 < Ω < 1 , (ii) Ω = 1, and

(iii) Ω > 1 corresponding to a hyperbolic, flat, and spherical universe respectively.

Hence, amongst other things, the Friedmann equation indicates how the amount of

matter in the Universe is related to its geometry. And as we shall see in the next

section, the requirement for a certain amount of matter to ‘close the Universe’ played

an important role in realizing that the dark matter responsible for the observed

galactic anomalies in the 1960s and 1970s might actually be non-baryonic. The

main points of our discussion in this section are summarised in Table 1.

3. Non-baryonic dark matter and geometry

As noted in the introduction, de Swart (2020) provides a convincing argu-

ment indicating how a widespread preference to close the Universe in the 1970’s

3Note that both the critical density ρc and the density parameter Ω are functions of time, since
the Hubble parameter also changes with time.
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and 1980s played an instrumental role in the establishment of the dark matter hy-

pothesis. Before we delve into the details of how dark matter was established in the

1970s and 1980s however, it should be noted that the terminology used by de Swart

in terms of a closed geometry (cf. the title of the article: ‘Closing in on the Cos-

mos’) is somewhat misleading, since, as we shall see in the next section, prominent

cosmologists of the time – such as James Peebles and Dennis Sciama – seemed to

be in favour of a flat rather than a closed geometry. The widespread desire to ‘close

the Universe’ to which de Swart refers, should be understood as a requirement for

a total mass-energy density corresponding to Ω ≥ 1, i.e. a value of ρ0 which is at

least equal to the critical mass and would therefore eliminate the possibility of an

open Universe. The non-experimental/philosophical reasons for this preference will

be presented in detail in the following section. In this section, we shall argue that

not all cosmologists were against the idea of an open Universe.

In particular, we will argue that the establishment of non-baryonic cold

dark matter at the cosmological level – and its eventual connection to the observed

anomalies at the galactic scales – essentially stemmed from the parallel theoreti-

cal developments in Big Bang Nucleosynthesis and large-scale structure formation.

These developments jointly indicated that additional non-baryonic mass was needed

to align the theory with observational data, regardless of the whether the Universe

is open, flat, or closed. In particular, the theory of nucleosynthesis revealed that

the total amount of baryonic matter, from all possible sources, was significantly

smaller than the critical density. Similarly, the problem of large-scale structure

formation demonstrated that baryonic matter alone could not account for the ob-

served large-scale structure of the Universe and, consequently, the nature of the

cosmic microwave background (CMB) radiation. Along with a cautious belief that

the total mass density of the Universe was of the same order of magnitude as the

critical density based on measurements of the Hubble parameter, these develop-

ments highlighted the requirement for additional matter to reconcile theoretical

predictions with data. In other words, by the early 1980s cosmologists were con-

vinced that there must be some additional amount of non-baryonic matter in the

Universe without necessarily endorsing a closed or flat cosmological model, and this

was sufficient for the establishment of non-baryonic dark matter.

We concede that assessing the exact degrees of preferences for the different

models of the geometry of the Universe amongst the scientific community at that

time is challenging. Nevertheless, one finds in the literature claims from cosmolo-

gists who endorse the idea of additional non-baryonic matter but at the same time
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advocate in favour of an open cosmological model, and our aim in this section is

to acknoweledge this fact. The most characteristic example comes from a rather

influential paper of the time by Gott et al. (1974, p.553) who clearly express their

preference for an open Universe invoking arguments from simplicity and unification:

‘Open models [...] explain simply and readily a wide variety of observations, from

the abundance of deuterium to the value of the Hubble constant. If a closed model

is to fit the observations, a number of additional (apparently ad hoc) processes must

be called into play, which mimic in a complicated fashion the same result one would

obtain from a simple open model’. Similarly, in a letter published in Nature in

1981 Lindley (1981, p.391) begins by noting that ‘The feeling among cosmologists

is that the Universe is open, with Ω perhaps in the range 0.1 – 0.5’. An earlier

example comes from Chiu (1967) who considers a set of astronomical observations

from the CMB radiation and the intergalactic density of hydrogen to conclude that

‘Our Universe can be described by an open cosmological model.’ (p.1) and that ‘it

is unlikely that [it is] described by a closed model.’ [p.3].

To fully appreciate the situation in the 1970s and early 1980s, it is useful

to assess the state of the art with respect to the matter density and the geometry

of the Universe in light of three distinct, but related, issues: (a) the estimation of

the actual mean mass density of the Universe at the time, (b) the calculation of

baryonic density from primordial abundances of helium and deuterium, and (c) the

conception of the structure formation problem with respect to data from the CMB.

As we have seen in Section 2, the mean mass density of the Universe in-

cluding all forms of matter determines the geometry of the Universe. The current

estimates including contributions from baryonic matter, radiation, dark matter and

dark energy provide a value of Ω very close to 1 indicating a flat geometry, but

this was only determined in the early 2000s mainly by data from the Wilkinson

Microwave Anisotropy Probe (WMAP) and the Planck satellite. In the 1970s, the

actual density of the Universe was essentially unknown, although various studies

had already placed limits on the possible contributions to the total matter den-

sity from different sources such as galaxies, radiation, intergalactic matter, stars

etc. The consensus at the time was that the joint contribution of these different

sources was significantly less than the critical mass, leaving all three possibilities

for a hyperbolic (open), flat and spherical geometry open.4 These constraints how-

ever, were in sharp contrast with crude estimates from measurements of the Hubble

4See, for instance, Field (1972) for a review of the various constraints on different possible con-
tributors to the mass density at the time.
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constant at the time pointing towards an actual density close to the value of the

critical density. Within the Friedmann model, the ratio of the present density to

the critical density was given by
ρ0
ρ

= 2q0

where q0 is the deceleration parameter, a dimensionless measure of cosmic acceler-

ation defined as q := −äa/ȧ2.

In his celebrated textbook, Weinberg (1972) provides a plausible value for

ρ based on the measured value of the Hubble constant at the time, while clearly

expressing his hesitations due to the large uncertainties in the determination of the

value of H0. He writes: ‘If we give credence to the values q0 ≃ 1 and H0 ≃ 75

km/sec/Mpc deduced from the red shift versus luminosity relation [...], then we

must conclude that the density of the universe is about 2ρc’ (p.476) which would of

course result in a closed Universe. A few pages later, he connects this result with

dark matter: ‘If one tentatively accepts the result that q0 is of order unity, then one

is forced to the conclusion that a mass density of approximately 2×1029 g/cm3 must

be found outside the normal galaxies’ (p. 478, emphasis added) although with the

caveat that these results are provisional. The following passage from Sandage and

Hardy (1973, p.754) is also indicative of the reservations about the actual value of

q0 (and consequently ρ0) at the time: ‘The determination of q0 is clearly a problem

for the future. Only the grossest alternative solutions such as q0 = −1 or q0 > 3

can be discarded at this moment’.

The upshot is that in the 1970s the scientific community in cosmology was

rather divided over the real value of the total mass density and the geometry of

the Universe. On the one hand, crude estimates based on measurements of the

Hubble constant indicated that the mass density of the Universe is of the same

order of magnitude and possibly larger than the critical density, while on the other

hand the calculated contributions from the then known possible sources (excluding

non-baryonic dark matter and dark energy) were significantly less than the critical

density. Cosmologists such as Ostriker et al. (1974) in favour of a closed model

saw the latter results as an indication of the presence of additional mass up to the

critical density, whereas Gott et al. (1974) interpreted this as an indication of an

open universe with a parameter density in the range of 0.05 ≥ Ω ≥ 0.09.

Gott et al. (1974)’s views were also significantly enforced by recent results

on the total density of baryonic matter based on arguments from nucleosynthesis.

According to the theory of nucleosynthesis the formation of nuclei in the Universe

took place at about one second after the Big Bang and at that stage hydrogen and
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helium-4 were produced in much larger abundance compared to other primordial

elements. The expectation is that about 24% of the matter in the Universe is in

the form of helium-4 and that there is one helium-4 nucleus for every 14 hydrogen

ones. Measurements of the abundances of these elements could therefore provide

the total density of baryonic matter in the Universe, from which these nuclei are

composed, since the two quantities are closely related. Based on this kind of ar-

guments, an important study (among many) by Geiss and Reeves (1972) showed

that data related to helium and deuterium abundances in the solar system could

only be explained if the present baryonic density is Ωb = 0.06, with the assump-

tion that these abundances in the solar system are primordial. The significance

of these results was that they were independent of observations of low luminosity

objects such as brown dwarfs and distant galaxies, since the obtained limit applied

to all baryonic matter in the Universe, providing strong evidence that the density

of baryonic mass is significantly lower than the critical density regardless of other

observations.5

Based on similar results by Rogerson and York (1973) on the interstellar

abundance of deuterium, Gott et al. (1974) presented a summary of different con-

straints on the total matter density arguing that the satisfaction of these different

criteria limits the range of possible values to 0.05 < Ω < 0.09. When discussing

constraints from the deceleration parameter, Gott et al. (1974, p.545) refer to the

calculations by Sandage and Hardy (1973) pointing towards an apparent value of

q0 = 1.0± 1 by noting that ‘The apparent value must be corrected for the system-

atic effects of luminosity evolution, which are as yet inadequately understood but

are likely to give a true value of q0 that is smaller by 0.4 to 1.2’ and that ‘Until

the statistical uncertainties and systematic corrections involved in this difficult de-

termination are improved, we feel safe in concluding only that q0 < 2.0’ indicating

their reservations to accept these measurements as evidence for a closed Universe.

These results were also in line with the third issue at hand, namely the signif-

icant developments by Peebles (1965, 1966, 1968) on the structure formation prob-

lem in the late 1960s. Following the discovery of the cosmic microwave background

radiation in 1965, Peebles showed that the formation of the observed large-scale

structure of the Universe requires a relatively large amplitude of the fluctuations in

the photon-baryon fluid at the decoupling epoch (i.e. at a redshift of z ≈ 1000, or

5For a review of the constraints on Ω from element abundances in the 1970s see Schramm and
Wagoner (1977).
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∼ 300 000 years after the Big Bang), which should correspond to comparable fluc-

tuations in the CMB temperature spectrum. This is because structure formation in

a homogeneous universe can only happen from gravitational collapse if the density

fluctuations are larger than the Jeans length, i.e. the distance travelled by a sound

wave during a collapse timescale. Before the decoupling of photons and baryons

however, the speed of sound is comparable to the speed of light, and thus the Jeans

scale is essentially comparable to an event horizon. As a result, smaller fluctuations

which could potentially give rise to galaxies and clusters do not grow, but rather

propagate as sound waves. Gravitational collapse can therefore only begin at the

decoupling of photons and baryons, and with a relatively large amplitude which

should show up in the CMB power spectrum. The apparent problem was that such

fluctuations were nowhere to be seen. The deepest, and most important implication

which would soon become clearer, was that there must be a significant amount of

additional non-baryonic matter in the Universe produced in its early times.

Indeed, a few years later Gunn et al. (1978) argued that any heavy, stable

and non-interactive particle which is a cosmic relic could dominate the mass density

of the Universe and would, in fact, make ‘an excellent candidate for the material

in galactic halos and for the mass require to bind the great clusters of galaxies’

(Gunn et al. 1978, p.1015). Most importantly, their results placed the seeds for

a potential solution to the structure formation problem, expressed by a number of

different cosmologists in the early 1980s (Peebles 1982; Bond and Szalay 1983; Bond

and Efstathiou 1984; Vittorio and Silk 1984). The possible presence of a significant

amount of non-baryonic matter in the early Universe meant that the speed of sound

in this fluid could be much lower than the photon-baryon fluid and thus fluctuations

would not propagate but continue to grow until they collapse before the decoupling

epoch. This would in turn allow the formation of large-scale structure at an early

stage, making theory compatible with the then available observations of the CMB

temperature spectrum. It was at this stage that dark matter as we know it today,

i.e. as a (family of) non-baryonic primordial particle(s) at a cosmological level,

began to gradually gain widespread acceptance within the scientific community.

The exact percentage of the contribution of this non-baryonic field to the total

mass density of the universe however, was essentially unknown.6

Nevertheless, as rightly argued by de Swart (2020), a number of cosmologists

were strongly motivated by independent philosophical arguments in favour of an – at

6cf. Bond and Efstathiou (1984, p.L48): ‘Cold [dark matter] particle and massive neutrino models
with Ω = 1 are not strongly constrained at present’.
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least – closed Universe with the seminal work of Jeremiah Ostriker, James Peebles,

and Amos Yahil being the most characteristic example. Interestingly, in their 1974

article the three authors appeal to Wheeler (1974) to justify their preference for a

Universe that is ‘just closed’, while in his later work Peebles (1984, p.470) appeals

to a co-authored essay with Robert Dicke (Dicke and Peebles 1979) to justify the

assumption that Ω = 1 in his proposed model for dark matter and the origin of

galaxies. In the next section, we shall trace the origins of these preferences for a flat

or closed universe, by presenting what we consider to be the three most important

philosophical arguments for the geometry of space in the twentieth century, prior

to the experimental determination of the curvature of the universe. As we shall

see, although two of these arguments are based on ‘Mach’s principle’, they actually

follow entirely different trajectories of reasoning, while the third argument involves

an independent line of thought stemming from fine-tuning considerations.

4. Philosophical arguments for cosmic geometries

4.1. Einstein and Wheeler’s closed Machian Universe. The earliest argu-

ment for a particular cosmic geometry in the context of general relativity was put

forwards by Albert Einstein (1917[1952]). Einstein’s argument is based on his at-

tempts to implement Mach’s principle in general relativity, suggesting that the

universe ought to be closed. As is well known, along with the principle of equiva-

lence, Mach’s principle formed one of the cornerstones of Einstein’s reasoning in his

early development of the theory of general relativity.7 In fact, the theory of gen-

eral relativity (GR) was constructed in part as a means of overcoming the lack of

conformity with Mach’s principle found in classical mechanics. The exact definition

of Mach’s principle, it’s validity and relevance to GR, are all subject to enduring

controversies, however we will not dwell long on these issues here.8 Instead we will

only consider Mach’s principle insofar as it has been leveraged in favour of various

arguments for particular classes of cosmological models.

The key attribute of Mach’s principle that makes it relevant to cosmology

is the suggestion of a necessary coupling between local physical systems and their

broader environment in the rest of the cosmos. Noticing that epistemically, we can

only observe the (rectilinear and uniform) inertial motion of a given body insofar

as it is performed with respect to the other bodies of the universe, Mach (1872,

7See (Einstein 1996, p.228) for Einstein’s specific admission of these motivations.
8For some relevant recent literature concerning the controversies surrounding the definition of
Mach’s principle, it’s validity and status in general relativity see for instance: Barbour and Pfister
(1995); Norton (1995); DiSalle (2002); Hoefer (1994, 2014); Staley (2021); Fay (2024).
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1883) raised the hypothetical suggestion that this so-called ‘inertial’ motion might

in fact be caused by a direct physical influence of those other bodies (i.e. the

mass content of the rest of the universe). Through Einstein’s equivalence principle,

this idea became linked explicitly with the project of unifying inertia and gravity;

in particular, Einstein (1912) hypothesised that the inertial properties of matter

might be entirely reducible to their gravitational interaction with the rest of the

matter in the universe.9

As Hoefer (1994) has shown, Mach’s principle, for Einstein, would become

conflated with the requirement for the covariance of physical laws under general

coordinate transformations. Mach’s principle was associated with the extension of

the relativity principle to arbitrary motions of the reference system, since this would

allow one to eliminate the classical privileging of ‘inertial’ reference frames. If abso-

lute space has no physical reality, then only the relative configuration and relative

motion of bodies should be physically relevant, thus the laws of physics should be

invariant under any transformations of our reference frames which maintain this

relative configuration.

In a move which would be criticised by later Machians such as Sciama and

Barbour (Sciama 1951; Barbour 2010), Einstein — following the advice of his col-

league Marcel Grossmann — sought a generalisation of the relativity of motion in

the principle of general covariance under the full diffeomorphic group of arbitrary

coordinate transformations. However, it has since become well understood that

Einstein’s approach did not generalise the relativity of motion in the sense that

Mach intended. Hoefer (1994, p.292) offers some insight into the cause of Einstein’s

confusion by stating that the temptation to view the four dimensional coordinate

systems as aligning with the relative spaces of Einstein’s earlier work and to assume

that generally covariant GR as standard formulation applicable in any such rela-

tive space, explains why Einstein claimed that general covariance guarantees the

general relativity of motion. Einstein initially expected that his generally covariant

field equations would automatically implement Mach’s principle, or at least that

appropriate Machian boundary conditions would easily be found. Between 1915

and 1917, he sought these boundary conditions, but these efforts culminated in his

famous cosmological paper (Einstein 1917) in which an alternative solution to the

problem was proposed.

9Note that the first to link Mach’s principle to the unification of gravity and inertia was Immanuel
Friedlaender (Friedlaender and Friedlaender 1896), however it was Einstein’s work that made this
a subject of focused research.
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In this paper, Einstein formulates Mach’s principle as the following criterion

on a cosmological model of general relativity:

In a consistent theory of relativity there can be no inertia relatively

to “space,” but only an inertia of masses relatively to one another

(Einstein 1952, p.180, emphasis in the original).

From this he reasons that the line element must become singular at infinity, i.e. that

(supposing the universe as an island of matter in space) the spatial components of

the metric should go to zero and the temporal component should go to infinity.

However, with the help of the mathematician Jakob Grommer and the astronomer

Willem de Sitter, Einstein was led to the realisation that such boundary conditions

are not feasible.10 Finally, Einstein presents his solution: the need for boundary

conditions can be avoided by postulating that the universe is of constant positive

curvature and thus closed and finite:

...if it were possible to regard the universe as a continuum which

is finite (closed) with respect to its spatial dimensions, we should

have no need at all of any such boundary conditions (Einstein 1952,

p.183).

As is well known, to ensure that his spherical universe did not collapse upon

itself, Einstein further modified his field equations by introducing the cosmological

constant λ. However, as rightly noted by Hoefer (1994) the introduction of the

constant λ into the field equations in effect undermines Mach’s principle since λ does

not have a physical interpretation other than as a primitive property of spacetime,

whereas Mach’s principle expresses the goal of reducing the physical properties of

spacetime to relations between material things – an issue first raised by de Sitter.

Moreover, Hoefer also notes that Einstein’s solution does not guarantee that the

metric actually is fully determined by the material distribution in Einstein’s closed

universe.

The difficulties with Einstein’s reasoning did not stand in the way for John

Archibald Wheeler however, who was one of the most prominent advocates of the

idea that Mach’s principle implied a closed universe in later decades.11 Although

Wheeler’s reasoning for a closed Universe was similar to Einstein’s, it is somewhat

10Interestingly, William de Sitter commenting on Einstein’s theory in 1917 attributes a similar
attempt to Paul Ehrenfest: ‘The idea to make the four-dimensional world spherical in order to
avoid the necessity of assigning boundary conditions, was suggested several months ago by Prof.
Ehrenfest, in a conversation with the writer. It was, however, at that time not further developed’
(De Sitter 1917, p.1219).
11cf. Tipler (1977, p.500): ‘John Wheeler is the most ardent proponent of the one-cycle closed
universe.’
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simpler, seemingly coming from a heuristic comparison of GR with his and Feyn-

man’s ‘absorber condition’ in electrodynamics (Blum and Brill 2020). Wheeler and

Feynman’s absorber condition posits that all photons are emitted and absorbed by

particles. This allowed for an action-at-a-distance reformulation of electrodynamics

which sought to resolve various difficulties such as the presence of divergences in

quantum electrodynamics. By considering every photon as a direct interaction be-

tween an emitter and an absorber, Wheeler and Feynman could circumvent the need

for a field and consider electrodynamics as an action-at-a-distance theory between

particles.

Over the course of the 1940s, Wheeler became increasingly involved with the

attempt to extend this action-at-a-distance program to gravitation, which meant

the elimination of the concept of spacetime in favour of an ontology consisting of

particle worldlines and lightcones. By the late 1950s, Wheeler had become aware

of the connection between this program and Mach’s principle, which thereafter be-

came a central research question for him. Mach’s principle was the means by which

Wheeler’s action-at-a-distance (AAD) gravity could make contact with general rel-

ativity. However, since not all models of GR satisfy Mach’s requirement, Wheeler

wanted to restrict his attention to those that do. Wheeler concluded that a gravita-

tional analogue of his and Feynman’s absorber condition in electrodynamics would

only be possible if the universe was spatially closed, otherwise gravito-inertial in-

fluences would be able to escape to infinity (Blum and Brill 2020).

Another argument which Wheeler leveraged in support of his closed universe

cosmology involves a widely misunderstood connection between the strength of

gravity and the size of the universe which has for quite some time been recognised

as a key condition associated with Mach’s principle. This idea will be discussed

in more detail in the next section since it played a key role in Dennis Sciama’s

thinking concerning the geometry of the universe. For our purposes here it suffices

to say that a strong reading of Mach’s principle requires that in the earth’s frame of

reference the plane of a Foucault pendulum must be pulled around by the gravity of

the distant stars. As Thirring (1918, 1921) had shown in the early days of GR, such

an effect (now known as the Lense-Thirring effect) does exist in Einstein’s theory,

however the universe would require a very specific constitution in order to ensure

that this condition holds. At least as early as 1953, Wheeler was aware of a relation

of the form: G
c2

∑ mi

ri
∼ 1, where mi and ri are the masses of the universe and
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their distance to the given point respectively.12 However this expression remained

vague due to difficulties integrating over the influences of distant stars, since at long

distances “the curvature of space begins to introduce substantial corrections into

the calculation of Thirring and Lense” (Misner et al. 1973, p.548). In Misner et al.

(1973, §21.12.), Wheeler briefly derives an expression of this form and comments

that it “is a characteristic feature of the Friedman model and other simple models

of a closed universe”, however the vagueness of the result does not allow him to

specifically endorse any particular cosmological model. As we shall see in the next

section, the characteristic vagueness of this Machian condition in the context of

GR continued to impede the development of a specifically Machian cosmological

theory, however, a closer analysis of this condition and the reasons for it do suggest

that there is a deep connection between Mach’s principle and the geometry of the

cosmos, but that this has very little to do with Einstein’s initial idea that a Machian

universe should be closed to avoid the problem of finding boundary conditions.

4.2. Sciama’s Machian argument for a flat universe. In his doctoral work of

the early 1950’s, the British physicist Dennis Sciama sought to re-examine the ques-

tion of Mach’s principle by going back to the basics (Sciama 1953a,b).13 Sciama’s

aim was to construct a theory of inertia which was in full conformity with Mach’s

principle (that inertia should have a material origin) as well as Einstein’s insight

that the material origin of inertia should come from the gravitational influence of

the universe’s masses. However, rather than require the covariance of physics under

the general diffeomorphic group as Einstein did, Sciama restricted his analysis to

shape-preserving transformations which do not alter the universe’s internal geome-

try, i.e. shape (Sciama 1953b, p.50). For this reason, his initial work on a simplified

model of inertia and gravitation does not involve positing curved space-time; instead

Sciama drew from Rosen (1940) and Weyl (1944) to justify his use of a Euclidean

background spacetime. For illustrative purposes, in the first half of his thesis,

which would become published in a paper (Sciama 1953a), Sciama constructed a

simplified model of gravity and inertia which, unlike GR, would incorporate Mach’s

principle by construction by employing an analogy with electromagnetism. The

12This expression was given in a talk he gave in Tokyo in September 1953 (Blum and Brill 2020).
A relation of this form has widely been associated with Mach’s principle, especially due to Brans
and Dicke (1961) and Sciama (1953a), however it has also been defended on purely dimensional
grounds (Sciama 1969) as well as in connection with the “famous numerical coincidences between
atomic and cosmological quantities” (Sciama 1971, p.100) which were first pointed out by Dirac
(1938).
13We are thankful to the family of Dennis Sciama for allowing us to recover his PhD thesis from
the Cambridge archives and digitise it.
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gravito-inertial forces would follow from the single four-vector potential:

Φ = −
∫
V

ρ

r
dV, Ā = −

∫
V

v̄ρ

r
dV.

Instead of the charge and current density of surrounding matter as sources of Φ

and Ā however, the sources of this gravito-inertial force are now the mass ρ and

momentum ρv̄ densities of the relevant surrounding matter. However, since, unlike

charge, mass is always positive, distant matter is no longer neutral and the inte-

gration must be performed over the entire observable universe V , where r is the

distance of the matter density being integrated from the relevant point at which we

are calculating the potentials. From this simple model, Sciama was able to derive

both inertial and gravitational effects simultaneously, however the correct centrifu-

gal and Coriolis forces are only produced if the strength G of this gravito-inertial

coupling is given by the expression:

(2) GΦ = −c2.

Therefore, inertia could only be explained entirely in terms of the gravitational

influence of distant matter if this equation holds exactly. Reflecting on the con-

sequences of his expression, Sciama (1953b, p.40) notes that the equation implies

that the total energy (inertial and gravitational) of a particle at rest in the universe

is zero, a conclusion which would later connect these ideas to the Einstein-de Sitter

model of cosmology.

Unlike in general relativity, where, as Wheeler noted, the curvature of space-

time prevents any precise calculation of the contribution of very distant masses to

inertial effects, Sciama was here able to derive a precise expression. Assuming a

homogenous and isotropic universe with a Hubble expansion parameter H, Sciama

(1953a) obtained: Φ = −2πρc2H−2, which when plugged into Eq.2 gives:

2πGρ = H2

As one may notice, Sciama’s condition is very similar to the standard flatness con-

dition of the Friedmann equation (Eq.1) derived in Section 2:

8

3
πGρ = H2

with a slight difference of a factor of 4/3, which can be plausibly attributed to

the differences in the assumptions of the two models. It is natural to ask whether

Sciama’s condition on the gravitational constant is in fact identical to the critical

density condition in cosmology. However, at the time Sciama was writing his doc-

toral dissertation, the question of the geometry of the Universe was not among his
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major concerns. As a young physicist in the 1950s, Sciama was operating within

the steady-state model of cosmology under the influence of steady-state theorists

Hermann Bondi and Thomas Gold.14

Following the mounting experimental evidence against the steady-state cos-

mology in the 1960’s, Sciama would humbly renounce his support for this theory

and simultaneously abandon much of his early career work. However, he did con-

tinue to endorse the centrality of Mach’s principle for cosmology, and held on to

the hope that the constraints which Mach’s principle places on cosmology might

some day enable the derivation of a unique cosmological theory. For instance, in

his “Physical foundations of general relativity” (Sciama 1969), Sciama reveals his

continuing interest in the Machian expression discussed earlier by including a brief

dimensional argument in support of of this relation (Sciama 1969, p.56):

On dimensional grounds alone we expect to find a relation of the

form: GρR2/c2 ∼ 1, as given by the linear theory. Only the value

of the right-hand side is in doubt, and presumably the exact theory

would throw up a factor like, say, 3/8π.

The proposed equation would therefore be GρR2/c2 = 3/8π which is conspicuously

the exact flatness condition that, as we saw, can be derived from the Friedmann

equation (since H2 = c2/R2). Although Sciama does not explicitly mention this

connection in his book, it serves as a clear nod to his support for flat geometry of

the cosmos. Some years later, in an interview for the American Institute of Physics,

Sciama reveals why he had a preference for a flat universe, confirming its connection

to his early work on Mach’s principle (Weart and Sciama 1978):

[Sciama:] Sometimes I’ve had a preference for the universe that

just expands forever with the velocity tending to zero, the Einstein-

de Sitter model, I once hoped, but that hope has not been realized in

our work up to date, that Mach’s Principle would lead to the unique

model of the Universe, and then the hope was that it would be the one

I’ve just described. [...] the Einstein-de Sitter model is the one where

the total energy of the universe is zero, the kinetic energy and the

negative gravitational potential energy just balancing. Well if you

think that kinetic energy manifesting inertia is due to gravitation,

then you might intuit that the most Machian way of having one made

by the other would be if there’s equal amount of energy, which would

14In fact it was Thomas Gold who was chiefly responsible for stimulating Sciama’s interest in
Mach’s principle (Sciama 1969).
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give you uniquely the Einstein-de Sitter model, I still have a secret

hope that that might turn out so, but it may well not.

As we saw earlier in this section, this balance between the energy of matter and the

gravitational potential leading to a universe with zero total energy was an exact

prediction of Sciama’s 1953 Machian model of inertia and gravity. This interview

by the American Institute of Physics therefore demonstrates that his continued

endorsement for the flat Einstein-de Sitter cosmology was deeply connected to his

early work on Mach’s principle. However the pressure to conform to empiricist

norms of research forced him to be somewhat secretive about these prejudices;

indeed a few years later, Sciama would deliberately omit any mention of these

kinds of speculations in his 1993 textbook “Modern cosmology and the dark matter

problem” (Sciama 1993).15

Throughout his career, Dennis Sciama served as a supervisor and mentor

to numerous students who would go on to make highly significant contributions to

physics, including John D. Barrow, David Deutsch, George F. R. Ellis, and Stephen

Hawking. Sciama’s preference for flat cosmology, grounded in Mach’s principle,

likely influenced his students and peers to some extent. Notably, Roger Penrose

has often recounted how Sciama’s enthusiasm for Mach’s principle during the 1950s

helped inspire him to switch from mathematics to cosmology. However, Sciama’s

characteristic humility, the growing importance of experimental cosmology during

that era, and the occasionally diverging views of his students ensured that, unlike

John Wheeler, he did not foster a rigid dogma around Mach’s principle within his

circle.

4.3. Dicke’s coincidences and the flatness problem. The third and final philo-

sophical argument for the geometry of the Universe in the 1970s and 1980s comes

from a fine-tuning problem mainly due to Robert Dicke, the supervisor and long-

term collaborator of James Peebles at Princeton. Although not widely discussed in

the literature of the time, this issue was, according to Peebles (1993, p.365), ‘part

of the standard lore for at least a decade’ within the discussions of Dicke’s research

group at Princeton, until it was first published in a series of lecture notes by Dicke

(1970).16 Dicke’s coincidence arguments served as the precursor to the well-known

15Indeed much of the material in this book is taken directly from his previous 1971 textbook
“Modern Cosmology” (Sciama 1971). These include almost all sections from chapter chapter 8
of the original book apart from those containing Sciama’s philosophical remarks on cosmology,
Mach’s principle and the ‘large numbers’ coincidences of Dirac.
16cf. also (Peebles 2020, p.59): ‘This coincidence argument may have occurred to many who did
not bother to publish, because it was not at all clear what to make of it. I remember its discussions
in the early 1960s in meetings of Dicke’s Gravity Research Group.’
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flatness problem, which led amongst other things, to the development of the theory

of inflation by Alan Guth in 1981.17 The underlying idea is that if the curvature

term or the cosmological constant term in the Friedmann equation are taken to

be zero at the early universe then galaxies, the solar system and therefore we, as

observers, begin to form right after the very special epoch at which the deceleration

of the expanding universe turns into an acceleration, i.e. when the energy-mass

density ceases to be the dominant term.

For a more concrete example, consider the Friedmann equation in terms of

the different fractional contributions to the expansion rate:

(
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Here, the parameter Ωr ∼ 10−4 is the fractional contribution to the present

expansion rate by the thermal radiation and massless neutrinos and Ωm is the

matter density parameter, which based on observations is about 0.1. At the epoch of

nucleosynthesis where light elements begin to form, i.e. at redshift z = a0/a ∼ 1010,

we may consider two possible scenarios: one in which there is no cosmological

constant and Ωk = 0.9, and one in which there is no space curvature and the

cosmological constant contributes ΩΛ = 0.9 to the present rate of expansion. In

both cases, the contributions from the curvature (∼ 10−16) and Λ (∼ 10−36) to the

expansion rate at the time of nucleosynthesis are practically negligible compared

to the contribution of the mass density (∼ 10−7). However, in both cases, it is a

curious coincidence that galaxies, stars and observers like us begin to form at the

very special epoch where the curvature and cosmological constant, which would

have been extremely small at the epoch of nucleosynthesis, become the dominant

contribution to the expansion rate. If both terms are taken to be non-zero at the

epoch of nucleosynthesis then the situation becomes even more puzzling since in

that case one of the terms would dominate the expansion much earlier leading to

either an open or closed universe or an accelerated expansion at times that do not

match the observational data from the early universe.

17Dicke mentions in an oral interview to the American Institute that Alan Guth, who was a postdoc
at Cornell at the time, attended one of his lectures on these strange coincidences (Lightman and
Dicke 1988). This fact is also reported by Alan Guth in his short autobiography for the 2014 Kavli
Prize in Astrophysics: ‘On Monday (November 13 [1978]) I happened into a lecture given by Bob
Dicke, a well-known cosmologist from Princeton, who described a feature of the conventional big
bang theory called the flatness problem. The problem concerned the extreme amount of fine
tuning that is needed to make the conventional big bang theory work. [...] I did not understand
the calculations behind what Dicke was saying, but I was very impressed by the conclusion, and
tucked it away in the back of my brain.’(Guth 2014).



22 Whence the Desire to Close the Universe?

In other words, the fine-tuning worry occurs from the fact that we live in

the special epoch when one of these two terms (Ωk and ΩΛ) which had an almost

negligible effect in the early Universe, have just recently grown enough to dominate

the expansion rate. And the fact that we happen to observe the universe at this

distinguished and rare period when either curvature or Λ has just become important

was considered by Dicke and his collaborators a ‘suspicious coincidence’. This

curious coincidence however, can be avoided if both space curvature and Λ are

negligibly small, corresponding to an Einstein-de Sitter Universe with flat geometry.

In this case, the universe evolves from radiation-dominated to matter-dominated

and the mass density remains constant at a value very near the critical density

(Ωm=1) throughout the entire cosmic history.

The well-known flatness problem in cosmology is a special case of these cu-

rious coincidences and its first clear formulation goes back to a co-authored chapter

by Dicke and Peebles (1979) in an edited collection of essays on General Relativ-

ity. In this chapter, written in a rather jaunty and conversational style, Dicke and

Peebles consider a number of ‘enigmas’ in cosmology, including the flatness prob-

lem, and examine various possible solutions. The flatness problem in this context

arises from a basic consideration of the Friedmann equation with Λ = 0. Dicke

and Peebles begin by noting that the (then) present relative values of the curvature

term and the mass density are poorly known ‘because the mean mass density, ρ,

is so uncertain’ (p.506). They then note that tracing the expansion back in time,

at the time of nucleosynthesis, we find that the mass term is 14 orders of magni-

tude larger than the curvature term which means that the expansion rate has been

fine-tuned to agree with the mass density to a great accuracy. Their conclusion

is that this precise initial balance of the effective kinetic energy of expansion and

the gravitational potential energy must apply to each separate part, otherwise the

inhomogeneities would produce large and irregular space curvature leading to black

holes of all sizes, and essentially a chaotic universe which would look much different

than the one we observe. The upshot is that these considerations show that regard-

less of the (unknown) mass density at the time, it must have been arbitrarily close

to the critical value at the time of the Big Bang.

Dicke and Peebles then proceed to note that this model represents an Ein-

stein - de Sitter universe (with k = Λ = 0) which, according to them, was motivated

back in 1932 merely because of its simplicity, in lack of any observational data.18

18cf. Einstein and de Sitter (1932, p.214) ‘...we must conclude that at the present time it is possible
to represent the facts without assuming a curvature of three-dimensional space. The curvature
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Interestingly, Dicke and Peebles find the argument from simplicity rather weak, and

conclude their short discussion of the flatness problem by noting that the observed

large-scale clumping of matter in the universe requires that the balance between

expansion and gravity in the early universe was extremely accurate though not ex-

act, leaving open the possibilities of both a closed and an open – but nevertheless

nearly flat – Universe.19

It is not clear whether Ostriker, Peebles and Yahil (1974) had these compli-

cations in mind when they expressed their preference for a universe which is “just

close” for “nonexperimental” reasons, although their instant reference to Wheeler

(1973) suggests that this was probably not the case. Nevertheless, in later work,

Peebles (1984) presented a model for dark matter and the structure of galaxies

and star clusters based on a set of ‘particularly simple and attractive assumptions’

(p.470). The first of the two assumptions which are relevant to our discussion, was

that the cosmological constant is negligibly small since according to Peebles ‘if Λ

did play an important role it would be a coincidence that the mass density associ-

ated with Λ is comparable to the present density of matter, which is not attractive’

(ibid.). The second was that the density parameter is Ω = 1, i.e. that we live in

a flat Universe, with Peebles noting that the motivation for this assumption is the

same as for the previous one, citing Dicke and Peebles (1979). It is therefore evident

that, at least for Peebles, the preference for additional baryonic matter correspond-

ing to a flat geometry was mainly driven by his (and Dicke’s) reluctance to accept

that galaxies – and the observers within them – coincidentally came into existence

at a special point in cosmic history.

5. Concluding remarks

The establishment of dark matter as a non-baryonic primordial particle in

the 1980s was the culmination of a complex process that lasted several years. This

process involved the observation of anomalies at galactic and cosmological scales,

theoretical advancements in understanding physical processes across early and late

cosmic history, and philosophical considerations by prominent cosmologists of the

is, however, essentially determinable, and an increase in the precision of the data derived from
observations will enable us in the future to fix its sign and to determine its value’.
19In a recent review of the history of the flatness problem, Helbig (2021, p.6) rightly notes that
the Einstein - de Sitter model is best understood merely as a practical and simple suggestion by
the authors and that there is no clear indication in the article that Einstein or de Sitter were
indeed in favour of a flat universe due to its simplicity. We agree, however, what is important
for the purposes of our discussion is that Dicke and Peebles were not convinced by the argument
from simplicity although it is, in their own words, ‘attractive’. The flatness of the universe was
for them a necessary condition to explain the current structure of the universe.
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time. In this article, we argued that a critical milestone in the acceptance of dark

matter as we know it today was the realization that baryonic matter constituted

significantly less than the critical density, and that the observed large-scale struc-

ture formation and the temperature spectrum of the cosmic microwave background

radiation could not be explained by the gravitational collapse of a photon-baryon

fluid in the early Universe. Alongside these scientific developments, the philosoph-

ically motivated preference of many cosmologists for an ‘at least closed’ geometry

(i.e., a flat or closed Universe with Ω ≥ 1) laid the groundwork for hypothesizing

the existence of a non-luminous form of matter. This additional matter, which by

far exceeded the amount of baryonic matter, also provided a potential explanation

for the observed mass discrepancies in galaxies and galaxy clusters.

As we have seen, in the absence of direct observational data about the ge-

ometry of the Universe, cosmologists of the time relied on philosophical and non-

experimental reasoning to propose different models of the cosmos. This article has

identified and presented three such arguments: (a) Einstein and Wheeler’s Machian

argument for a closed Universe, (b) Sciama’s Machian argument for a flat Universe,

and (c) Dicke and Peebles’ coincidence argument for a flat Universe. Despite their

differing motivations and methodologies, all three arguments converge on the con-

clusion that additional mass is required to achieve or exceed the critical density,

aligning with the idea of non-baryonic dark matter as a necessary component of the

Universe.

The first two arguments, from Einstein/Wheeler and Sciama, are rooted in

their proponents’ shared desire to implement and validate Mach’s principle, which

posits that the inertial motions of objects are determined by the gravitational influ-

ence of all other matter in the Universe. The critical distinction between these two

arguments lies in their treatment of Mach’s principle: while Einstein and Wheeler

regard it as a guiding principle for the selection of cosmological models within the

framework of general relativity, Sciama adopts it as a genuinely constitutive prin-

ciple. That is, for Einstein and Wheeler, general relativity is taken as a given

foundation, leading them to argue that only a closed Universe can satisfy Mach’s

principle. In contrast, Sciama’s commitment to Mach’s principle as a constitutive

tenet drives him to construct a truly Machian theory, from which he deduces that a

flat Universe is the natural outcome under the critical density condition. The deeper

motivations behind the urge to implement Mach’s principle in a theory of gravita-

tion for Einstein, Wheeler and Sciama remain an open question which goes beyond
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the scope of this article, although this issue has already received some attention in

the existing literature.

Finally, the third argument due to Dicke and Peebles, takes a markedly dif-

ferent approach, originating from their reluctance to accept that galaxy and star

formation in the Universe occured at a very special epoch when the deceleration of

the expanding universe turns into an acceleration. This apparent fine-tuning of pa-

rameters, necessary to permit the emergence of observers at such a precise moment

in cosmic history, was seen by many physicists of the time as an implausible and

suspicious coincidence. The natural way out of this fine-tuning problem for Dicke

and Peebles was to hypothesize a flat Universe. Thus, while Einstein, Wheeler,

and Sciama were motivated by the belief that Mach’s principle should shape the

fundamental structure of gravitational theory, Dicke and Peebles were driven by

their desire to eliminate what they considered an improbable and unattractive co-

incidence in the cosmic timeline.
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