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Abstract

How to explain the Aharonov-Bohm (AB) effect remains deeply
controversial, particularly regarding the tension between locality and
gauge invariance. Recently Wallace argued that the AB effect can
be explained in a local and gauge-invariant way by using the unitary
gauge. In this paper, I present a critical analysis of Wallace’s intrigu-
ing argument. First, I show that the unitary gauge transforms the
Schrödinger equation into the Madelung equations, which are expressed
entirely in terms of local and gauge-invariant quantities. Next, I point
out that an additional quantization condition needs to be imposed in
order that the Madelung equations are equivalent to the Schrödinger
equation, while the quantization condition is inherently nonlocal. Fi-
nally, I argue that the Madelung equations with the quantization con-
dition can hardly explain the the AB effect, even if in a nonlocal way.
This analysis suggests that the unitary gauge does not resolve the ten-
sion between locality and gauge invariance in explaining the AB effect,
but highlights again the profound conceptual challenges in reconciling
the AB effect with a local and gauge-invariant framework.

1 Introduction

The Aharonov-Bohm effect (AB effect hereafter) is a quantum effect that
demonstrates the significance of electromagnetic potentials in quantum me-
chanics (Aharonov and Bohm, 1959). Although it has been confirmed by
experiments (Tonomura et al, 1986), how to explain the effect remains an un-
solved, controversial issue (see, e.g. Earman, 2024). It is widely thought that
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an explanation of the AB effect must be either local but gauge-dependent
or gauge-invariant but nonlocal. For example, in the AB effect, a charged
particle confined to a region without electromagnetic field may be affected
by the local gauge-dependent potentials or by the gauge-invariant fields in
other regions nonlocally. But each of these two explanations is not fully
satisfactory. In this background, Wallace (2024, 2025) suggested a very in-
triguing way to resolve this dilemma. He argued that when considering the
gauge-invariant features of the wave function of the charged particle and the
electromagnetic potentials jointly, the AB effect can be explained in a local
and gauge-invariant way by choosing the unitary gauge. After all, the AB
effect arises because the wave function and the potentials are coupled in a
certain way in the Schrödinger equation. This is an important insight, and
the result deserves to be carefully examined.

In this paper, I will present a detailed analysis of Wallace’s explanation
of the AB effect. In Section 2, I first introduce the widely-discussed magnetic
AB effect, and explain why the effect can hardly be explained. In Section
3, I show that the unitary gauge transforms the Schrödinger equation into
the Madelung equations, which are expressed entirely in terms of local and
gauge-invariant quantities. This result is consistent with Wallace’s expecta-
tion. Then, in Section 4, I point out that the Madelung equations are not
mathematically equivalent to the Schrödinger equation, and an additional
quantization condition needs to be imposed to re-establish its equivalence
with the Schrödinger equation. In Section 5, I argue that the quantization
condition is not local but inherently nonlocal. This raises a serious objection
to Wallace’s argument that unitary gauge may provide a local and gauge-
invariant explanation of the AB effect. In Section 6, I further argue that the
Madelung equations with the quantization condition can hardly explain the
the AB effect, even if in a nonlocal way. Conclusions are given in the last
section.

2 The AB effect

Let me first introduce the magnetic AB effect, which has been widely dis-
cussed in the literature. Its basic setup is as follows (Aharonov and Bohm,
1959). A coherent beam of electrons is split into two parts, each going on
opposite sides of a solenoid. After the beams pass by the solenoid, they are
re-combined to interfere coherently. By means of an electric current flow-
ing through the solenoid, a magnetic field, B, which is essentially confined
within the solenoid, can be generated. However, the (time-independent)
vector potential, A, cannot be zero everywhere outside the solenoid, since
the total magnetic flux through every circuit enclosing the solenoid is equal
to a nonzero constant Φ =

∮
B · ds =

∮
A · dr.
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The Hamiltonian of the electron is1

H =
(p− eA)2

2m
, (1)

where e and m are respectively the charge and mass of the electron, and
H0 = p2/2m is the free Hamiltonian when the current is absent in the
solenoid.

Let ψ(r, t) = ψ1(r, t) + ψ2(r, t) be the wave function of the electron,
where ψ1 represents the beam on one side of the solenoid and ψ2 the beam
on the other side. Since each of these beams stays in a simply connected
region Ri (i=1,2) that does not include the solenoid, where B = ∇ × A =
0, we can use two gauges for calculating ψi (i=1,2). The first gauge is
A0 = 0, and the second gauge is Ai ̸= 0 (where Ai satisfies the relation∫
R1
A1 · dr+

∫
R2
A2 · dr = ϕ0). They are related with each other by a gauge

transformation Ai = A0 +∇χi, where χi is the gauge function. In the first
gauge, the Hamiltonian will be H0 = p2/2m, which is the same as the free
Hamiltonian for the case of no current being in the solenoid, for which the
solutions to the Schrödinger equation are supposed to be ψ0

1 and ψ0
2 for the

two beams, respectively. In the second gauge, the Hamiltonian will be given
by (1). By the gauge transformation of the wave function, the corrsponding
solutions of the Schrödinger equation will be

ψ1 = ψ0
1e

ieχ1 , ψ2 = ψ0
2e

ieχ2 , (2)

where χ1 =
∫
A1 · dr and χ2 =

∫
A2 · dr, being equal to

∫
A · dr along the

paths of the first and second beams, respectively (according to the above
gauge transformation of Ai). The interference between the two beams will
then depend on the phase difference: eχ1 − eχ2 = e

∮
A · dr = eΦ. This is

the magnetic AB effect, which will exist even if there are no magnetic forces
acting in the places where the electron beam passes.2

Here it is worth pointing out that although we can choose the gauge
A = 0 in each half of the whole region enclosing the solenoid, we cannot
choose the gauge A = 0 in the whole region, since, as noted above, the
integral of the magnetic vector potential A around every circuit enclosing the
solenoid is not zero. As a result, although the solutions of the Schrödinger
equation for each beam are gauge-equivalent to the free solutions (when
B = 0 everywhere), the solutions for the two beams are not gauge-equivalent
to the free solutions. As we will see later, this bizarre situation will pose a
great difficulty for explaining the AB effect.

1Units are chosen so that ℏ = c = 1 throughout this paper, unless otherwise stated.
2For a more rigorous analysis of the AB effect see Aharonov and Bohm (1959) and

Ballesteros and Weder (2009).
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3 Equations of motion in the unitary gauge

In this section, I will analyze Wallace’s derivation of the equations of motion
in the unitary gauge (Wallace, 2025). Moreover, I will show that the equa-
tions of motion in the unitary gauge are actually the Madelung equations.

Wallace (2025) considered the motion of a charged particle (without spin)
interacting with a background magnetic field. The Schrödinger equation in
the position representation is

i
∂ψ(r, t)

∂t
= − 1

2m
(∇− ieA(r, t))2 ψ(r, t), (3)

where ψ(r, t) is the wave function of the particle, A(r, t) is the magnetic vec-
tor potential, and e is the charge of the particle. The Schrödinger equation
is invariant under the following gauge transformation:

A −→ A+∇χ, ψ −→ eieχψ, (4)

for an arbitrary smooth function χ. When decomposing the wave function
ψ into its magnitude and phase: ψ = ReiS , we can see that there are two
local gauge-invariant quantities: R and v ≡ (∇S − eA)/m.

In the unitary gauge where ψ = |ψ|, the Schrödinger equation becomes

i
∂R

∂t
= − 1

2m

(
∇2R− e2A ·AR− 2ieA · ∇R− ie(∇ ·A)R

)
. (5)

After separating the real and imaginary parts we get

(∇2 − e2A ·A)R = 0, (6)

2m
∂R

∂t
= 2eA · ∇R+ e(∇ ·A)R. (7)

Since ψ = |ψ|, we have ∇S = 0 and thus v = −eA/m. Then, we can replace
eA with −mv in the above equations to get

(∇2 −m2v2)R = 0, (8)

2
∂R

∂t
+ 2v · ∇R+ (∇v)R = 0. (9)

This set of equations is expressed entirely in terms of local gauge-invariant
quantities R and v, and it does not depend on the unitary gauge. Accord-
ing to Wallace (2024, 2025), it may provide a gauge-invariant, local, and
separable description of the AB effect.

In the following, I will analyze Wallace’s two equations. It can be seen
that the second equation (9) is just the usual continuity equation, and it
can be written as follows:

∂ρ

∂t
+∇ · (vρ) = 0, (10)
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where ρ = R2. But the first equation cannot be the right one even when
the magnetic field strength B vanishes or ∇ × A = 0. First, this equation
does not admit simple solutions of (nonzero) momentum eigenstates of the
particle, for which ∇2R = 0 but v2R ̸= 0. Second, this equation does not
specify how v evolves over time. Finally, Wallace’s two equations do not
specify how ρ and v evolve under a given electromagnetic field either. Then,
where does it go wrong?

The key is to realize that we must also consider the electric scalar po-
tential ϕ in the unitary gauge. The complete Schrödinger equation which
includes the electric scalar potential is

i
∂ψ

∂t
= [− 1

2m
(∇− ieA)2 + eϕ]ψ. (11)

Then the first equation (8) should be

(∇2 −m2v2 − 2meϕ)R = 0, (12)

from which we can obtain ϕ = (∇2R/R − m2v2)/2me. Moreover, since
E = −∇ϕ− ∂A

∂t , we have ∂A/∂t = −E −∇ϕ or m∂v/∂t = eE + e∇ϕ in the
unitary gauge. Thus Wallace’s first equation will become

m
∂v

∂t
= e(E + v ×B)−mv · ∇v −∇U, (13)

where U = −∇2R/(2mR) is the so-called quantum potential. Here the
relation v = −eA/m is used. Note that v is a vector and ∇v2 = 2[v ×∇×
v + v · ∇v]. This equation, together with the continuity equation (10), are
in fact the Madelung equations (Madelung, 1927).

4 Inequivalence between the Madelung equations
and the Schrödinger equation

It has been known (and was first shown by Erwin Madelung in 1927) that
by differentiating the Schrödinger equation with ψ = ReiS and separating
the real and imaginary parts, one can directly obtain the above equations,
the Madelung equations, without choosing the unitary gauge. Since the
Madelung equations, unlike the Schrödinger equation, involve only fields and
not potentials, it appears to be the case that these equations can provide a
local and gauge-invariant explanation of the AB effect as Wallace thought.
However, there is a subtle issue here. That is, the Madelung equations and
the Schrödinger equation are not mathematically equivalent.

In order to see the inequivalence between these two equations, let’s first
derive the Madelung equations from the Schrödinger equation and then
try to recover the latter from the former (Here I mainly follow Wallstrom
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(1994b)). Consider again the Schrödinger equation (11). Let the wave func-
tion be ψ = ReiS , insert it into the equation, divide the equation by ψ, and
then separate the equation into real and imaginary parts.3 This yields the
following two coupled nonlinear equations (valid wherever ψ ̸= 0):

∂R2

∂t
= − 1

m
∇[R2(∇S − eA)], (14)

∂S

∂t
= − 1

2m
(∇S − eA)2 − eϕ+

1

2m
∇2R. (15)

The first equation is the continuity equation (10) when we write ρ = R2.
The gradient of the second equation yields Madelung’s second equation (13).

The derivation of the Schrödinger equation from the Madelung equations
(10) and (13) is supposed to be as follows. We need first to assume that v
is a gradient. Then by substituting v = ∇S and integrating (13), we obtain
(15). Note that the integration constant can be set equal to zero, since it
only contributes a global phase to the wave function. Then subtract (15)
from i/(2R2) times (10), multiply by ReiS , and replace ReiS with ψ. The
result will be the Schrödinger equation.

However, the above derivation of the Schrödinger equation from the
Madelung equations cannot go through. The main reason is that S be-
ing the phase of the wave function is a many-valued function in general,
e.g. for wave functions with angular momentum,4 and thus v cannot be ex-
pressed as the gradient of a globally defined single-valued function. Once S
is allowed to be many-valued, nothing in the Madelung equations constrains
ψ = ReiS to be single-valued, which is inconsistent with the usual require-
ment of the single-valuedness of the wave function in quantum mechanics.
In other words, the solutions of the Madelung equations are not necessarily
the solutions of the Schrödinger equation, and thus the two equations are
not equivalent.

Wallstrom (1994b) gave an explicit example to show the inequivalence
between the Madelung equations and the Schrödinger equation. Consider
the solution of the Schrödinger equation for a particle without spin in a
well-behaved two-dimensional central potential V (r). This problem can
be solved by separation of variables, and the solutions assume the form
ψ(r, θ) = Rl(r)e

ilθ, where (r, θ) are polar coordinates, and l denotes the an-
gular momentum. The single-valuedness of the wave function requires that
ψ(r, θ) = ψ(r, θ + 2nπ) (n is an integer), and this implies that l must be

3Note that given ψ, the ansatz ψ = ReiS does not uniquely determine R and S, since
S′ = S+nπ and R′ = (−1)nR (n is an integer) give the same ψ. If R is required to be non-
negative, then R is uniquely determined, but S still has arbitrariness within S′ = S+2nπ
(n is an integer) (Takabayasi, 1983).

4For example, for the wave functions with angular momentum which contain a factor
like eilθ, where l is an integer and θ is an azimuthal angle, S = lθ assumes different values
for the azimuthal angles θ + 2nπ (n is an integer).
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an integer or the angular momentum of the particle must be quantized. On
the other hand, all of the solutions ρl = Rl(r)

2 and vl = (l/r)θ satisfy the
Madelung equations for the potential V (r), regardless of whether l is an in-
teger, and (ρl, vl) corresponds to a single-valued solution of the Schrödinger
equation only when l is an integer.

It can be seen that in order that the Madelung equations are equivalent
to the Schrödinger equation (in which the wave function of a particle without
spin is single-valued), an additional quantization condition must be imposed.
The wave function being single-valued requires that S(θ+2π)−S(θ) = 2nπ
(n is an integer) for any θ. Then, in terms of v = ∇S/m, the quantization
condition will be

m

∮
v · dr = 2nπ, (16)

where
∮

denotes integral along any closed loop in space, since we have
m

∮
v · dr =

∮
dS = S(2π) − S(0). When including the electromagnetic

interaction, we have mv = ∇S − eA, and the quantization condition will be

m

∮
v · dr = 2nπ − eΦ, (17)

where Φ =
∮
A · dr is the magnetic flux through the closed loop. This

condition may re-establish the formal equivalence of the Madelung equations
with the Schrödinger equation.

5 The quantization condition is nonlocal

In this section, I will further analyze the quantization condition for the
Madelung equations, namely m

∮
v(r, t) · dr = nh − eΦ. Here I explicitly

include the Planck constant h.
First of all, the quantization condition is arguably indispensable. One

might think that since the quantization condition for the Madelung equa-
tions results from the single-valuedness of the wave function in the Schrödinger
equation, it may be dropped if the wave function is permitted to be multi-
valued. However, there are convincing arguments for the result that the
wave function of a particle without spin must be single-valued (see, e.g.
Merzbacher, 1962; Davidson, 2020). Moreover, the quantization condition
is also required by the agreement with experiments. For example, experi-
ments show that the orbital angular momentum of the electron in the hy-
drogen atom is quantized, and this requires the quantization condition for
the Madelung equations, as argued in the last section.

Next, it can be seen that the quantization condition is not of a local
differential form (like the Madelung equations), but of a global integral form.
It holds not for the value of v(r, t) in a position r at an instant t, but for
the values of v(r, t) in all positions r on a closed loop at the same time t.
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In particular, the physical quantity v along a closed loop in one region is
determined or affected directly by the magnetic flux Φ in another region
which may be sufficiently inside the loop (e.g. in the AB effect), without
any mediating field to transmit the influence. This is similar to the case of
Coulomb gauge fixing, in which the magnetic vector potential in one position
is determined by the magnetic field in all positions nonlocally (Wallace,
2024). Thus the quantization condition is not local but nonlocal.

Third, the quantization condition, which results from a mathematical
requirement, is lack of a plausible physical explanation. As argued above,
the space of solutions of the Madelung equations is much larger than the
space of solutions of the Schrödinger equation. Thus one must impose an
additional condition, the quantization condition, to restrict the solutions of
the Madelung equations so that they are in the same space of solutions as
the solutions of the Schrödinger equation. However, as noted by Wallstrom
(1994b), “this condition has not yet found any convincing explanation out-
side the context of the Schrödinger equation.” Indeed, Takabayashi (1952),
a strong proponent of the Madelung equations who first noticed the quan-
tization condition, also admitted that it is “of ad hoc and compromising
character for our formulation, just as the quantum condition for old quan-
tum theory.”

Finally, it is worth pointing out that the Madelung equations also need to
be supplemented by another condition at the nodal boundary. The reason is
that the initial-value problem for the Madelung hydrodynamic equations is
not well-defined (Wallstrom, 1994a; Aharonov, Cohen and Rohrlich, 2016).
If at any time the nodes of a wave function separate the wave function
into two or more disjoint components,5 there will be an infinite number
of different solutions which all satisfy the Madelung equations wherever
those equations are defined. Then some condition must be added to the
Madelung equations in order to ensure a unique solution. This condition
is arguably that the phase of the associated wave function S(r, t), defined
by m

∫ r
v(r′, t) · dr′ for the Madelung equations, be continuous across the

nodal boundary. However, like the quantization condition, it is difficult to
see how such a condition could be justified in terms of a theory in which
the physical significance of both the wave function and its phase have been
eliminated (Wallstrom, 1994b).

Note that the Madelung equations are not defined at the nodes of the
wave function because they are derived from the Schrödinger equation by
dividing ψ. This is related to the degeneracy problem of unitary gauge as
discussed by Wallace (2024). The problem is that unitary gauge is not a
gauge-fixing whenever ψ = 0 in a region. In this case, the phase of the wave

5For the electron in the hydrogen atom, for example, the radial part of its wave function
will have nodes for energy eigenstates other than the ground state, which separate the wave
function into many disjoint components.
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function will be arbitrary, and thus we cannot recover the magnetic vector
potential A from the (vanishing) covariant derivative of ψ. This suggests
that unitary gauge will be not useful when applied to regions where the wave
function of a charged particle is negligible.

6 Can Madelung explain the AB effect?

Now let’s see whether the Madelung equations with the quantization con-
dition can provide a plausible dynamical explanation of the AB effect, even
though it must be nonlocal. So far no one has given such an explanation
(see Takabayasi, 1983 for a relevant attempt). As I will argue below, the
answer seems negative.

Consider again the magnetic AB effect. A beam of electrons is split
into two parts, each going on opposite sides of a solenoid. After the beams
pass by the solenoid, they are allowed to re-interfere. In the absence of any
electric current through the solenoid (and hence of any induced magnetic
field), the reinterference of the two electron beams will produce a usual
interference pattern. When an electric current flows through the solenoid,
there will be a shift in the interference pattern, and the magnitude of the
shift will be proportional to the magnetic flux within the solenoid. Note that
the solenoid can be constructed in a way that there is negligible magnetic
field outside it, and thus the electron has been moving in a region where the
magnetic field can be ignored.

Then, how to explain this AB effect? and in particular, what causes
the shift of the interference pattern? According to the Madelung equations
(10) and (13), since the electric and magnetic field can be ignored in the
region where the electron moves, the equations will be the same as the free
equations when the solenoid is turned off. In other words, since the magnetic
field inside the solenoid does not appear in the Madelung equations, the
solutions of these equations for the AB effect setup will be the same as those
of the free equations, which are independent of the magnetic flux inside the
solenoid. Thus the Madelung equations alone cannot explain the AB effect.

Can the quantization condition explain the AB effect? At first sight,
the answer seems positive, since the quantization condition (17) contains
the magnetic flux term that determines the shift of the interference pattern
in the AB effect. However, a more detailed analysis suggests the oppo-
site. Here one needs to first answer when the quantization condition (17),
namely m

∮
C v(r, t) · dr = nh − eΦ (where C denotes a loop that encloses

the solenoid, and Φ denotes the magnetic flux inside the solenoid) can be
imposed for the AB effect setup. Before the electrons are emitted from the
source, or even before the electron beams overlap and re-interfere, it seems
that the quantization condition cannot be defined, since the two electron
beams have not formed a loop that encloses the solenoid (see also Zuchelli,
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1984). Moreover, according to the Schrödinger equation, before the electron
beams overlap, we can always choose the gauge A = 0, and thus v = ∇S−eA
will be also independent of the magnetic flux inside the solenoid.6

On the other hand, once the two electron beams overlap and form a
loop that encloses the solenoid, the quantization condition can be imposed,
namely we immediately havem

∮
C v(r, t) · dr = nh−eΦ. Thus, the quantiza-

tion condition not only introduces nonlocality (as argued in the last section),
but also introduces discontinuity. Prior to the beam overlap, the two gauge-
invariant quantities ρ and v reflects negligible, if any, information about
the magnetic flux inside the solenoid. While immediately after the beam
overlap, v, as well as ρ (via the continuity equation), will depend on the
magnetic flux inside the solenoid. This change of ρ and v throughout space
is instantaneous and discontinuous.7 In this way, the quantization condition
might be able to provide a nonlocal and discontinuous explanation of the
AB effect.

But why? Why does and how can the magnetic field inside the solenoid
influence the electrons outside the solenoid? And why does and how can the
beam overlaping trigger the influence? If no physical mechanism is available,
then the above explanation provided by the quantization condition seems
vacuous. As noted before, the quantization condition is a mathematical
condition for restricting the solutions of the Madelung equations so that
they can be mathematically equivalent to the Schrödinger equation, but as
a global and nonlocal condition, it can hardly be explained in physics.

Finally, it is worth noting that the effect of vacuum polarisation resulting
from the magnetic field inside the solenoid is so small that it cannot explain
the AB effect (cf. Wallace, 2025). In particular, at a distance greater than
the Compton wavelength away from the solenoid, the effect is exponentially
small (Serebryanyi, 1985; Gornicki, 1990).

7 Conclusions

In this paper, I have critically analyzed Wallace’s argument that the AB
effect can be explained in a local, gauge-invariant way using the unitary
gauge. Through a detailed derivation, I have shown that the unitary gauge
transforms the Schrödinger equation into the Madelung equations, which
are expressed entirely in terms of local and gauge-invariant quantities ρ
and v. However, an additional quantization condition needs to be imposed
to ensure the equivalence of the Madelung equations with the Schrödinger
equation, while this quantization condition is inherently nonlocal, lacking a

6Since ρ and v are gauge-invariant quantities that can be measured, this result is
independent of the choice of a particular gauge and can also be confirmed by experiment.

7It is arguable that this is a general feature of all gauge-invariant explanations of the
AB effect (Gao, 2025).
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clear physical justification. Furthermore, I have argued that the Madelung
equations, even when supplemented with the quantization condition, fail to
provide a satisfactory explanation of the AB effect.

In conclusion, while the unitary gauge and the Madelung equations offer
an intriguing perspective on the AB effect, they ultimately fall short of pro-
viding a local, gauge-invariant explanation of the AB effect. The necessity
of a nonlocal quantization condition and the lack of a physical mechanism
for the observed effects highlight the deep conceptual challenges in reconcil-
ing the AB effect with a local, gauge-invariant framework. The AB effect
remains a deeply puzzling phenomenon for physicists and philosophers of
physics, and its explanation continues to require a deeper understanding of
the tension between locality and gauge invariance in quantum theory.
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