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Abstract 13 

The validity of a virtual human-based research methodology, in which simulated humans are used to 14 

generate knowledge about real humans, depends on substantiating multiple correspondence claims 15 

which are currently indefensible. One must substantiate that real and virtual humans are sufficiently 16 

similar with respect to their (1) control structures, (2) environments and embodied experiences, (3) 17 

adaptive histories and attunements, (4) social and cultural contexts, and (5) institutional contexts. If 18 

one’s confidence in any of these correspondences is undermined, then the foundation of this approach 19 

will crumble.  20 

Unfortunately, technological limitations and our fragmentary understanding of minds will severely 21 

constrain the similarities between real and virtual humans for the foreseeable future. As a result, 22 

attempts to generalize empirical findings from virtual humans to real humans will prove ill-founded, 23 

and are likely to fail. Therefore, we believe that alternative research methodologies that focus on 24 

understanding mechanisms of mind more broadly, and cultivate the gradual acquisition of enabling 25 

technologies and engineering competences, are needed in the interim. We describe two such 26 

alternative approaches here, and speculate on their usefulness and viability in practice. 27 

1 Introduction 28 

The virtual human research methodology is exemplified by DiPaola et al. (2021) in a research topic 29 

they proposed for Frontiers in Psychology. They stated, 30 
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This research topic centers on the methodology of understanding systems by building them, 31 

specifically the construction of autonomous computer-generated humans as a research 32 

methodology. It is directly supported by the dramatic increase in the graphical quality of 33 

computer-generated humans: virtual humans appear indistinguishable from real humans, 34 

providing a unique opportunity to push more realistic cognitive and behavioral models… In 35 

building models that drive artificial humans, we are asking questions relevant to the 36 

understanding of the human mind…. the emphasis of this [methodology] is on the use of 37 

virtual humans to embody models and testing them in real-time interaction. The cornerstone 38 

is that the model’s quality is assessed by the quality of the interaction between the virtual 39 

human, controlled by the model, and the biological human. 40 

Researchers applying this methodology observe and manipulate virtual humans in simulated 41 

environments to support or challenge cognitive theories, and to generate new hypotheses about real 42 

humans. As with the use of natural animal models, this approach’s validity fundamentally depends on 43 

the degree of correspondence between model and target species, that is, how human-like these virtual 44 

humans really are. 45 

Traditional animal-model approaches are predicated on millions of years of shared evolutionary 46 

heritage and the assumption that the resulting genetic, metabolic, developmental, or behavioral 47 

systems are substantially conserved between our species and theirs. For example, advocates for the 48 

use of animal models such as mice are quick to point out the many similarities between mouse and 49 

human genomes (Why Are Mice Considered Excellent Models for Humans?, n.d.). Despite this, 50 

generalization errors between these animal models and humans can, and often do, occur. For 51 

example, less than 8% of promising cancer treatments developed in natural animal models have led 52 

to successful medical interventions in humans, and in one particularly notable case, a promising 53 

cancer drug caused catastrophic organ failure in humans with doses five hundred times lower than 54 

those safe in non-human animal studies (Mak et al., 2014). A similarly low success rate has been 55 

observed in the development of treatments for central nervous system disorders (such as Alzheimer’s 56 

and schizophrenia) based on non-human animal models (Geerts, 2009). 57 

Within the domain of human cognition and behavior, correspondence problems can be particularly 58 

acute, since social and cultural factors can play significant roles. While traditional views of culture in 59 

social psychology and cognitive science have taken it to be an external force influencing cognition 60 

(e.g., Hofstede, 2001), recent research in cultural neuroscience (Hanakawa et al., 2003; Kitayama & 61 

Park, 2010; Seligman et al., 2016), cognitive anthropology and archaeology (Henrich, 2016; 62 

Overmann, 2017; Overmann & Wynn, 2019), and enactive cognition (Gallagher, 2013; Hutto et al., 63 

2020; Petracca & Gallagher, 2020) demonstrate that culture pervasively modulates cognition and 64 

brain processes. Institutions, practices, technologies, and other people act as external scaffolds for 65 

many cognitive processes. For example, in a legal context, a judge relies on institutional norms and 66 

practices, codified laws, legal precedents, social expectations, and interactions with other agents with 67 

well-defined roles (e.g., jury members, defendants, and prosecutors). This external scaffold 68 

constitutively enables the legal judgment that the judge makes; it is not the sole achievement of the 69 

judge’s brain. Similarly, scientists make discoveries in collaborative laboratories (Slaby & Gallagher, 70 

2014), and economists (as well as consumers and producers) make decisions within financial markets 71 

(Gallagher et al., 2019; Petracca & Gallagher, 2020). These social and cultural factors can be 72 

challenging to account for in experimental settings. Yet neglecting to include them can undermine the 73 

significance of our experiments, and render our models ineffectual as scientific tools. 74 
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If establishing a correspondence between natural animal models and humans is difficult, how much 75 

more challenging will it be to justify similarities between software agents and humans? There seems 76 

little reason to expect that the minds of these engineered beings are any more human-like than non-77 

human animals, and, on the contrary, we have every reason to suspect that they will share fewer 78 

similarities with us than we do with our biological cousins (e.g., other mammals, reptiles, or even 79 

insects). We do not share an evolutionary heritage, bodily substrate, environment, or social, cultural, 80 

and institutional contexts with artificial humans. 81 

We will argue that the validity of the virtual human methodology depends on substantiating multiple 82 

correspondence claims which are currently indefensible. One must substantiate that (1) virtual 83 

humans are autonomous agents with “control structures” (Newell, 1973) that are sufficiently similar 84 

to real humans; (2) their virtual environments, and interactions with those environments, are 85 

sufficiently similar to those of humans in the physical world; (3) their experiential and evolutionary 86 

histories result in sufficiently human-like adaptations and attunements; (4) social and cultural 87 

contexts within their virtual environments afford human-like opportunities for interactions with other 88 

virtual humans and their virtual world; and (5) institutional contexts, including norms, practices, and 89 

related technologies, are available in the virtual environment to externally scaffold the activities of 90 

virtual humans.  91 

In these arguments, we take for granted that cognition is fundamentally dependent on body and 92 

environment—a core tenet of embodied cognition. Unlike classical cognitivism, which views minds 93 

as abstract information processors analogous to computers, embodied cognition holds that an agent’s 94 

mind is inseparable from its sensorimotor engagements with the world (M. Wilson, 2002). From this 95 

perspective, movements, affects, motivations, and social interactions are the primary driving forces 96 

of an agent’s mind. Furthermore, natural (biological) agents are situated within, and a part of, 97 

ecological niches, and their cognitive capabilities develop in service of actions within those niches 98 

(Franklin, 1995, Chapter 16; Varela et al., 1991/2016). 99 

While it may be theoretically possible to engineer virtual humans and simulated environments that 100 

satisfy the five correspondence conditions mentioned above, our current technological limitations and 101 

fragmentary understanding of minds will severely constrain the obtainable correspondence between 102 

real and virtual humans for the foreseeable future. Consequently, we believe the virtual human 103 

methodology is currently untenable, and that we should consider other, more tractable, options in the 104 

interim.  105 

After establishing our core arguments in Section 2, we explore two alternative approaches to 106 

understanding minds in Section 3 that sidestep the aforementioned correspondence problems. These 107 

approaches are bottom-up and incremental synthetic approaches (Franklin, 1995, pp. 9–10) that 108 

replace the resemblance-based evaluation criterion used in the virtual human research methodology 109 

with a performance-based criterion that judges software agents based on their ability to produce 110 

adaptive behaviors in naturalistic virtual ecological niches. While our discussion of the feasibility and 111 

usefulness of these alternative approaches is largely speculative, they, nevertheless, provide an 112 

instructive contrast with the virtual human methodology. 113 

2 The Virtual Human Methodology and Its Correspondence Problems 114 

The virtual human methodology is analogous to the use of natural animal models as experimental 115 

proxies for real humans, but with species of engineered, artificial minds as the proxies. A prerequisite 116 

of such approaches is that researchers must substantiate that a correspondence exists between a 117 
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model species (e.g., virtual humans) and the target species (e.g., real humans). If one’s faith in this 118 

correspondence is undermined, then the foundation of the approach crumbles.  119 

In the remainder of Section 2, we will argue that establishing a correspondence between virtual and 120 

real humans is not yet possible. This is due to multiple issues that weaken the external validity1 of the 121 

proposed virtual human research methodology. While some of these issues are common to all animal 122 

modeling approaches, others stem from (or are exacerbated by) the engineered reality that this 123 

research paradigm requires. In particular, this approach forces researchers to either simulate all 124 

aspects of the real world, or defend claims about the irrelevance of those things they have neglected 125 

to include. Since the former is out of the question, a researcher’s only recourse is to argue for the 126 

sufficiency of their impoverished renderings of humans and the real world. In particular, they must 127 

substantiate claims that real and virtual humans are sufficiently similar with respect to their control 128 

structures (Section 2.1), environments and embodied experiences (i.e., Umwelten) (Section 2.2), 129 

adaptive (personal and evolutionary) histories and attunements (Section 2.3), social and cultural 130 

contexts (Section 2.4), and institutional contexts (Section 2.5). Within each section, we will contend 131 

that various aspects of virtual humans and their environments are infeasible to simulate due to 132 

technological and theoretical limitations. While these aspects are deeply intertwined, we separate 133 

them here for the sake of clarity.  134 

2.1 Correspondence of Control Structures 135 

We define minds, both natural and artificial, as control structures for autonomous agents (see 136 

Franklin, 1995). While Newell (1973) explained the idea of a “control structure” through a computer 137 

programming analogy, control structures can be more broadly defined as those mechanisms that 138 

enable autonomous agents to answer the question, “What do I do next?” We follow Franklin and 139 

Graesser’s (1997) definition of an autonomous agent as “a system situated within and a part of an 140 

environment that senses that environment and acts on it, over time, in pursuit of its own agenda and 141 

so as to effect what it senses in the future” (Franklin & Graesser, 1997, p. 25). According to this 142 

definition, autonomous (software) agents differentiate themselves from non-agential “programs” by 143 

their situated and embedded relationship with an environment, and their selection of actions that 144 

further their own agenda. 145 

Given two minds, for example, a virtual human and a real human mind, ceteris paribus, one might try 146 

to establish a correspondence between their control structures by simply comparing the observable 147 

behaviors they produce. However, we contend that this purely behavioral approach is insufficient.  148 

In 1950, Turing (1950) proposed his famous “imitation game” as a standard by which one could 149 

answer the question, “Can machines think?” It is based on the idea that if a human interrogator 150 

cannot tell the difference between a human’s and a machine’s behaviors (in particular, their responses 151 

to the interrogator’s questions), then we should attribute to the machine a capacity for thought. The 152 

imitation game operationalizes a notion of thought and intelligent behavior that is agnostic of its 153 

underlying causes (i.e., the human’s and machine’s control structures). For Turing’s purposes, this 154 

was completely adequate. However, some have misinterpreted Turing as implying that a machine 155 

passing such a test thinks like a human. To the contrary, Turing (1950) wrote, 156 

 

1 External validity is defined as “the extent to which research findings derived in one setting, population or species can be 

reliably applied to other settings, populations and species” (Pound & Ritskes-Hoitinga, 2018, p. 2). 
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May not machines carry out something which ought to be described as thinking but which is 157 

very different from what a man does? This objection is a very strong one, but at least we can 158 

say that if, nevertheless, a machine can be constructed to play the imitation game 159 

satisfactorily, we need not be troubled by this objection. (Turing, 1950, p. 435) 160 

While this objection may be irrelevant for establishing that a machine thinks, it cannot be ignored if 161 

one’s purpose is to establish a correspondence between artificial and human minds. A human 162 

interrogator may be convinced that two minds produce similar behaviors, but that conviction is not 163 

sufficient to conclude that those behaviors originate from similar control structures.  164 

 

Figure 1. A stem-wind, stem-set pocket watch (left) and its digital doppelganger (right). 

As a simple thought experiment, consider a 19th-century “stem-wind, stem-set” pocket watch (see 165 

Figure 1, Left). Even if we knew nothing about analog clocks or the mechanics of 19th-century pocket 166 

watches, we could easily discern (after a few hours of observation) that each of its three “hands” 167 

appear to rotate at predictable rates. The smallest hand rotates approximately six degrees per second. 168 

The long, thin hand rotates approximately six degrees per minute. And the medium-length, thick 169 

hand rotates approximately 30 degrees per hour. Armed with this knowledge and a few lines of code, 170 

we could produce a seemingly perfect digital doppelganger (see Figure 1, Right) of the real pocket 171 

watch. However, the underlying control structures are wholly dissimilar. As a result of these 172 

differences, our virtual watch fails us in almost every way as a model of the original watch. It fails to 173 

support the generation of new hypotheses and predictions about the real watch (e.g., what happens to 174 

its hands’ rotation rates when the watch’s hairspring tension is increased?). It fails to consider real-175 

world operating conditions (i.e., the physical context) that can directly affect its observable 176 

behaviors. These include the effect of ambient temperature on its precision, the gradual cumulative 177 

effects of friction on its accuracy, or the potentially catastrophic effects of a strong magnetic field or 178 

emersion in water on its operations. And it fails to simulate any behaviors of the real watch that it 179 

was not explicitly programmed to mimic (e.g., the ticking sounds emitted by the real watch, or the 180 

way that its hands inexplicable stop rotating after several days unless the watch is wound). Most 181 

importantly, it fails to help us comprehend how the real pocket watch works (i.e., what physical 182 

forces and principles govern the movement of its hands?). And is that not the point of this whole 183 

endeavor? 184 

In the 70 years since Turing proposed the imitation game, the script has changed dramatically. 185 

Thinking machines have been created that match or surpass the best efforts of skilled humans in 186 
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contests that few would have believed possible a few decades ago. Machines have beaten the world’s 187 

greatest chess (Campbell et al., 2002; Silver, Hubert, et al., 2017) and Go players (Silver, 188 

Schrittwieser, et al., 2017), Jeopardy champions (Ferrucci et al., 2010), and e-sports professionals 189 

(Vinyals et al., 2019). They have outperformed trained medical professionals at detecting lung cancer 190 

in diagnostic images (Ardila et al., 2019) and human experts on some language comprehension tasks 191 

(Devlin et al., 2018). We take for granted our AI-based digital assistants (like Alexa, Google 192 

Assistant, and Siri), using them habitually as cognitive supports, and even talking to them as if they 193 

were humans. And we appear to be on the verge of an era of self-driving cars and other autonomous 194 

vehicles. Every time we draw a line in the sand and say, “machines will never do this,” we are 195 

invariably wrong. While there are currently no software agents that can reliably “win” Turing’s 196 

imitation game, we regard this milestone as inevitable. When they do, it is critical that we understand 197 

the context and purpose of that original challenge, and not make the mistake of assuming that similar 198 

behavior necessitates similar minds.  199 

This is particularly critical today, as recent computational and algorithmic advances have made it 200 

possible to use massive amounts of data to train models (e.g., “deep” neural networks) that mimic 201 

how humans behave in various contexts. For example, Bidirectional Encoder Representations from 202 

Transformers (BERT; Devlin et al., 2018) is an artificial neural network (ANN) architecture that 203 

outperformed human “experts” on several language comprehension and production tasks, but, in spite 204 

of this, few would claim that BERT thinks or learns like a human. More recent network architectures 205 

like Generative Pre-trained Transformer 3 (GPT-3; Brown et al., 2020) have further raised the bar 206 

on what can be achieved with extremely massive amounts of data and equally massive models2. From 207 

an engineering perspective, technologies like BERT and GPT-3 are marvels that will likely result in 208 

many useful tools for humanity. However, as cognitive scientists, we need to guard against making 209 

incorrect assumptions about the minds of these tools. They learn, and almost certainly think, in 210 

distinctly unhuman-like ways, even though their behaviors may suggest otherwise.  211 

2.2 Environments and Umwelten 212 

Cognition is not an isolated or purely internal process that is hidden away inside of agents; it is the 213 

product of agents being embedded in and coevolving with their environments. Simon (1996) 214 

illustrated this interplay by considering the trajectory of an ant traveling on a beach. When examined 215 

in isolation, the ant’s behaviors look exceedingly complex. However, when we realize that the ant’s 216 

path merely reflects the surface of the beach, the source of the complex trajectory becomes clear. The 217 

ant is coupled to its environment, and it is only in examining them together that its behaviors begin to 218 

make sense. This also applies to human behavior.  219 

Given that environmental changes can produce behavioral changes in agents, one might wonder how 220 

realistic virtual environments must be for human-like behaviors to emerge. Afzal et al. (2020) 221 

recently surveyed 82 roboticists and found that many believed there was a significant “reality gap” 222 

between today’s simulators and the real world. Participants complained that “simulation can produce 223 

unrealistic behaviors that would not occur in the real world” (Afzal et al., 2020, p. 3), and that 224 

accounting for all relevant physical phenomena can be challenging. Some perceived that this reality 225 

gap was large enough that they regarded simulation as infeasible for testing their robots. This 226 

 

2 GPT-3 has 175 billion model parameters, and was trained on half-a-trillion encoded linguistic tokens. It received a great 

deal of media attention because it has been claimed that the synthetic news articles generated by the model are practically 

indistinguishable from real news articles. For example, Brown et al. (2020) noted, “mean human accuracy at detecting 

articles that were produced by the [GPT-3] 175B parameter model was barely above chance.”  
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suggests that we may currently lack the engineering knowledge and technical “know-how” to create 227 

realistic simulators for robots, let alone virtual humans.  228 

Humans have a tremendous variety of sensors (e.g., visual, auditory, tactile, gustatory, olfactory, 229 

proprioceptive, nociceptive, and thermoreceptive). Unfortunately, today’s simulated environments 230 

are almost exclusively focused on visual modalities. While vision likely dominates our sensations, an 231 

expansive range of other sensory phenomena shape our richly multi-modal perceptual experiences, 232 

and synergistically combine to produce our perceptual Umwelten (Uexküll, 2010). For example, 233 

humans have four different mechanoreceptors in the skin (Merkel receptors, Meissner corpuscles, 234 

Ruffini cylinders, and Pacinian corpuscles), each responding to different kinds of pressure and 235 

stretching stimuli. Together they lead to the holistic perception of touch. The signals these sensors 236 

transduce are mapped onto somatosensory maps or homunculi in the somatosensory receiving area 237 

(S1) and the secondary somatosensory cortex (S2), linking them to specific regions of the body 238 

(Dijkerman & De Haan, 2007). We do not directly experience four different kinds of pressure signals 239 

emanating from various regions of our skin. Instead, we perceive a tactile intentional object 240 

(Merleau-Ponty, 1945/2012), like a smooth table or a rough rock. Not only do these sensory stimuli 241 

meld together to form multi-modal perceptions, but they can alter our cross-modal perceptions. The 242 

McGurk effect is one well-known case of this, wherein vision (e.g., perceiving lip movements) can 243 

alter auditory perceptions (McGurk & MacDonald, 1976). 244 

If a simulated environment fails to support these sensors (or the physical phenomena they are 245 

intended to receive), an agent’s embodied experienced environment—its Umwelt—will necessarily 246 

be different. Yet, even ticks have a richer Umwelt than is supported by most of today’s virtual 247 

environments. A tick’s Umwelt results primarily from a combination of tactile hairs and Haller’s 248 

organ. Hairs provide it with a basic sense of touch, allowing it to negotiate plants or the rough 249 

environments of hairy mammalian skin. And Haller’s organ allows it to transduce information from 250 

airborne particles (olfaction), temperature, humidity, and light. Uexküll (2010) described the tick’s 251 

Umwelt thus: 252 

The tick hangs inert on the tip of a branch in a forest clearing. Its position allows it to fall onto a 253 

mammal running past. From its entire environment, no stimulus penetrates the tick. But here 254 

comes a mammal, which the tick needs for the production of offspring. And now something 255 

miraculous happens. Of all the effects emanating from the mammal's body, only three become 256 

stimuli…From the enormous world surrounding the tick, three stimuli glow like signal lights in 257 

the darkness and serve as directional signs that lead the tick surely to its target. (Uexküll, 2010, p. 258 

51) 259 

The relative desolation of a tick’s Umwelt starkly contrasts with the rich and colorful world of 260 

experience available to humans, and capturing this cornucopia of sensations in our simulated 261 

environments is a formidable challenge. Importantly, our sensors and Umwelt did not evolve for our 262 

spectatorial enjoyment. They evolved because they enhance our adaptive fit to our environment, and 263 

they serve the pragmatic function of guiding embodied action in the world.      264 

2.3 Correspondence of Evolutionary and Experiential Histories  265 

Natural agents are both phylogenetically and ontogenetically attuned to their environments 266 

(Gallagher, 2017). This involves a coevolution with their ecological niches (Odling-Smee et al., 267 

2003; Varela et al., 1991/2016). This coevolution means that organisms do not merely fortuitously 268 

find an ecological niche and unilaterally adapt to it (Laland, 2017; Odling-Smee et al., 2003; 269 

Sterelny, 2003). They often take an active role in shaping their niches, making them more fitting to 270 
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their needs. Beavers, for example, alter their niche by building dams. Ants construct elaborate 271 

mounds. And, more than any other animal, humans have in the last 12,000 years (counting since the 272 

Agricultural or Neolithic Revolution) radically reshaped their ecological niches, creating roads, 273 

farms, and cities. 274 

The evolutionary heritage of any natural agent is a complex history of sedimented adaptations to 275 

changing environmental pressures. Human capacities, such as trichromatic vision, have roots in early 276 

primate adaptations to arboreal conditions, where trichromacy conferred an advantage in perceiving 277 

vibrant fruits against the background of green leaves (Osorio & Vorobyev, 1996). Many adaptive and 278 

maladaptive behaviors (as well as seemingly neutral proclivities) may have their roots in 279 

evolutionary processes. A prime example of this is the evolution of long-term sexual strategies and 280 

motivations (see Brase, 2006; Buss, 1994; Buss & Schmitt, 1993; Kenrick et al., 1996; Salska et al., 281 

2008; Schulte-Hostedde et al., 2008; Schwarz & Hassebrauck, 2012; Shackelford et al., 2005; Smuts, 282 

1995; Wade et al., 2009). 283 

Modeling these ancestral attunements in software agents can be tricky. An agent’s innate drives and 284 

motivations (such as survival, curiosity, and reproduction) provide the impetus for action, yet we do 285 

not directly know what those primal imperatives are. Similarly, most (if not all) natural agents are 286 

equipped by evolution with innate reflexes and other fixed action patterns. The rooting, sucking, and 287 

stepping reflexes exhibited by human babies are some examples. These evolutionary factors must be 288 

accounted for in our cognitive theories, as they inform what must be built-in (rather than learned) to 289 

support the development of human-like artificial minds. When studying humans, the circumstances 290 

of modern life, particularly social and cultural contexts, can make unearthing these hidden factors 291 

exceedingly difficult. Ancient evolutionary heritage can manifest in unexpected ways when 292 

environmental pressures and conditions change; for example, the modern prevalence of depression, 293 

anxiety, and hypertension may be intimately related to the new pressures that modern life places on 294 

humans. 295 

These evolutionary attunements are shaped, refined, and added to through a lifetime of experiences. 296 

In other words, phylogenetic attunement or adaptability is complemented by ontogenetic attunement. 297 

The result is that each individual has a unique experiential trajectory that influences its behaviors. 298 

These experiences can manifest in the acquisition of beliefs, social and cultural norms, skills, 299 

languages, and a web of potentially complex motivations. Moreover, traumatic experiences (e.g., the 300 

death of a loved one, or physical and mental abuse) can irreparably and dramatically change the way  301 

agents perceive and interact with the world. Therefore, a fundamental challenge in modeling virtual 302 

humans is accounting for the behavioral influences exerted by these myriad experiences. 303 

Beliefs, which typically develop from experience, exert a powerful influence on agential behavior. It 304 

has also been suggested that beliefs can modulate how entities, objects, and situations are perceived 305 

(Siegel, 2012, 2016; Stokes, 2013). Racial beliefs and attitudes, for example, can affect how humans 306 

perceive skin color (Levin & Banaji, 2006).3 A complicating factor is that people often hold 307 

contradictory beliefs, or verbally advocate for one behavior while engaging in another. For example, 308 

many people consider themselves “pro-life” but also believe in the death penalty. While these two 309 

beliefs are not formally contradictory, they may lead to apparently inconsistent behaviors, and 310 

generate cognitive dissonance. Thus, the task is not only to model agents capable of mathematically 311 

 

3 While there is much empirical evidence for cognitive penetrability, the phenomenon has been subject to recent debates. 

See for example (Firestone & Scholl, 2016). 
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“optimal” or “rational” behaviors, but those capable of inconsistent, contradictory, and erratic 312 

behaviors that may seem at odds with their own interests and well-being. 313 

These beliefs can be propositional or non-propositional. For example, human beings hold a myriad of 314 

non-propositional beliefs that can be made propositional if needed, but mostly operate as dispositions 315 

to act in an embodied and action-oriented fashion (Hornsby, 2012; Ryle, 1976). Knowledge 316 

regarding subtle cultural norms such as proxemics (i.e., how close it is acceptable to stand next to 317 

another person in various contexts) are largely a matter of non-propositional, low-level attunements 318 

to an environment. Importantly, many such attunements are not hardwired but develop through an 319 

agent’s experiential history. Consequently, modeling human behavior requires that our virtual 320 

humans be capable of learning, adapting, and changing their beliefs and dispositions to act to stay 321 

sufficiently attuned to their environments. 322 

While accounting for propositional beliefs in software agents may seem more tangible and 323 

manageable than non-propositional beliefs, attempts to reduce all human conduct to propositional 324 

form have met with limited success, and the engineering of such declarative knowledge can be 325 

monumentally time consuming4. Furthermore, language and the creation of software agents capable 326 

of thinking in a language is a formidable challenge given the richness and complexity that comes 327 

with language acquisition and use. Nevertheless, in order to faithfully model human behavior, we 328 

must overcome these technical challenges.  329 

An important and common human activity that profoundly influences behavior and relies on 330 

linguistic thought is the generation of self-narratives. That is, human beings understand themselves 331 

and their place in the world through the lens of a self-generated story (Bruner, 2004; Dennett, 1992; 332 

Gallagher, 2020; Hutto, 2008; Schechtman, 1996). The narrative self is often developed along the 333 

lines of culturally, ethnically, and nationally defined genres (McAdams, 2006), and reflects 334 

subculture (Dickson & Wright, 2017), sexual orientation, gender (Compton, 2020; McLean et al., 335 

2020; Nelson & Fivush, 2020), and numerous other categories. Self-narratives tend to incorporate the 336 

narratives of others, and some have even suggested that there is a constant recursive relationship 337 

between an agent's embodiment, their social interactions, their available affordances, and their self-338 

narratives (Dings, 2019). Furthermore, humans often act in accordance with distal intentions, which 339 

largely develop through experience in the context of self-narratives. This requires that one not only 340 

model and implement the mechanisms for constructing coherent self-narratives but also the selection 341 

of action in accordance with those narratives. Without the capacity to generate and act in accordance 342 

with self-narratives, the long-term behaviors of our virtual humans will almost certainly diverge from 343 

that of real humans. Such narratives may also be useful for understanding the basic intentionality of 344 

other agents (Hutto, 2008). 345 

In summary, human behavior depends on personal and evolutionary histories that are difficult to 346 

model in software. Evolutionary factors inform what must be built-in rather than learned to support 347 

the development of human-like artificial minds; however, it can be difficult to discern their existence 348 

and contributions to human behavior experimentally. These evolutionary forces are modified and 349 

augmented by a lifetime of personal events that can result in the acquisition of beliefs, social and 350 

 

4 The Cyc project, started in 1984, is a long-running attempt at hand-engineering “common sense” in software to facilitate 

the construction of expert systems. As of this writing, Cyc’s knowledge base is said to contain “10,000 predicates, 

millions of collections and concepts, and more than 25 million assertions” (Cyc’s Knowledge Base – Cycorp Inc., n.d.). 

According to Cycorp, it has taken over 4 million hours to develop this knowledge store and its associated inference 

engine. 
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cultural norms, skills, languages, and a web of potentially complex motivations. Accounting for these 351 

experiential forces in software agents is challenging because they require time-consuming 352 

developmental processes that are difficult to replicate in silico. Finally, propositional beliefs can 353 

further manifest in linguistic thought, including self-narratives. These self-narratives may serve 354 

numerous purposes, including the setting of distal intentions. The behaviors of virtual humans that 355 

lack the ability to generate and act in accordance with such distal intentions will likely diverge from 356 

those of real humans. 357 

2.4 Correspondence of Social and Cultural Contexts 358 

Perhaps the most challenging aspect of the real world to simulate in the virtual human methodology 359 

is the incorporation of realistic social and cultural contexts. For example, one of the most basic 360 

effects in this domain is the influence of social group size on individual behavior. A classic example 361 

of this is in the infamous murder of Kitty Genovese in New York in 1964. Although many reportedly 362 

heard her cries for help in this populous New York City neighborhood, not a single person intervened 363 

or called the police. Naive explanations tend to attribute this lack of intervention to callousness or 364 

selfishness, and indeed that is how the media reported it at the time (Ross & Nisbett, 2011). Yet a 365 

series of experiments by Latané and Darley soon revealed that the explanation is rather to be found in 366 

the effects of social groups themselves. There tends to be a diffusion of responsibility in large groups 367 

(Darley & Latané, 1968; Latané & Darley, 1969). Paradoxically, the increased presence of people 368 

around Kitty Genovese led to a lack of anyone intervening. Presumably, no one called the police 369 

because everyone thought someone else was surely calling.  370 

Social group size is only one simple example of these phenomena. Human social systems are 371 

intertwined with complex cultural systems and institutions that pervasively modulate cognition and 372 

the brain. For example, if we want to accurately predict how an individual human might respond to a 373 

life stressor, we must know their culture. People in highly collectivist cultures frequently seek out 374 

social support in family and friends, while those in highly individualist cultures tend towards 375 

rumination and isolation. These culture-specific behavioral tendencies may help explain higher 376 

incidences of depression in Western cultures (Ross & Nisbett, 2011), which tend to be more 377 

individualistic. Individualist and collectivist differences may also help explain differences in 378 

perception. Something as basic as visual fixation patterns in scene perception can be affected by 379 

culture, with persons in individualist cultures tending to fixate more on the salient focus of a scene. 380 

In contrast, persons in collectivist cultures tend to fixate more on contextual features (Chua et al., 381 

2005). 382 

We must also be cognizant of the social, cultural, racial, and gender biases that researchers might 383 

inadvertently introduce into their models of human minds. For example, most psychological studies 384 

are conducted on WEIRD people (Henrich et al., 2010), that is, people from Western, Educated, 385 

Industrialized, Rich, and Democratic societies. In contrast, the vast majority of Homo sapiens that 386 

have lived on this Earth over the past 300,000 years are decidedly not WEIRD. Moreover, that data is 387 

overwhelmingly from a specific subset of WEIRD culture: educated, undergraduate students. Since 388 

our best data about human behavior comes from such a highly skewed population, the behaviors of 389 

virtual humans constructed based on that data will likely be disproportionately biased towards the 390 

behaviors of WEIRD people. 391 

2.5 Institutional Contexts 392 

But the problem of culture runs far deeper than that. Institutions, practices, technologies, and people 393 

act as external scaffolds for many cognitive processes. These networks form cognitive institutions, 394 
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“pieces of the mind, externalized in their specific time and place, and activated in ways that extend 395 

our cognitive processes when we engage with them” (Crisafi & Gallagher 2010, pp. 124–125). 396 

Consider a scientific cognitive institution like the Hubble Space Telescope (i.e., not just the physical 397 

satellite in orbit, but also the scientists and regulatory bodies involved). No single person discovers 398 

new information about the age of the universe. It is the Hubble cognitive institution as a whole that 399 

produces new discoveries (Giere, 2006). What an individual scientist knows and does is constrained 400 

by their colleagues, by political directives, social pressures, and the technology itself. For example, 401 

few non-scientists are aware that in order to use the Hubble Space Telescope research teams must put 402 

in lengthy applications that are subjected to intensely competitive review.5 Similarly, unlike the 403 

distorted reality portrayed in most movies, the use of equipment, such as super computers, and the 404 

running of simulations, require that scientists apply months, or years, in advance. Knowledge and 405 

knowledge production are intimately tied into the bureaucracy and processes of human institutions. 406 

It is not just the knowledge, rules, and procedures encoded in brains that determine cultural networks 407 

or cognitive institutions. There is a deep materiality to any cultural system. Culture is just as much 408 

material things—boxes, books, clothes, cars, houses, buildings, and food—as it is ideas. Both 409 

material culture and other aspects of the environment are nontrivially a part of cultural networks and 410 

cognitive institutions. Consider Oldowan and later traditions of prehistoric stone tools. The forms of 411 

these tools, and the behaviors needed to make them, reflect the shape and material properties of the 412 

stones from which they were crafted. Different stones afford different manufacturing opportunities, 413 

and their shapes constrain how they must be flaked or otherwise processed. Once manufactured, 414 

these tools bestowed upon their ancient makers more complex and efficient forms of hunting and 415 

food preparation, as well as the ability to manufacture other items of material culture, such as 416 

clothing. They also provided defense against aggressors, and likewise facilitated aggressive acts 417 

against others. In other words, material culture has the capacity to dramatically transform individual 418 

behaviors, social interactions, and can birth cognitive institutions. Such cultural artifacts shape the 419 

brains of those engaged in their making and use (see Malafouris, 2013) as surely as the toolmakers 420 

themselves shape materials from the environment into useful tools. Critically, these practices are not 421 

reducible to neural representations in the brain of any agent, but involve a dynamical coupling 422 

between agents, their material culture, and other aspects of their environment. 423 

Contemporary social practices and interactions are heavily dependent upon the built environment and 424 

the material culture in which they are immersed. In courts of law, judges are often placed on a central 425 

and raised platform, directing audience attention and respect, and shaping the arrangement of legal 426 

proceedings. As many educators know, classroom dynamics can be transformed with a simple shift in 427 

desk arrangement. Social interaction is not merely a product of individual human brains or minds; 428 

rather it plays out in cultural environments where the material setup may be just as important as the 429 

more cognitive and neural factors involved. 430 

The effects of informational isolation on cognitive institutions can also be extensive. Newcomb’s 431 

(1943) studies of the geographical spread of ideas and practices in the context of a small liberal arts 432 

college in Vermont, Bennington College, provides a classic example. While a majority of students 433 

came from wealthy, conservative backgrounds, most of them quickly developed a strong liberal 434 

identity that persisted many decades after their collegiate experience (Alwin et al., 1991). The 435 

Bennington atmosphere was strong enough to overcome the tendency that political ideology has to 436 

propagate among familial lines. The prime factor in the political sway of the college was geographic 437 

 

5 https://www.nasa.gov/mission_pages/hubble/servicing/series/How_science_is_done.html 
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isolation: Bennington was relatively isolated from the larger communities from which these students 438 

originated. A general tendency towards liberal politics became amplified in the cloistered 439 

environment of the college, where social connections were predominantly between college members 440 

rather than with members of the broader community. The message of the study is not about politics, 441 

per se, but about the way geography constrains social networks. Today, many of the same cloistered, 442 

amplifying effects originate not from geographic isolation but from informational isolation. This is 443 

due to the ubiquity of internet algorithms and social networks. Twitter and Facebook bubbles have 444 

become so polarized, particularly in the United States, that entirely different narratives of the same 445 

events are propagated to different communities. Cognitive institutions always have borders, and those 446 

borders can, at times, be sharply defined by factors such as geography, online social network 447 

connections, and other factors.  448 

Cognitive institutions are themselves connected to other cognitive institutions. For example, “we 449 

know that research questions and decisions in science are not determined purely by scientific 450 

procedure, and scientific results are not strictly confined to scientific labs” (Slaby & Gallagher, 2014, 451 

p. 5). The kinds of decisions that individual scientists make in a laboratory may be determined and 452 

constrained by political institutions, funding organizations, career expectations (e.g., the pressure to 453 

gain tenure), and financial market pressures.  454 

Once social, cultural (including material culture), and institutional factors are considered, the 455 

prospects of accurately modeling individual human cognition become exponentially more difficult 456 

and complicated. Yet it is a simple fact that humans do not act in social and cultural voids. As John 457 

Donne’s great poem goes, “No man is an island, / Entire of itself, / Every man is a piece of the 458 

continent, / A part of the main.” But that continent is not just other people—it is built from the vast 459 

and multitudinous cognitive institutions that shape our lives, our behavior, and our minds, from the 460 

home (which is a deeply cultural institution), to school, to work, and play. Diverse cultural practices 461 

and norms transform the way individuals approach and understand the world. Specific cognitive 462 

institutions shape cognition and behavior. Simulating humans without simulating social, cultural, and 463 

institutional contexts will result in a one-sided and skewed model of real human cognition and 464 

behavior. Virtual humans will be like “islands” divorced from the continent of which they are a part 465 

without these contexts. 466 

Despite the existence of social simulations, they remain simulations of population-level phenomena. 467 

The computational capabilities needed for institutional or societal simulations are far beyond any 468 

current technology. Even while current social simulations prove promising models of macrosocial 469 

patterns, they do not model individual, personal, human agents interacting in a social milieu. Existing 470 

models include those that are essentially the progeny of the classical Lotka-Volterra equations 471 

modeling predator-prey populations (Abdollahian et al., 2013). They are systems of coupled 472 

dynamical equations that model macroscopic trends, not individual people. Sociological simulations 473 

have been pioneered by Bainbridge (1987, 1995), who uses neural nets to simulate religious belief in 474 

multi-agent systems. While this approach captures much more relating to particular agents’ 475 

individuality, it is still nothing like a full simulation of virtual humans in a virtual environment. And 476 

although archaeologists and anthropologists have begun using agent-based and systems-dynamics 477 

models to model everything from Neolithic cultural patterns (Shults & Wildman, 2018) to the 478 

transmission of early Christian rituals (Kaše et al., 2018), as useful as these simulations may be, none 479 

of them come close to an immersive virtual human simulation.  480 
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3 Alternative Methodologies Not Based on Correspondence  481 

In Section 2, we presented a critical examination of the virtual human research methodology. 482 

Specifically, we described several correspondence problems that can arise when attempting to 483 

replicate human minds (or other complex natural minds) in silico. As a result of these problems, we 484 

believe the goals of the virtual human methodology are currently unrealistic. Moreover, the path for 485 

achieving those goals is ill-defined. These challenges suggest the need for viable alternative synthetic 486 

methodologies with more realistic goals. Specifically, we advocate for approaches that (1) are 487 

compatible with our current capabilities, (2) cultivate the incremental acquisition of enabling 488 

technologies and engineering competences, and (3) enrich our foundational understanding of minds 489 

and environments. We consider two such approaches here. 490 

The first of these is the classical animat approach (see Section 3.1), which begins by constructing 491 

simple virtual ecological niches and autonomous agents with biologically inspired needs (e.g., 492 

survival and reproduction). These autonomous agents are referred to as animats. As animats that can 493 

survive and thrive within these virtual ecological niches are discovered, they are subjected to more 494 

demanding environmental conditions. Animat complexity is gradually increased until new “species” 495 

of animat that can cope with these emerging environmental challenges are discovered. This process 496 

continues ad infinitum. Critically, animats are evaluated based on their ability to satisfy their own 497 

needs, not on their resemblance to a natural species. Therefore, the classical animat approach avoids 498 

the correspondence problems that frustrate the virtual human methodology. 499 

The second is a theory-driven animat approach (see Section 3.2), which augments the classical 500 

animat approach with a design heuristic based on a cognitive architecture (see Section 3.2.1). The 501 

utility of this approach is that it allows a cognitive theory to dictate the permissible animat designs 502 

without resorting to a resemblance-based evaluation criterion (i.e., one that is based on the perceived 503 

degree of similarity between natural and engineered systems). This may, for example, increase the 504 

likelihood that animats will be discovered with more human-like minds. However, the resulting 505 

biases may also prevent the discovery of promising mechanisms of mind based on different 506 

principles. Therefore, this approach may not always be preferable to the classical animat approach in 507 

practice. Like the classical animat approach, the theory-driven animat approach begins with simple 508 

agents and environments, and gradually increases their complexity. We illustrate this methodology 509 

using the LIDA (Learning Intelligent Decision Agent) cognitive architecture in Section 3.2.2. 510 

The choice of whether to apply the classical or theory-driven animat approach is analogous to the 511 

choice between divergent and convergent modes of ideation (see Cropley, 2006). If one wants 512 

unconstrained access to all possible mechanisms of mind, then the classical approach is to be 513 

preferred. This may be particularly useful when surveying or comparing a set of animat designs in 514 

search of a theory. As a trade-off, there are no selective pressures built into this methodology that 515 

promote the creation of human-like minds; it delivers intelligences with increasing capabilities. In 516 

contrast, the theory-driven animat approach sacrifices the full breadth of animat possibilities in the 517 

hope of expediting the discovery of more sophisticated, naturalistic and human-like animats. 518 

However, the theoretical biases and constraints introduced using this approach may ultimately 519 

impede progress and discovery if one’s assumptions are unsound. In practice, it may be beneficial to 520 

switch back and forth between the two approaches (becoming less or more constrained) as 521 

circumstances dictate. 522 

Both of these approaches are viable in practice because they begin with simple environments and 523 

autonomous agents, and they do not require that the resulting animats resemble a natural species. A 524 
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basic feature of these approaches is that the initial environments and agents are constrained to be 525 

possible under current engineering practice. Assuming subsequent iterations of the animat approach 526 

are based on “minimal” increases in environmental and agential complexity, then, in theory, the 527 

approach should converge on animats that closely reflect the limits of one’s own technological and 528 

engineering capabilities. Once those limitations are identified, it may be possible to address them in a 529 

deliberate and targeted fashion. 530 

3.1 The Classical Animat Approach 531 

The animat methodology (see S. W. Wilson, 1991) proposes that one begins the investigation of 532 

minds by creating simple autonomous agents (i.e., animats) that are embedded in naturalistic 533 

environments. These autonomous agents are primarily focused on satisfying somatic (e.g., obtaining 534 

sustenance), homeostatic (e.g., maintaining comfortable body temperatures), and reproductive drives 535 

(e.g., mating and rearing young), as well as other, more derivative, survival-oriented needs (e.g., 536 

curiosity and social acceptance). Stewart Wilson (1991) argued that modeling these intrinsic 537 

motivations is essential since they are likely the “principal drivers” of behavior, and shape how 538 

agents perceive, and conceive of, their worlds.  539 

Once an animat of minimal complexity is created, one gradually increases its complexity in response 540 

to more demanding environments and more exacting survival-oriented needs: 541 

given an environment and an animat with needs and a sensory/motor system that satisfies 542 

these needs to some criterion, increase the difficulty of the environment or the complexity of 543 

the needs—and find the minimum increase in animat complexity necessary to satisfy the 544 

needs to the same criterion. (S. W. Wilson, 1991, p. 16) 545 

After many such iterations, the goal of this methodology is for these animats to become more capable 546 

and sophisticated artificial minds, and their environments more complex and challenging. 547 

An animat’s “quality” is judged by its ability to enact behaviors that allow it to survive and thrive 548 

within a virtual ecological niche. While the use of naturalistic environments and survival-oriented 549 

drives may foster the development of animats that resemble some natural species, the animat 550 

approach is itself agnostic to the constitution of these artificial minds. As a result, it avoids the 551 

correspondence problems that complicate the virtual human methodology.  552 

As a trade-off, there are no selective pressures built into this methodology that promote the creation 553 

of human-like minds. Therefore, even if the approach converges on sophisticated artificial minds 554 

capable of “general” intelligence, it offers no guarantees that the resulting minds will be human-like. 555 

Consequently, the goals of the classical animat approach are different from those of the virtual 556 

human methodology. This shift in objective is necessary because the goals of the virtual human 557 

methodology are currently unrealistic. Nevertheless, the knowledge and engineering capabilities 558 

discovered while applying the classical animat approach may enable the virtual human methodology 559 

in the future. (We return to this idea in Section 4.)  560 

The use of virtual ecological niches and naturalistic drives differentiate the classical animat approach 561 

from the performance-based approaches that dominate mainstream artificial intelligence research. As 562 

such, the animat approach falls within the domain of Alife simulations (e.g., Varela, 1988). 563 



  Virtually Impossible 

 
15 

3.2 A Theory-Driven Animat Approach 564 

The animat approach described in Section 3.1 avoids the correspondence issues described in Section 565 

2 by permitting any mechanism of mind that generates adaptive behaviors within some virtual 566 

ecological niche. The consequence of this unconstrained exploration of artificial minds is that the 567 

resulting minds may not be human-like or even animal-like. For some, this may not be an issue. 568 

Langton (1997) mused, “Artificial Life need not merely attempt to recreate nature as it is, but is free 569 

to explore nature as it could have been” (Langton, 1997, p. x). Nevertheless, for cognitive scientists 570 

that are primarily interested in human intelligence, the compromises required by the classical animat 571 

approach may be unacceptable.  572 

In this section, we speculate on the possibility of using a cognitive architecture as a heuristic to guide 573 

the incremental selection of animats towards those with more human-like intelligence. As with all 574 

heuristics, it is not guaranteed to work in practice, and its value is only as good as the validity of 575 

one’s assumptions about the nature and composition of human minds. The utility of this approach is 576 

that it allows a cognitive theory to dictate the permissible animat designs without resorting to a 577 

resemblance-based evaluation criterion, which is impossible to apply in current practice. This 578 

approach merely constrains the permissible animats to the region of animat design space consistent 579 

with the chosen cognitive architecture. 580 

This theory-driven animat approach, like the classical animat approach, is bottom-up and 581 

incremental. It starts with simple environments and agents, and gradually scales up their complexity. 582 

Furthermore, like the classical approach, it does not depend on validating that the resulting animats 583 

have human-like minds. Animats are judged solely on their ability to satisfy their own needs within a 584 

virtual ecological niche. We elaborate further on this approach in the subsections that follow. 585 

3.2.1 Unified Theories of Cognition and LIDA 586 

Many systems-level cognitive architectures (see Kotseruba & Tsotsos, 2018) strive to be “unified 587 

theories of cognition” (Newell, 1994) that are capable of modeling many, if not all, human cognitive 588 

activities and processes. Cognition, in this sense, broadly encompasses every mechanism of mind, 589 

including (but not limited to) perception, motivations, action selection, motor control, attention, 590 

learning, metacognition, sense of body and self, and language. Biologically inspired cognitive 591 

architectures (BICAs), such as LIDA (Learning Intelligent Decision Agent; see Franklin et al., 2016), 592 

additionally constrain artificially intelligent systems to be more like their natural counterparts, based 593 

on our current beliefs about natural minds. 594 

Among the BICAs, LIDA is particularly well-suited to serve as a theory for guiding the creation of 595 

incrementally more human-like animats, for the following reasons: 596 

(1) LIDA has a well-developed motivational system (McCall et al., 2020) that supports and 597 

modulates its many cognitive processes, including action selection and learning. This accords 598 

with the animat approach’s emphasis on survival-oriented needs being the primary drivers of 599 

behavior. 600 

(2) LIDA has a highly modular design with a multitude of distinct short- and long-term memory 601 

modules, and supporting cognitive processes (see Figure 2). This modularity turns out to be 602 

very useful for designing animats of varying capabilities and complexity (see Section 3.2.2). 603 

(3) LIDA implements and fleshes out many psychological theories (Baddeley & Hitch, 1974; 604 

Barsalou, 1999; Conway, 2001; Ericsson & Kintsch, 1995) including the Global Workspace 605 

Theory (Baars, 1988) of consciousness. While the scientific study of consciousness has 606 
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become more acceptable in recent years, research in machine consciousness and the attempted 607 

construction of conscious artifacts (Franklin, 2003) has been largely neglected. Accounting 608 

for consciousness is an important aspect of modeling human-like minds, and it has been 609 

rarely attempted in a cognitive architecture. 610 

(4) LIDA is an embodied cognitive architecture, incorporating situated cognition and grounded 611 

representations, and adhering to the principle that cognition is primarily for action (Franklin, 612 

1995, Chapter 16; M. Wilson, 2002). These features collectively endow LIDA agents with the 613 

potential of operating within a wider range of complex naturalistic environments than 614 

cognitive architectures that are more specialized towards symbolic environments and tasks.  615 

 

Figure 2. The LIDA cognitive cycle. 

Learning Intelligent Decision Agent (LIDA) is composed of many short- and long-term memory 616 

modules, codelets (i.e., special-purpose processors), and supporting cognitive processes (e.g., 617 

consolidation, cueing, learning, and decay). All cognitive activities and processes are conceptualized 618 

as occurring within, or emerging as the result of, a continual series of potentially overlapping 619 

cognitive cycles6. Cognitive cycles are viewed as being sub-divided into three phases: (1) perception 620 

and understanding, (2) attention, and (3) action and learning.  621 

During LIDA’s perception and understanding phase, sensory stimuli from an agent’s environment 622 

can activate low-level feature detectors in Sensory Memory. These, in turn, can activate perceptual 623 

 

6 The cognitive cycle corresponds to the “action-perception cycle” referred to by many psychologists and neuroscientists 

(see Freeman, 2002; Fuster, 2004; Neisser, 1976). 
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representations7 in Perceptual Associative Memory (PAM). Perceptual representations receiving 624 

sufficient activation (from Sensory Memory and other representations in PAM) are instantiated8 as 625 

percepts in the Current Situational Model (CSM)—a sub-module of LIDA’s Workspace. These 626 

percepts may correspond to recognized objects, entities, situations, and events, as well as their 627 

associated affective content (e.g., feelings, emotions, desires, and dreads; see McCall et al., 2020). In 628 

addition to percepts, the CSM also receives sensory content from Sensory Memory and the Current 629 

Body Schema (see Neemeh et al., 2021). Structure building codelets operate on the representations in 630 

the CSM, creating new associations (e.g., causality links) as well as more complex structures. These 631 

can include event structures, mental simulations (see Kugele & Franklin, 2020), spatial maps (see 632 

Madl et al., 2018), self-narratives and distal intentions (see Kronsted et al., forthcoming), and plans, 633 

among other things. The representations in the CSM may also cue associated long-term memories 634 

(e.g., episodes and semantic memories) into the CSM. The representations contained within the CSM 635 

correspond to an agent’s preconscious9  understanding, interpretation, and “thoughts” pertaining to 636 

its current situation. 637 

During LIDA’s attention phase, attention codelets can identify preconscious representations in the 638 

CSM that are of interest to them based on their own concerns (e.g., brightness, loudness, novelty, 639 

surprise, or urgency). If such content is found, an attention codelet will bring it to a “coalition 640 

forming process,” which may create a coalition that includes that codelet and the content it promotes. 641 

Coalitions compete in a winner-take-all competition in the Global Workspace based solely on the 642 

coalitions’ activations. The winning coalition and its content are globally broadcast to all of LIDA’s 643 

modules. The content in the global broadcast is said to be “functionally conscious.”10 644 

During LIDA’s action and learning phase, content from the global (conscious) broadcast is received 645 

by all modules, including Procedural Memory, which uses that content to activate and instantiate its 646 

schemes. Schemes are representations that correspond to consciously observed correlations between 647 

(situational) contexts, actions, and the results of those actions in those contexts. Each scheme 648 

additionally has a base-level activation that estimates the likelihood that the agent’s actions will 649 

produce the scheme’s expected results when executed in similar contexts. Instantiated schemes are 650 

referred to as behaviors. Behaviors receiving sufficient activation are sent to LIDA’s Action 651 

Selection module to compete as candidates for an agent’s next selected behavior. Action Selection 652 

chooses (at most) one of its behaviors per cognitive cycle (which may include non-decayed behaviors 653 

from a previous cognitive cycle) to be its currently selected behavior. It then sends this selected 654 

behavior to LIDA’s Sensory Motor System (SMS; Dong & Franklin, 2015) for execution. The SMS 655 

is composed of two modules: Sensory Motor Memory (SMM) and Motor Plan Execution (MPE). 656 

 

7 LIDA is a hybrid cognitive architecture that can be described as including both symbolic and non-symbolic 

representations, as well as non-representational modules (e.g., its Sensory Motor System). The existence and nature of 

mental representations in natural systems (e.g., brains) remains a contentious and highly debated topic in cognitive 

science, and some of the authors of this article argue against them (see, e.g., Gallagher, 2017). 

8 Instantiation is the process by which specific concrete instances are generated from more general templates by binding 

values to unspecified variables and parameters. For example, schemes in Procedural Memory are instantiated into 

behaviors by binding free variables in a scheme’s context, action, or results. Where an uninstantiated scheme may contain 

a generic OBJECT placeholder variable, the instantiated scheme (i.e., behavior) would replace OBJECT by a specific 

object from the current global broadcast (e.g., a CHAIR). A similar process of instantiation occurs when Perceptual 

Associative Memory instantiates percepts, and Sensory Motor Memory instantiates motor plans. 

9 We use the convention established by Franklin and Baars (2010) of referring to unconscious representations that have 

the potential to become conscious as “preconscious” and those that do not as “never-conscious.” 

10 LIDA currently makes no claims regarding phenomenal consciousness. 
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SMM is a long-term memory module that instantiates motor plan templates into motor plans based 657 

on a selected behavior. MPE executes motor plans through a process of situated, “online control,” 658 

during which, motor commands (i.e., low-level directives) are sent to an agent’s actuators in response 659 

to its immediate “situated” concerns. 660 

LIDA’s numerous learning mechanisms (see Kugele & Franklin, 2021) can also be invoked during 661 

the action and learning phase, as a direct result of a conscious broadcast. These mechanisms support 662 

the learning of new representations, and the reinforcement of previously learned representations. 663 

For a more comprehensive introduction to LIDA, see Franklin et al. (2016). 664 

3.2.2 An Illustration of the Theory-Driven Animat Approach using LIDA 665 

In this section, we illustrate how a unified theory of cognition, specifically LIDA, might inform 666 

design choices at each step when applying an animat-style research methodology. The advantage of 667 

doing so is that such a theory-driven animat approach has the potential to constrain these engineered 668 

autonomous agents to be more like natural systems (e.g., human and non-human animals) than their 669 

unconstrained counterparts. The described progression extends from minimal reactive agents, to 670 

minimal conscious agents, and beyond. While we focus here on illustrating the gradual addition of 671 

modules and processes, refinements within each module and process may be equally important in 672 

practice. 673 

As we have previously stated, this approach, like the classical animat approach, is not dependent on 674 

validating that the resulting engineered species resemble any natural species. This is in sharp contrast 675 

with the virtual human methodology. Instead, the theory-driven animat approach is focused on 676 

expanding our foundational understanding of mechanisms of mind rather than replicating natural 677 

minds in silico. 678 

A minimal reactive agent (see Figure 3, Panel 1) could be implemented using LIDA’s Sensory 679 

Memory and Motor Plan Execution modules. Such agents have a single motor plan that emits motor 680 

commands based solely on incoming sensory stimuli and Sensory Memory’s activated low-level 681 

feature detectors. While these agents are incapable of “offline” cognitive activities (e.g., reasoning, 682 

introspection, and the recall and formation of long-term memories; see M. Wilson, 2002), this form 683 

of purely situated control may be sufficient for extremely simple agents and ecological niches. 684 
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Figure 3. An incremental progression of LIDA agent complexity. (1) shows a minimal agent 

control structure that operates solely through situated, online control (no offline cognition). 

(2) shows the addition of Perceptual Associative Memory and Procedural Memory modules 

and an Action Selection module operating via never-conscious “alarms.” (3) shows a minimal 

“conscious” LIDA agent control structure that is capable of attention, conscious experiences, 

learning, and the consciously mediated selection of actions. 

Adding alarms (see Figure 3, Panel 2) greatly increases the flexibility of these simple reactive agents. 685 

Sloman (2001) referred to an alarm as a “purely reactive and pattern driven” (Sloman, 2001, p. 188) 686 

mechanism capable of simple behaviors such as freezing, fleeing, and aggressive displays. Alarms 687 

require the ability to recognize urgent situations and to select appropriate behavioral responses. These 688 

additional capabilities are supported by minimal implementations of Perceptual Associative Memory 689 



  Virtually Impossible 

 

20 

 

(PAM), Procedural Memory, and Sensory Motor Memory (SMM). PAM instantiates alarm percepts11 690 

based on sensory stimuli that are recognized as demanding immediate reactions (e.g., life-threatening 691 

events and conditions). From these percepts, Procedural Memory instantiates an appropriate reactive 692 

behavior (e.g., fight, flight, or orienting response), and SMM instantiates a corresponding motor plan 693 

for situated execution. These agents are still unable to learn or engage in most offline cognitive 694 

activities (apart from simple long-term memory recall). In agents with more sophisticated cognitive 695 

capabilities (such as reasoning and deliberative action selection), alarms provide a “short-circuit” for 696 

bypassing these slower control mechanisms in situations that require very rapid reactions. For 697 

example, a driver may unconsciously engage the brakes and turn the steering wheel of their car in 698 

response to a vehicle suddenly swerving into the lane in front of them. The selection and execution of 699 

these emergency maneuvers often occurs prior to, or at the same time as, the conscious awareness of 700 

the alarm situation that inspired their selection. 701 

A minimal “conscious” agent (see Figure 3, Panel 3) could be implemented by adding a Workspace 702 

(preconscious), Global Workspace, and one or more attention codelets. The introduction of conscious 703 

broadcasts sets the stage for a number of different learning mechanisms, including perceptual, 704 

procedural, sensory motor, and attentional learning. This class of agents also benefits from 705 

consciously mediated action selection, which allows the selection of actions, and the instantiation of 706 

motor plans, that are more attuned to the most salient aspects of their situational contexts. While their 707 

offline cognitive abilities are still quite limited, the introduction of associative and non-associative 708 

learning mechanisms, and consciously mediated action selection, would likely be highly adaptive in 709 

most environments. 710 

At this point, there are many possible continuations depending on the needs of an agent and its 711 

environmental pressures. Adding a Current Body Schema would allow an agent to have a better sense 712 

of its current somatosensory inputs and improve the perception of action opportunities in its 713 

environment; Adding a Transient Episodic Memory would allow an agent to store and retrieve recent 714 

autobiographical episodes; Adding one or more structure building codelets would enable a wide 715 

variety of cognitive abilities, such as categorization, causality, planning, and mental simulation; And 716 

adding Spatial Memory would empower an agent with the ability to create cognitive maps (e.g., 717 

spatial maps) of portions of its environment. Each of these potential branching points result in many 718 

other choices that could be incrementally explored. 719 

 720 

 

11 An important class of these percepts are “feelings” (see McCall et al., 2020), which are affective appraisals that reflect 

an agent’s basic drives and motivators. 
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Figure 3. The efficacy and feasibility of virtual model (e.g., virtual human) methodologies as 

functions of our theoretical (Left Panel) and engineering (Right Panel) knowledge. The 

shapes of these curves indicate different knowledge-efficacy relationships. Theoretical 

knowledge influences efficacy in a bell-shaped (or inverted-“U”) relationship. Efficacy peaks 

when our theoretical knowledge is counter-balanced by remaining lines of scientific inquiry. 

If our theoretical knowledge about a target species (e.g., real humans) is limited, then our 

virtual models will lack external validity, rendering them useless. On the other hand, being 

extremely knowledgeable about a target species reduces the available lines of scientific 

inquiry, and once again limits the usefulness of our virtual models. Additional engineering 

knowledge (and supporting technologies) is always a facilitator; however, the impact of new 

engineering knowledge and technologies is greatly diminished once we are capable of 

creating sufficiently realistic bodies, environments, and mechanisms of mind.  

4 Discussion 721 

The virtual human research methodology is a synthetic approach to understanding minds based on 722 

the creation of artificial, human-like minds that control virtual, human-like bodies in simulated 723 

worlds. The feasibility and efficacy of this, or any virtual approach that seeks to replicate natural 724 

minds in silico, depends on the right combination of theoretical and engineering knowledge (see 725 

Figure 4), and the availability of enabling technologies. A lack of theoretical knowledge leads to 726 

inaccurate models and ineffectual virtual minds. A lack of engineering knowledge leads to 727 

impoverished virtual environments, and an inability to manifest our models in software. 728 

Unfortunately, at this moment in history, we lack in both an adequate theoretical understanding of 729 

human minds and the engineering know-how needed to create virtual humans and realistic simulated 730 

environments. The resulting disparities between simulation and reality will undermine the virtual 731 

human methodology and any attempts to generalize experimental results from virtual to real humans. 732 

Behavioral mimicry is not enough. Vision alone is not enough. And human-like minds (natural and 733 

artificial) cannot be considered separately from their environments; their experiences of those 734 
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environments; their personal and evolutionary histories with those environments; and the social, 735 

cultural, and institutional contexts that occur within those environments. 736 

One of the most problematic features of the virtual human methodology is not in its aspirations, but 737 

in its approach to achieving them. By focusing exclusively on the most complex of known organisms 738 

(i.e., humans), its progress is stymied from the start. In contrast, the alternative synthetic approaches 739 

presented in Section 3 implicitly assume that one must understand simpler minds and environments 740 

before embarking on the creation of complex minds and realistic virtual worlds. They also implicitly 741 

assume that what is learned from the creation of these simpler minds and environments will translate 742 

into knowledge that will facilitate the creation of more complex minds and environments. As such, 743 

these approaches provide a mechanism for gradually acquiring and refining the needed technologies 744 

and engineering competences. The virtual human methodology does not. 745 

Another important feature of these alternative approaches is that they replace the resemblance-based 746 

evaluation criterion used in the virtual human research methodology (i.e., one that is based on the 747 

perceived degree of similarity between natural and engineered agents) with a performance-based 748 

criterion that judges autonomous agents based on their ability to produce adaptive behaviors. In other 749 

words, these alternative approaches do not require that the engineered autonomous agents resemble 750 

any natural species. This change in evaluation criterion is how these approaches avoid the 751 

correspondence problems introduced in Section 2. 752 

While the goals of the virtual human methodology and these alternative synthetic methodologies are 753 

different, they are not orthogonal. Both seek to better understand minds and the mechanisms 754 

underpinning adaptive behavior. The virtual human methodology pursues these goals narrowly, 755 

focusing solely on explicating human intelligence through the creation of human-like autonomous 756 

agents. The animat-based approaches pursue these goals more broadly, admitting many, potentially 757 

disparate, mechanisms of adaptive behavior. Unlike the virtual human methodology, the primary goal 758 

of these alternative synthetic approaches is the expansion of our foundational understanding of minds 759 

and environments rather than replicating natural minds in silico. The generality of this goal is 760 

advantageous, as the resulting engineering and theoretical knowledge is likely to benefit all synthetic 761 

methodologies, including the virtual human methodology. 762 

A natural question one might raise is: Do we have sufficient theoretical and engineering knowledge 763 

to replicate “simple” animals in silico, and experiment on them in lieu of their natural counterparts? 764 

In other words, is any virtual animal-based methodology feasible in current practice? Such an 765 

approach would still be subjected to many of the correspondence issues introduced in Section 2; 766 

however, one might hope that the bar would be sufficiently lowered to mitigate the most serious of 767 

these issues.  768 

Let us consider Caenorhabditis elegans, a species of nematode (i.e., roundworm). We have a 769 

considerable amount of knowledge about the biology of C. elegans, largely due to the fact that it has 770 

been widely used as an animal model since the 1970s. Its entire genome has been sequenced, and it is 771 

the only organism to have a completely mapped connectome (i.e., neural wiring diagram). Compared 772 

with H. sapiens, C. elegans is extraordinarily simple. It has a few hundred neurons (compared to 773 

approximately 100 billion in H. sapiens) and a few thousand synaptic connections (compared to 774 

approximately 100-500 trillion in H. sapiens). In total, its entire body is composed of less than 1000 775 

cells. Despite its neural simplicity, it has chemoreceptors, thermoreceptors, mechanoreceptors, 776 

nociceptors, and photoreceptors. It is capable of a multitude of behaviors. And it exhibits a 777 

surprisingly varied set of learning mechanisms (see Qin & Wheeler, 2007; Rankin, 2004).  778 
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Our extensive theoretical knowledge about C. elegans, combined with the relative simplicity of their 779 

bodies, environments, and Umwelt, make them a compelling starting place for developing our virtual 780 

animal modeling “chops.” And yet, simulating a C. elegans and its environment in silico, has proven 781 

to be an extremely difficult task. There have been numerous attempts (Blau et al., 2014; Gleeson et 782 

al., 2018; Kitano et al., 1998; Sarma et al., 2018; Suzuki et al., 2005; Szigeti et al., 2014) but no 783 

resounding successes, and none of these come close to modeling the full breadth of C. elegans 784 

behaviors or its environment. Even the basic neurobiology of its locomotion remains a mystery 785 

(Gjorgjieva et al., 2014). A common refrain in this literature is the fundamental difficulty of the task, 786 

and an appreciation for the limitations of our current knowledge. For example, Blau et al. (2014) 787 

stated, 788 

Caenorhabditis elegans features one of the simplest nervous systems in nature, yet its 789 

biological information processing still evades our complete understanding. The position of its 790 

302 neurons and almost its entire connectome has been mapped. However, there is only 791 

sparse knowledge on how its nervous system codes for its rich behavioral repertoire. (Blau et 792 

al., 2014, p. 436) 793 

The challenges inherent in any virtual animal approach, even one based on extremely simple species 794 

like C. elegans, is hard to overstate. Moreover, these birthing pains are only the beginning. The more 795 

daunting task may come when researchers attempt to substantiate claims that virtual and real C. 796 

elegans are similar enough to support scientific discovery. While we remain optimistic that such 797 

approaches are possible, they are extraordinarily difficult to realize in practice. Therefore, alternative 798 

synthetic approaches (such as those presented in Section 3), which are not based on replicating 799 

natural species in silico, may be necessary for the foreseeable future. 800 
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