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In theory, replication experiments purport to independently
validate claims from previous research or provide some diag-
nostic evidence about their truth value. In practice, this value
of replication experiments is often taken for granted. Our re-
search shows that in replication experiments, practice often does
not live up to theory. Most replication experiments involve con-
founding factors and their results are not uniquely determined
by the treatment of interest, hence are uninterpretable. These
results can be driven by the true data generating mechanism,
limitations of the original experimental design, discrepancies
between the original and the replication experiment, distinct
limitations of the replication experiment, or combinations of any
of these factors. Here we introduce the notion of minimum vi-
able experiment to replicate which defines experimental condi-
tions that always yield interpretable replication results and is
replication-ready. We believe that most reported experiments
are not replication-ready and before striving to replicate a given
result, we need theoretical precision in or systematic exploration
of the experimental space to discover empirical regularities.
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Introduction
In “What is good mathematics?,” mathematician Terence Tao
presents a number of scenarios that represent how fields can
stagnate (1). Two of these scenarios appear to be of particu-
lar relevance to some subfields in social and behavioral sci-
ences that have struggled with a putative replication or repro-
ducibility crisis in the last decade and a half:

• “A field which becomes filled with many astounding
conjectures but with no hope of rigorous progress on
any of them”,

• “A field which now consists primarily of using ad hoc
methods to solve a collection of problems which have
no unifying theme, connections, or purpose”.

Tao’s subsequent observation that in mature and well-
developed fields, the earlier reliance on heuristics and lack
of rigor should be replaced with systematic, programmatic,
rigorous theoretical investigation to avoid stagnation appears
to generalize outside of mathematics. This observation is par-
allel to Lakatos’s methodology of scientific programs where
scientific research programs evolve over time by responding
to earlier problems and limitations, and theories are mod-
ified to accommodate anomalies and address problems (2,
Ch. 6.2). Progressive programs gain more explanatory and
predictive power over time. However, some fields in social
and behavioral sciences have not evolved as such in rigor as

they have matured in age (e.g., social psychology). Astound-
ing conjectures and ad hoc methods have become solidified
as norms in predominant scientific paradigms of these fields,
leading to the state of affairs that is commonly referred to as
the replication or reproducibility crisis. In Lakatos’s frame-
work, these may exemplify degenerate research programs
that have become stagnant and are unable to deal with anoma-
lies. A scientific reform movement1 has emerged against
this backdrop that has centered around the ideas of replica-
tion of experiments and reproducibility of scientific results.
The question arises: Can replication experiments help iso-
late the truth value of results and promote epistemic progress
in fields that are potentially teeming with unverifiable find-
ings (4, 5) and are often characterized by lack of clear theo-
retical progress (6, 7)?

In this paper, contrary to the expectations internalized by
the reform movement, we argue that replication experiments
are not well situated to improve the theoretical or empiri-
cal rigor in fields that have become stagnant for reasons de-
scribed by Tao2, specifically when employed in a diagnos-
tic capacity. To the contrary, we believe that most experi-
ments are not replication-ready and that replication experi-
ments might need to be based on rigorous exploration of ex-
perimental space or theoretical advances to yield meaningful
diagnostic results. We seek to delineate the characteristics
of experiments required for replication-readiness and intro-
duce the notion of the minimum viable experiment to repli-
cate, contrasting it with the notion of experimentum crucis in
theory-driven fields.

Before we advance our core argument, it is necessary to
define a replication experiment and identify its aims. Only
then will we be able to elucidate what cannot be achieved
by replicating experiments that are not replication-ready and
why. We start with an overview of our research program
wherein we have worked toward developing a mathemati-
cally grounded account of replication and reproducibility of
scientific results.

1While this movement has generated heterogeneous communities and ef-
forts, it has often been referred to as a single, unique entity instigated by
the replication crisis (3). Out of expediency, we use the phrase “scientific
reform movement” to refer to the totality of the reforms and activities sur-
rounding replications and reproducibility, while acknowledging that this is a
heterogeneous body of literature.

2While our argument regarding replication experiments holds in general,
the reason we are writing this paper is particularly because their role is exag-
gerated and their epistemic status is elevated in fields currently looking for
solutions to a host of empirical and theoretical problems. We will attempt
to expound that it is misguided to expect replication experiments to achieve
many of the outcomes expected from them in fields undergoing a “crisis”.
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Replication and reproducibility

While many different definitions and interpretations of the
term replication exist (see 5, for an overview), a common
way it is understood is the redoing of a whole experiment
by repeating its methods, procedures, and analyses to ob-
serve whether the replication will successfully produce the
same or sufficiently similar results as the original (e.g., 8–
10). This view is consistent with the Mertonian account
which delineates the central premise of replication as sepa-
rating true from false claims (11). Many replication advo-
cates in science reform appeal to this diagnostic value and
the demarcation function of replication (12). The diagnos-
tic ideal about replications can be traced back to Popper who
suggested that reproducibility of experimental results should
be a basic methodological requirement for establishing the
validity of scientific claims (13).

In our research program, we have attempted to lend math-
ematical formalism and precision to the concept of replica-
tion (14, 15), particularly because a mathematical formalism
is necessary for statistical evaluation of results that ultimately
come from data. Such formalism also allows us to study lim-
itations of the concept of replication (16). Because of its cen-
trality in this paper, we reiterate some fundamental compo-
nents of this formalism here.

Before we can define a replication experiment, we need to
introduce the notion of an idealized experiment—a theoreti-
cal entity that captures the structure of a scientific experiment
as it bears on statistical evaluation of results. Assuming some
background knowledge K on a scientific phenomenon, a sci-
entific theory makes a prediction in principle testable using
observables, the data D. A scientist formulates a mechanism
generating D under uncertainty and represents it as a proba-
bility model M including its assumptions. Given D, the sci-
entist is interested in performing inference on some unknown
part of M. To assess to which extent the desired inference is
confirmed by D, the scientist uses a fixed and known collec-
tion of methods S evaluated at D. This description captures
some key components of studies whose population character-
istics can in principle be tested. We break down S into two
components: Spre and Spost. Spre comprises the set of sci-
entific methodological assumptions preceding data collection
and procedures implemented to obtain D. More specifically,
Spre captures the premises underlying the design and execu-
tion of an experiment such as procedures, instruments, and
manipulations. Spost comprises the set of statistical methods
applied on D to obtain the result of interest.

The idealized experiment is the (ordered) tuple

ξ := (K,Spre,M,Spost,D).

Two components need further clarification. D consists of
random values and the data structure. This implies that ξ
is random (if a particular fixed realization of D is needed,
it is made explicit). K, which carries the state of scientific
knowledge on the phenomenon of interest—including theo-
retical assumptions, cultural and historical context, experi-
mental paradigms, and the scientific language—used to con-

ceptualize, design, and perform the experiment is kept im-
plicit.

Invoking the concept of a result from ξ is not necessary to
discuss properties of ξ. However, the goal of conducting ξ in
practice is to perform inference about some aspect of the real
world. Statistical inference comes as a decision in the form
of a result from ξ. A result, R(d,c), then can be satisfactorily
defined as a function of d, a user-defined decision rule (with
respect to a user-defined loss function), and possibly of c,
some fixed user-defined criterion.

We define a replication experiment, ξ′, as a specific type
of idealized experiment that aims to reproduce a given result
from ξ by generating independent D. ξ′ is an exact replica-
tion3, if

ξ′ := (K′,Spre,M,Spost,D
′).

That is, an exact ξ′ differs from ξ only in K′ and D′. Cru-
cially, K′ ⊃K, because components K,Spre,M,Spost must
be passed onto ξ′ as part ofK′, so that ξ′ is informed of what
exactly it is expected to replicate. D′ are always generated
independently and randomly in an attempt to reproduce the
original result. If ξ′ differs from ξ except in K and D in a
way to disrupt the inferential equivalence of the components,
it is a non-exact replication. If ξ′ confirms a targeted result
of ξ, it is said to have reproduced that result4. The repro-
ducibility rate then is the relative frequency of reproduced
results in a sequence of ξ′. One of our major theoretical re-
sults is that any given sequence of exact or non-exact replica-
tion experiments converges on a true reproducibility rate, as
a function of the components of the original experiment (16).
That is, the true reproducibility rate of a result is not only
a function of the true data generating mechanism, but also
a function of K,M,S,D. Further, depending on the degree
of non-exactness, the estimated reproducibility rate from a
given sequence may or may not be close to the true repro-
ducibility rate of the original result. These definitions and
theoretical results come in handy to advance our current ar-
gument.

Limitations of replication experiments
Limitations of replication experiments have been discussed
in the literature. Three issues stand out:

1. Designing and performing exact replication experi-
ments is notoriously difficult and oftentimes, practi-
cally impossible.

2. Even when possible, inferences that can be made from
exact replication experiments are narrow and do not
fulfill the prescribed diagnostic function.

3. As common as they are, non-exact replication experi-
ments are limited in what they can achieve due to the

3Sometimes referred to as direct replication.
4For clarity, we use the term “reproducibility” exclusively to refer

to whether an experimental result can be reproduced in a replication
experiment—that is, results reproducibility. Sometimes the term replicabil-
ity is used in the literature to this effect. For internal consistency within our
research program, we prefer to continue using the former terminology.
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openness of conceptual scope and the range of poten-
tial confounds introduced. Particularly, inference af-
forded by non-exact replication experiments is not a
good proxy for inference desired from exact replica-
tion experiments.

The first point has been considered largely trivial and
widely acknowledged by both proponents (e.g., 17, 18) and
critics (e.g., 9, 12, 19) of replication. Our theoretical frame-
work on idealized experiments makes clear why. For a repli-
cation experiment to be considered exact for the purposes
of reproducing a single result of an original experiment, the
replication: (i) has to assume an equivalent model to that
assumed in the original, (ii) has to repeat equivalent exper-
imental and analytical procedures, and (iii) has to have an
equivalent data structure (including, for example, the sam-
ple size5 and sampling from the same population). In prac-
tice, such standards might prove impossible to attain, but
they are relevant. These standards establish a mathematically
well-defined reference point against which we can compare
the practical outcomes as gold standard. For example, the
original experiment may not explicitly report the background
knowledge which undergirds the study (see 16, p. 12, for
an example) or may not completely report all methodologi-
cal procedures or non-trivial decisions. Or some of the back-
ground conditions impacting the original experiment may not
exist at the time of the replication experiment. The repli-
cation experiment may also be subject to different resource
constraints (e.g., access to a different population) and may
have to make different design choices (e.g., changing tech-
nological standards in experimental procedures). As a re-
sult, the best that can be achieved in practice is some level
of similarity between the original experiment and its replica-
tion (17, 19). To assess the value of a replication mathemati-
cally in a consistent manner, we should always fall back to the
case of an exact replication that has the same reproducibility
rate as the original experiment.

The second point is nontrivial. Bogen (20) refers to the
diagnostic ideal about replications as the received doctrine
about replicability6 and criticizes the normative claim that
existing scientific claims can only be legitimately confirmed
or disconfirmed by providing empirical evidence that they
are/can be reproduced. Bogen (20) argues not only that cor-
roborating evidence in support of a claim can come in differ-
ent forms but also that replication experiments may not even
be able to provide relevant resolution. He meticulously in-
vestigates case studies from neuroscience and medicine, doc-
umenting epistemic progress via irreproducible results and
concludes:

“Repeated applications of the same experimental or
observation procedure typically do not, and are not ex-
pected to, produce exactly the same results. Although

5Sample size is not trivial. An experiment planning for sample size n
might get sample of size m, such that m < n due to, for example, missing
data. Missing data changes the information available from true mechanism
generating the data, and hence the distribution of a statistic that is used to
draw statistical conclusions.

6The term replicability is used in the same manner as we use results repro-
ducibility or reproducibility here.

replications of the relevant procedure are required, a
result obviously does not need to be thrown out be-
cause it differs from previous results.” (20, p. 22)

The received doctrine about the role of replications is too nar-
row7 and unrealistic when juxtaposed against how scientific
progress is made in practice.

In a simulation study, we created a stochastic model of the
scientific process and observed how a community of agents
pursuing different scientific strategies searched for a true
model (21). In many scenarios, scientists were able to make
true discoveries but unable to reproduce them in replication
experiments and in others, they were able to reach 100% re-
producibility without ever converging on the true data gener-
ating model. There did not appear to be a meaningful cor-
relation between scientific discovery and reproducibility of a
true result, providing evidence against the diagnostic ideal, in
line with Bogen’s observations.

Why then do exact replication experiments fail to discrim-
inate between true and false results? Our theoretical frame-
work of idealized experiment provides a clue and the answer
is multifaceted:

• In any scenario including making inference from a
sample to a population, there is uncertainty we cannot
eliminate due to sampling variability. This is true for
any given experiment, original and replication alike.
Even an exact replication experiment is not equipped
to eliminate uncertainty due to sampling variability. In
fact, the idea of eliminating uncertainty is a misinter-
pretation of the goals of statistical inference. Statistics’
goal is to quantify uncertainty, by acknowledging its
presence, as opposed to eliminating it.

• The reproducibility rate of any given experimental re-
sult varies not only as a function of the true data gen-
erating mechanism but also the components of the ide-
alized experiment (16, 22). Experiments are subject
to many other sources of unaccounted for uncertainty
than sampling variability due to decisions regarding
specification of scientific and statistical models, sam-
pling scheme, methodological procedures, and other
design elements. Feest (9) refers to these problems
as systematic error, and argues that these conceptual
and material presuppositions and uncertainties can-
not be remedied by exact replications. She observes
that many exact replications are focused on ruling out
sampling error8 (which is already not possible by the

7Bogen keeps his discussion of the received view focused on exact repli-
cations and does not explicitly examine non-exact replications.

8One of the editors of the volume questioned whether this characteriza-
tion might be a straw man. We believe not. This alleged ability to control for
or rule out sampling error has been acknowledged explicitly in discussions
of the functions of replications (for a well-cited example, see 23). More-
over, this is apparent in the post-replication crisis language used to evaluate
many non-replicable effects in the literature. For example, see a blog post
by social psychologist Michael Inzlicht (24) wherein he reviews replication
evidence for the ego-depletion phenomenon and concludes “the work upon
which our celebrated theory was based was not replicable, not real”. Simi-
larly, referring to the state of social priming literature in the aftermath of the
replication crisis, Chivers (25) says: “it became clear that many of the prob-
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first point) and ignore much of this systematic error.
When an original study carries such issues of concep-
tual scope and violation of assumptions, its replication
remains undiagnostic as to whether its results are to be
attributed to the phenomenon of interest or the features
of the experiment. For example, it is a statistical fact
that model misspecification (e.g., measurement error)
might render true results less reproducible and false re-
sults more reproducible (15, 21). In fact, statisticians
have paid special attention to various ways to misspec-
ify a model, especially in the last 20 years. As such,
“even if direct replication can confirm the existence of
an effect, it cannot say what kind of effect.” (9, p. 899).

• Reproducibility rate of a given (true or false) result
also varies with the decision rules we use to identify
what counts as a result and how we determine whether
it is reproduced (15). We may say that a result is
successfully reproduced if the effect observed in the
replication experiment is in the same direction as in
the original experiment or only if the effect size esti-
mate from the replication experiment falls within some
small standard errors around the original point esti-
mate. The first rule imposes a less severe constraint
and would be expected to result in a higher repro-
ducibility rate than the latter.

In short, even exact replication experiments are subject
to multiple (scientific, operational, and statistical) sources
of uncertainty, limiting their usefulness and diagnosticity re-
garding the truthfulness of scientific claims under study 9.

In light of the above discussion, the third point becomes
less surprising. Where even exact replication experiments fail
to provide clear empirical evidence in support of or against
a scientific claim, what can be accomplished by a haphazard
sequence of non-exact replication experiments will prove im-
possible to pin down10. A common argument goes that how
close or similar the methods and procedures used in a replica-
tion experiment are to those used in the original experiment
is representative of the quality or diagnostic value of replica-
tion (8, 11, 18). Similarity or closeness in this regard, how-

lematic findings were probably statistical noise – fluke results garnered from
studies on too-small groups of people”. In one of the most influential papers
of scientific reform, Wagenmakers et al. (26) explicitly states: “Research
findings that do not replicate are worse than fairy tales; with fairy tales the
reader is at least aware that the work is fictional.” Such statements assume
that replication experiments should be capable of ruling out statistical flukes,
and thereby sampling error.

9We acknowledge that there are different proposals regarding the primary
function of replication experiments. For example, Fletcher (27) suggests that
data obtained from replication experiments is best suited for meta-analytic
evaluation rather than to assess the validity of an original finding. Our target
is specifically this latter, diagnostic role attributed to replications in the cur-
rent paper. We advance an argument to show what it takes for a replication
experiment to satisfy that diagnostic function and our argument is agnostic
regarding these other functions or uses of replications.

10In Buzbas and Devezer (28), we chart a systematic approach to a
planned sequence of non-exact replications to help map the parameter space.
Similarly, Bogen (20), Burian (29), and Steinle (30) show historical exam-
ples of non-exact experiments being used for exploration and evidence trian-
gulation. Our argument regarding non-exactness here regards their narrow
use as a proxy for exact replications, in a confirmatory fashion.

ever, is difficult to define since it has to be with respect to
a reference standard (9) and even more difficult to measure.
In Buzbas et al. (16), we made progress toward providing a
formalized definition for some components of the idealized
experiment but the latter aim remains elusive. For example,
K of the replication experiment has to differ from that of the
original experiment, because it has to carry over the result
obtained from the original experiment to assess whether it
is reproduced. However, if the tacit, implicit aspects of the
cultural, social, scientific, paradigmatic assumptions under-
lying the experiment cannot be completely transferred due to
a lack of transparency or even a lack of awareness of orig-
inal scientists, the replication is likely to be non-exact and
nontrivially different from the original. This component of
the idealized experiment is still difficult to define with preci-
sion and to repeat or emulate. Conditional on an inferential
goal, we can say more on what similarity means regarding the
remaining components of the idealized experiment. For ex-
ample, an exact or close replication experiment conditional
on the inferential goal is possible to reproduce a result, if
there exists an isomorphic transformation between the mod-
els assumed in the original and the replication (result 4.2,
16). That is, they need to be equivalent with respect to the
likelihood function (i.e., likelihood principle) to draw identi-
cal inferences about unknown quantities. Similarly, pre-data
methods, statistical methods, and data structure do not need
to be identical in every sense to reproduce a result (results
4.3-4.6, 16). Equivalence of components for purposes of re-
producing a result is easier to achieve for statistical methods
and data structure, and more difficult with pre-data methods
(e.g., experimental instruments, procedures, operationaliza-
tion of variables). In a series of interviews with reviewing
editors at the journal Science, Peterson and Panofsky (11) ob-
serve that especially in fields that have high task uncertainty,
that is, where experimental practices, procedures, and tech-
niques are either unstandardized or unstandardizable, repli-
cation experiments tend to be piecemeal and undiagnostic.
This situation is reminiscent of Tao (1)’s second scenario re-
garding less settled fields relying on ad hoc methods to solve
idiosyncratic problems. As pre-data methods begin to diverge
between experiments, replications quickly run into issues of
conceptual scope, as highlighted by Feest (9). In regular sci-
entific practice in many such fields with high task uncertainty,
the formal equivalence between these unstandardized compo-
nents is rarely established and most decisions of similarity or
closeness is grounded in scientists’ intuition, which results in
non-exact replications becoming the norm where the degree
of non-exactness is unknown and unmeasurable.

In Buzbas and Devezer (28), we present some theoretical
progress toward providing a formalized definition and a for-
mal measure of the distance between non-exact experiments.
Our distance measure relies on the mathematical observation
that reproducibility rates vary with changes in experimental
components. While this theoretical advancement is promis-
ing in informing our choice of non-exact experiments to per-
form in a sequence to satisfy specific epistemic aims (e.g.,
eliminating assumptions or finding out whether empirical re-

4 Devezer et al. | MVE



sults are robust to changes in specific experimental compo-
nents), it does not help bridge the gap between experimen-
tal distance and diagnostic value of evidence obtained from
non-exact experiments. By definition, the larger the distance
between experiments, the more the reproducibility rates will
vary, potentially leading to non-replicable results regardless
of any underlying true regularities.

The problem with non-exact replications is one of un-
derdetermination (31)11. As we reasoned earlier, even exact
replication experiments are underdetermined in which their
results cannot be singularly attributed to the phenomenon be-
ing investigated. Non-exact replication experiments intro-
duce even further confounds and potential causes to which
results can be attributed to, exacerbating the problem of un-
derdetermination. There’s no way of knowing whether a
“successful” or “failed” replication simply repeated a sys-
tematic error preexisting in the original experiment, ran into
an instance of sampling error, introduced a new systematic
error via different experimental components whose equiva-
lence has not been established, or actually reported some-
thing regarding the truth of a scientific phenomenon. The re-
producibility rate estimated based on a sequence of non-exact
replication experiments converges to the mean reproducibil-
ity rate of results from all experiments,12 as opposed to the
true reproducibility rate of the original result of interest (re-
sult 5.1, 16). Even if the original experiment has captured a
false result that has a reproducibility rate close to 0, we can
easily run a sequence of seemingly close non-exact replica-
tions that yield results that are reproducible 80% of the time.
Ultimately, the observed pattern of results in non-exact repli-
cations is multiply determined and the specific causes remain
unidentifiable based on replication results alone.

To summarize, replication experiments are not generally
fit to accomplish common aims often attributed to them such
as isolating signal from noise (32), excluding or exposing un-
likely results (13), or simply separating true results from false
ones—the diagnostic ideal. What, then, are replication ex-
periments capable of? Potential answers include but likely
are not limited to:

1. Gradually increasing evidence in support of an original
result and the precision in our inference13,

11This is true for all experiments. However, for replications specifically
underdetermination is augmented by the distance between the original and
the replication experiment, and potential confounds introduced by the na-
ture of this distance. A replication experiment in its diagnostic capacity is
not simply tasked with testing a specific hypothesis but with confirming the
evidence presented in an original experiment with respect to a specific hy-
pothesis. Hence the source of underdetermination is not just the detachment
of empirical evidence from theoretical prediction but also the divergence be-
tween original and replication experiments.

12This is a consequence of the Law of Large Numbers. For a fixed result,
the mean reproducibility rate of the result obtained from a randomly chosen
subsequence of experiments with different reproducibility rates is equal to
the mean of reproducibility rates of these experiments.

13This is different from the diagnostic ideal in two ways: First, it focuses
on precision and not accuracy. Second, it is about continuous accumu-
lation of evidence—similar to Fletcher (27)’s meta-analytic perspective of
replications—rather than a one-time decision about validity of experimental
results.

2. Estimating the reproducibility rate of a given experi-
mental result, if that is of particular interest—as used
in quality control applications,

3. Systematic exploration of the experimental space via
planned non-exact replications,

4. Performing theory-guided robustness tests via non-
exact replications14.

The extent to which these outcomes can be achieved will
greatly depend the properties of the original experiment and
its replication. Setting these functions aside, we turn to our
core argument concerning the diagnostic readiness of repli-
cation experiments.

Replication-readiness of experiments
In many experimental fields individuation judgments in-
volved in the choice of experimental components result in
high levels of epistemic and methodological uncertainty (9,
22)15. These choices lead to many auxiliary hypotheses that
cannot be decoupled from the scientific hypothesis (31). For
example, Deaton and Cartwright (34)’s extensive investiga-
tion of randomized controlled trials (RCTs) reveals the limi-
tations of this well-regarded form of experimentation. They
advance a convincing argument against the notion that the
average treatment effect (ATE or result, for our purposes) es-
timated “from an RCT is automatically reliable, that random-
ization automatically controls for unobservables, or worst of
all, that the calculated ATE is true” (34, p. 29). Confusing
statistical inference with scientific inference is usually the un-
derlying problem and the drivers of these inferential errors
can be traced back to the components of the idealized exper-
iment: missing background knowledge, violated model as-
sumptions, measurement error, imprecise treatments, nonrep-
resentative samples, heterogeneity of treatment effects across
sub-populations, invalid statistical methods (also see Geyer,

14We believe non-exactness can be used to test for robustness only if the
set of non-exact replications can be strongly linked by scientific theory. Oth-
erwise, evidence from non-exact replications can speak to different theoret-
ical mechanisms. In other words, just because two seemingly similar ex-
periments produce results that appear to be compatible with each other, the
inference that they are driven by the same mechanism is not warranted and
the aggregate evidence may not speak to the robustness of an underlying ef-
fect. There needs to be an external way to connect the two empirical demon-
strations theoretically to speak of robustness (see 33, for more on epistemic
iteration and generalizability) .

15Feest (9) calls the sum of such individuation judgments conceptual
scope. Conceptual scope of an experiment basically refers to all assump-
tions already built into the experimental design by choice of independent
and dependent variables as well as all judgments regarding the identification
of the relevant features of those variables. In Devezer et al. (15) and Devezer
and Buzbas (33), we use an expanded interpretation of such scope in the
sense of a set of experimental models that can be accommodated within the
boundaries of a theoretical subsystem under study as defined by a theoretical
model. The less well defined the boundaries, the more open the concep-
tual scope and the larger the number of potential experimental models that
may loosely relate to the theory. There is usually a one-to-many mapping
between a well-defined theoretical model and experimental models associ-
ated with it. Open conceptual scope often implies a many-to-many mapping
instead, where any given experiment may be associated with different theo-
retical models just as closely.
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this volume). Deaton and Cartwright further demonstrate
how spurious findings obtained in such flawed experiments
can be reproduced in exact replications and discuss why in
practice well-conducted RCTs that can indeed provide a valid
estimate of an ATE are scarce.

If even the gold standard in experimental design is far
from yielding interpretable results, most other designs are
expected to suffer from similar issues if not many more.
As Amrhein and Greenland (22, p.263) observe: “Even the
best single studies will be imperfect. In addition to ran-
dom variation, their results will usually vary from replica-
tion to replication because of varying assumption violations,
whether recognized or hidden, and thus the observed ef-
fect sizes can easily differ across settings.” Since “some
degree of variation, and hence non-replication, is the norm
across honestly reported studies, even when all assumptions
are met” (22, p.264), in situations where the assumptions
are not met, successful replications should not be expected
with any meaningful frequency. For exact replication experi-
ments to achieve their previously mentioned aims, they need
to be based on experiments whose components are free from
unaccounted for errors (e.g., no measurement error), inter-
nally consistent with each other (e.g., data structure is com-
patible with model assumptions, background knowledge re-
flected properly in assumed model)16. Further, they need to
be explicitly and transparently documented to allow for exact
replications. As such, most experiments are not replication-
ready in the sense that diagnostic, stable inferences from its
replications will not be warranted. If we allow that some
level of uncertainty is inevitable, is there a way to design
replication-ready experiments that might nonetheless yield
meaningful, trustworthy inferences?

The standard view of experiment in the twentieth cen-
tury was theory-driven where the goal of experiment is to
test well-defined predictions made by a theory (35). That
is, experiments are used to elicit decisive answers to pointed
questions raised by theories (36). According to this narrow
conception of an experiment, theories should be sufficiently
advanced before experimentation can even begin. Experi-
ments are not only inspired and motivated by theory, they
are designed, executed, evaluated, and interpreted in light of
some theory as well. Newton’s experimentum crucis was a
prime example of such an experiment (37), which was meant
to refute wave theories of light (originally appeared in 38).
An idealized version of experimentum crucis is a powerful
experiment capable of decisively ruling out all other theo-
ries that might explain a result of interest except the exper-
imenter’s theory (implying a one-on-one mapping between
the theory and the experiment). If such an experiment did
practically exist, it would take a great deal of theoretical pre-
cision, a lack of underdetermination of the experiment by
theory, and a narrow conceptual scope. Even Newton’s ex-
perimentum crucis has not remained unchallenged in this re-

16This simply follows from the nature of performing inference under un-
certainty. See Amrhein and Greenland (22) for further discussion on the sta-
tistical rationale. In earlier work, we also discuss examples of experimental
bias being carried over to replication results, leading to increased certainty
in erroneous inferences (15, 16, 21).

gard (39). Such practical limitations notwithstanding, theo-
retical maturity and precision could indeed be one path to-
ward designing replication-ready confirmatory experiments.
Nonetheless in many theoretically advanced fields, experi-
ments are far from the precision of the experimentum crucis
ideal and progress relies on theoretical advancements, model
development, and accumulating and triangulating empirical
evidence rather than relying on diagnostic replications.

In many areas of social and behavioral sciences, theo-
ries are far from any mathematical precision and conceptual
scope of experiments tend to be open. Despite the preva-
lence of using experiments in a confirmatory and seemingly
theory-driven fashion, most experimental results are loosely
or at times only trivially connected to the theories they pur-
port to speak to (40, 41)17. Assuming a field characterized
by conditions similar to those exemplified in Tao’s hypothet-
ical scenarios, can we talk about replication-readiness? If so,
how can experiments attain that status? To this end, we turn
our attention away from the standard view18 and focus on a
Baconian variety of experiment as presented by Hacking (ch.
9, 44).

Iterative exploratory experimentation
The Baconian method allows for experiments to be used to
explore the world with limited preconception or theorizing
about the state of nature. Steinle (30) and Burian (29) coined
the term exploratory experimentation independently to refer
to this variety of experiment aimed at discovering empirical
regularities and characterizing phenomena generating these
regularities, as opposed to testing theoretical predictions. The
epistemic value of this form of experimentation had long
been overshadowed by traditional accounts of experimenta-
tion and has only in the last couple of decades begun drawing
attention.

Exploratory experimentation is said to take place in stages
of scientific development where well-formed theories or con-

17The detachment of (statistical) hypothesis testing from scientific theo-
ries is not a new realization. Meehl (42) wrote about the lack of cumulative
character of scientific knowledge in psychology decades ago. Meehl ob-
served how in “soft” areas of psychology, new theories keep emerging and
initially receive a lot of enthusiasm only to die a slow death due to fail-
ures in accumulating empirical support. Gigerenzer (43) partially attributes
this lack of evidence accumulation to the mindless use of the null hypoth-
esis significance testing rituals that are upheld by collective concession to
certain illusions allowing scientists to mistake statistically significant results
for highly important discoveries.

18Some readers may wonder, as the editors of the issue have, whether we
are giving up on the standard view of experiments too prematurely or maybe
even haphazardly. We would like to reassure the readers that we do not take
this perspective lightly. In fact, we have written about our model-centric
view of scientific progress elsewhere (14, 21, 33) and would like to encour-
age interested readers to follow up on these articles to get a sense for why
we believe hypothesis- and result-centric views of science are incompati-
ble with our view. However, we do mean this in a narrow sense. There is
no denying that experiments and hypothesis testing have important roles to
play in the course of scientific practice. Nonetheless, we believe that they
are often over- and mis-used in a confirmatory capacity, especially in disci-
plines suffering from the previously discussed problems, where the standard
view scarcely applies. This is hardly a unique or novel perspective; a model-
centric approach to scientific practice is quite common, especially among
statisticians.
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ceptual frameworks are either nonexistent or deemed unreli-
able (30). Rather than exclusively referring to specific pro-
cedures or individual experiments, exploratory experimenta-
tion is characterized by a systematic process of exploration
through an elaborate system of interconnected experiments19.
Across a series of examples from the history of electromag-
netism, electricity, organic chemistry, and biochemical re-
search, Steinle and Burian demonstrate that exploratory ex-
perimentation has been used by scientists in the formation,
stabilization, and formalization of classificatory and concep-
tual frameworks (29, 30, 35). This exploratory process is
characterized by:

• Systematic variation of experimental parameters to
fully explore sources of systematic error (9),

• Obtaining stable empirical regularities,

• Singling out experimental parameters/conditions indis-
pensable for producing such regularities,

• Formulation of experimental arrangements involving
only these indispensable parameters so as to present
the regularity with clarity.

One way to understand what the process of systematic
variation of parameters may look like could be to evaluate
computer simulations as a special case of experiments (46).
A computer simulation can be defined as a computer program
that is used to explore the approximate behavior of a mathe-
matical model. Each instantiation of a simulation depends on
a fixed set of initial conditions and parameters. Many simu-
lation experiments involve systematically varying parameters
so that the outcomes can be observed for a wide range of con-
ditions. This way, the behavior of the target system may be
mapped on the parameter space and the conditions necessary
to generate particular patterns of results can be identified.
Any specific configuration of a given scientific experiment is
akin to a single condition in a computer simulation where pa-
rameters are fixed, often at arbitrary values. To reduce depen-
dence on such arbitrariness, scientific experiments in general
would benefit from a similar process of exploration to map
regularities across the parameter space. Unlike in-silico ex-
periments, the process of exploratory experimentation does
not or cannot vary experimental parameters all at once (in
large part though not exclusively due to resource constraints)
nor can it always vary all parameters. In exploratory exper-
imentation, the (necessarily constrained) parameter space is
explored iteratively over time but still ultimately aims to iden-
tify the conditions necessary to generate particular patterns of
results.

19Although the standard view may not necessarily preclude the intercon-
nectedness of experiments, it limits the role of experiments to theory testing
rather than exploration. In this framework, a network of experiments could
very well be designed to test different predictions of a well-specified theory
and evaluated in light of that theory, collectively providing a strong test for
the theory. Exploration, too, may be theory informed, however, its primary
aim is not to test theoretical predictions (45). The interconnectedness of the
experiments is an integral part of the process of iterative, exploratory exper-
imentation whereas the standard view assigns each individual experiment a
more critical epistemic role.

Epistemic iteration. Exploratory experimentation can also be
seen through the lens of epistemic iteration as introduced by
Hasok Chang in Inventing Temperature (47). While investi-
gating the arduous history of understanding and measuring
temperature, Chang observes a paradoxical picture of sci-
entific progress where progress can be made by correcting
earlier standards, which the new standards were derived of:
“What we have is a process in which we throw very imper-
fect ingredients together and manufacture something just a
bit less imperfect." (47, p. 226). Epistemic iteration then is a
process of inquiry by which scientific knowledge claims and
outputs are repeatedly examined and progressively refined to-
ward achieving certain epistemic goals. Chang’s case study
documents several productive periods of exploratory experi-
mentation wherein temperature measurement standards were
established and revised in an iterative fashion, in the ab-
sence of preestablished standards to serve as frames of refer-
ence and independently from theoretical progress made else-
where. Chang observes that “if epistemic iteration works out,
we may hope to reach a practical convergence, in which the
changes get smaller and subtler as we go on and the system
becomes quite stable after a while” (48, p. 233).

Similarly, exploratory experimentation seeks to vary ex-
perimental parameters to reach empirical convergence where
changes in observed values get smaller and subtler as we nav-
igate the parameter space to locate where stable empirical
regularities are produced.

Methodological iteration. In addition to epistemic iteration,
exploratory experimentation can also benefit from method-
ological iteration—a process by which scientists move back
and forth between different forms of research practices (49)
such as hypothesis testing, instrument development, model
selection and refinement. Using the components of our ideal-
ized experiment, if epistemic iteration involves iterating be-
tween background assumptions and models, methodological
iteration would involve iterating between pre-experimental
methods and post-experimental statistical methods. Method-
ological iteration may be necessary in aligning experimental
and statistical models closely over time particularly in the ab-
sence of well-defined theoretical models (see 33, for a com-
plete description of an iterative process among these three
types of models). Methodological iteration typically plays a
supporting role in the process of refining knowledge claims
as methodological pluralism and triangulation can help elim-
inate methodological assumptions that are irrelevant to the
claim being investigated (12, 50).

Microreplications. Elliott (49) suggests that repetition is cen-
tral to all forms of iteration. In this sense, different kinds
of iterations will repeat different components of an idealized
experiment rather than the whole experiment. One particu-
lar form of idealized experiment that emerges as a result in
exploratory experimentation is microreplications. Guttinger
(51) defines microreplications as replication experiments in
which an aspect of a previous experiment is repeated as (neg-
ative or positive) control condition in a subsequent experi-
ment. In other words, certain components of a previous ex-
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periment are exactly copied in the control condition of a sub-
sequent experiment and systematically varied in the treatment
condition(s). Microreplications may be used for confirmatory
purposes, however, their true potential lies in systematically
varying experimental parameters in a stepwise fashion over a
sequence of exploratory experiments.

Elementary experiment. One of the possible outcomes of the
process of iterative exploratory experimentation, as indicated
earlier, is the identification of “pure” or “simple” experi-
ments. Steinle (30, p. S68) provides Faraday’s “truly elemen-
tary experiment” (52, p. 405) as an example of such a pure
case. Before arriving at his truly elementary experiment re-
garding electromagnetic induction, Faraday performed a se-
ries of exploratory experiments, only granting the final ex-
periment the “elementary” status because it exclusively de-
pended only on a set of indispensable experimental parame-
ters. Steinle (30, p. S68) writes: “In the series of experiments
preceding the “elementary" one, Faraday systematically var-
ied a lot of parameters of the arrangement such as the di-
rection of motion (relative to the magnetic dip), the mode of
motion (e.g., various parts of the circuit or the circuit in its
entirety), the form of the circuit, and so on. As a result, he
learned which experimental conditions are indispensable in
order to bring about an induction effect. The "elementary"
status of the experiment depended on those and only those
conditions being involved. It shows with particular clarity
the general rule of induction of currents by magnets.” Steinle
further indicates that “in sharp contrast to both Ampère’s at-
traction experiment and Faraday’s induction ring experiment,
considerations on the nature of the effect or of electricity or of
magnetism did not play a role, neither in the design nor in the
evaluation of the experiment.” In other words, minimal, if at
all, theoretical assumptions or preconceptions were needed to
design or evaluate the elementary experiment. This appears
to be a special form of minimalism where as many theoretical
and auxiliary assumptions as possible are removed. What-
ever cannot be eliminated defines the most basic form of the
experiment that is capable of generating the sought-after reg-
ularities.

Schickore (this volume) provides a different example of
a process of exploration in viper venom experiments con-
ducted in the 18th century. In particular, the series of exper-
iments published by Felice Fontana stand out. Fontana fo-
cused on carefully varying experimental parameters to iden-
tify and rule out sources of error. Via diversification and rig-
orous exploration, Fontana then was able to reduce the num-
ber of circumstances the experimental outcomes depended
on—similar to Faraday’s elementary experiment.

All of this does not mean that exploratory experimenta-
tion or its outcomes are completely free from theory (45, 53).
Some level of background knowledge is always needed to de-
sign, execute, and evaluate experiments as contained in our
definition of idealized experiment, even if it simply means
using existing experimental paradigms, some known meth-
ods, and analytical techniques rather than implying the exis-
tence of specific theoretical predictions. As Steinle (30, p.
S70) puts it, exploratory experimentation “is driven by the

elementary desire to obtain empirical regularities and to find
out proper concepts and classifications by means of which
those regularities can be formulated” without necessarily be-
ing in service of a well-formed theory, although scientists
may use specific experimental techniques and instruments
developed based on specific theories. Such theories can be
used to justify inferences about the target systems made us-
ing these techniques and instruments (54). If an elementary
experiment is identified as an outcome of exploratory exper-
imentation, however, it will have achieved a minimal degree
of dependence on a specific theoretical background or con-
ceptual paradigm (29) by iteratively eliminating the assump-
tions not necessary for producing the empirical regularity of
interest.

This brings us to the final step of our argument: In the ab-
sence of well-formed theories, an “elementary” experiment
identified via rigorous exploratory experimentation is consid-
ered replication-ready.20

Minimum viable experiment to replicate
We define the set idealized experiments characterized exclu-
sively by a minimum number of indispensable parameters as
the Minimum Viable Experiment (MVE) to replicate21. In
marketing scholarship and practice, a Minimum Viable Prod-
uct (MVP) is the version of a new product that is developed
with a minimally sufficient, must-have set of features that can
be launched quickly to a small group of customers who can
be identified as early adopters (55). This minimal version
of the product then is reformulated with feedback from ini-
tial users and can be realized in many variations of the prod-
uct. We do not mean this similarity as a full fledged anal-
ogy as much as a simple hat-tip to the first author’s academic
background. The resemblance between MVE and MVP ends
at the minimalism. While MVP is part of the lean startup
process and relies on subsequent testing for designing a final
version of the product, MVE is the product of a long period
of exploratory experimentation. Nonetheless, we believe the
coinage captures the key elements we aim to communicate:
minimalism in assumptions and viability for exact replica-
tions.

Using our earlier definition of ξ, we next discuss what the
minimalism required by MVE would look like. We revisit
components of ξ, along with a running example. For gener-
ality and simplicity, we use the observations from a coin toss

20As we explain later, this statement is not meant to imply that such repli-
cations would necessarily be informative. To the contrary, we argue that
replications are meaningful only in a limited diagnostic sense and whenever
they can be clearly interpreted, the epistemic gains to be made from them
are limited. Elementary experiments are such a candidate of a type of exper-
iment whose replications can be clearly interpreted. On the other hand, their
replication may not be of particular scientific import.

21We opted for the acronym MVE instead of, say, MVER because we be-
lieve an MVE is a unique form of idealized experiment that captures the na-
ture of “elementary experiments” in a formalized framework. This minimal
version of an idealized experiment would be viable for achieving different
scientific aims aside from replication, such as establishing an empirical reg-
ularity or identifying a generalized experimental paradigm. Hence the entity
we define is not specific for replications; rather, replicability is one of its
properties.
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experiment with the goal of describing a fair gamble.

• Background knowledge (K): Minimum amount of
background theory and context that is needed to gen-
erate regularities and to be evaluated with ease and
clarity. For example, if an experimental paradigm is
typically associated with a particular theoretical frame-
work but its value or interpretation does not depend on
that framework, these theoretical assumptions can be
dropped and the paradigm can be divorced from ini-
tially assumed theoretical associations.

Ancient Romans used coin toss as a game of chance
referred to as “heads or ships” where one side of the
Roman coin featured a two-headed god Janus on one
side and a ship’s prow on the other. We can imagine
that Roman citizens might have perceived this gamble
worked only with their coin, maybe even assumed that
the Roman coin had some specific properties (such as
shape, material, weight, the face of a god on one side)
to make the gamble fair. Imagine a traveling gam-
bler who collects coins from different denominations
and performs experiments finds that the material and
weight of the coin does not affect its fairness, conclud-
ing Roman coins were not necessary for a fair game.
As the gambler continues this experiment to test dif-
ferent aspects of the coin’s geometry, the MVE will
contain only minimal assumptions: the physical sym-
metry of the coin. Thus the initial assumption that the
coin needs to Roman is dropped.

• Model (M ): Models that require minimal scientific
and statistical assumptions. For example, if expected
empirical regularities disappear if certain constraints
are violated, those constraints need to be obeyed by
the model.

Our Roman gambler may train to toss the coin in a spe-
cific way such that it always turns ships. Here, the out-
comes of the tosses are dependent beyond the symme-
try of the coin because the data generating mechanism
has been biased. The MVE for a fair game requires
a minimal assumption of independence of coin tosses,
given the coin.

• Methods (S): Minimal methodological assumptions
to collect data under a variety of experimental condi-
tions and to perform inference using the data collected.
For example, some scientific results depend on whether
frequentist or Bayesian inference is performed. If and
only if the results do not depend on such a choice,
MVE will drop any assumptions specific to inferential
methods.

For a given coin, the Roman gambler uses the fol-
lowing methodology to assess its fairness: Toss the
coin 100 times and record the number of ships. A ri-
val gambler uses a different methodology: Count the
number of ships as the tosses are performed and stop
when there is sufficient evidence for fairness. Our two

gamblers may arrive at different conclusions regard-
ing the fairness of this coin. The MVE cannot drop
this assumption as the methodological procedures af-
fect how the conclusion is drawn (in particular, the de-
cision rule).

• Data (D): Indispensable features of the data structure
that are needed to capture regularities. That is, if cer-
tain type of data is needed to capture the empirical reg-
ularity, that needs to be specified. If not, the MVE will
allow for different kinds of data.

Today we do not use the label “heads and ships” any-
more. In the USA, it is “heads and tails”, in Germany it
is “Kopf (head) and Zahl (number)”, in Italy it’s “testa
(head) and croce (cross)”, and so on. On a computer,
we would use 0 and 1. It does not matter how we label
the levels of the variable of interest. What is essential
is that it has only two levels. For example, we assume
that the probability of a coin landing on its edge is zero.
That is an indispensable feature of the MVE.

Any MVE identified for replication purposes further requires
openness of ξ because components of MVE need to be well-
specified and transparently reported to satisfy viability for
replication22. Based on these specifications, we define the
MVE as follows.

Definition. Minimum Viable Experiment to replicate.
Let Ξ be the set of values that ξ can take on the
Cartesian product space of components K,M,S,D,
and denote the power set by P(Ξ). MVE about a phe-
nomenon P is the largest subset of P(Ξ)\∅ on which
R(d,c) evaluates to TRUE for the existence of P.

By this definition, MVE is not necessarily a unique ξ. The
defining characteristic of MVE is that it is the union of all ξ
that contains the essential (in the sense of minimal) exper-
imental conditions such that the result from each ξ is con-
ducive to exact ξ′.

The process of exploratory experimentation visits many
experiments that may lead to scientific discoveries. The pa-
rameters of these experiments are often fixed arbitrarily. Only
by looking at a whole sequence of experiments can we obtain
a complete picture of the phenomenon under study and can
pinpoint the conditions that are necessary to generate em-
pirical regularities23. This big picture allows us to release
some of the assumptions characterizing any specific exper-
iment that are not indispensable to produce a given empiri-
cal regularity and iteratively eliminate as many auxiliary hy-
potheses as possible that come attached to particular exper-
imental configurations. As a result, problems arising from

22In Buzbas et al. (16), we examine and specify what level of openness and
copying is needed to inform a valid replication experiment. Figure 2 shows
how conceptual scope increases as the degree of openness in experimental
components decreases. Only when all necessary components conditional on
an inferential goal are open, can exact (or trivially non-exact) replication
experiments be performed.

23The same may at times be true for experiments designed for theory test-
ing but is not necessarily so.
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the openness of conceptual scope are eliminated as the MVE
determines its boundaries.

MVE specifies the necessary conditions to produce em-
pirical regularities. In theory, an exact replication of MVE
is meant to provide evidence with regard to the existence of
these regularities, providing evidence that cannot be readily
attributed to auxiliary hypotheses, since they will have been
meticulously eliminated through rigorous exploratory exper-
imentation. The reproducibility rate obtained by replicating
MVE is a valid exact estimate of the reproducibility rate of
the phenomenon of interest. In practice, this may be too lofty
a goal to achieve as we will discuss in the conclusion section.

MVE is distinct from a standard RCT which is also char-
acterized by minimal assumptions and limited prior knowl-
edge (34). RCTs aim at performing causal inference, extrapo-
lation out of trial samples, and generalization across different
contexts and their results are often used to inform social, eco-
nomic, and public health policies. In practice, many RCTs
suffer from open conceptual scope and misspecified causal
models. The goal of MVE is to show the existence of regu-
larities rather than to generate causal explanations and esti-
mate an average treatment effect. MVE relies on a series of
interconnected experiments to identify sources of error and
eliminate assumptions necessary to generate the result, rather
than randomization alone. Instead of informing policy, MVE
informs conceptual representations and classifications to for-
mulate empirical regularities. Indeed, the iterative process
aimed at eliminating assumptions has epistemic importance
regardless of it producing an MVE and even when it does,
the information gained throughout the process may be more
valuable than such a final outcome.

Conclusion
“Only when certain events recur in accordance with
rules or regularities, as is the case with repeatable ex-
periments, can our observations be tested — in prin-
ciple — by anyone. We do not take even our own ob-
servations quite seriously, or accept them as scientific
observations, until we have repeated and tested them.
Only by such repetitions can we convince ourselves
that we are not dealing with a mere isolated ‘coin-
cidence’, but with events which, on account of their
regularity and reproducibility, are in principle inter-
subjectively testable.”—Popper (56, p. 46)

We showed that in regular scientific practice, repeatable
experiments cannot guarantee that we are not dealing with
mere isolated coincidences and reproducibility is not a reli-
able gauge of true regularities. Oftentimes, replication exper-
iments track idiosyncrasies of experimental configurations
more closely than any underlying truth (see 16, 21, 57, for ra-
tionale and examples). With regard to randomized controlled
trials, Deaton and Cartwright (34) argue that “depending on
what we want to discover, why we want to discover it, and
what we already know, there will often be superior routes
of investigation and, for great many questions where RCTs
can help, a great deal of other work—empirical, theoretical,
and conceptual—needs to be done to make the results of an

RCT serviceable.” The same can be said for replication ex-
periments. Even exact replications serve a narrow function in
scientific process and may be viable in a limited number of
situations.

Here we have provided a preliminary sketch of an argu-
ment, identifying a specific scientific path that may produce
replication-ready experiments, and argued that exact repli-
cations may fulfill their aims even in the absence of theo-
retical maturity or precision, but only when preceded by a
process of rigorous exploration. Formalizing the concepts
of replication-readiness and MVE helps us explore theoret-
ical implications of experimental design in simulation ex-
periments to understand the role and limitations of replica-
tions (28).

Essentially experimentum crucis and MVE both represent
some unattainable scientific ideals, led by theoretical or em-
pirical processes, respectively. The experimentum crucis is
a theoretical ideal that represents the limits of empirical gain
theoretical precision can get us. MVE, on the other hand,
is an empirical ideal that represents the limits of concep-
tual clarity that could be gained thorough experimental ex-
ploration. Neither ideal is meant to directly guide research
practice so much as to identify the limits of the scientific en-
terprise. We have argued that the diagnostic aims expected
from replication experiments can only be satisfied at these
limits, when we design experiments that are replication-ready
either because they are maximally and precisely determined
by theory or because they are empirically defined by their ir-
reducible components. It is not the experimentum crucis or
MVE that represent too high bars for scientists to reach but
the diagnostic ideal itself that is an impossible bar for repli-
cation experiments to clear.

All things considered, we do not believe that replications
or replication-readiness should be the objective of scientific
endeavor. The value of knowing to what extent experiments
are (not) ready to be replicated is to inform the allocation of
scientific resources where epistemic gain can be maximized
and to prevent premature conclusions regarding veracity of
scientific claims from getting entrenched. While the MVE
identifies an empirical ideal for replication-ready experiment
in theory-starved fields, it is not presented as a practical so-
lution to the stagnation exemplified in Tao’s scenarios pre-
sented in the Introduction. The solution, at least one path
to the solution (besides pursuing rigorous theoretical investi-
gation), is embracing the exploratory nature of most experi-
ments (e.g., in social and behavioral sciences), and pursuing
exploratory experimentation in a systematic, programmatic,
rigorous manner not to reach the limit of the process but to
continuously improve conceptual clarity and systems-level
understanding. By giving up on the diagnostic properties of
individual experiments, we can focus on knowledge accumu-
lation within a network of experiments and triangulation of
evidence.
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