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Abstract

The Aharonov-Bohm (AB) effect highlights the fundamental role of
electromagnetic potentials in quantum mechanics. While extensively
studied in the static case, the impact of a time-varying magnetic flux
on the electron’s phase shift remains an open and debated question. In
this paper, we derive the AB phase shift for a time-dependent magnetic
vector potential and show that it is proportional to the time average
of enclosed magnetic flux. Our analysis reveals that the AB phase is
continuously accumulated as the electron traverses its path, challeng-
ing the conventional view that it emerges instantaneously at the point
of interference. This generalized AB effect may provide deeper insight
into the role of gauge-dependent potentials in quantum mechanics and
also suggest novel experimental tests using alternating or pulsed mag-
netic flux.

1 Introduction

The Aharonov-Bohm (AB) effect demonstrates the fundamental role of elec-
tromagnetic potentials in quantum mechanics, even in regions where the
electromagnetic fields vanish [1,2]. In its conventional form, an electron mov-
ing around a solenoid acquires a phase shift due to the enclosed magnetic
flux inside the solenoid. Recent studies have explored how a time-varying
magnetic flux affects the motion of the electron, but it is still an unsolved
and controvertial issue whether the resulting phase shift is time-dependent
and what the exact formula of the AB phase shift in this case is [3-12].

In this paper, we analyze the time-dependent extension of the AB effect
by considering the angular velocity variation of electrons moving around the
solenoid under the influence of a time-varying magnetic flux. We rigorously
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derive the resulting AB phase shift, incorporating the effects of an induced
electric field. Unlike the static case, the time evolution of the system plays a
crucial role in the final phase shift. We also discuss theoretical implications
and experimental tests of this generalized AB effect.

2 Phase Shift Derivation

The Schrödinger equation for a charged particle such as an electron in the
presence of an electromagnetic potential (in units where ℏ = c = 1) is given
by:

i
∂ψ

∂t
= − 1

2m
(∇− eA)2 ψ + eA0ψ, (1)

where e and m are respectively the charge and mass of the electron, and
A is the magnetic vector potential and A0 is the electric scalar potential.
The Schrödinger equation is gauge invariant, namely it is invariant under a
gauge transformation:

Aµ(x) → A′
µ(x) = Aµ(x)− ∂µΛ(x), (2)

ψ(x) → ψ′(x) = e− i eΛ(x) ψ(x), (3)

where Aµ = (−A0,A), and Λ(x) is an arbitrary smooth gauge function.
When choosing the gauge function as

Λ(x) =

∫ xµ

xµ
0

Aµ(x
′) dx′µ, (4)

where xµ0 is a certain initial 4-position, we can gauge away the electro-
magnetic potential and turn the above Schrödinger equation into a free
Schrödinger equation in a simply connected space-time region.1 In other
words, we have

ψ(x, t) = e i eΛ(x) ψ0(x, t), (5)

where ψ(x, t) is the solution of the Schrödinger equation with an electromag-
netic potential Aµ(x, t), and ψ0(x, t) is the solution of the free Schrödinger
equation. This means that the phase change of the wave function along a
path L due to the existence of the electromagnetic potential is given by

∆ϕ = eΛ(x) =

∫
L
Aµ(x)dx

µ. (6)

Consider the magnetic AB effect. A beam of electrons emitted from a
source is split into two parts, each going on opposite sides of a solenoid. After

1The simply-connectedness ensures that the gauge function Λ(x) can be defined as a
unique function of space-time point xµ, independently of the space-time path connecting
xµ
0 and xµ [12].
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the beams pass by the solenoid, they are combined to interfere coherently.
For an infinitely-long solenoid with time-dependent magnetic flux Φ(t), we
can choose a gauge in which A0(r, t) = 0 and

A(r, t) =
Φ(t)

2πr
θ̂ (7)

for the region outside the solenoid, where θ̂ is a unit vector in the angular
direction. Then, based on the above analysis of the gauge invariance of the
Schrödinger equation, we can obtain the AB phase shift:

ϕAB = e

∫
L1

A(r, t) · dr− e

∫
L2

A(r, t) · dr = e

∮
C
A(r, t) · dr, (8)

where L1 and L2 are the paths of the two electron beams respectively, each
of which is in a simply-connected region, and C is the whole closed path
around the solenoid. In the time-independent case where Φ(t) = Φ0, this
simplifies to:

ϕAB = eΦ0. (9)

However, when Φ(t) varies with time, we must consider the motion of the
electron around the solenoid in order to calculate the AB phase shift.2 This
is the key idea of this paper. Substituting (7) in the phase shift integral (8)
we have:

ϕAB = e

∮
C

Φ(t)

2πr
θ̂ · dr. (10)

Since θ̂ · dr = ω(t)rdt, we obtain:

ϕAB =
e

2π

∫ T

0
Φ(t)(ω1(t) + ω2(t))dt, (11)

where ω1(t) and ω2(t) are the angular velocities of the two beams respec-
tively, t = 0 is the time when the two beams begin to move around the
solenoid, and t = T is the time when the two beams overlap and re-interfere.
We have the relation

∫ T
0 (ω1(t) + ω2(t))dt = 2π.

Here it is worth noting that ωi(t) (i=1,2) should be determined by the
motion of the electron under the influence of the magnetic flux, not by the
motion of the free electron. As we will see later, due to the existence of the
induced electric field, one beam will be accelerated and the other beam will
be decelerated, and thus the overlaping region will be in general different
from the overlaping region for the static case, although the meeting time T
are the same for both cases.

Now we need to calculate the angular velocity of each electron beam.
When Φ(t) varies with time, the motion of the electron will be changed

2This can be seen more clearly when using the path integral formulation, in which the
AB phase shift is

∮
C
A(r, t) · v(r, t)dt.
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by the induced electric field. For a time-dependent magnetic flux Φ(t), the
induced electric field at radius r is:

E = Eθθ̂ = − 1

2πr

dΦ

dt
θ̂. (12)

This field will exert a force on the electron, changing its angular velocity.
The equation of motion for the angular velocity ω(t) is:

mr
dω

dt
= eEθ = − e

2πr

dΦ

dt
. (13)

Suppose the electron moves in a circular path with radius R. Integrating
from 0 to t, the angular velocities of the two electron beams are

ω1(t) = ω1(0)−
e

2πmR2
(Φ(t)− Φ(0)), (14)

ω2(t) = ω2(0) +
e

2πmR2
(Φ(t)− Φ(0)). (15)

Substituting these two formulae in (11) we obtain the AB phase shift:

ϕAB =
e

2π

∫ T

0
Φ(t)(ω1(0) + ω2(0))dt =

1

T

∫ T

0
eΦ(t)dt. (16)

Note that
∫ T
0 (ω1(0) + ω2(0))dt = 2π. When Φ(t) = Φ0, this result reduces

to the usual result for the static case ϕAB = eΦ0.
There is also another way to derive the above result. As noted above, due

to the existence of the induced electric field, one beam will be accelerated
and the other beam will be decelerated. When the two beams overlap, the
difference betweem the travelling distance of each beam and that of the free
beam is

∆l1 =

∫ T

0
(ω1(t)− ω0)Rdt (17)

=

∫ T

0
(ω1(0)− ω0)Rdt−

e

2πmR

∫ T

0
(Φ(t)− Φ(0))dt (18)

= −eA(R, 0)T
m

+
eΦ(0)T

2πmR
− e

2πmR

∫ T

0
Φ(t)dt (19)

= − e

2πmR

∫ T

0
Φ(t)dt, (20)

∆l2 =
e

2πmR

∫ T

0
Φ(t)dt, (21)

where ω0 is the angular velocity of the free electron when the magnetic flux
is absent inside the solenoid. Here we use the relation ω1(0)R = ω0R −
eA(R, 0)/m and (7). When considering the wavelength of the electron in

4



each beam is λi = 2π/mωi(T )R (i=1,2) when the two beams overlap, the
total phase shift will be

ϕAB = 2π(
∆l2
λ2

− ∆l1
λ1

) (22)

=
1

2π
(ω1(T ) + ω2(T ))

∫ T

0
eΦ(t)dt (23)

=
1

T

∫ T

0
eΦ(t)dt. (24)

Here we use
∫ T
0 (ω1(0) + ω2(0))dt = 2π again. Then we obtain the same

result as before. This analysis assures us that the derived AB phase shift for
the dynamic case is gauge-invariant. Moreover, it also provides a novel way
to calculate the usual AB phase shift for the static case where the magnetic
flux is constant.

3 Theoretical implications

There are already several different derivations of the phase shift for the
time-dependent case of the AB effect or the generalized AB effect. However,
these derivations are arguably problematic and incomplete. For example,
in the derivation of Singleton et al [6,7], the authors add the non-AB type
phase shift due to the induced electric field (i.e. the phase shift coming
from the last two terms of (19)) to the AB phase shift (16) and thus obtain
the null result that there is no time-dependent AB phase shift but only
static AB phase shift. This is not correct, since the AB phase shift (8) or
the result (16) is already the total phase shift for the time-dependent case
according to the gauge transformation (5), and it already takes into account
the effects of the time variation of the magnetic vector potential according
to the Schrödinger equation. On the other hand, a few authors argued that
there is time-dependent AB phase shift, and the derived result is simply
eΦ(t) [10,12]. But this cannot be right either, since the generation of the
AB phase shift takes time, during which the magnetic flux changes, while
their result is determined only by the magnetic flux at one instant. Finally,
it is worth noting that Lee et al (1992)’s derivation is closest to ours. But
their derivation is an approximation and also more complex, and their final
result is not exact and general.

As we have demonstrated above, the key is to realize that the AB phase
shift (8) is precisely the phase shift for the time-dependent case, and in order
to calculate the phase shift integral one must consider the motion of the
electron around the solenoid. The rest of the thing is a direct calculation.
The result shows that the AB phase shift for the time-dependent case is
proportional to the time average of the enclosed magnetic flux during the
motion of the electron around the solenoid. Since the electron does not move
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in a field-free region due to the existence of the induced electric field, this
is a hybrid AB effect with part of the phase shift coming from the potential
and the other part coming from the field.

However, one can also make the effect of the field as small as possible.
For example, one may put a contant magnetic flux inside the solenoid for a
very short time such as half the travelling time of the electron around the
solenoid, from T/4 to 3T/4. Then, according to our result, the AB phase
shift for this dynamic case is half of the AB phase shift for the static case
where the same contant magnetic flux persists, and it almost all comes from
the magnetic vector potential.

This result may have implications for a deeper understanding of the
AB effect. For example, it strongly suggests that the AB phase shift is
continuously generated during the traveling of the electron, not immedi-
ately generated when the electron beams overlap. When there is a constant
magnetic flux inside the solenoid during the time interval [T/4, 3T/4], no
gauge-invariant quantities of the electron are affected by the magnetic flux
or magnetic field inside the solenoid (Note that the effect of the induced elec-
tric field outside the solenoid can be ignored when the turn-on and turn-off
times are arbitrarily short). While when the electron beams overlap, there
is no magnetic flux inside the solenoid anymore, and thus the motion of the
electron is not affected by the electromagnetic field either. This then sup-
ports a continuous, local potential explanation of the AB effect and disfavors
a discontinuous, nonlocal field explanation of the AB effect.

4 Experimental tests

So far no experiments have been done to precisely test the generalized AB
effect (see [3,4] for early attempts). Here we suggest two typical experimental
tests of this new effect.

The first kind of test is to use an alternating current (AC) in the solenoid.3

Suppose the resulting magnetic flux is Ψ(t) = Ψ0 sinωct, where Ψ0 is the am-
plitude, and ωc is the angular frequency of the current. Our result predicts
that the AB phase shift will be

ϕAB =
1

T

∫ T

0
eΦ(t)dt =

cosωct

ωcT
eΨ0. (25)

One key test is that when the angular frequency of the current is very large
or the period of the current is very small relative to the traveling time of the
electron, i.e. ωcT ≪ 1, the AB phase shift will be close to zero, and there
will be no AB effect.

3Alternatively, one can also generate a time-varying magnetic vector potential using a
coherent light source [3].
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The second kind of test is to use a pulsed direct current (DC) such as a
square-pulse in the solenoid. One may input a square-pulse current to the
solenoid when the electron is moving around the solenoid such as during the
time interval [T/4, 3T/4]. Our result predicts that the AB phase shift will
be half of the AB phase shift for the static case where the magnetic flux has
the same amplitude. Note that Singleton et al’s result predicts that the AB
phase shift for this setup will be zero [6-9], since the initial magnetic flux is
zero.

When incorporating the retardation effect demanded by special relativ-
ity, the AB phase shift for the generalized AB effect will be

ϕAB =
1

T

∫ T

0
eΦ(t−R/c)dt, (26)

where R is the radius of the circular path of the electron around the solenoid.
Different from the static case, we can test the retardation effect of the AB
phase shift for the dynamic case. For example, one may introduce a square-
pulse magnetic flux with amplitude Ψ0 during the time interval [T−R/c, T ].
Our result predicts that there will be no AB phase shift, while a model
without the retardation effect will predict that the AB phase shift is not zero
but eΨ0R/(cT ). The existence of the retardation effect in the dynamic case
further supports the idea that the AB phase shift is continuously generated
during the electron passing around the solenoid.

The generalized AB effect, if confirmed, could be useful in precision
measurement devices where time-dependent phase control is essential, since
it provides the possibility of controlling quantum interference by modulating
the magnetic flux.

5 Conclusion

We have given a detailed derivation of the AB phase shift in the presence of a
time-dependent magnetic vector potential. It turns out that the phase shift
is proportional to the time average of the enclosed magnetic flux. Unlike the
static AB effect, where the phase shift is proportional directly to the enclosed
flux (by Stokes’ theorem), the time-dependent case introduces an additional
layer of complexity due to the dynamic angular velocity variations. This
generalized AB effect highlights the interplay between time-dependent elec-
tromagnetic potentials and quantum mechanical phase accumulation, and
in particular, it strongly suggests that the AB phase is locally and continu-
ously generated via the action of gauge-dependent potentials. Future work
may explore experimental verification and potential applications of this new
effect in quantum technologies.
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