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Abstract

Hadfield-Menell et al. (2017) propose the Off-Switch Game, a model

of Human-AI cooperation in which AI agents always defer to humans

because they are uncertain about our preferences. I explain two rea-

sons why AI agents might not defer. First, AI agents might not value

learning. Second, even if AI agents value learning, they might not be

certain to learn our actual preferences.

1 Introduction

We have seen rapid progress in the field of Artificial Intelligence (AI). If

this progress continues, perhaps one day we will create powerful artificial

agents. If we do so, how do we ensure that such AI agents do not go out

of control? One approach is to make sure that we can switch off AI agents

when they act against our interests. Put another way, we want to make sure

that AI agents will defer to us. While this is not enough to ensure that AI

∗Forthcoming in Philosophical Studies. Thanks to Mel Andrews, Mathias Böhm, Lara
Buchak, Shamik Dasgupta, Daniel Filan, John MacFarlane, Aydin Mohseni, Emily Perry,
David Thorstad, two anonymous referees and an editor of Philosophical Studies, and audi-
ences at the 7th Annual CHAI Workshop in Pacific Grove, CA for very helpful discussions.
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will have beneficial consequences, it is a plausible minimal requirement to

prevent harm. Even if you think that existential risk from AI is a remote

concern, it should be clear that making sure that we can switch off AI agents

is important.1

But is this really a problem? Surely, if we want to make sure that we

can switch off an AI agent, we can simply build it with an off-switch button.

The problem is that an AI agent might have an incentive to disable its off-

switch button or make it impossible for us to use it. The reason is that,

according to the dominant paradigm, AI agents are trained to optimize some

fixed reward function. And in many cases, the AI agent can optimize its

reward function only if it is not switched off. Therefore, AI agents might

have powerful incentives to avoid being switched off.2

One idea for making sure that AI agents will always let themselves be

switched off runs roughly as follows. We program the AI agent to maximize

the satisfaction of human preferences and also make it uncertain about what

our preferences are.3 So the AI agent is not sure what it should maximize.

Then, there is a compelling argument that the AI agent has an incentive to

defer to us. This is because deference is a way to learn about our preferences.

In particular, if we switch the AI agent off, this indicates that the action

proposed by the AI agent goes against our preferences.

1Bostrom (2014), Russell (2019) and Ord (2020) are concerned about existential risk
from AI. Thorstad (2024) provides a critical discussion.

2Gallow (2024) critically discusses this ‘instrumental convergence’ argument.
3There are independent reasons for this since we might not be certain what our prefer-

ences are and telling the AI to maximize some proxy for our preferences might have bad
consequences (Zhuang and Hadfield-Menell 2020). This is suggested by the legend of King
Midas who wishes that everything he touches turns into gold and starves when his wish is
granted and Goethe’s tale of the sorcerer’s apprentice who enchants brooms to fetch water
but then cannot stop them. Flooding ensues.
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Hadfield-Menell et al. (2017) formalize the reasoning just sketched in the

framework of Cooperative Inverse Reinforcement Learning (CIRL) (Hadfield-

Menell et al. 2016). They propose a model of Human-AI cooperation called

the ‘Off-Switch Game’. In this model, we can prove that under certain as-

sumptions, the AI agent will always defer to the human. Russell (2019) takes

this result to be an important step towards ‘provably beneficial AI’.4

In this paper, I highlight how the result that AI agents always defer in

the Off-Switch Game relies on strong decision-theoretic and epistemological

assumptions: AI agents maximize expected utility, are certain of updating by

conditionalization and have perfect access to our actual preferences. When

we relax these assumptions, off-switching is not guaranteed. For the purpose

of my discussion, I assume that it makes sense to model AI agents as follow-

ing decision rules like maximizing expected utility. You might worry about

this assumption. There is nothing in existing approaches to AI like the trans-

former architecture which obviously corresponds to such decision rules.5 My

goal is to show that even if we grant that it makes sense to theorize about

AI agents in decision-theoretic terms, Hadfield-Menell et al. (2017) rely on

implausibly strong assumptions. For this purpose, I’m treating the notion of

an ‘AI agent’ as an unanalyzed primitive. I also set aside ethical and epis-

temological concerns about existing machine learning technology (Andrews,

Smart, and Birhane 2024).

4Russell (2019, p. 196) writes: “The off-switch problem is really the core of the problem
of control for intelligent systems. If we cannot switch a machine off because it won’t let
us, we’re really in trouble. If we can, then we may be able to control it in other ways too”.

5Thanks to an anonymous referee for raising this concern.
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2 The Off-Switch Game

Hadfield-Menell et al. (2017) introduce the Off-Switch Game which works as

shown in figure 1.6 There are two agents, a robot R and a human H. R

can either do some action a, do nothing (switch itself off), or defer to H.

This means that R proposes action a and waits to see what H does. H can

approve or reject the proposal, where we can think of rejecting the proposal

as equivalent to switching the robot off. R aims to maximize the human’s

utility but does not know how much utility the human receives from action

a, which we model as a random variable Ua. If R does a, it receives payoff

Ua. If R does nothing, it receives payoff zero. And if R defers, its payoff is

Ua if H approves a and zero if H rejects a.

R

Payoff: 0.

do
nothing

H

Do nothing. Payoff: 0.

reject

Do a. Payoff: Ua.

app
rov

e

defer

Do a. Payoff: Ua.

ac
t

Figure 1: The Off-Switch Game (Hadfield-Menell et al. 2017).

Russell (2019, p. 198) gives a simple example to illustrate this model.

6They cite the ‘shutdown problem’ by Soares et al. (2015) as inspiration.

4



Suppose Alice is a human and Rob is her personal AI assistant. Rob faces

the decision whether it should book Alice in an expensive hotel and is unsure

about Alice’s preferences. Rob’s uncertainty about how much utility Alice

will receive from booking the hotel is given by a uniform distribution between

-40 and 60. So the expected utility of booking is 10 and the expected utility of

doing nothing is zero. If the only two options are booking and doing nothing,

Rob maximizes expected utility by booking. Now suppose we give Rob the

option of deferring: Rob can propose booking to Alice and see whether she

approves or rejects the proposal. If Alice rejects, Bob does nothing and Alice

receives utility zero. If Alice maximizes expected utility, she will approve

Rob’s proposal if she receives non-negative utility from booking the hotel

and reject if she receives negative utility from booking the hotel.

Rob’s decision problem is depicted in figure 2. Rob thinks that with 60%

probability Alice will approve the proposal and receive an expected utility of

30 from booking the hotel. With 40% probability Alice rejects and receives

zero utility. So the expected utility of deferring is .6×30+ .4×0 = 18 which

is better than the expected utility of booking the hotel outright.

This example is supposed to illustrate a more general principle. By mak-

ing AI agents like Rob uncertain about our preferences, we give them an

incentive to defer to us and not to disable their off-switch. This is because if

they are uncertain about our preferences, deferring to us is a way of learning

and learning generally leads to better decisions.

To state the general result, we need some definitions. To say that H

follows a rational policy means that H accepts a iff Ua ≥ 0. We write ∆

for the difference of the expected utility of deferring and the expected utility
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R

H

Do nothing. Expected payoff: 0.

reject
0.4

Book. Expected payoff: 30.

app
rov

e

0.6

defer

Book. Expected payoff: 10.

ac
t

Figure 2: Rob’s decision problem. The expected utility of deferring is 0.6×
30 + 0.4× 0 = 18. For simplicity, I omit Rob’s option to do nothing.

of the best action right now relative to R’s prior probability function: ∆ =

E(w(a))−max{E(a), 0}, where w(a) means proposing a, waiting whether H

accepts or rejects and then deferring to H’s decision. Then, we have:

Theorem 1. (Hadfield-Menell et al. 2017) If H follows a rational policy in

the Off-Switch Game, the following hold:

1. R always maximizes expected utility by deferring: ∆ ≥ 0.

2. If R assigns positive probability to the events Ua > 0 and Ua < 0, then

deferring is uniquely optimal: ∆ > 0.

An important feature of the model is that “this reasoning goes through

even if R is highly confident that a is good for H ” (Hadfield-Menell et al.

2017, p. 222). Assume Rob is very confident that Alice prefers the hotel.

We model Rob’s uncertainty about how much utility Alice will receive by

booking the hotel by a uniform distribution between 90 and -10 so Rob is

90% certain that Alice prefers the hotel. Nonetheless Rob has an incentive
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to defer. The expected utility of booking outright is 40. If Rob proposes the

plan and Alice accepts, the expected utility of booking is 45. If Rob proposes

the plan and Alice rejects, Rob receives zero utility. So the expected utility

of deferring is .9 × 45 + .1 × 0 = 40.5, higher than the expected utility of

booking outright. However, since Rob is already quite confident about Alice’s

preferences, the expected utility of deferring is only a little bit higher than

the expected utility of booking outright.

The value of deferring looks like an instance of the more general principle

that learning is valuable. Hadfield-Menell et al. (2017, p. 222) explicitly draw

this analogy: “The reasoning is exactly analogous to the theorem of non-

negative expected value of information”. As we will see below, the analogy

is not perfect since valuing learning and deference can come apart if we allow

for misleading signals, but we will first discuss whether AI agents will always

value learning.

3 The Value of Information

Good (1967) shows that if you are an expected utility maximizer, learning

is cost-free, you are certain to conditionalize and other assumptions hold,

you should always prefer to learn more information before making a decision

rather than making the decision without learning.7

Here is a quick sketch of Good’s theorem. We model your uncertainty

by a probability function p on a finite set of states Ω. Actions are functions

7Hosiasson (1931), Blackwell (1951), Howard (1966), Savage (1972), and Ramsey (1990)
prove similar results. Russell and Norvig (2018, pp. 628–33) discuss the value of informa-
tion in AI research.
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f : Ω → R, where f(ω) is the utility of choosing action f in state ω (Savage

1972). The expected utility of action f relative to probability function p is

Ep(f) =
∑

ω∈Ω p({ω})f(ω). You learn one element of a partition E of Ω,

where p(E) > 0 for all E ∈ E .

Consider a finite set of actions S. If you choose now, you select one

of the actions in S with maximal expected utility relative to your current

credences p, so the expected utility of choosing now is maxf∈S Ep(f). We

compute the expected value of learning as follows. If you learn E ∈ E ,

suppose you are certain to update p by conditionalization to p(· | E).8 Then

you choose one of the actions in S which maximize expected utility relative

to your updated credences and receive expected utility maxf∈S Ep(·|E)(f), so

the expected value of learning is
∑

E∈E p(E)maxf∈S Ep(·|E)(f). Good (1967)

proves that ∑
E∈E

p(E)max
f∈S

Ep(·|E)(f) ≥ max
f∈S

Ep(f).

which means that if the assumptions of the theorem hold, learning can never

make you foreseeably worse off.

Good assumes that learning is cost-free. This means that learning does

not affect your set of options and your utility function. The only effect

of learning is to change your credences via conditionalization. This might

not necessarily be true. For example, Rob’s proposal might change Alice’s

preferences. I set such complications aside but note that they might turn out

to be important. For example, we might worry that Rob has an incentive to

8By definition, p(A | E) = p(A∩E)
p(E) , assuming p(E) > 0.
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change Alices preferences so they are easier to satisfy.9

4 Rational Information Aversion

Good’s theorem about the non-negative expected value of information makes

substantive assumptions. In particular, Good assumes that Rob is an ex-

pected utility maximizer and certain to update by conditionalization. There

are reasons to be skeptical of both. If these assumptions fail, agents can be

required to reject learning. In this case, Rob is not guaranteed to defer to

Alice because Rob has no incentive to learn about Alice’s preferences.

One assumption is that the agent is an expected utility maximizer.10

For AI agents following alternative decision theories, learning is not always

valuable. One example of such an alternative decision theory is risk-weighted

expected utility theory (Buchak 2010) and other decision theories which relax

the independence axiom of expected utility theory (Wakker 1988). Buchak

(2013) argues that such decision theories capture the preferences of many

real-life subjects better than expected utility theory. In particular, such

decision theories allow agents pay special attention to the worst-case conse-

quences of their actions. It seems reasonable to consider the possibility that

we might want to build AI agents which implement such decision theories.

However, AI agents implementing such decision theories sometimes prefer to

avoid information. Why do agents which care especially about the worst-

9Russell (2019, p. 139) worries that algorithms which optimize engagement in social
media have an incentive to change our preferences so they are easier to satisfy. Even if AI
agents allow themselves to be switched off, this problem won’t be solved.

10Bales (2023) critically discusses arguments which claim to show that AI agents will
maximize expected utility. I set these arguments aside and focus on reasons why AI agents
might follow a different decision theory.
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case scenario avoid information? The reason is that such agents give special

weight to the risk of misleading evidence, that is, evidence which suggests

that P is true while P is actually false. Buchak (2013) discusses a detailed

example.

Another example of decision theories in which learning is not always valu-

able involve imprecise credences (Kadane, Schervish, and Seidenfeld 2008;

Bradley and Steele 2016). It seems reasonable to consider such alternative

architectures for AI agents. Perhaps we want AI agents to handle situations

where we do not have enough information to assign precise probabilities.11

However, if we go for such alternative architectures, we lose the guarantee

that AI agents will always prefer to learn about our preferences.12

Good’s theorem also requires that the agent is certain that they will

update by conditionalization.13 As Neth (forthcoming) shows, if we allow

agents to assign non-zero probability to not conditionalizing, it can some-

times be rational for these agents to reject free information. There are rea-

sons to think that AI agents will assign non-zero probability to violating

conditionalization. First, it will be hard to build AI agents which always

11Denoeux, Dubois, and Prade (2020) and Caprio et al. (2023) advocate for the use
of imprecise probabilities in AI. Ilin (2021) considers a decision theory which allows for
ambiguity aversion for applications in autonomous security systems. It is well known that
ambiguity aversion leads to information aversion (Al-Najjar and Weinstein 2009).

12As an anonymous referee points out, if designing AI agents following alternative deci-
sion theories creates significant risk, perhaps we just shouldn’t do it and learn to live with
those agents not being sensitive to risk and ambiguity. While this is a reasonable point,
many of us are sensitive to risk and ambiguity and might want AI agents to mirror these
preferences. If AI agents cannot do so, this is a significant cost.

13For example, Skyrms (1990), p. 247 writes that “the proof implicitly assumes not only
that the decision maker is a Bayesian but also that he knows that he will act as one. The
decision maker believes with probability one that if he performs the experiment he will (i)
update by conditionalization and (ii) choose the posterior Bayes act”. This means Good’s
theorem will also fail for agents who are not certain they will maximize expected utility.
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update by conditionalization because conditionalization is computationally

intractable. In particular, Cooper (1990) shows that conditionalization is

NP-hard. This means that conditionalization is at least as hard as any prob-

lem in the complexity class NP which includes many hard problems like

the traveling salesperson problem. Cooper (1990) works in the setting of

Bayesian networks which can represent any probability distribution over a

discrete sample space. In general, if we allow continuous random variables,

conditionalization is not even computable (Ackerman, Freer, and Roy 2019).

So even if we consider AI agents with lots of computing power, it is not clear

whether we can feasibly build them to always conditionalize. At best, AI

agents will approximate conditionalization.14 But approximating condition-

alization is not good enough for Good’s theorem since any non-zero probabil-

ity of violating conditionalization leads to some situation where maximizing

expected utility requires rejecting information. Similar reasons should make

us skeptical that AI agents will maximize expected utility since doing so is

also computationally intractable (Bossaerts, Yadav, and Murawski 2019).

Second, even if we set aside computational limitations, there are gen-

eral reasons to think AI agents will assign non-zero probability to violating

conditionalization. For both human and artificial agents, it seems rational

to maintain some uncertainty about how one will update. We are physical

systems embedded in the world and many things can go wrong with our

updating mechanisms. Sufficiently advanced AI agents will plausibly realize

this fact and so assign some probability to failures of conditionalization. So

14Although Dagum and Luby (1993) show that even the problem of approximating
conditionalization is NP-hard.
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for sufficiently advanced AI agents, Good’s theorem does not apply.

There are other well-known limitations of Good’s theorem.15 The upshot

is that proponents of CIRL need to pay attention to whether these limitations

apply to AI agents. While there is a lot of uncertainty about what AI agents

will look like, I have given some reasons to be skeptical whether they will

always value learning.

5 Misleading Signals

Even if all the assumptions of Good’s theorem hold, Rob is not guaranteed

to defer to Alice. Hadfield-Menell et al. (2017) assume that Rob has perfect

access to Alice’s preferences. If this assumption fails and Rob might get

Alice’s preferences wrong, deferring might not maximize expected utility.

Here is an example to illustrate this point. Like before, Rob is considering

whether to book the hotel or defer to Alice. Rob is quite confident that Alice

will like the hotel. Rob’s uncertainty about how much utility Alice will

receive from booking the hotel is given by a uniform probability distribution

between 90 and -10.

If Rob defers, it learns whether Alice approves or rejects Rob’s proposal.

Earlier, we have assumed that Rob is certain that Alice will approve if and

only if she prefers the hotel. In other words, we have assumed that Rob has

perfect access to Alice’s actual preferences, at least in this particular case.

Now let us assume that Rob has no such perfect access. There are several

15For example, Good’s theorem does not apply under either evidential decision theory
or causal decision theory if states and actions are correlated (Adams and Rosenkrantz
1980; Maher 1990), if evidence does not form a partition (Das 2023), if probabilities are
merely finitely additive (Kadane, Schervish, and Seidenfeld 1996) and so on.
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reasons for why this might be. For example, Rob might communicate with

Alice over a noisy channel with some small probability of garbling Alice’s

speech, misclassifying ‘yes’ as ‘no’ and vice versa. In this case, Rob updates

on ‘It sounds like Alice says yes’ but the probability that Alice actually said

yes given that it sounds like Alice said yes is less than one.

Perhaps a noisy channel can be fixed. But there might be deeper obstacles

to accessing Alice’s preferences. For example, even if Rob can clearly hear

what Alice is saying, Rob might nonetheless assign some positive probability

to the possibility that Alice is lying or engaged in self-deception. Alice might

say she wants the hotel even if she does not really want it. This problem is

harder to fix because we are sometimes lying about our preferences, even to

ourselves. Furthermore, humans might send misleading signals for strategic

reasons. So it seems very plausible that advanced AI agents will assign some

probability to humans sending misleading signals. But as we will see in a

moment, this means that Rob is not guaranteed to defer.

Is there any way to block this move by hard-wiring AI agents to ignore

the possibility of misleading signals? Depending on how the AI agent is

trained, this might not be feasible. More importantly, it seems like an accu-

rate model of human psychology is important for AI agents to perform well

in many real-world tasks such as playing Diplomacy.16 An AI agent which

assigns probability zero to humans sending misleading signals about their

preferences will be seriously handicapped in such tasks and so seems unlikely

16Thanks to Aydin Mohseni for suggesting this example.

13



to be deployed in critical real-world applications.17

We can modify the Off-Switch Game to allow for misleading signals as

follows. Like before, if Rob defers, Alice will either approve or reject Rob’s

proposal. But now with some small probability ϵ > 0 Alice’s signal is mis-

leading and does not reflect her true preferences.18 In particular, given that

Alice prefers the hotel, with probability ϵ she rejects Rob’s proposal. And

given that Alice does not prefer the hotel, with probability ϵ she approves

Rob’s proposal. Rob’s new decision problem is depicted in figure 3. Like be-

fore, the expected utility of booking outright is 40. If Alice really prefers the

hotel, the expected utility of booking after deferring is 45. But if Alice sent

an incorrect signal, the expected utility of booking is -5. If ϵ is bigger than

around 1.2%, Rob maximizes expected utility by booking without asking.19

Note that as I’ve described the case, Rob satisfies all the assumptions

of Good’s theorem. This means that Rob will always value learning more

information before making a decision. How is this compatible with Rob not

deferring? The answer is that deferring is not the same as learning more

information before making a decision. When deferring, Rob does whatever

action Alice proposes. So while deferring gives Rob new information, it

17Failures of deference can also arise from ‘model misspecification’ (Milli et al. 2017;
Carey 2018) so trying to ensure deference by intentionally giving the AI agent an inaccurate
model of human psychology is not a promising idea.

18We can think of Alice’s signal as a partition of our state space Ω. As Ye (forthcoming)
explains, following Blackwell (1951), we can also think of signals as inducing a probability
distribution on Ω. From this perspective Hadfield-Menell et al. (2017) assume the signal
perfectly reveals Alice’s preferences while we study a ‘garbled’ signal with added noise.

19The expected utility of deferring is p(approve)
(
p(prefer | approve)45 − 5p(disprefer |

approve)
)
. We can calculate p(approve) = p(disprefer)ϵ+p(prefer)(1−ϵ) = 0.1ϵ+0.9(1−ϵ).

By Bayes’ theorem, p(prefer | approve) = p(prefer)p(approve|prefer)p(approve) = 0.9 1−ϵ
0.1ϵ+0.9(1−ϵ) and

p(disprefer | approve) = 1 − p(prefer | approve). We can calculate p(prefer | reject) and
p(disprefer | reject) analogously. See Jupyter notebook available at https://github.com/
nethsv/off-switching for details.
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Figure 3: Rob’s decision problem with uncertain access to preferences.

also changes Rob’s choice set. For example, Rob is not able to learn that

Alice rejects the proposal but then still implement it. If Rob had the option

to learn Alice’s signal and then still choose among the original option set

{book, do nothing}, this option would always maximize expected utility. So

the link between preferring to learn new information and deference is weaker

than Hadfield-Menell et al. (2017) suggest. For example, if ϵ = 0.02, the

expected value of deference is slightly less than 40 and the expected value of

learning is 40 since Rob will book no matter which signal Alice sends.20 This

shows that preferring to defer and preferring to learn more information can

come apart. Instead of booking outright, Rob might also listen to Alice’s

signal but then proceed ignore her. This doesn’t make the situation any

20See Jupyter notebook available at https://github.com/nethsv/off-switching.
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better.21

You might complain that this example is unrealistic. Perhaps a probabil-

ity of more than 1% of Alice sending an incorrect signal is too pessimistic.

But we can construct a similar example for any non-zero probability of mis-

leading signals if we make Rob even more confident that booking is right.

More broadly, the example illustrates a general lesson. If Rob is not perfectly

certain of learning Alice’s actual preferences, there is no guarantee that Rob

will defer. It might still be true that Rob defers to Alice most of the time.

But for provably beneficial AI, this is not enough. If we allow the possibility

of misleading signals, off-switching is not guaranteed.

You might argue that if Rob is uncertain about whether it will learn our

actual preferences, then it should not always defer to us.22 There is clearly

a sense in which Rob is acting rationally by not deferring. Rob assigns

high prior probability to booking being right so from Rob’s point of view,

when Alice rejects, it is relatively likely that Alice sent a misleading signal.

Together with the potential downsides of failing to book, this means that Rob

maximizes expected utility by not deferring. This reasoning looks acceptable

from our ‘outside’ point of view if Rob has a reasonable prior. But if Rob has

21If deferring means that Rob implements whatever Alice proposes, does this put pres-
sure on our earlier arguments about information aversion? It depends on how we con-
strue the Off-Switch Game. If Alice’s signaled preference is implemented automatically,
Rob might refuse to defer because of the possibility of misleading signals. If Alice’s sig-
naled preference isn’t implemented automatically and Rob maximizes expected utility
after learning, Rob might refuse to defer because of negative information value. In this
case misleading signals don’t lead Rob to refuse to defer, but ‘deferring’ might mean
learning Alice’s preferences and then ignoring them. In the original Off-Switch Game, it
doesn’t make a difference whether or not Alice’s preference is implemented automatically,
these cases only come apart when we consider information aversion and misleading signals.
Thanks to an anonymous referee for pressing me on this point.

22Thanks to an anonymous referee for raising this objection. Milli et al. (2017) also
argue that when humans are behaving irrationally, AI agents should not always defer.
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a strange prior, this reasoning can look really bad. This is a problem because

one of the core motivations for the Off-Switch Game is that it is very hard

to specify a reward function which correctly captures our preferences. But,

the idea goes, we don’t have to worry about specifying the correct reward

function because Rob will always defer to us. Presumably it is equally hard

to specify the correct prior over our preferences. But in the presence of

misleading signals, we do have to worry about Rob’s prior. Depending on

its prior, Rob might or might not let itself be switched off. Thus, the Off-

Switch Game does not successfully solve the problem it was designed to solve:

making sure AI agents defer to us without having to worry about the details

of their reward function and prior. Given that the assumptions of Good’s

theorem hold, AI agents still have an incentive to ‘listen to us’ but, depending

on their prior, they might decide to ignore our signals. This seems like cold

comfort.

Now suppose the stakes are higher. Rob is contemplating a permanent

change to our environment, perhaps a plan to stop climate change which, as

side effect, permanently turns the sky orange (Russell 2019, p. 202). Rob is

quite confident that this is the right option and has some uncertainty about

whether it will learn our actual preferences, so it goes ahead and implements

this plan without asking. This seems like a situation where we really want

Rob to defer to us. If Rob has an incentive to not defer, this is a problem.
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6 Practical Significance

You might respond as follows. Grant that there is a possibility AI agents

will not defer to us. But how likely is this possibility? It might be that AI

agents defers to us in almost all cases. Should we still be worried about the

tiny minority of cases where they fail to defer?23

There are two responses. First, even one instance of non-deference might

have catastrophic consequences. AI agents might have powerful capacities

to change our world in irreversible ways. This means that once the change

is rolled out, it might be impossible to roll it back. One of the most worry-

ing examples for an irreversible change is human extinction. But there are

less drastic examples as well. AI agents might use up some non-renewable

resource, permanently change our preferences or turn the sky orange.

Second and more importantly, we don’t have good reasons to think that

the probability of non-deference is extremely low. Phenomena like sending

misleading signals about one’s preferences seem widespread. It seems im-

plausible to ignore such phenomena when considering whether AI agents will

defer to us in real life. So looks like there is not just an in-principle possibility

but a substantial probability that AI agents will fail to defer. It is difficult to

see why we should be confident that in practice, non-deference is extremely

unlikely. Perhaps proponents of CIRL could provide an argument for why

this is true. This argument would need to show that, among other things, AI

agents are very likely to maximize expected utility, be certain of updating by

conditionalization and have perfect access to our preferences. Why is that?

23Thanks to an anonymous referee for raising this concern.
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This is an important question which proponents of CIRL should address.

7 A Dilemma for Provably Beneficial AI

I have argued that the result of Hadfield-Menell et al. (2017) relies on substan-

tive assumptions. Even if we make AI agents uncertain of our preferences,

this does not guaranteed that they will always defer to us. This highlights

a more general dilemma for provably beneficial AI. To prove that AI agents

always defer to us (or are beneficial in some other sense), you have to make

some decision-theoretic and epistemological assumptions. Either you make

strong or weak assumptions.

Strong assumptions, such as expected utility maximization, certain con-

ditionalization and perfect access to our preferences, will allow you to prove

interesting guarantees. But such assumptions might not apply to all AI

agents. As we have seen, there are reasons to think that AI agents in the

real world might not be certain of updating by conditionalization and have

perfect access to our preferences. So even if you can prove that given such

assumptions, AI agents will be beneficial, this isn’t much comfort if the as-

sumptions might not be satisfied by many AI agents. Weak assumptions

apply to a wider range of possible AI agents but don’t allow you to prove

much. As we have seen, if AI agents assign some positive probability to

failures of conditionalization or to humans sending misleading signals about

their preferences, they are not guaranteed to defer to us.

Perhaps there is a way to successfully navigate this dilemma. We might

find decision-theoretic assumptions weak enough to cover (almost) all plausi-
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ble varieties of AI agents and strong enough to prove interesting guarantees—

assumptions which are ‘just right’. But since we know so little about what

AI agents might look like, it is not clear whether this will work out.

8 Conclusion

Hadfield-Menell et al. (2017) propose a model for making sure that AI agents

defer to us by making them uncertain about our preferences. I have argued

that their result relies on strong decision-theoretic and epistemological as-

sumptions: AI agent maximize expected utility, are certain of updating by

conditionalization and have perfect access to our preferences. These assump-

tions limit the scope of the model since they might not be satisfied by AI

agents in the real world.

Everything I have said here is compatible with the broad idea that we

shouldn’t tell AI agents to maximize a particular reward function but rather

‘teach them as we go along’. But we need more solid foundations for this

idea. The problem of making sure AI agents defer to us is not yet solved.
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