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This work shows that the ontic-epistemic dichotomy is insufficient to capture the different levels of
ignorance and their implications for probability theories. It proposes an essentially epistemic inter-
pretation of quantum mechanics, built on an operational basis firmly anchored to experimental data
and scientific methods. This approach enables a rigorous treatment of numerical values obtained
from experiments without resorting to unnecessary ontological or metaphysical assumptions.

I. INTRODUCTION

Classical probability theory (CPT) and quantum me-
chanics (QM) are two fundamentally different algebraic
frameworks that yield strikingly similar outputs: real val-
ues in [0, 1] representing the frequency or probability of
a given physical phenomenon.

It is therefore natural to ask whether, despite their
markedly different forms, the two theories are ulti-
mately equivalent. The answer is negative, as defini-
tively demonstrated by Bell[1–5], who derived inequal-
ities establishing a quantitative boundary between the
two frameworks: QM violates certain inequalities that
remain unviolated within CPT.

Bell’s theorems have been extensively analysed, refor-
mulated from multiple perspectives, and subjected to
thorough experimental verification[6]. Their profound
significance was ultimately recognised with the 2022 No-
bel Prize.

Bell’s work has played, and continues to play, a cen-
tral role in the debate surrounding ontology, realism,
and, more broadly, the interpretation of quantum me-
chanics. In particular, it appears to definitively rule out
the possibility that a classical reality lurks behind the
formal structure of quantum theory. If such a reality ex-
isted, it would yield experimental values consistent with
CPT—yet this is not the case. Put differently, the pecu-
liarities of QM, including its inherently probabilistic na-
ture, cannot merely be attributed to epistemic ignorance.
The theory necessarily describes a world with some in-
trinsically unusual ontological features.

An alternative stance is to reject the ontological de-
bate—and, more generally, the philosophical discus-
sion—altogether. QM is what it is; it works exception-
ally well, and nothing more need be said. This radical
position is encapsulated in the motto ”shut up and cal-
culate”[7], resonates in the aversion some physicists have
expressed towards philosophy (Hawking’s ”philosophy is
dead”[8] being a well-known example), and, beyond its
provocative phrasing, has a rationale of its own.

Even within the most classical framework—Newtonian
gravitation—profound ontological issues arise concerning
the nature of the universal gravitational force, as already
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acknowledged by Newton himself in his famous ”hypothe-
ses non fingo”[9]. The prevailing ontology that emerged
from this theory, further shaped by Faraday’s vision-
ary insights, conceives this force as being produced by
a field—an intangible substance emitted, in some unde-
fined manner, by massive bodies.1

This ontology, in light of Einsteins results, has been
shown to be fundamentally incorrect. The same holds for
electromagnetism in the light of quantum electrodynam-
ics. Perhaps “interpreting” scientific theories is indeed a
futile—if not counterproductive—endeavour. The physi-
cist Valentine Telegdi expressed his disenchantment by
stating: ”All physical theories are just recipes, nothing
more!”[11]
On the other hand, a significant fraction of physicists

openly declare themselves driven by a profound desire
to understand the world, rather than merely to produce
new recipes. The tension between physics and philosophy
remains as alive as ever.
The most direct ontological consequence of Bell’s the-

orems is that quantum properties—for instance, the spin
value of a particle—cannot possess a well-defined state
of reality prior to measurement. If they did, statistical
analysis of such values would follow a classical pattern,
and no violation of Bell’s inequalities would be observed.
This implies the necessity of a non-local mediating mech-
anism correlating the values that quantum properties as-
sume upon measurement.
The thesis of this work is that such deductions are

weak. It will be shown, in contrast, that the violation
of Bell’s inequalities is fully compatible with the assign-
ment of well-defined properties that pre-exist measure-
ment. That is, it will be demonstrated that QM is fun-
damentally compatible with a notion of probability of an
epistemic nature.
The path ahead is fraught with difficulties and will re-

quire a series of at times pedantic clarifications. Unfortu-
nately, there seems to be no alternative, as the interpreta-
tive key proposed here lies precisely in such refinements.

1 Equally stimulating is Feynman’s toy hypothesis[10], which envi-
sions gravity as a consequence of collisions within an omnipresent
gas of particles, with attraction arising from an imbalance in
these collisions due to the shadow cones cast by one body upon
another.
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II. LOGIC AND PHYSICS

In the 1930s, in response to the problems posed by
Hilbert[12] at the beginning of the century, Gödel pro-
duced a series of theorems concerning the consistency and
completeness of formal logical systems[13, 14]. The most
famous of these, known as the first incompleteness the-
orem, establishes that for any consistent formal system
sufficiently powerful to include Peano arithmetic, there
exists a syntactically well-formed formula that is unprov-
able within that system.

This highly technical result was independently redis-
covered within months by von Neumann and later refor-
mulated by Chaitin[15] in the study of universal Turing
machines, leading to the development of algorithmic in-
formation theory.

During the same historical period, in the vastly differ-
ent domains of logic, physics, and the emerging theory
of computation, similar natural-language expressions be-
gan to resonate: undecidability, incompleteness, indeter-
minacy, the impossibility of assigning well-defined prop-
erties, and so forth.

However, Gödel’s results, despite their profound im-
plications, remain extraordinarily technical, addressing
aspects that, in a sense, are marginal to the practice of
mathematics and even perceived as irrelevant from an in-
tuitionistic perspective[16]. With only a few pioneers ex-
ploring this connection—notably Benioff’s work[17] and
some notes by Wheeler[18]—physics, as a whole, has not
seriously pursued the idea of a suggestive relation be-
tween Gödel and Heisenberg.

Another line of inquiry concerns the development of
alternative logics to classical logic—a field explored by
Gödel, von Neumann[19], the precursor Peirce[20], and,
in a different context, Zadeh[21]. These logics typically
reject or weaken the law of the excluded middle, allow-
ing for propositions that are not necessarily true or false.
This has a direct connection to QM, as it provides a nat-
ural framework for accommodating paradoxical superpo-
sition states—such as Schrödinger’s cat[22] being neither
alive nor dead.

However, the cost of abandoning the law of the ex-
cluded middle is immense: nearly every known theorem
in mathematics depends, either directly or indirectly, on
this principle. Such an approach undermines the math-
ematical foundations of QM (which are defined within
classical logic) and, in a self-defeating loop, negates its
own justification. The only viable resolution appears
to be allowing these alternative logics to coexist with
classical logic, applying them only in specific contexts.
Yet, while they offer solutions to the dilemmas posed by
QM in the real world, they simultaneously introduce new
paradoxes within the domains of logic and mathematics.

On the other hand, the very definition of an undecid-
able proposition naturally—but also erroneously—leads
to multivalued logics[23]. If undecidable propositions ex-
ist, then, in general, a proposition could be true, false,
or undecidable, and this tripartite classification appears

to negate the law of the excluded middle. However, this
reasoning is fallacious, and no trace of such an argument
can be found in Gödel’s theorems. Undecidable is not
an alternative state to True and False. Gödel, in his
work, clarifies the subtle distinction between truth and
provability.
A theorem provable in a system S is not merely true,

but rather true and provable in S; we shall say that
it is manifestly true in S. Similarly, a formula whose
falsity can be proven in S is not merely false, but rather
manifestly false in S. Undecidable is an alternative
state to manifestly true and manifestly false, not
to true and false. As we shall see, this distinction is
the fundamental lever that will drive the arguments that
follow.
In more recent years, the study of a possible connec-

tion between logic and quantum mechanics—particularly
between logical undecidability and quantum undecid-
ability—has been revitalised by the works of various
authors[24–30], who are revisiting these ideas from a va-
riety of promising new perspectives.
These works, despite their potential, often suffer from

what could be termed an excess of formalisation. That
is, there is a tendency to impose a forced coincidence
between physical systems and formal logical systems
(specifically, formal systems incorporating at least Peano
arithmetic) in order to leverage logical incompleteness
and project logical undecidability onto quantum unde-
cidability.

More recently, however [24, 27], a way to avoid the
trap of excessive formalisation has emerged—one that ef-
fectively disregards Gödel’s and Chaitin’s theorems and
instead shifts the focus to a weaker form of undecidability
within logical systems (including even the most radically
intuitionistic ones), namely what is referred to as inde-
terminacy or independence of propositions.
Put simply, the premises ”Socrates is a man” and ”All

men are mortal” do not allow us to determine the colour
of Socrates’ hair, and this is certainly not due to Gödel,
but rather to an evident lack of logical connection. The
proposition ”Socrates has black hair” is independent of
the given premises.

That quantum undecidability could be connected to
this weaker form of logical independence is not usually
given serious consideration because, once again, if the ob-
server’s ignorance were purely epistemic, classical proba-
bility theory would be expected to hold—and yet it does
not, particularly in light of Bell’s theorems.

However, it should be noted that the concept of epis-
temic ignorance has at least two subtly distinct shades:

� An observer is unaware of the outcome of a die
roll because they do not know its initial conditions
with sufficient precision, yet these conditions are,
at least in principle, available.

� An observer is unaware of the outcome of a die
roll because they do not know its initial conditions



3

with sufficient precision, and these conditions are
not available to him—not even in principle.

The first case is what is typically referred to as epis-
temic ignorance. The second is more subtle and deli-
cate. If the die does not possess well-defined initial con-
ditions—even in principle—then this is precisely what is
meant by ontological ignorance: the die has a struc-
turally fuzzy and peculiar nature, with an ontology that
exhibits some intrinsic peculiarity. However, this reason-
ing contains a fallacy remarkably similar to the one dis-
cussed earlier. The claim is not that the die lacks certain
properties, but rather that the observer does not have
access to them.

The proposition ”The die has initial properties
x, y, z, . . .” is not neither true nor false—which would
negate the law of the excluded middle and trigger a host
of logical paradoxes—but rather undecidable, meaning
neither manifestly true nor manifestly false from the ob-
server’s perspective.

To clarify this distinction, let us define a physical
system as a space-time neighbourhood. Specifically, we
shall consider a neighbourhood containing an observer
over a given time span. Let us call A a physical sys-
tem that includes a scientist, Alice, and her laboratory
over a working day. Within A, there are Alice, her mem-
ory, her notes, and her measuring instruments, spanning
a temporal interval of several hours. The system A is
not isolated—it interacts with its surroundings: the sun
heats the walls of the laboratory, and external sounds
enter through the windows.

Now, consider a second system, B, that is a distinct
space-time neighbourhood, external to A. B can be con-
ceived as a spatially separate physical system or as the
future state of A, meaning A during the following work-
day. In this latter case, we shall also refer to such systems
as states, with the time-evolved version A′ of A being
called the final state of A. In the example of the die,
A can be identified with the observer and B with the die
itself over a given time interval.

The question we pose is: what can be deduced about
B given A (or within A)? That is, what can Alice, dur-
ing her workday, rationally infer about system B? More
specifically, what form should the best scientific theory
adopted by Alice take in order to predict the properties
of B?

An extreme possibility, which we shall refer to as lo-
cal determinism, is that every neighbourhood external
to A is, in some way, holographically projected into A.
That is, there exists some form of universal law—which
we may assume Alice knows—that allows one to extract
from A all possible information concerning B. In log-
ical terms, this means that every proposition about B
is decidable within A, except for possible self-referential
or degenerate propositions constrained by the limits of
formal systems. To avoid the trap of excessive formalisa-
tion, we shall state that every proposition about B that
is provable in B is also provable in A.

It is instructive to consider how a classical theory such
as Newtonian mechanics relates to the notion of local
determinism. Without claiming complete rigour, let us
imagine A within a Newtonian universe governed solely
by the forces of universal gravitation and Coulomb inter-
action. Within A, Alice can study in detail the motion
of a falling object, which will depend on a Lagrangian in-
volving all masses and positions of all bodies in the uni-
verse, consisting of the sum of gravitational potentials,
electric potentials, and all kinetic energy terms. Since
the forces involved are analytic functions, the Lagrangian
itself will be analytic. This implies that the state of the
entire universe, throughout its entire history, will be an
analytic extension of A. The motion of the falling ob-
ject in A thus contains all the information necessary to
reconstruct the entire history of the universe: the uni-
verse is entirely holographically projected into A. This
represents an extreme form of Laplace’s demon[31], in
which every arbitrarily small neighbourhood contains a
holographic copy of the whole. Such a universe would
be a kind of vast fractal, a Mandelbrot-like structure in
which one part (every part) replicates every detail of the
whole.

A second instructive observation concerns the relation-
ship between local determinism and the very notion of
experimental science. The LIGO experiment[32], to cite
a striking example, demonstrates how, within the vicinity
of a large interferometer, for a duration of several min-
utes, traces persist that allow scientists to reconstruct in-
formation about a second system extraordinarily distant
in both time and space. This experiment was remarkable
for the scientists’ ability to read these microscopic traces
and uncover their logical consequences.

Clearly, the successes of science do not in any way im-
ply that local determinism must be a necessary property
of our universe. On the contrary, it appears to be an
artificial imposition dictated more by the human desire
to describe the world using elegant and simple formulas.
It is entirely natural to hypothesise its negation, assum-
ing that B is not holographically projected into A, that
is, that there exists a property of B that is undecidable
within A, or, equivalently, that there exists a proposition
provable in B but not in A.

The negation of local determinism does not entail the
negation of classical determinism. Consider once again
the purely Newtonian universe discussed above, but now
modify the law of universal gravitation so that it is no
longer an analytic function. For instance, suppose that
this force instantaneously vanishes beyond a certain (pos-
sibly very large) distance. The resulting system remains
deterministic: Laplace’s demon can still construct the
Lagrangian, populate it with initial conditions, and com-
pute the present and future of that universe in every de-
tail. However, within A, the motion of the falling object
may no longer depend on masses that are too distant,
and information concerning those masses may no longer
be available there. In this case, although the universe re-
mains deterministic in the classical sense, it is no longer
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an analytic extension of A—that is, the universe is not
holographically projected into A.
The existence of this type of undecidable propositions

within A is not purely epistemic—i.e., it does not concern
Alice’s knowledge, memory, or awareness—but rather re-
flects a deep, objective lack of information within A. We
shall refer to this form of ignorance as onto-epistemic
ignorance.

Despite full awareness that the topics discussed so far
traverse the individually complex domains of the foun-
dations of physics, the foundations of mathematics, the
foundations of logic, and the philosophy of science—and
acknowledging that the risk of slipping on conceptual pit-
falls is consequently high—the definition of local deter-
minism and its negation appears sufficiently weak and,
in particular, independent of the technical peculiarities of
formal logical systems. This makes it a solid and broadly
acceptable starting platform.

This chapter has examined various details of the vast
debate concerning physics, logic, and the philosophy of
science. This was done not out of mere pedantry, but be-
cause within these very details may lie (and indeed lies!)
the solution to the foundational issues raised by QM. In
particular, the following points have been clarified:

1. The problem of logical undecidability is relevant to
physics even if one completely disregards the in-
tricate incompleteness theorems of formal systems.
Even adopting a radically intuitionistic stance, the
issue of indeterminacy arising from the logical in-
dependence of propositions remains.

2. The inevitable concept of undecidability is always
relative to a system or an observer and is not an al-
ternative to true and false, but rather to manifestly
true and manifestly false. This concept does not
imply a violation of the law of the excluded middle
and does not require any form of alternative logic.

3. The notion of local determinism is central because
it further clarifies that what is at stake here per-
tains strictly to physics—not to abstract logical,
mathematical, or philosophical constructions pro-
jected in some Platonic manner onto the real world.
From these powerful disciplines, only the bare min-
imum necessary is extracted to analyse what Al-
ice, a real physicist conducting real measurements,
can rationally infer from the numerical relation-
ships among her measurements.

4. The categories of ontic ignorance and epistemic ig-
norance are overly simplistic and fail to capture the
nuances outlined in the previous points. The form
of ignorance arising from the negation of local de-
terminism has distinct characteristics, necessitating
a specific definition: onto-epistemic ignorance.

5. Bell’s inequalities are crucial. Well before any spec-
ulation concerning ontology (such as the absence

of pre-measurement ontological properties or non-
locality), they establish a strictly technical point:
CPT and QM are incompatible insofar as QM vio-
lates certain inequalities that are unviolable within
CPT.

The objective of the following chapters will be to deter-
mine the properties that a scientific theory developed by
Alice must possess in order to make predictions about
undecidable properties in the sense discussed here. In
other words, we shall ask what form a theory must take
in order to handle and manage onto-epistemic ignorance.

III. LOCAL INDETERMINISM AND
PROBABILITY

The scientist Alice might be interested in studying un-
decidable properties such as “the diameter of B”, “the
mass of B”, “the velocity of B”, and so forth. For sim-
plicity, and without loss of generality, we shall reduce
this complexity to propositions of the form “The mass of
B is greater than 10kg” or “The height of B is 174cm”,
thereby simplifying the outputs and associated difficul-
ties to a straightforward binary yes/no choice.
Moreover, we shall focus on concretely verifiable propo-

sitions. That is, the system A can evolve into a state A′ in
which the previously undecidable proposition p becomes
decidable—generally through direct or indirect interac-
tion with B. In other words, Alice can conduct suitable
experiments such that in the future state of A, p be-
comes manifestly true or false, allowing Alice to apply
the scientific method by comparing her theoretical pre-
dictions, formulated in A, where p is undecidable, with
the measurement results available in A′, where p is de-
cidable—indeed, decided. The act of measurement, the
scientific experiment, can thus be entirely identified with
this state transition 2, the acquisition of the necessary
information for a certain property to become decidable.
By construction, it is not possible within A to assign a

definite truth value to p. Nevertheless, the type of onto-
epistemic ignorance under discussion is entirely compat-
ible with the realist assumption that the truth value of
p is well-defined, particularly within B. Alice’s theory
regarding p will, at best, be probabilistic.
It becomes necessary to determine what type of prob-

ability—CPT? QM? Something else?
An instinctive response might be that, given the epis-

temic nature of the ignorance involved, such a theory
should adhere to CPT. However, the onto-epistemic sce-
nario delineated here is subtly different from the more
common notion of epistemic ignorance, and this conclu-
sion requires, at the very least, further examination.

2 which, it should be noted, involves neither Alice nor her con-
sciousness but solely the definition of local determinism
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We shall denote the classical probability of a proposi-
tion p by the symbol |p|, while the probability observed
by Alice—the actual frequency she measures—will be de-
noted by [p]A, or, where no confusion arises, simply by
[p]. This probability will be referred to as Probability
Relative to A or, more concisely, Relative Probabil-
ity.
Classical probability is governed by the theorem of con-

ditional probability, from which we have:

|p ∧ q| = |p| |q|p = |q| |p|q (1)

where |q|p and |p|q are new algebraic symbols associ-
ated with the ”probability of p, given q” and the ”proba-
bility of q, given p”, respectively.
Equation 1 is particularly critical in relation to the

discussion at hand. In A, p is undecidable. However, Al-
ice can interact directly or indirectly with B, conducting
appropriate experiments such that in the future state A′

(the evolved state of A), the truth value of p becomes
manifest.

In A′, by construction, not only is p finally true or false,
but necessarily the following proposition also holds:

p̄ := ”p is decidable” (2)

That is, assuming CPT can serve as a suitable theory
for Alice, the probability measured by Alice—the actual
frequencies she observes—are, by construction:

[p] = |p|p̄ (3)

This same result can be obtained from a different per-
spective.

The frequency value of an event, as actually measured
by Alice in A, will be the number of cases in which Alice
obtained a positive result divided by the number of cases
in which she conducted the experiment. However, the
very act of conducting the experiment is nothing other
than bringing A into a state A′ in which p is manifest.
Thus, what Alice measures is necessarily:

[p] =
|p is manifestly true|

|p is manifest|
(4)

which can be expressed in terms of CPT as:

[p] =
|p ∧ p̄|
|p̄|

(5)

From which, using 1, we obtain once again:

[p] = |p|p̄ (6)

The subtle difference between |p| and [p] disappears
in the presence of local determinism but emerges in the

presence of onto-epistemic ignorance. As we have seen,
this holds even in scenarios involving classical determin-
ism.
The most evident consequence of 3 is that 1 is inappli-

cable in A. However, even within relative probability, it
is possible to define in a semi-classical manner the con-
cept of [p]q, that is, the relative probability of p, given
q.
Let T , F , U be symbols denoting conditions of man-

ifest truth, manifest falsehood, and undecidability, re-
spectively. A pair of such symbols (e.g., TT , TF ,...) will
represent the joint state of p and q, respectively. The
relative probability of p can then be defined, in terms of
these joint states, as:

[p] =
|TT |+ |TF |+ |TU |

|TT |+ |TF |+ |TU |+ |FT |+ |FF |+ |FU |
(7)

and [p]q can be defined as the relative probability of p
in states where q is manifestly true, i.e.,

[p]q =
|TT |

|TT |+ |FT |
(8)

from which we directly obtain:

[p][q]p ̸= [q][p]q (9)

That is, unlike in CPT, relative probability is subject
to a fundamental law of non-commutativity.
The negation of local determinism implies the exis-

tence of undecidable propositions in a weak, epistemic
sense—one that does not involve the completeness theo-
rems of formal logical systems. On the other hand, the
ignorance arising from these propositions is not linked
to what a sentient agent knows or does not know, but
rather to an objective, ontological condition of missing
information—an onto-epistemic ignorance.
A scientist subject to this kind of ignorance will, at

best, be able to develop probabilistic theories to make
predictions about undecidable propositions or proper-
ties. On the experimental front, they will collect con-
crete data—that is, frequency values of a given event
or measurement. The numerical relationships among
these collected values will exhibit a fundamental non-
commutativity, implying that the theoretical frame-
work this physicist must develop cannot be CPT, but
rather an algebra that is structurally non-commutative.
The following chapters will be dedicated to demon-

strating that this algebra coincides with the foundational
postulates of quantum mechanics.

IV. RELATIVE PROBABILITY AND
QUANTUM MECHANICS

In this chapter, we shall demonstrate that the relative
probability defined in A coincides with the first postu-
lates of quantum mechanics. By this expression, we refer
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to the axiomatic foundations of QM that define its alge-
braic structure—Hilbert spaces, state vectors, Hermitian
operators, and the Born rule—while excluding the more
explicitly dynamical postulate, the Schrödinger equation,
which is understood here as the quantum formulation
(within the algebra defined by the preceding postulates)
of the Hamiltonian formalism.

For simplicity, and as done previously, the demonstra-
tion will be restricted to observables with only two pos-
sible values (0–1, true–false, yes–no, etc.), namely the
subset of QM known as quantum logic.
The proof will proceed in three stages:

� In the first stage, we shall bridge CPT and QM
by reformulating CPT within a pseudo-quantum
algebra, that is, an algebraic structure composed
of vector spaces, state vectors, and linear operators.

� This algebra will then be used as a stepping stone
to provide an analogous representation, in terms of
operators, for relative probability.

� Finally, we shall demonstrate the identity between
this algebra and QM.

A. Geometric Representation of Classical
Probability Theory

Equation 1, by introducing a new algebraic symbol,
highlights a typical semantic issue in classical probabil-
ity theory. The probability of “p and q” is not an alge-
braic function of the probabilities of p and q, but rather
depends on the semantic relationship between the propo-
sitions.

Conversely, given the probabilities |p ∧ q|, |p ∧ ¬q|,
|¬p ∧ q|, and |¬p ∧ ¬q|, it is possible to reconstruct the
probabilities of p and q. In particular:

|p| = |p ∧ q|+ |p ∧ ¬q| (10)

In other words, the semantic relationships between p
and q are captured by the quadruple:

v = {|p ∧ q|, |p ∧ ¬q|, |¬p ∧ q|, |¬p ∧ ¬q|} (11)

A powerful geometric representation of these objects
can be provided by considering the vectors:

|s⟩ = (±
√

|p ∧ q|,±
√

|p ∧ ¬q|,±
√
|¬p ∧ q|,±

√
|¬p ∧ ¬q|)

These vectors are subject to a form of the excluded
middle3:

3 Since there are no conjugates in R, ⟨s| can simply be considered
equivalent to |s⟩.

⟨s|s⟩ = 1 (12)

The propositions p and q can now be associated with
diagonal projectors that extract only the components of
|s⟩ in which p (or respectively q) is true:

P =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Q =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 (13)

Applying Born’s rule:

|p| = ⟨s|P |s⟩ (14)

This geometrisation process has the advantage of elim-
inating the additional symbols such as |p|q and reducing
the probability algebra to a fundamentally Boolean form,
specifically:


¬P = I − P

P ∧Q = PQ = QP

P ∨Q = P +Q− PQ

(15)

Extending this reasoning to n propositions p, q, r, ...,
we find that:

� The semantic relationships among n propositions 4

are captured by a state vector |S⟩, i.e., a direction,
a one-dimensional subspace in R2n .

� A generic proposition p, formed from a combination
of the involved propositions, is associated with an
appropriate diagonal projector P .

� The probability |p| is given by Born’s rule |p| =
⟨s|P |s⟩

Through this quick procedure, classical probability
theory has been given a pseudo-quantum geometric
form, where Hilbert spaces are replaced by real vector
spaces, and general Hermitian projectors are replaced by
diagonal real projectors—or at least by projectors that
are all simultaneously diagonalizable via an appropriate
change of basis.

4 If the n propositions are not independent, the space may have a
lower dimension, but we shall avoid unnecessary technical com-
plications here.
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B. Geometric Representation of Relative
Probability

Let p, q be two generic propositions, associated with
the operators P and Q.

Let P̄ be the operator associated with the proposition
p̄ := p is decidable.

From equation 1, we have:

|q|p =
|p ∧ q|
|p|

(16)

In terms of operators:

|q|p =
⟨s|PQ|s⟩

|p|
(17)

which leads to:

[p] = |p|p̄ =
⟨s|P̄P |s⟩

|p̄|
(18)

The effect of the operator

ˆ̄P =
P̄

|p̄|
(19)

is nothing more than projecting |s⟩ onto the subspace

of p̄ and rescaling it to 1. That is, ˆ̄P represents a rotation
and thus an orthonormal change of basis.

The operator:

P̂ =
P̄P

|p̄|
(20)

is therefore a projector that is not necessarily diagonal.
Extending this approach to n propositions p, q, r, ...,

it is possible to construct a geometry embedding rela-
tive probability, entirely analogous to what was done for
classical probability. However, in this case, the following
differences emerge:

� The reference space is R22n instead of R2n , in order
to accommodate the 2n propositions p, p̄, q, q̄, r,
r̄, ....

� The projectors associated with the propositions are
not necessarily diagonal nor simultaneously diag-
onalizable. Thus, in general—as expected from
9—they do not commute.

Equations 19 and 20 are crucial and critical. Differ-
ent relationships between p and p̄ correspond to different
rotation angles, meaning that 19 does not define a ba-
sis transformation valid for every |s⟩. However, |p| and

|p̄| are not measurable within A—by construction, A can
only measure:

[p] =
|p ∧ p̄|
|p̄|

Thus, in A, it is observed that, de facto, the numerical
relationships among the measured frequencies are medi-
ated, in the geometric representation, by operators ro-
tated by a certain angle α. Moreover, even the value
of this angle is inaccessible within A 5. This angle has
a factual role for Alice only when composing multiple
propositions. The only values concretely measurable in
A are the differences between the angles αi associated
with different propositions.

This geometry in R22n is clearly hybrid and impure. It
represents probability from the perspective of an observer
who has more information than Alice—specifically, a sys-
tem that includes both A and B. From the perspective
of this observer, p is decidable, and they can apply CPT
geometry to determine what is observed within A—i.e.,
the relative probability measured in A.
However, within A, this geometry is not directly us-

able. Alice will only observe specific subspaces of R22n ,
and the operators associated with undecidable proposi-
tions will behave as if they were ordinary CPT operators,
mutually rotated with respect to one another.

C. Relative Probability and Quantum Mechanics

The state of a single proposition p is represented as a
direction in a four-dimensional space, R4. This direction
encodes two pieces of information:

1. The classical probability of p.

2. The classical probability of p is decidable.

Let α be the angle associated with 2. Once α is fixed,
the state vector |p⟩ exists only in the two-dimensional
subspace R2, which is a rotation of the subspace of p by
an angle α.
From the perspective of A, this space must then col-

lapse into a complex two-dimensional space, C2, such
that, for a single proposition:

|s⟩ = (aeiϑ, beiσ) (21)

with the conditions:

{
a2 + b2 = 1

ϑ− σ = ±α
(22)

5 indeed, a change of basis has no practical effect on the geometric
representation
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Within this space, the proposition p will be associated
with a generic projector, that is, a Hermitian operator
with eigenvalues in (0, 1). Denoting by Hp the space
associated with p, a generic combination of propositions
p, q, r, ... will be embedded in a Hilbert space of the
form:

H = Hp ⊗Hq ⊗Hr . . . (23)

It is thus possible to formulate a geometric represen-
tation of relative probability such that:

� The semantic relationships between n proposi-
tions—including undecidable ones—are captured
by a state vector |S⟩, i.e., a direction, a one-
dimensional subspace in C2n .

� A generic proposition p, formed from a combination
of the involved propositions, is associated with an
appropriate projector P .

� The probability [p] is given by Born’s rule [p] =
⟨s|P |s⟩

Or, more directly:

� The fundamental principles of quantum mechan-
ics define the algebra of semantic relationships be-
tween propositions, including undecidable ones.

In the geometry constructed by Alice within A, in or-
der to correctly capture the numerical relationships ac-
tually observed, there is a clear loss of information
relative to CPT. This loss corresponds precisely to the
onto-epistemic ignorance that necessitated the construc-
tion of this framework.

In this geometry, there is no preferred basis in which all
operators are diagonal, and the complex values it must
handle possess a norm with a clear physical interpreta-
tion: they represent actually measured frequencies. How-
ever, their phase lacks any direct physical significance
and can be considered entirely arbitrary. This phase
becomes measurable in A only in the relationships be-
tween multiple propositions or measurements—that is,
ultimately, in relation to the theorem of conditional prob-
ability.

V. CONCLUSIONS

The subtle distinction between true and provable in-
troduces a concrete difficulty in probability theory. This
theory assigns a weight to the possibility or expectation
that a given proposition is true, but the moment one car-
ries out an actual verification, it simultaneously becomes
provable. The proof of the formula r also proves ”r is
provable.”

This means that, when proceeding constructively and
concretely with verifications, one obtains the actual fre-
quencies of the conditioned proposition p, given p is de-
cidable.

Quantum mechanics is not a fundamental property of
the world; it is a mathematical tool, entirely analogous
to classical probability theory. More precisely, quantum
mechanics is classical probability [see 3] from the per-
spective of a concrete observer.
Quantum mechanics does not presuppose any ontol-

ogy, and conversely, constructing extravagant ontolo-
gies to account for the peculiarities of the theory—such
as many-worlds[33, 34], many-minds[35], spontaneous
collapse[36, 37], quantum non-locality, or quantum logic
(understood as an alternative logical framework)—is en-
tirely superfluous.
Quantum mechanics is a logical tool that does not vi-

olate any principle of classical logic.
One may wonder how Heisenberg was able to develop

this framework without, as far as we know, being guided
by the notion of undecidability. Yet, perhaps this is not
so surprising. Heisenberg explicitly abandoned the ontol-
ogy of electron orbits, physical positions, and metaphys-
ical truth, focusing solely on the algebra of real measure-
ments. Heisenberg, perhaps for the first time in history,
conducted physics from Alice’s perspective rather than
from that of Laplace’s demon.
Heisenberg and Bohr repeatedly emphasised that

quantum mechanics concerns what is actually measur-
able, not what is metaphysically real [38–40]; however,
the principle of complementarity remains, to me, so ob-
scure and impenetrable that I cannot say to what extent
Bohr was referring to something analogous to what has
been described here.
Paradoxically, QM does not introduce a measure-

ment problem—it resolves one. In a reversal of per-
spectives, it is actually classical physics that faces a mea-
surement problem, as it describes an abstract, ontologi-
cal world observed by a deus ex machina, without ade-
quately addressing the fundamental necessity of defining
what a real observer within that world can measure and
what numerical relationships hold among those measure-
ments. However, the scientific method demands that this
part of the problem be addressed with the same depth
and rigour—if not more—than the rest.
The violation of Bell’s inequalities does not allow for

any ontological conclusions, as QM carries no ontolog-
ical content. The only rational deduction that can be
drawn from the empirical confirmation of such violations
is that the real world is not universally subject to local
determinism—a constraint on possible representations of
reality that is so weak that it does not even exclude clas-
sical determinism.
Finally, probability theory straddles the boundary be-

tween formal mathematical logic and the practical real-
ity of measurement. Long before QM, it already posed
foundational problems. In particular, the classical ax-
iomatization of probability holds only in the absence of
onto-epistemic ignorance. In the presence of undecid-
able measurements, in the specific sense described here,
CPT fails, and the actual numerical relationships among
frequencies observed by a real observer—a strict frequen-
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tist—violate the theorems of CPT and instead adhere to
the theorems of QM.

This work excludes ontological interpretations of quan-
tum mechanics. Conversely, it engages in a construc-
tive dialogue with non-ontological interpretations, partic-
ularly the relational interpretation[41] and the so-called
QBism[42].

More specifically, the approach adopted here leads to
a direct and measured reading of the relational interpre-
tation—one that, once again, avoids ontological issues
such as whether the relationship possesses an ontological
status that precedes or follows the ontology of related
entities. Instead, the logical lever used here is the rather
elementary fact that the scientific method itself requires
physics to be a relational theory, given that the outputs
constituting its ultimate verification can only arise from
an observer–observed relationship.

Moreover, like the relational interpretation, the
undecidability-based perspective has the advantage of
being symmetric, respecting the first principle of
relativity[43]: in general, B will be a quantum object
relative to A just as much as A will be relative to

B—or, more poetically, the cat is as much both alive
and dead from the observer’s perspective as the observer
is from the cat’s, and as both are from Wigner’s friend’s
perspective[44].

The Bayesian interpretation is also clearly connected to
this work—not only because of the central role played by
the theorem of conditional probability, which underpins
Bayes’ theorem, but more generally due to the epistemic
nature of both approaches.

Once again, the undecidability-based perspective pro-
vides a more direct reading of QBism, allowing it to en-
tirely avoid the need to define complex and highly de-
batable notions such as agent, intentionality, and expec-
tation.
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