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Abstract 
Researchers in archaeology explore the use of generative AI (GenAI) systems for 
reconstructing destroyed artifacts. This paper poses a novel question: can such 
GenAI systems generate evidence that provides new knowledge about the world 
or can they only produce hypotheses that we might seek evidence for? Exploring 
responses to this question, the paper argues that 1) GenAI outputs can at least be 
understood as higher-order evidence (Parker 2022) and 2) may also produce de 
novo synthetic evidence. 
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1. Introduction 

Artificial intelligence (AI) systems, including generative AI (GenAI), play ever larger roles 
across the sciences: they are used to make novel discoveries, e.g., of proteins, drugs, or 
materials (Jumper et al. 2021; Sourati and Evans 2023); to identify new concepts and 
equations in physics (Iten et al. 2020; Udrescu et al. 2020; Wu and Tegmark 2019); and to 
suggest new hypotheses, ideas, research questions, or experiments (Krenn et al. 2023; 
Melnikov et al. 2018). These increasingly extensive roles played by AI put foundational 
concepts we use to understand and structure scientific pursuits under pressure (Löhr 2023; 
Hopster and Löhr 2023). For instance, what does it mean to be a scientific ‘discoverer’ (Clark 
and Khosrowi 2022)? Are AI systems like AlphaFold only ‘tools’ that humans use, or can they 
exhibit attributes such as ‘autonomy’ or scientific ‘understanding’ (Barman et al. 2024) which 
we consider essential to the role of ‘discoverer’ or ‘researcher’?  
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While use cases of AI in physics, chemistry, and biology attract increasing attention by 
philosophers, there are also underexplored emerging uses of AI in the historical sciences (i.e. 
history, archaeology, art history, cultural heritage studies, historical anthropology), where 
researchers explore the use of GenAI for reconstructing partially destroyed manuscripts and 
artifacts (Navarro et al. 2022; 2023; Lamb et al. 2022; Moral-Andrés et al. 2023). Turning 
attention to these uses, this paper draws out a novel conceptual disruption regarding how we 
should understand the outputs of GenAI systems: can GenAI systems generate evidence that 
provides genuinely new knowledge in the way that, say, finding new material evidence can? 
Or can they only produce hypotheses, which may give us reasons for pursuit, but ultimately 
are the kind of thing that we require evidence for? Call this the evidence question. Like other 
conceptual disruptions caused by AI, the evidence question does not have a straightforward 
answer and highlights substantial uncertainty around how we should apply the concept of 
‘evidence’ (see also Rowbottom et al. 2023). The issues this raises are not merely 
terminological ones but have epistemic and methodological import for practicing researchers. 
Classifying an output as ‘evidence’ rather than a ‘hypothesis’ confers information about it; in 
turn, existing norms attached to these classifications may trigger different expectations, 
attitudes, and actions as appropriate in relation to an output. 

Beyond putting the evidence question on the map, this paper also explores potential responses 
to it. We first consider related debates in the philosophy of computer simulation, where 
scholars such as Wendy Parker (2022) have elucidated whether simulation systems, such as 
those used in climate science, can provide (new) evidence for claims about the earth’s climate. 
Drawing on this debate, we argue that GenAI systems can at least provide higher-order 
evidence in Parker’s sense, i.e. evidence that other evidence for a claim about the world exists. 
We also explore a more ambitious argument, according to which GenAI systems can produce 
de novo synthetic evidence, which could be epistemically on par with traditional forms of 
evidence, such as material evidence or expert judgment. The argument suggests they do so by 
performing pattern recognition-type inferences to yield outputs that provide genuinely new 
knowledge to agents who lack the ability to make those same inferences. Importantly, while 
this argument hints at interesting possibilities for understanding GenAI outputs as de novo 
synthetic evidence, it remains agnostic on what historical scientists should or would do with 
such evidence. In particular, we do not suggest that synthetic evidence is ever an end point or 
silver bullet for historical and archaeological inquiry (Nygren and Drimmer 2023). If used, it 
would require description, analysis, contextualisation, and interpretation by historical 
scientists, as with any other form of evidence.  
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The discussion is organized as follows. Section 2 outlines the emerging use of GenAI in the 
historical sciences. Section 3 sharpens the evidence question. Section 4 explores debates in the 
philosophy of computer simulation and sketches the sequential arguments that GenAI can at 
least produce higher-order evidence, as well as, possibly, synthetic evidence. Section 5 
concretizes why we may take GenAI outputs seriously. Section 6 concludes.  

 

2. Generative AI in the Historical Sciences 

A central challenge for researchers in the historical sciences is that the ‘record’ of historical 
evidence, e.g. manuscripts or artifacts such as pottery, is an imperfect and partial reflection of 
past events, and is eroded – both figuratively and literally. Not everything survives, and what 
does is often incomplete or broken. Standard activities in getting a handle on the past (e.g. 
analyzing the stratigraphic relationships between features at archaeological sites, entertaining 
larger inferences about chronology, or inferring trade patterns) hence revolve around  
reconstructing what was from what remains. Reconstructing partially destroyed artifacts, e.g. 
to better determine relevant morphological or textural features, is currently often performed by 
hand, which is resource intensive, can further deteriorate remaining fragments, and cannot 
deal with fragments that are missing (Navarro et al. 2023). Dealing with these and similar 
challenges, there is a rich tradition in the historical sciences, especially in archaeology, to 
recruit technologies from other fields (Wylie 2000), e.g. for sensing and scanning, or, in 
computational archaeology, using machine-learning methods. For instance, Navarro et al. 
(2023) develop a GenAI system based on generative adversarial networks (GANs; Goodfellow 
et al. 2014) called IberianVoxel, which reconstructs broken Iberian pottery artifacts as 3D-
models. GANs consist of a coupled generator and discriminator architecture; in Navarro et 
al.’s case, the generator produces 3D-voxel geometries of pottery and the discriminator 
‘judges’ whether the geometries produced by the generator look like they were drawn from the 
data distribution of scanned real artifacts on which it is trained. After a period of adversarial 
training, the GAN is evaluated, including by surveying domain experts to assess 
reconstruction quality. The authors report that “archaeologists judge that IberianVoxel 
generated a correct Iberian style from an initial fragment, and also consider that the 
reconstructed pottery is between Good and Very Good” (2023, 5839), and conclude their 
system is “very helpful for exploring and designing automatic procedures to aid experts with 
the pottery completion task” (ibid., 5833). 

Systems such as IberianVoxel are first steps on a trajectory towards more advanced systems 
permitting finer-grained inferences, especially as GenAI technologies become cheaper to train. 
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Extrapolating along this trajectory, let us imagine a stylized toy case inspired by IberianVoxel 
to draw out the central question of this paper more clearly. Consider AlphaPot, an imagined 
GenAI system that has been trained on a very large dataset consisting of images and 
corresponding high-quality 3D-scans of a wide range of pottery artifacts in various states of 
decay. AlphaPot is trained to reconstruct masked/corrupted features of an input: i.e. parts of a 
3D-model of a scanned real artifact are intentionally corrupted (e.g. by generating synthetic 
data based on real artifacts that simulate fragmentation, see Lamb et al. 2022, or by physically 
breaking artifacts and then re-scanning them) and the system is forced to predict how the 
uncorrupted artifact would have looked like. Assume we are impressed with AlphaPot’s 
performance on unseen test data: it accurately reconstructs broken artifacts for which the 
ground truth geometry is known. Imagine now that we use AlphaPot to provide a 
reconstruction R of a novel, partially destroyed artifact A, for which the ground truth is 
unknown. A is missing pieces that haven’t been recovered, but are believed to be essential to 
classifying A’s likely origin or function. R, let us assume, is a plausible looking 3D-model 
exhibiting fine-grained morphological features that would significantly aid a domain expert 
(or, for that matter, another AI system) in telling when and where A originated. 

 

3. What’s Going on Here, Epistemically? 

The key disruption motivating this paper is now clearly in view: what’s going on here, 
epistemically? Has AlphaPot generated a hypothesis or made a prediction? Or has it generated 
evidence, providing experts with genuinely new knowledge about how A looked like when it 
was still intact? Understood as a mere hypothesis, R is the kind of thing that might give us 
reasons for pursuit, seeking further evidence to support that R is indeed what A looked like 
when it was still intact. By contrast, understood as evidence, R might already, by itself, 
support a range of hypotheses regarding A, as well as figure in further downstream inferences 
that A bears on, e.g. about trade taking place between communities.1 

In making progress on the evidence question, we need to find a benchmark first. A standard 
Bayesian conception of evidence requires only that a token of evidence E has the capacity to 

 
1 To be clear, we do not draw a principled distinction between ‘hypothesis’ and ‘evidence.’ In line with Bayesian 
accounts (e.g. Bovens and Hartmann 2003), the difference is contextual. Another way of putting the evidence 
question is whether R constitutes, or gives rise to, a mere hypothesis H that enjoys no support thus far, and hence 
has an uninformative or low prior, or whether R constitutes, or gives rise to, a pre-justified hypothesis H' about A 
that 1) has a high prior and 2) may stand in relevant evidential relationships with yet other hypotheses H'', e.g. 
about A’s likely origin, or whether trade took place between where A was found and other communities. 
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increase the posterior probability we assign to a hypothesis H (say, a claim about how A 
looked like) relative to some background theory T (Bovens and Hartmann 2003). It is easy to 
imagine that R has some such capacity, but that is not a very interesting insight (see also 
Rowbottom et al. 2023 who explore additional complications). Other, functional conceptions 
of evidence focus on what role evidence plays. Here, we are sympathetic to accounts that 
consider evidence as always being 1) of something, 2) for something, and 3) to someone, 
relative to a theory of evidence (Hacking 2006; Martini 2021; see also Kosso 2009; Jordanova 
2012). For instance, a freshly excavated artifact A is evidence of something, e.g. the fact that 
pottery of A’s kind was made, used, or traded at site S; evidence for something, e.g. an 
inferred claim that pottery of A’s kind was produced in P but ended up at S through a trade 
route; and evidence to someone who has a theory of evidence T and relevant background 
knowledge K to tell what A can be evidence of and for. Beyond following such structured 
conceptions, the subsequent discussion will remain largely uncommitted to specific 
philosophical accounts of evidence. Instead, we find it more productive to consider evidential 
practices in the historical sciences and think about what existing benchmark types of evidence 
we could compare GenAI outputs to. What could such benchmarks be? The historical sciences 
rely on primary sources, e.g. artifacts and documents that are close (causally, spatially, 
temporally, by provenance) to the phenomena of interest. Relevant benchmarks to address the 
evidence question could hence be, for instance, a highly similar, intact artifact B found in the 
same stratum at the same site, or pertinent text, illustrations, or tools bearing on the likely 
morphological features of A. Likewise, expert judgment that joins up available background 
theory and primary material evidence in a larger inference is another candidate. The evidence 
question is sharper now: could AlphaPot’s outputs be considered evidence comparable to these 
benchmarks, e.g. other, material evidence like B that could licence an analogical inference that 
‘A would have probably looked like B when it was intact’ or expert judgment that joins 
various resources together to yield, say, a rendition or description of what A would look like, 
were it still intact? 

 

4. Yes, but What Kind of Evidence Is It? 

The answer that we want to explore here is: yes, GenAI systems like AlphaPot have the 
capacity to generate synthetic evidence that provides genuinely new knowledge about the 
world. What could an argument for such a thesis look like? A first pass could build on familiar 
successes of using AI systems for inferential tasks in science, like AlphaFold 2.0 (Jumper et 
al. 2021). Specifically, at training, these systems 1) latch onto information, especially high-
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dimensional and distributed correlational information or patterns, in training data, and 2) learn 
a model, i.e. an abstract representational space encoding relevant features and a corresponding 
function 𝑓(∙) within that space, which maps inputs to outputs in a way that minimizes 
empirical risk (at least locally). At inference, such models, given an input (e.g. a scan of a 
partially destroyed artifact), 3) generate outputs that yield accurate reconstructions of the 
input, as governed by 𝑓(∙). This kind of story could touch on guarantees in machine learning 
(e.g. Cybenko 1989) and statistical learning theory (e.g. Vapnik 2000; Bargagli Stoffi et al. 
2022) to explain notable successes of machine learning systems, e.g. in latching onto complex, 
subtle, and distributed patterns that escape human attention, such as in skin cancer 
classification or protein structure prediction (Jumper et al. 2021), or in successfully learning 
novel high-dimensional representations (e.g. word or image embeddings) that can be used for 
text and image synthesis, as demonstrated by GenAI systems like ChatGPT or StableDiffusion 
(Rombach et al. 2022). 

This story, while somewhat compelling, is still too simple. Here, we focus on concerns arising 
from related debates in the philosophy of scientific models and computer simulation. In this 
space, philosophers have tried to understand whether models and simulations can provide 
genuinely new knowledge about the world and, if so, how (e.g. Parker 2022; Beisbart 2012). 
In a nutshell, sceptics about the epistemological significance of models and simulations point 
out that these tools only help us recognize the consequences of knowledge that we already 
possess, e.g. assumptions (e.g. equations) and initial conditions (e.g. measurements, 
parameterizations). These consequences can at most be evidence in the sense that they provide 
new information to agents who are not able to, or simply did not, derive those same 
consequences given the same assumptions and initial conditions. But they would not be 
evidence to a more ideal agent who would already recognize these consequences under some 
form of inferential closure. So, while observation and experimentation allow us to gather new 
experience (Beisbart 2012, 245), models and simulations don’t bring anything new to the 
table; though they do help limited epistemic agents better see what’s already on the table.  

What does this mean for the evidence question? Parker summarizes the consequences of the 
sceptical view on computer simulation as follows: “If computer simulation is at bottom an 
attempt to calculate the implications of a set of modelling assumptions, then simulation 
results … seem to be predictions rather than evidence; they are the kind of thing we might 
seek evidence for”. (Parker 2022, 1522; emphasis added). On such a view, the outputs of 
GenAI systems like AlphaPot are predictions, or, more generally, hypotheses. They might 
alert us to possibilities for how an artifact may have looked like, and may give us reasons for 
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pursuing these hypotheses by means of bringing evidence to bear on them; but they are not to 
be taken as evidence that could already, by itself, support knowledge claims about artefacts or 
figure importantly alongside other evidence in larger, downstream inferences, such as about 
trade taking place between different communities. 

Filling the space between more extreme views that either consider simulation results evidence, 
or deny that they can ever be, Parker offers a finer-grained view to characterize what 
simulations provide to agents. Specifically, Parker argues that simulation outputs can be 
higher-order evidence: they can be evidence E that other evidence E’ for a hypothesis H 
exists. Specifically, such higher-order evidence can help agents obtain genuinely new 
knowledge of the world if they 1) either don’t have access to E’, or else, 2) lack the 
background knowledge needed to understand how E’ bears on H. So, while simulations “do 
not provide information about the world that goes beyond that which is already implicit in 
their assumptions, particular epistemic agents—including even scientists and engineers using 
simulation models—might still gain genuinely new knowledge of the world via simulation.” 
(Parker 2022, 1522) 

Parker’s view offers a useful backstop for thinking about GenAI outputs. At the very least, 
they seem able to figure as higher-order evidence. A 3D reconstruction of a broken artifact A 
from a suitably validated system like AlphaPot provides new knowledge about specific 
artifacts to agents who either don’t have access to the training data2 E’ that bear on the 
reconstructive query about A, or else lack the background knowledge to understand how E’ 
bears on questions about A. This is a useful insight already, but it also seems interesting to 
explore whether GenAI systems could ever provide more than ‘just’ higher-order evidence. 

 

4.1 More Than Higher-Order? 

What might GenAI systems be doing that goes beyond what simulation systems do? A central 
difference seems to be that GenAI systems can exhibit higher degrees of independence, which 
allows them to perform computations that instantiate inferences of a kind that simulation 
systems don’t instantiate. Specifically, simulation systems in the climate sciences are built 
based on highly developed antecedent understanding of the physics equations describing 
aspects of the earth’s climate system (background knowledge), parameterized according to our 
best understanding of key parameters and known/understood aspects of the phenomena 

 
2 In particular, they might lack access to the information contained in that data, e.g. regularities about the 
‘grammar’ of Iberian pottery. 
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involved, and calibrated using data regarding the earth’s climate system. Together, these 
inputs substantially constrain the behaviors of simulating systems. 

GenAI systems exhibit comparatively higher independence because they are not as tightly 
constrained. There are no accepted equations that describe, say, the ‘grammar’ of Iberian 
pottery. Nor, for lack of such equations, are there measurements that GenAI systems are 
parameterized with. In short, there is no developed body of background knowledge that is 
explicitly encoded when building GenAI systems (at least in unsupervised/self-supervised 
regimes), nor would our existing background knowledge permit building systems in a way that 
mirrors the strategies behind building simulation systems. Rather, the very purpose of machine 
learning approaches is often to extract pertinent background knowledge from data, e.g. to find 
a function	𝑓(∙)	that usefully captures features of a joint distribution and can be used to perform 
successful inferences. For this enterprise to be successful, GenAI systems must exhibit 
considerable degrees of freedom to ‘settle’ on representational spaces, representations, and 
input-output relationships that are 1) predictively useful, 2) possibly inaccessible to humans by 
other means (e.g. visual inspection), and 3) potentially novel to humans. GenAI systems hence 
harbor the capacity for a special kind of novelty in their outputs. Unlike simulation systems, 
they can generate synthetic evidence, i.e. evidence E that is not only psychologically novel to 
agents who lack other evidence E’ or background knowledge K, but is novel to agents who do 
not possess the same inferential abilities to extract pertinent knowledge K (e.g. of 𝑓(∙)) from 
the same training data. Such abilities are different from computational abilities to derive 
implications of equations and initial conditions. They are more akin to the ability to 
‘recognize’ that such-and-such is a good way to represent or compress data, or that such-and-
such is a successful (i.e. error-minimizing) way to ‘fill in the blanks’ of a reconstructive query. 

On the narrative presented here, GenAI systems bring inferential abilities to the table that 
simulation systems don’t. But why should this lead us to conclude that they can generate 
evidence that provides genuinely new knowledge to agents? Couldn’t, or shouldn’t, we still 
maintain that the relevant information with bearing on reconstructive queries ‘resides in’ the 
training data that GenAI systems are trained on?3 This would bring us back to understanding 
GenAI systems as, at most, providing higher-order evidence in Parker’s sense and conclude 
that no evidence that is novel over and above whatever is contained in these data is generated. 

A good way to explore how GenAI systems can provide novelty beyond higher-order evidence 
is to think about patterns. A standard success narrative of machine-learning based inference 

 
3 This concern also flags a version of the problem of old evidence; see e.g. Sprenger (2015) for a discussion. 
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alluded to above is centrally tied to systems’ abilities to identify patterns, including subtle and 
distributed ones, and to exploit them for inference. But what is a pattern, anyway? This is yet 
another issue that ML systems press us to confront with greater care. Here, it is useful to 
distinguish two general types of views on patterns: ontic and epistemic views. On the first, a 
pattern is constituted by a collection of material facts about the world that may be distributed 
across entities. A pattern, on this view, is always ‘there’, even without a mind to recognize and 
exploit it for inference (see Ladyman and Ross 2007 on ‘real patterns’). On an epistemic view 
(cf. Dennett 1991; McAllister 2010; Haugeland 1998; Kästner and Haueis 2021), patterns 
come into existence through an epistemic agent that recovers it, including, say, by devising an 
ontology of entities and features ranging over a domain (e.g. pots, fractures, materials, 
textures); making efforts to describe and represent these entities and features within that 
domain in an abstract way (e.g. material or shape types); and exploring how these 
representations hang together, e.g. causally or probabilistically, at that abstract 
representational level. On such a view, a pattern is instantiated by, refers to, and supervenes 
on, concrete material things, but ultimately resides at an abstract representational level (cf. 
Ladyman and Ross 2007 on ‘second-order patterns’). If we find such an epistemic view 
compelling, then this allows that GenAI systems, like other epistemic agents, can perform 
inferential activities that bring patterns into existence.4 This ability sets GenAI systems apart 
from simulating systems: they may produce outputs, based on the ability to infer patterns from 
data, that are novel to agents who do not possess such abilities.5 

 

5. Strictures on Synthetic Evidence 

We now have a sketch of an argument for the claim that GenAI systems like AlphaPot may 
produce synthetic evidence, i.e. evidence E that provides genuinely new knowledge about the 
world to agents who do not possess the same inferential abilities to recover E from primary 
evidence E’ as the system that produced E. But when can we expect GenAI systems to 
produce good synthetic evidence? As researchers are exploring use-cases of LLMs in history, 
for instance to ‘ventriloquize’ the voices of the past through LLMs trained and/or fine-tuned 
on historical text corpora to enable researchers to ‘query’ past societies or individuals (Hutson 
et al. 2024), there is a real risk of low-cost bogus AI-driven science. While there are a variety 

 
4 This view is still compatible with realist views like Ladyman and Ross’ (2007); Epistemic agents, or GenAI 
systems on our account, bring into existence real second-order patterns that represent real first-order patterns. 
5 Of course, we must mind anthropomorphic pitfalls. Terms like ‘recognizing’, ‘using’, and so on, must not be 
taken to suggest that GenAI systems literally have mental states or cognitive abilities associated with these terms.   



Author version – accepted for PSA 2024 contributed paper proceedings 

10 
 

of salient concerns about the reliability of GenAI systems, such as regarding ‘hallucinations’, 
brittleness, lack of generalization abilities, and epistemic opacity, here, we outline some 
potential virtues that GenAI systems may exhibit, if designed and deployed responsibly. These 
virtues help better understand the conditions under which we may reasonably hope these 
systems to make valuable epistemic contributions. 

1) Scope: GenAI systems are good at processing and ‘drawing on’ large amounts of rich 
data, which is relevant when patterns are distributed across large numbers of entities 
and different data modalities. 

2) Sensitivity: ML systems are known to usefully latch onto subtle, distributed patterns, 
especially in quantitative data, that are often not accessible to human perception.  

3) Probabilism: ML-based inference is probabilistic. Outputs are sampled from a whole 
modeled joint distribution. This often means that other possibilities for an output are 
not discarded by a system, but remain, or could be made, available to investigators.  

4) Mechanicity: outputs are often (near-) repeatable from the same inputs, so GenAI 
systems can be subjected to systematic intervention, allowing investigators to 
understand how outputs depend on inputs. For instance, they may upsample rare input 
types (e.g., by using synthetic training data to induce more variation regarding specific 
artifact types) and gauge whether outputs change for specific query types. 

5) Theory-freedom/-agnosticism: especially in unsupervised or self-supervised learning 
regimes, GenAI systems organize data somewhat independently of existing theory, 
working against unhelpful forms of theory-laden observation. 

6) Complexity: universal function approximation theorems (e.g. Cybenko 1989) and 
statistical learning theory (Vapnik 2000; Bargagli Stoffi et al. 2022) provide 
(probabilistic) guarantees for specific system-types to successfully approximate 
arbitrarily complex input-output relationships under suitable conditions. This is 
important as there are no good reasons to believe that, say, the ‘grammar’ of Iberian 
pottery (i.e. the ‘rules’ that govern the joint distribution of morphological features of 
Iberian pottery artifacts) is easily captured by simple, human-expressible functions. 

7) Granularity: GenAI systems perform inference at multiple levels, including at fine-
grained pixel- or voxel-levels that may not be salient to human investigators. Such 
systems are hence not as susceptible as humans to latch exclusively onto patterns or 
analogies obtaining at higher, more salient levels of analysis, e.g. inferring that artifact 
A probably had inscription S because, B, C, D, who look morphologically similar, do. 
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Of course, specific GenAI systems are not guaranteed to exhibit any of these virtues to 
significant degrees; only well-engineered systems may. Moreover, many of the candidate 
virtues outlined here can turn into vices if the properties they track are expressed too strongly:  
think of theory-freedom or scope that could lead a system to consider irrelevant or misleading 
information when there are good theoretical reasons not to. Spelling out a contextualist virtue 
epistemology for GenAI systems in science is arguably a larger project that will require more 
space, which is why the virtues sketched here should only provide some early inspiration 
rather than a sketch of a full-fledged account of what GenAI systems may bring to the table. 
That said, it seems promising to explore such an account in articulating answers to the 
evidence question. 

 

6. Conclusions 

This paper puts an important new question about the role of generative AI (GenAI) systems in 
the sciences on the map. The evidence question asks: can GenAI systems generate evidence 
that provides agents, including experts, with genuinely new knowledge about the world? 
Focusing on the historical sciences, where researchers explore the use of GenAI systems to 
reconstruct partially destroyed manuscripts and artifacts to learn about the past, we argued that 
it is currently unclear whether we should understand the outputs produced by these systems as 
mere hypotheses or as evidence, where the former may give researchers reasons for pursuit 
and for seeking out further evidence, and the latter may already licence knowledge claims 
about the world and figure directly in supporting further inferences. Given this conceptual and 
practical uncertainty, we sketched how we may understand GenAI outputs not only as higher-
order evidence in the sense of Parker (2022) but also potentially as synthetic evidence, i.e. 
evidence that can provide agents, including experts, with genuinely new knowledge about the 
world. They do so by acquiring and deploying pattern recognition-type inferential abilities to 
produce outputs that are evidence to agents who lack those same inferential abilities, which 
may include even our best domain experts. The scope of this argument sketch is narrow: it 
applies, for now, only to the emerging uses of GenAI in the historical sciences discussed here. 
But zooming out, the evidence question may also extend to a range of other domains that 
explore the utility of GenAI for advanced inferential tasks (e.g. drug and materials discovery). 
For philosophers of science this is good news, inviting us to help characterize and resolve the 
methodological disruptions affecting emerging scientific practices, and to contribute to 
development of sound methodologies involving GenAI. 
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