
Choice of effect measure, extrapolation, and

decision-making in patient care and in public health

Abstract

Decision-theoretic arguments show that only absolute effect measures, and not relative

ones, suffice for utility-maximizing clinical or public health decisions (Jäntgen, 2023; Sprenger

and Stegenga, 2017). This paper argues that despite the validity and importance of these

results, no general conclusions about the policy-relevance of different measures follow from

such arguments. This is because in a typical decision situation, the decision-relevant risks

or summary effects are not directly available for the target patient or population, but must

be inferred via extrapolation. Since absolute effects always depend on baseline risk, reliably

extrapolating them requires controlling for all causes of the outcome that vary between the

source and the target, not just for effect modifiers that mechanistically interact with the exposure.

Relative effects depend on baseline risk in some circumstances but not in others, depending

on the nature of the exposure (e.g. Huitfeldt et al., 2018; Sheps, 1958). An appropriately

chosen relative measure may thus be extrapolatable with far less auxiliary evidence or fewer

assumptions, and given the target baseline risk, provides the risk information needed for rational

decisions (Jäntgen, 2023). Hence, estimating baseline risk in the target directly and extrapolating

a relative effect may in many cases be the most reliable and efficient way to obtain decision-

relevant evidence. Absolute measures are thus not generally superior in real-life decision

contexts where extrapolation error must be dealt with. Instead, appropriate choice of effect

measure to be used in inferring the decision-relevant risks depends on the properties of the

exposure of interest. Lastly, the paper outlines some implications for philosophical treatments

of the problem of extrapolation itself.



1 Introduction

In epidemiology, an effect of a dichotomous exposure on a dichotomous outcome is a comparison

of risks between the exposed and the unexposed. Causally interpreted, this comparison is assumed

to equal a comparison in counterfactual risks if, hypothetically, both exposure states were to occur

at once for each subject (Hernán and Robins, 2020). These comparisons are summarized by effect

measures like risk difference or risk ratio. Risk difference describes the additive influence of an

exposure on an outcome, and is often called an absolute effect measure. Trials occasionally report

the inverse of a risk difference, which can also be classified as an absolute measure, as inverting it

again returns the risk difference. Measures like risk ratio, which describe a multiplier of risk, are

called relative, or ratio measures.

Arguably, it is the absolute, risk difference scale that most adequately quantifies the importance

of an effect for clinical application and public health (e.g. Rothman, 2012, chapter 4). This being

the case, one might think that the default choice of effect measure in epidemiological studies should

be an absolute measure. Something like this has been argued e.g. by (Broadbent, 2013, chapter 9;

Fuller, 2021; Stegenga, 2015; Sprenger and Stegenga, 2017). For example, Sprenger and Stegenga

write

Unfortunately, relative measures are widely employed in clinical research, and absolute

measures are underused. [...] Medical science, whether in clinical trials or in epidemiol-

ogy, should always use and report absolute outcome measures (Sprenger and Stegenga,

2017, p.851).

I reconsider the case for the superiority of absolute measures, when decision-making is con-

cerned. I take as a starting point a decision-theoretic model presented in Sprenger and Stegenga

(2017), which demonstrates the superiority of absolute measures in a particular decision situation.

The model describes a setting where one must choose to treat a patient either with treatment A,

or treatment B, given an effect measure gleaned from a trial testing A against B, and assuming

risk neutral preferences and no estimation error or uncertainty about the applicability of the ef-

fect to the target patient1. The model entails that absolute measures, and no others, suffice for
1These assumptions are not made explicit in (Sprenger and Stegenga, 2017), but the conclusion that absolute
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utility-maximizing decisions. Note that the risks under different exposure assignments therefore

obviously suffice too. Jäntgen (2023) generalizes this model to situations where no trial result

of testing A against B is available, but results from separate trials testing A and B against other

control treatments are available. Jäntgen shows that risk differences or risk ratios together with

baseline risks are needed to calculate the decision-relevant risks. Taking to account all these results,

the conclusion is that absolute measures are superior to relative ones in a decision context, since

relative measures offer no advantages over absolute ones even in the situations considered by

Jäntgen. These arguments generalize from the clinical context to public health, where A and B are

population-level policies associated with particular exposure levels, e.g. A could be an intervention

that prevents exposure while B corresponds to doing nothing, and the studies supplying the evidence

are nonclinical studies. This is also Sprenger and Stegenga’s intention (Sprenger and Stegenga,

2017, p. 851).

I consider what happens when the assumption about applicability of an effect measure to the

target patient or population is relaxed. Arguably, this is the typical situation: decision-makers do

not have evidence of risk under exposure, or of a summary effect, obtained in the target directly,

but must infer those quantities based on evidence that is partly or wholly obtained in a different

population, hence relying on extrapolation. Specifically, I examine situations where an effect

is extrapolated to a target from a source population with different level of baseline risk. A risk

difference is by definition dependent on baseline risk, and will vary with it. Empirical evidence

suggests that this variability can be quite large (e.g. Deeks, 2002; Senn, 2011). Hence, extrapolating

a risk difference across unequal baseline risks is prone to error, and correcting the error requires

adjusting the effect for all causes of differences in baseline risk, i.e. all causes of the outcome that

vary between the source and the target besides the exposure. This is rarely possible, and one must

instead rely on unsubstantiated assumptions about the distributions of such other causes.

I then point out a fact noted by Mindel Sheps (1958; 1959) and formalized by contemporary

epidemiologists (e.g. Huitfeldt et al., 2018, 2021): different effect measures have different stability

measures suffice for utility-maximizing decisions does not follow without them. If e.g. the risk difference estimate at
hand does not apply to the patient, then not only the estimate, but also the magnitude of error in the estimate is needed
as input to the decision, to secure utility-maximization. Or if the patient’s preferences are sensitive to risk, then risk
information, not a summary effect, is needed for a rational decision.
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properties against variation in risk profile, depending on the nature of the exposure and the coding

of the outcome in data. In particular, there are circumstances in which a relative effect will be

mostly independent of baseline risk, and can thus be extrapolated with a much smaller conditioning

set than an absolute effect. When this is the case, the risk information needed for a decision is

most efficiently obtained by extrapolating a relative effect that is applied to an estimate of baseline

risk obtained directly in the target. Unlike extrapolation of risk difference, this extrapolation does

not require adjusting for all causes of the outcome, while estimating baseline risk only requires

observations of the outcome. The decision-theoretic results notwithstanding, it is thus not the

case that absolute measures are categorically superior or on par with relative ones as output from

epidemiological studies, when the needs of decision-making are considered. This is because a

summary effect observed in a study population is typically not useable as direct input into a decision,

but is rather a means to the end of obtaining risk or effect estimates that apply to the target, which

then support a decision. Which effect measure is best suited for this purpose depends on its

transportability properties, which vary from case to case depending on the properties of the exposure

being considered.

The relevance of these conclusions is twofold. Firstly, the fact that the evidential demands of

extrapolation vary depending on what measure is being transferred is elemental to considerations of

policy-relevance, as decision-making usually relies on extrapolated effects, and collecting auxiliary

evidence to support extrapolation is costly. Secondly, since those evidential demands vary from

one measure to the other depending on the nature of the exposure and coding of the outcome, no

measure is most transferrable by default, and all blanket statements about superior policy-relevance

of a particular measure over others are therefore probably false.

As for the problem of extrapolation itself, prominent philosophical accounts overlook the

specification of the effect of interest, and advise searching and controlling for all other causes of the

outcome that could possibly modify the exposure’s influence in some way (e.g. Bareinboim and

Pearl, 2013; Cartwright and Hardie, 2012; Steel, 2007). While this guarantees correct inference

when doable, it is often very difficult to do in practice. Paying attention to the choice of effect

measure offers a different perspective; which other causes of the outcome need to be controlled for

depends on the choice of effect measure, and the nature of the exposure. Acknowledging this shows
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the problem of extrapolation in a new light.

The paper is structured as follows. Section 2 introduces common effect measures. Section 3

introduces the decision-theoretic arguments of Sprenger and Stegenga (2017) and Jäntgen (2023).

Section 4 introduces the problem of extrapolation. Section 5 introduces the phenomenon of baseline

risk dependence, illustrated with a stylized example. Section 6 describes the implications of extrap-

olation error for decision-making. Section 7 describes implications for theories of extrapolation.

Conclusions are summarized in section 8.

2 Varieties of effect measure

A basic quantity of interest in epidemiology is the incidence proportion, better known as risk. Risk

is the proportion of subjects who become cases, i.e. experience an outcome, in a population during

a period of follow-up (Rothman, 2012). Being a proportion, risk is interpretable as a probability.

For a dichotomous outcome Y (0: outcome does not occur, 1: outcome occurs), risk is defined as

R = p(Y = 1). The complement of risk, 1−R, describes the risk of avoiding an outcome, i.e. of

experiencing Y = 0. Historically, this is called "survival risk" or "survival probability", whether or

not the outcome is death. From risk, (risk-)odds is defined as the ratio of risk to the survival risk,

O =
R

1−R
.

For a dichotomous exposure A (0: unexposed, 1: exposed), the risk of an outcome given

exposure is R1 = p(Y = 1|A = 1), and risk in absence of exposure is R0 = p(Y = 1|A = 0). From

these quantities, one can define summary effect measures that compare risks or odds under different

exposure assignments. Absolute measures include risk difference (RD) and number needed to treat

(NNT ):

Risk Difference: RD = R1 −R0

Number Needed to Treat: NNT =
1

RD

. RD describes the absolute change in risk associated with exposure. NNT describes the number of

exposure events (typically, number of treated) associated with a single occurrence of an outcome
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(typically, of remission or recovery).

Some of the most common relative effect measures include risk ratio (RR) and odds ratio (OR).

The latter is usually used as an estimator of the former rather than as a summary effect in itself. I do

not discuss estimation, but include OR in the definitions below to acknowledge its ubiquitous use

in the context of studying dichotomous outcomes. Survival ratio (SR) is another relative measure

occasionally used, and is defined below as it will become important later. These measures are

defined as

Risk Ratio: RR =
R1

R0

Survival Ratio: SR =
1−R1

1−R0

Odds Ratio: OR =
R1

1−R1

/
R0

1−R0
=

O1

O0

, they describe the proportional change in risk or odds associated with exposure.

To be causally interpretable, the associational measures that summarize population frequencies

should be equal to the corresponding counterfactual effects (Hernán and Robins, 2020). The latter

describe differences or ratios of risks under exposure assignments that are at least partly not realized.

Let Y a=1 and Y a=0 be outcome variables hypothetically observed for each subject under exposure

and absence of exposure, respectively. A causal effect for an individual exists if, and only if

Y a=0 ,Y a=1, and a causal effect in population exists iff p(Y a=0 = 1) , p(Y a=1 = 1). For example,

a causal RD equals

[p(Y a=1 = 1)− p(Y a=0 = 1)]

, which can be interpreted as the difference in proportion of cases that would be observed if every

subject was exposed, and that would be observed if every subject was unexposed. Since these

exposure distributions cannot be realized at the same time, at least one of the risks is counterfactual.

Ratios of counterfactual risks define causal ratio measures in a similar fashion. For example, causal

SR is defined as
p(Y a=1 = 0)
p(Y a=0 = 0)

. Since this paper is not about estimation, I omit discussion of identifiability conditions of causal
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effects, and assume that all effect measures discussed below are causally interpretable without

always explicitly indicating this. The counterfactual notation is used whenever it is in order to be

explicit.

Causal effects explain statistical facts about a population by answering what-if? -questions

(Kuorikoski, 2012; Woodward, 2003). For example, a causal RD= 0.05 claims that if an intervention

eliminated exposure in a population, the population proportion of cases would have been reduced

by 0.05 · r, where r is the prevalence of exposure. Reality is of course messier than this, and

another causative exposure may replace a prevented one. Regardless, it is the connection to

reasoning about policy-interventions that makes causal effects relevant for clinical and public health

decision-making.

3 The decision-theoretic argument

Consider two treatments A and B and a dichotomous outcome Y (0: no recovery; 1: recovery),

and an agent that must choose between A and B for treating a patient. Values A = 1 and B = 1,

denoting exposure to the treatments, are abbreviated as A and B to make the notation as consistent

with (Sprenger and Stegenga, 2017) and (Jäntgen, 2023) as possible. The principle of maximising

expected utility gives the following decision-rule

(#) For any u, u
′
, a, and b (without loss of generality: a > b and u > u

′
), consume A

rather than B if and only if EU(A) > EU(B) (Sprenger and Stegenga, 2017, p. 845)

, where a is the cost (broadly understood) of treatment A, b the cost of B, u the utility associated

with Y = 1, u
′

the utility of Y = 0, and EU(A) and EU(B) are expected utilities of choosing A and

of choosing B, respectively.

Sprenger and Stegenga (2017, p. 846) prove that EU(A) > EU(B) iff

[p(Y = 1|A)− p(Y = 1|B)] > a−b
u−u′ (1)

. Since [p(Y = 1|A)− p(Y = 1|B)] is a difference in risks under two different exposures, treatments
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A and B, 1 can be written as

RD >
a−b
u−u′ (1)

, where RD stands for the relevant risk difference.

This means that given a trial testing A against B on subjects relevantly similar to the target patient,

the trial RD together with costs and utilities would suffice for a rational decision by allowing one to

check whether equation 1 is satisfied. Since inverting NNT returns RD, NNT also suffices (Sprenger

and Stegenga, 2017, p. 846). To intuitively grasp what this means, ignore for the moment the

assumption that a > b and consider a situation where the costs of A and B are equal. In that situation,

one should choose A over B as long as A confers any benefit at all over B in probability of recovery.

Equation 1 confirms the intuition. When a = b, the costs-to-utilities ratio a−b
u−u′ goes to zero, and

equation 1 becomes RD > 0 : one should choose A over B iff the RD testing A against B is above

zero. Relative measures do not suffice for rational decision-making, because they underdetermine

RD. A RR = 2, for example, is compatible with RDs ranging from infinitesimally tiny to RD = 0.5.

Knowing nothing but RR, considerable uncertainty remains about whether equation 1 is satisfied.

Sprenger & Stegenga give a somewhat more complicated demonstration of this problem (Sprenger

and Stegenga, 2017, p. 847), but the fundamental point is the same: a relative measure alone can

neither determine risks, nor the difference in risks that appears in equation 1, leaving room for error

in the would-be decision.

Jäntgen (2023) considers situations where A and B are tested in separate trials against other

control treatments, and no RD comparing A against B is available. Jäntgen shows that RDs

established in separate trials do not suffice for rational decisions, because the RDs calculated against

other (not-A nor B) control treatments do not determine an RD between A and B. She then shows

that RDs or RRs from the separate trials together with control group risks do suffice, by allowing

one to construct the decision-relevant RD. For example, from knowing an RD between A and

comparator A′ together with the trial-specific baseline risk p(Y = 1|A′), one obtains p(Y = 1|A) as

the sum of the RD and p(Y = 1|A′). p(Y = 1|B) is obtained similarly from an RD between B and

B′ together with p(Y = 1|B′). From p(Y = 1|A) and p(Y = 1|B) one gets an RD between A and B.

If p(Y = 1|A′) = p(Y = 1|B′) holds in both trial populations and is equal between the populations,

7



the RDs from the trials alone provide the RD between A and B (Jäntgen, 2023, p. 1190). The basic

point remains the same: RD has overall superior policy-relevance since there is no case where a

relative measure instead of RD would be needed to obtain the decision-relevant information, but

there are conditions in which RDs alone, but not relative measures alone, are enough to obtain that

information.

Sprenger and Stegenga’s and Jäntgen’s examples consider settings where the outcome of interest

is beneficial, e.g. recovery from disease. But the same reasoning applies also to choices between

policies to prevent an exposure that causes a harmful outcome: one should choose preventive policy

A over policy B iff EU(A) > EU(B), which requires comparing the risk of outcome under the

exposure status associated with policy A to that associated with B. When the outcome is harmful,

we may still apply the exact same model by interpreting RD in equation 1 as difference in survival

probabilities, or by simply recoding the outcome. So intepreted, the same condition holds for

choosing a prevention strategy: to rationally choose policy A over B, the difference in the survival

probabilities conditional on exposures associated with A and B must satisfy equation 1.

4 Decision-making and extrapolation

Sprenger and Stegenga (2017) and Jäntgen (2023) present compelling decision-theoretic arguments

in favor of absolute effect measures. But note that the arguments assume that the absolute measure

at hand, whether reported from a single study or constructed from results of separate ones, does

apply to the target patient or population. For if it does not, then there is room for error just like with

relative measures, and the conclusion about the superiority of absolute measures does not follow. In

reality, a summary effect reported in an epidemiological study usually does not apply to a particular

target patient or population as is. Rather, the evidence that clinicians, patients, or policymakers

work with is empirical estimates typically obtained in a different population than the one that is the

target of the decision. Based on this evidence, one must then infer the target risks, or the RD, that

suffice for a decision in the way described by (Sprenger and Stegenga, 2017). This complicates

things in two ways.

Firstly, there is uncertainty due to estimation error. I will not comment on this problem further
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than to point out that NNT has undesirable properties in this respect: as the underlying RD

approaches zero, NNT approaches positive or negative infinity, resulting in practically meaningless

confidence intervals whenever the confidence interval of the RD incorporates zero or is bounded

close to it (McAlister, 2008). Secondly, one faces the problem of extrapolation: even if an RD

estimate equals the causal RD in the source population, how to know if the causal claim so

established applies to a different target? If the RD extrapolated from the source does not apply to

the target, decisions based on it may turn out to be suboptimal.

There is a substantial cross-disciplinary body of literature on extrapolation, and no comprehen-

sive review is attempted here. Instead, I give a broad outline of two general approaches that more

specific proposals can be seen as exemplifying, mostly based on sources from the philosophy of

science literature on the topic.

One approach, that I call the ”causal approach”, focuses on other causes of the outcome than the

exposure that may modify the exposure’s effect (e.g. Bareinboim and Pearl, 2013; Cartwright and

Hardie, 2012). In particular, some such causes are co-factors that interact conjunctively with the

exposure, such that certain configurations of the co-factors and the exposure suffice to bring about

the outcome, but no proper part of such configuration will suffice (Baumgartner and Falk, 2018;

Cartwright and Hardie, 2012; Deaton and Cartwright, 2018; Mackie, 1974; Rothman, 2012, chapter

3.). Distributions of such co-factors may vary from one population to the next, manifesting as

variation in the exposure’s effect. There may also be sufficient configurations of causes that do not

include the exposure at all and distributions of these may vary, causing differences in baseline risk.

In the face of such threats to extrapolation, the idea of the causal approach is to find a conditioning

set of other causes of the outcome that renders the exposure-outcome relation independent of other

influences. A detailed proposal of this sort is described in (Bareinboim and Pearl, 2013).

I call the other broad approach the ”mechanism approach”. Something like it is proposed for

example in (Steel, 2007; Stegenga, 2015; Tonelli and Williamson, 2020; Wilde and Parkkinen,

2019; Williamson, 2019). This approach is similar to the causal approach – one should control

for causally meaningful differences between source and target – but comes with a heuristic for

identifying the relevant differences: one should trace the exposure’s mechanism of action in the

source and in the target, and compare them for similarity. Differences in the mediating mechanism
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itself may result in differences in the effect, as may differences in factors capable of interfering

with the mechanism’s parts. It is these differences that one should search and control for when

extrapolating a causal effect. The mechanistic heuristic makes the extrapolation problem more

tractable by constraining the search for factors to control for, at the cost of risking a mistake when

the relevant factors bear no obvious relation to the exposure’s mechanism of action. Note that the

suggested heuristic for extrapolation is a flipside of a heuristic for explaining effect heterogenity:

when observing effect heterogeneity, one should look for differences in the mediating mechanisms,

or differences in factors that interfere with the mechanisms.

I say more about these approaches in section 7. The following section describes a type of effect

heterogeneity that is particularly challenging for both approaches.

5 Entanglement of effect with baseline risk

RD is dependent on baseline risk as a matter of definition. To see this intuitively, note that risk

is bound between zero and one. Hence, only a small increase in risk for the exposed is possible

for high baseline risk, and conversely for preventive exposures and low risks. RDs for the same

exposure-outcome pair will thus vary across populations or individuals that differ in risk profile,

even when there is no heterogeneity due to causal interaction between the exposure and covariates,

confounding, or differences in mechanism of action. To illustrate, I use a hypothetical example

introduced by Huitfeldt (Huitfeldt, 2019) and redescribed and analyzed by Cinelli and Pearl (2021)

and Colnet et al. (2023). My description follows Colnet et al. (2023) with minor modifications.

A team of hypothetical epidemiologists is trying to answer the following question: What effect

does playing a single round of Russian roulette have on total mortality? We assume that the

epidemiologists are unaware of how Russian roulette works, and rely on running a cohort study –

perhaps an RCT – to estimate the effect.

The example is of course unrealistic, but not dissimilar in structure to realistic scenarios. Say

that a new, highly potent opioid is introduced to the illegal drug market and pushed to addicts who

lack the means to measure doses accurately: each dose comes with a risk of deadly overdose. An

obvious thing that public health authorities would want to know is the effect of the drug on mortality
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in the addict population. For a historical example of a structurally identical model as presented

below, but applied to real world data, see Sheps (1959). The point of imagining Russian roulette as

the exposure is that the mechanism of Russian roulette allows for an unambiguous description of the

risk-generating process. The elements of the example are thus a population where some are exposed

to playing Russian roulette (perhaps through random assignment) and others are not, together with

the following stipulated conditions:

• Dichotomous outcome Y (0: survival; 1: death).

• Identical baseline risks: Every subject has the same risk of dying from other causes than

exposure during follow-up.

• Exposure’s mechanism of action: one of six chambers of a revolver is loaded with a bullet,

giving a 1
6 chance of death.

• Monotonicity: the exposure can only cause death, no subject who would die unexposed would

be saved by exposure.

• Homogeneity: There is no causal interaction with covariates, exposure affects every subject

the same way.

• No confounding.

Given the above assumptions, the process that generates risk of death can be described with

p(Y a = 1) = b+ a · 1
6
(1−b) (2)

. Equation 2 is slightly adapted from (Colnet et al., 2023), and should be read as follows. p(Y a = 1)

is the marginal risk of death, averaged over both (counterfactual) exposure assignments as indicated

by the superscript a. b is the baseline risk, i.e. the probability of dying from other causes than

Russian roulette. Exposure status is denoted by the dichotomous exposure indicator a (0: not

exposed; 1: exposed). 1
6

is the probability of dying from exposure, and assumed to apply similarly
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to everyone (homogeneity). This risk can however only be realized given exposure, a = 1, and

given that the baseline risk is not realized, hence the multiplication by (1−b).

Equation 2 also describes risks in the exposed and the unexposed, when a is assigned to equal

either 1 or 0. Risk in the unexposed is simply R0 = p(Y a=0 = 1) = b: an unexposed subject cannot

die from exposure, so their risk of death is the baseline risk b. Risk in the exposed requires a bit of

explanation. Like every other subject, each exposed subject may die of other causes than Russian

roulette during follow-up, i.e. the baseline risk b applies. The exposed can also die as a consequence

of playing Russian roulette, with probability 1
6

. A precondition for this risk being realized is that the

baseline risk does not realize. Hence, the additional risk that applies to the exposed over and above

the baseline risk is 1
6
(1−b), and the risk in the exposed becomes R1 = p(Y a=1 = 1) = b+ 1

6
(1−b).

Risks in exposed and unexposed give a risk difference of

RD = R1 −R0 = b+ 1
6
(1−b)︸           ︷︷           ︸
R1

− b︸︷︷︸
R0

=
1
6
(1−b)

which, as expected, is exactly the risk increase beyond baseline risk inflicted by exposure.

Colnet et al. (2023) use the generative process described by equation 2 to show how the risk

difference is a function of baseline risk, evident in the presence of b in the RD above. Say that the

epidemiologists run a perfectly designed and executed cohort study in a population with baseline risk

of b = 0.01, thus obtaining RD = 0.165. Even assuming homogeneity and absence of confounding,

this effect would not be transferrable to a target population with a different level of baseline risk.

For a higher baseline risk of 0.1, for example, this RD predicts that risk in the exposed is 0.265,

or 26.5%, but this is an overestimate. For the 26.5% risk to apply in the population with higher

baseline risk, the exposure would there have to kill a larger proportion of subjects who would have

otherwise survived, since the proportion of subjects at risk of experiencing the exposure’s effect is

smaller in the higher baseline population. That is, the exposure would have to be more lethal in that

population compared to the source population. But this makes no sense – the mechanism of the

exposure is assumed to be the same for every individual, everywhere. With baseline risk of 0.1, the

true risk in the exposed is in fact 0.25, giving an RD = 0.15. On the RD scale, the effect of Russian

roulette thus appears heterogeneous after all, even though a key assumption of the generative
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process is that the exposure affects every subject the same way. This apparent heterogeneity is due

to entanglement of the RD with baseline risk. Of note, entanglement is also present on the RR scale,

so if we imagine that the Roulette study was one of the primary studies fed to Jäntgen’s (2023)

procedure of constructing target RDs from separate trial population RDs or RRs, the constructed

target RD would be incorrect either way, unless all baseline risks are equal.

Instead of RD (or RR), the scale on which the homogeneous effect of Russian roulette becomes

evident is the survival ratio scale (Colnet et al., 2023; Huitfeldt, 2019). This can quickly be verified

by recalling the definition of survival ratio

SR =
1−R1

1−R0

, which for the example makes

SR =
1−

(
b+

1
6
(1−b)

)
1−b

=
5
6

: the exact level of baseline risk b is irrelevant to SR, and SR is therefore transferrable across

populations that differ in baseline risk. The SR =
5
6

is also immediately interpretable in light of the

mechanism of Russian roulette, while the RD is not.

Generally speaking, there is no scale that by default provides transportable results, and in

particular, no reason to believe that the popular RR scale is always appropriate (see Broadbent,

2013, chapter 9.). But as Mindel Sheps (1958; 1959) pointed out half a century ago, there are

certain situation-specific patterns. For monotonically risk-increasing exposures, the SR scale is least

affected by baseline risk. The reason is that in that situation, SR tracks the probability of avoiding

an outcome among those who are at risk of experiencing it due to the exposure, i.e. among those

for whom the baseline risk is not realized (more on this in section 7). For preventive exposures

the RR scale tends to be appropriate for similar reasons. Indicative of these patterns is that SR

cannot predict invalid risks for a risk-increasing exposure but RR can, and the other way around for

risk-decreasing exposures. Recoding the outcome reverses these relations. RD is worse than either

ratio measure in that it can predict risks outside [0,1] no matter the nature of the exposure.
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This alone says little about transportability except that patently absurd extrapolation errors are

sometimes avoidable by choosing the right measure. Sheps’s deeper insight concerns the connection

between effect measures and population parameters of epidemiological interest: how effect measures

computable from observed data track such parameters depends on the nature of the exposure and the

coding of the outcome. In the example, the probability of surviving exposure among those at risk of

dying from it is identified by SR, making SR transportable between populations that are equal in

this parameter, regardless of baseline risk. Ideas akin to Sheps’s are formalized and analyzed in

(Huitfeldt et al., 2018, 2019, 2021), who describe relations between effect measures and particular

population parameters defined in a counterfactual causal model. I briefly return to these ideas in

section 7.

The conclusions from the present section are the following. Effect measures vary in transporta-

bility in situation-specific ways. RDs will always, and ratio measures sometimes, be unstable across

varying baseline risks, and hence variably risky to extrapolate.

6 Implications for decision-making

Entanglement of RD with baseline risk may compromise the use of study-population RD estimates

as direct input into decision-making. However, the error in extrapolating an RD across baseline

risks is of course not always so large that it would lead to suboptimal decisions, and it is possible

to gauge how tolerant rational decision-making is to such error. The problem is rather that it is

difficult to assess when the extrapolation error is within those tolerable bounds. Note also that even

though the absolute size of the error might appear small when the baseline risk difference is small,

its impact can still be significant especially in public health settings where costly, population-wide

interventions are at stake.

More formally, note that the extrapolation error ε is just the difference between the extrapolated

RD, denoted RDsource, and the true RD in the target, RDtarget ,

ε = RDsource −RDtarget
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and RDtarget equals the difference between the extrapolated RDsource and the extrapolation error

RDtarget = RDsource − ε

. Now recall from Sprenger and Stegenga (2017) that EU(A)> EU(B) iff equation 1 is satisfied

for the relevant RD. Thus, using the extrapolated RDsource in decision-making leads to mistakenly

choosing treatment or policy A over B iff equation 1 holds for RDsource but does not hold for the

directly unknown RDtarget between A and B. To avoid such a mistake, equation 1 must hold also

after correcting for ε . This bounds the benign size of the extrapolation error:

RDtarget︷          ︸︸          ︷
RDsource − ε >

a−b
u−u′

ε < RDsource −
a−b
u−u′

.

In words, the extrapolation error must be smaller than the difference between the extrapolated

RDsource and the costs-to-utilities ratio. To check this result against intuition, consider the extreme

case where the costs are equal: a = b. In this situation, one should choose one treatment or policy

over the other as long as the relevant RD is above zero in the target population, meaning that the

extrapolation error is smaller than the extrapolated RDsource by any amount. When a = b, a−b
u−u′

becomes zero, and the benign size of ε is bounded by

ε < RDsource

, as expected.

The smaller the difference between RDsource and the costs-to-utilities ratio, the smaller the

maximum extrapolation error that rational decision-making tolerates. The problem is that it is

difficult to know the exact value ε; if one knew it, one would already know the correct RDtarget .

Prominent approaches to extrapolation provide limited relief, as explained in section 7 below. Rough
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guesses concerning the size of the error are possible if one knows baseline risks in both populations,

though. If an exposure increases risk and the baseline risk in target is higher (respectively, lower)

than in the source, RDtarget is probably smaller (larger) than RDsource. The opposite applies for risk-

decreasing exposures. Much uncertainty will remain regardless, even in unrealistic circumstances

where other effect modifiers are equally distributed.

These problems do not always necessitate running a new study in the target population to obtain

RDtarget . It may be possible to extrapolate an effect on a different scale than the RD scale, and

combine that with baseline risk information in the target to calculate RDtarget , give or take estimation

error. The running example provides illustration. In the example, a source population baseline

risk was assumed to be 0.01, giving RDsource = 0.165, while a hypothetical target population has

baseline risk of 0.1 and RDtarget = 0.15, and direct extrapolation of RDsource is defeated by the

baseline risk difference. Since SR is in this case insensitive to baseline risk, SR can be extrapolated

between the populations with no adjustment. Given baseline risk of 0.1 in the target, the baseline

survival probability to which the modification by exposure applies is 1−0.1 = 0.9. Applying the

extrapolated SR, the survival probability in the exposed in the target is 0.9 · 5
6
= 0.75, risk in exposed

is 1−0.75 = 0.25, and the correct RDtarget = 0.25−0.1 = 0.15.

Of course, in a real-world application even the most transportable measure would probably

require some adjustment for heterogeneity, which can have other sources than baseline risk de-

pendence. The purpose of the example is merely to demonstrate that it is not obvious that a study

population RD is optimal evidence for decision-making, all things considered. Depending on the

nature of the exposure, adjusting a RDsource approriately may be much more difficult and costly

than adjusting a relative measure and obtaining an estimate of baseline risk in the target. To adjust

RDsource, one needs to control for all dissimilarly distributed causes of the outcome that are not

screened off the outcome by the exposure of interest; a lot of causal and distributional information

about the target is needed. If one can identify a relative effect that is at least approximately free of

baseline risk dependence, only some of that information is needed, together with observations of

the outcome to estimate baseline risk.

This goes to show that the decision-theoretic conclusion about the superiority of absolute effects

does not generally apply to actual decision-making where extrapolation error is an issue; a decision-
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maker may well be better off relying on an appropriately chosen relative effect together with a

baseline risk estimate in the target, rather than trying to adjust an RD. One should certainly not read

the decision-theoretic arguments as implicating that epidemiological studies should preferentially

report absolute effects rather than relative ones. When it comes to reporting, the advice of textbook

epidemiology seems apt: whenever study design allows estimating risks, the primary result to

report should be risks (Rothman, 2012, p. 84). Risk information allows the user of the evidence to

calculate any summary effect deemed appropriate for the purpose of calculating exposed risk in

their target population. This conclusion is similar to Jäntgen’s, who recommends always reporting

baseline risks alongside RDs or RRs, but for different reasons.

Recall that Jäntgen considers a situation where the decision-relevant risks or RD must be derived

from results of separate trials testing A and B against other control treatments. The baseline risks are

risks given control treatments A′ and B′, only observed in the trial populations where A and B were

tested, respectively. Jäntgen suggests calculating p(Y = 1|A) from an RD or RR and baseline risk

p(Y = 1|A′) in the population where A was tested, and p(Y = 1|B) the same way in the population

where B was tested. From p(Y = 1|A) and p(Y = 1|B), one gets an RD between A and B that is

applied to the target. In the unlikely case where the baseline risks are equal within and between

the trial populations, the RD between A and B can be calculated from the trial RDs alone. (Jäntgen,

2023, p. 1190).

To do the above in practice would require not one but many extrapolations of risks and summary

effects across populations. For things to go wrong, it is enough that either baseline risk p(Y = 1|A′)

or p(Y = 1|B′) differs between the target and the trial population where it was observed. This

is true no matter what summary effect is used to calculate p(Y = 1|A) and p(Y = 1|B) from the

trial baseline risks: if either baseline risk varies, then at least one of the calculated p(Y = 1|A) or

p(Y = 1|B) will not apply to the target. It is usually dubious to assume that a risk estimated in a

trial applies to a different target population as is, let alone that many risks from separate trials do.

In practice, then, one would first try to estimate p(Y = 1|A′) and p(Y = 1|B′) in the target, or if

that is not feasible, adjust the trial risks for prognostic factors that predict their level in the target.

Then one would extrapolate summary effects from the trial populations to calculate p(Y = 1|A) and

p(Y = 1|B) that one hopes to apply to the target. Any effect measure, absolute or relative, will do,
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but as the preceding discussion suggests, RD may well be a riskier choice than some relative effect.

None of this of course means that Jäntgen’s modeling results are invalid. It is just that decision-

makers are rarely in a situation where they can assume that baseline risks and absolute effects

observed in trial populations constrained by strict exclusion criteria apply to the intended target

without adjustment. Since one normally cannot assume this, one would normally not apply the

reasoning described in (Jäntgen, 2023) in practice. The modeling results therefore do not demon-

strate superior policy-relevance of absolute measures. The advice to always report risks, however, is

certainly reasonable, if not for exactly the reasons that Jäntgen gives.

The difference in motivation behind Jäntgen’s proposed procedure and what I would recommend

is hopefully now clearer. Jäntgen recommends using the trial-specific baseline risks alongside the

trial RDs or RRs to obtain p(Y = 1|A) and p(Y = 1|B) that one applies to the target. I suggest

using the risks obtained in the trials to calculate a summary effect that, in light of what is known of

the nature of the exposure or treatment, is least sensitive to inevitable differences in baseline risks,

and thus transportable with fewest adjustments. Whichever measure is believed to be least sensitive

should then be used to calculate p(Y = 1|A) and p(Y = 1|B) in the target from estimates of the

target baseline risks. As study reporting goes, the crucial information decision-makers need is risks,

not summary effects, absolute or otherwise, as the latter can easily be calculated from risks when

needed.

As a final point from this section, note that RD is a far from ideal basis for a decision even if

estimation or extrapolation error is not an issue: Relying on RD assumes that expected utility scales

linearly with risk. E.g. for a decision taken on RD = 0.05, a risk difference between 0.05 and 0.1

must have the same impact on expected utility as the difference between 0.35 and 0.4, or 0.5 and

0.55, and so on. Whenever possible, instead of RD or any other summary effect, one should use the

risks under different exposure alternatives to calculate expected utilities of the choice-alternatives

separately, as then the decision can accommodate any utility function (cf. Huitfeldt et al., 2021,

Appendix 1). Given an estimate of the baseline risk in the target, one can calculate risk under the

exposure or treatment of interest based on an extrapolated effect measure, which can be either

absolute or relative. When the baseline risk in the source population differs notably from that in the

target, it may be safer to use either RR or SR than RD for this purpose.
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7 Implications for theories of extrapolation

For the mechanism approch to extrapolation, effect heterogeneity implies differences in the mediat-

ing mechanisms, or differences in factors capable of interfering with components of the mechanism.

To extrapolate an effect, one should control for such differences. But heterogeneity that is due to

the effect’s dependence on baseline risk cannot be explained by such mechanistic differences, and

investing effort into finding them would be futile. The mechanistic heuristic for solving the problem

of extrapolation is thus unlikely to work in such cases. In the running example, the hypothetical

epidemiologists would be unable to appropriately adjust RDsource even if they learned everything

about the mechanism of action in both populations; the mechanisms are identical by stipulation.

Given the simplistic structure of the example, they would of course be able to calculate any effect

measure in the target based on learning the mechanism and the target baseline risk, but this would

not involve extrapolation.

The causal approach correctly suggests that heterogeneity due to baseline differences indeed has

a causal explanation: it is explained by differences in factors that cause differences in baseline risk.

Thus, an RD estimate could be extrapolated if it was adjusted for a set of other causes of the outcome

that suffices for isolating the effect of the exposure in the target. But such an adjustment can be

hard to apply: the choice of the conditioning set would often have to rest on many unsubstantiated

causal assumptions, and even if those were correct, data availability would pose another problem.

Finally, neither approach offers much guidance for identifying a scale on which an effect would

be transferrable with fewest adjustments, like the SR scale in the example. This highlights a point

urged by epidemiologic methodologists but ignored by philosophical commentators: different effect

measures have different transportability properties that depend in complex ways on the objective

nature of the (disease) phenomenon of interest and the subjective choice of its coding as an outcome

variable in data (e.g. Deeks, 2002; Doi et al., 2022; Huitfeldt et al., 2018, 2019; Panagiotou and

Trikalinos, 2015; Senn, 2011; Sheps, 1958; Webster-Clark and Keil, 2023). While philosophers,

too, have touched upon this topic, it is only to debunk the idea that RR measures are transportable

by default, not to systematically study the conditions that transportability of effects depends on (e.g.

Broadbent, 2013; Fuller, 2021).
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This obviously does not mean that the two approaches are false in that they could never work.

To the contrary, any viable solution to the extrapolation problem must involve studying causally

relevant differences somehow. The issue is rather that these approaches ignore the fact that other

causes of the outcome only become relevant to the extrapolation problem relative to the chosen

effect measure. If that choice is ignored, an extensive search for differences in the causes of the

outcome, whether constrained by the mechanistic heuristic or not, risks either focusing on the

wrong things, or being too demanding in practice. It may be that a more tractable problem where

auxiliary causal-mechanical evidence is of use is that of identifying a measure that is least sensitive

to context-specific causal detail (Huitfeldt et al., 2018). This proposal deserves attention from

philosophers of science.

Briefly, for the running example this idea works as follows. Consider a distribution of counterfac-

tual outcomes given exposure, Y a=1, and absence of exposure, Y a=0, for each subject. Monotonicity

is assumed: Russian roulette can only cause death, not prevent death for anyone, so the individual

effect (Y a=0 = 1,Y a=1 = 0) is impossible and p(Y a=0 = 1,Y a=1 = 0) = 0. The exposure’s effect

can hence only be realized in subjects who would survive if unexposed, Y a=0 = 0, and the risk of

death among those at risk of experiencing the effect is then p(Y a=1 = 1|Y a=0 = 0). This is one of

the components of the risk of death in the exposed, p(Y a=1 = 1). The other component is the risk

of death from exposure among those destined to die anyway p(Y a=1 = 1|Y a=0 = 1). Finally,

p(Y a=1 = 1) = p(Y a=1 = 1|Y a=0 = 0)p(Y a=0 = 0)+ p(Y a=1 = 1|Y a=0 = 1)p(Y a=0 = 1)

.

As the baseline risk p(Y a=0 = 1) increases, p(Y a=0 = 0) decreases and

p(Y a=1 = 1|Y a=0 = 0) contributes less to p(Y a=1 = 1), shrinking the causal risk difference

[p(Y a=1 = 1)− p(Y a=0 = 1)]. This is just the entaglement that the example aims to illustrate.

Hence, for an RD to be equal between two populations with different baseline risks, a larger

proportion of subjects at risk of experiencing the exposure’s effect would have to die in the

population with higher baseline risk. This does not make sense given the assumed mechanism

of Russian roulette: Each subject’s response to exposure is determined only by the exposure’s
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mechanism of action, which is the same for all, and no other factors affect susceptibility.

The assumed mechanism of Russian roulette entails two stable counterfactual probabilities: the

risk of dying from exposure among those at risk of dying from it, p(Y a=1 = 1|Y a=0 = 0) = 1
6

, and

that of surviving the exposure among the same subjects p(Y a=1 = 0|Y a=0 = 0) = 5
6

. Huitfeldt

et al. (2018, pp. 4-5, appendix B) show that given a monotonically risk-increasing exposure, the

latter probability is identified in data by SR, and the former is not identified by any common effect

measure. Huitfeldt et al.’s proof follows from more general principles that entail analogous results

for other effect measures, but a short proof about SR only can be given as follows.

Given monotonicity, i.e. no subject is saved from death by exposure, there cannot be subjects

who would die in absence of exposure among those who would survive the exposure, giving

p(Y a=0 = 0|Y a=1 = 0) = 1. Then,

p(Y a=1 = 0|Y a=0 = 0) = p(Y a=0 = 0|Y a=1 = 0)p(Y a=1 = 0)
p(Y a=0 = 0)

=
p(Y a=1 = 0)
p(Y a=0 = 0)

= SR

: p(Y a=1 = 0|Y a=0 = 0) equals the causal survival ratio, estimated by 1−R1

1−R0
. Hence, SR is stable

across populations as long as p(Y a=1 = 0|Y a=0 = 0) is, which it will be unless there are other

factors that determine susceptibility than the mechanism of action itself, and those vary between

populations. If there were such factors, the SR could still be extrapolated controlling for those

factors, without controlling for any other causes of the outcome. Had the exposure been one that

decreases risk, or the coding of the outcome been the opposite, RR would be transportable, and SR

not. In neither case would RD be transportable without adjusting for numerous causes of baseline

risk, unless baseline risks are equal.

The approach described in Huitfeldt et al. (2018) links stability of effect measures to parame-

ters that describe probabilities that subjects’ counterfactual outcomes stay unchanged when their

exposure status changes. The result about SR illustrated above follows from these considerations.

This suggests an approach to extrapolation that focuses on the co-factors of the exposure that

determine susceptibility to the exposure’s effect, rather than all other causes of the outcome or a

subset comprising the mechanism of action and its interfering factors. The extrapolation problem

is still demanding: If one’s qualitative understanding of the mechanism of action is limited, one
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may misidentify the factors that determine susceptibility. But if the relevant co-factors can be deter-

mined, one may then justify assumptions about stabilities of particular counterfactual population

parameters based on the estimated or assumed distributions of the co-factors. These justify beliefs

about conditional transportability of different effect measures, where the conditioning set includes

just those co-factors whose distribution differs between populations.

This proposal is contentious, and I make no claims of it being generally more applicable than any

alternative; no philosophical argument alone can establish such claims. Its philosophical significance

is in showing how the difficulty of extrapolating a causal claim about an exposure-outcome pair

can vary significantly depending on the exact specification of the effect that is being transported.

Philosophers of science have hitherto ignored this fact.

8 Discussion and conclusions

I have argued that the decision-theoretic results of Sprenger and Stegenga (2017) and Jäntgen (2023)

do not entail that absolute effect measures are generally superior to relative ones in policy-relevance.

There are circumstances where relative measures have preferable properties from a decision-making

perspective, even when an estimate of an absolute measure is known. This is because an effect found

in a particular study population is rarely usable as direct input into a decision, due to inevitable

differences in risk profile between populations and individuals. Rather, study-population effect

estimates, together with auxiliary evidence from the target, are used to infer target risks or summary

effects, and the latter are the actual input to a decision about the target. It is thus the extrapolatability

of effect measures that mostly matters for decision-makers. By definition, an RD (or NNT ) for a

given exposure-outcome pair cannot be stable against variation in baseline risk even in unrealistic

conditions where there is no confounding, no heterogeneity due to causal interaction with covariates,

no differences in exposure’s mechanism of action, and no estimation error. To rely on an RD, a

decision-maker would possibly have to adjust the estimate for numerous causes of baseline risk,

many of which may be unknown at the time of the decision.

While RDs must vary to some degree across baseline risks, it is of course partly an empirical

question how often this heterogeneity is of degree that jeopardizes policy-relevance. There are
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studies that suggest that RDs for a given exposure-outcome relation do indeed vary notably, often

more so than ratio measures (e.g. Deeks, 2002; Senn, 2011). But empirical evidence cannot

conclusively tell how serious a threat this is to policy-relevance, since the magnitude of error

tolerated by rational decision-making depends on the costs and utilities at stake (section 6). It

also seems that empirical evidence about transportability of different measures will always remain

contestable (see Poole et al., 2015).

General statements about the policy-relevance of particular measures are thus somewhat dubious.

Rather than making such claims, I want to highlight the following: Given the definitions of common

effect measures, it is inevitable that there are scenarios that present tradeoffs between them. When

differences in baseline risks prohibit extrapolating RD without controlling for numerous other

causes of the outcome, there may be a relative effect that can be extrapolated relying on a smaller

conditioning set. Extrapolating such a relative measure, when one exists, is thus less risky, and when

combined with baseline risk information in the target, provides the basis for a rational decision. In

that case, a decision-maker is better off relying on the relative measure and estimating the target

baseline risk directly, rather than attempting to adjust the RD. In a different scenario, maybe no

clear tradeoff to exploit can be identified, and one may try to adjust the RD.

If any general recommendation can be made about what to report, it would be to always report

all estimated risks, as this allows the user of the evidence to calculate any summary effects deemed

appropriate for their use case. This conclusion is similar to that of Jäntgen (2023), who recommends

always reporting baseline risks, but for quite different reasons, as explained in section 6.

The preceding discussion has implications also for accounts of extrapolation (section 7). The

philosophy of science literature on the topic has so far paid little attention to the choice of effect

measure. But that choice has consequences for extrapolation: Different effect measures have

different transportability properties depending on the process that generates the outcome, and the

coding of the outcome in data. It may be that the causal-mechanical evidence that purportedly

solves the problem of extrapolation is sometimes best employed in choosing which effect measure

to use in the first place.
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