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ABSTRACT
1. Strong and weak notions of erasure are distinguished according to whether 

the single erasure procedure does or does not leave the environment in the 
same state independently of the pre-erasure state.

2. Purely thermodynamic considerations show that strong erasure cannot be 
dissipationless.

3. The main source of entropy creation in erasure processes at molecular 
scales is the entropy that must be created to suppress thermal fluctuations 
(“noise”).

4. A phase space analysis recovers no minimum entropy cost for weak 
erasure and a positive minimum entropy cost for strong erasure.

5. An information entropy term has been attributed mistakenly to pre-erasure 
states in the Gibbs formalism through the neglect of an additive constant 
in the “–k sum p log p” Gibbs entropy formula.
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1. INTRODUCTION
In 1929, Leo Szilard (1929) imagined a cylinder containing a gas of a single molecule 
at thermal equilibrium with its environment at temperature T. A partition is inserted 
and divides it into two parts, trapping the molecule on one side. If we conceive of this 
partitioned cylinder as a memory device recording either “left” L or “right” R, we can ask 
for the dissipation, that is, the minimum entropy created in returning it to a reset state, 
such as L, as shown in Figure 1.

This standard example will be used to illustrate more general results about erasure in 
systems at molecular scales, that is, those in which quantities of heat and energy are of the 
order Boltzmann’s constant k.

The entropy cost of erasure has been the locus of a literature that employs notions of 
information and computation. Szilard located an entropy cost in acquiring the information 
that identifies the location of the trapped molecule. Landauer (1961) and Bennett (1987) 
treated the relevant systems as computational devices that process information and 
located an entropy cost in the many-to-one logic of erasure. This focus on information and 
computation has, I believe, served only as an unproductive distraction.1 The many-to-one 
mappings of erasure can be treated quite adequately without considerations of information 
and computation, as will be shown in the simpler, uninformed accounts of earlier Sections 
2 to 5 below. Later, Sections 6 and 7 will show that the identification of information entropy 
with thermodynamic entropy is mistaken and that treatments of erasure that depend upon 
it produce spurious results.

The phase space analysis of Sections 4 and 5 adopts the assumptions of the “Boltzmannian” 
approach to statistical physics. Most notably, it assumes that the dynamical evolution 
of a system’s phase point is such that the probability of its being in some volume of the 
total system phase space is proportional to the phase space volume. Sections 6 and 7 
draw on the “Gibbsian” approach. It employs the “Gibbs entropy” and the demonstration 
introduced by Gibbs and Einstein of the connection between Gibbs entropy and Clausius’ 
thermodynamic definition for entropy in terms of heat. There are enduring, unsolved 
foundational problems in both approaches. Frigg and Werndl (2023) provides a recent, 
accessible survey of them. The existing literature on erasure draws freely on these 
approaches and reasonably so, since these approaches have enjoyed considerable success 
in recovering the generic behavior of thermodynamic systems. The project of this paper is 
not to address and solve these foundational problems, but to ask what we can learn if these 
approaches are applied to erasure processes.

2. CONDITIONS ON ERASURE
A transformation that takes either of two distinct states, such as L or R, to a reset state, such 
as L, is not by itself an erasure. The existing literature provides two additional conditions:

1 It has, as shown in Norton (2018), made it easy to overlook a simple and serviceable 
exorcism of Maxwell’s demon that employs no information or computational notions.

Figure 1 Erasure of a 
Szilard One-Molecule Gas 
System.
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Szilard’s condition. The erasure must be a single procedure, specified 
independently of which state is presented for erasure.

This condition was fundamental to Szilard’s (1929) attempt to use the gas to create a 
Maxwell’s demon, in which he needed to expand the gas reversibly and isothermally. 
The obstacle was that different mechanical couplings were needed, according to whether 
the molecule was trapped on the left or the right side of the partition. Prima facie, two 
different procedures were needed. Szilard sought to collapse them into a single procedure 
by including in the procedure the detection of the location of the molecule that enabled the 
appropriate mechanical coupling to be deployed.

Bennett’s condition. The completed erasure procedure must leave the environment 
in the same state, independently of which state was presented for erasure.

If a many-to-one mapping leaves the environment in a different state according to which 
of the initial states was presented for erasure, then a trace of that original state remains. In 
computational terms, the data has not been erased but merely relocated. This condition is 
associated with Charles Bennett for his introduction of the notion of reversible computation. 
He sought to avoid Landauer’s (1961) conclusion of an inevitable dissipation associated 
with erasure. Bennett’s (1973) proposal was that data in one location could be erased if a 
copy of the data was secreted elsewhere in a reversible process that, in Landauer’s analysis, 
could be effected non-dissipatively. Locally, the data would be erased, but not globally. 
Reversing the process would recover the erased data from its remote storage.

The importance of taking the global perspective is central to Bennett’s (1987) exorcism 
of the Maxwell demon implicit in Szilard’s problem. Bennett argued erroneously2 that a 
dissipationless measurement of the position of Szilard’s molecule was possible and that 
it would enable a thermodynamically reversible resetting of Szilard’s cylinder. It would 
be a dissipationless erasure. The catch, Bennett argued, was that the device implementing 
the erasure must record the location of the molecule in its memory. Completing the cycle 
requires erasing the memory, which, according to Landauer’s analysis comes, with a cost 
of k log 2 of entropy. Overall, the erasure is not dissipationless.

What I shall call strong erasure satisfies both conditions. Weak erasure satisfies only 
Szilard’s condition. The weak notion, if it can be realized, may be useful in more practical 
applications in which the violation of Bennett’s condition consists of a very slight difference 
in the heating of the environment, according to the pre-erasure state.

3. NO DISSIPATIONLESS, STRONG ERASURES IN 
THERMODYNAMICS
The simplest theoretical analysis of erasure arises when we represent the system within a 
state space with the variables of ordinary thermodynamics: pressure P, volume V, internal 
energy U, entropy S, and so on. The one-molecule gas is represented as a continuous 
fluid, filling the volume accessible to it, conforming with the ideal gas law, PV = kT, 
where k is Boltzmann’s constant. The familiar laws of thermodynamics apply. Within this 
impoverished representation, no process corresponds to Szilard’s insertion of the partition, 
since that process is indeterministic and contrary to the second law in reducing entropy. 
In phenomenological thermodynamics, inserting the partition would merely divide the 
gas fluid in half.

2 Bennett’s detection device will be fatally disrupted by fluctuations, as noted in Earman 
and Norton (1999, 13–14).
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The result below in thermodynamics precludes a non-dissipative strong erasure. While I 
believe that something like it has long been implicit in discussions of erasure, I hope that it 
is useful to spell it out more fully so that its precise content is visible. The result is relevant 
to a statistical mechanical account of thermal systems. Such an account must either return 
the thermodynamic result in a suitable limit or give reasons for its failure.

3.1 DERIVATION

The two conditions for strong erasure are implemented in a thermodynamic analysis 
concerning a system “Sys,” such as Szilard’s one-molecule gas, and the environment “Env” 
with which it interacts. A procedure “P” includes familiar operations on thermal systems, 
such as heatings and coolings, compressions and expansions. It will evolve the pair from 
an initial state 1 to the final state 2. This evolution is written as

( , ) ( , ).1 1 P 2 2Sys Env Sys Env

The properties assumed for these processes are:

Assumption 1: Determinism. The unique state ( , )2 2Sys Env  to which ( , )1 1Sys Env  
evolves is fixed by ( , )1 1Sys Env  and P.

This assumption requires that the specification of the environment be sufficiently expansive 
as to include all parts that may affect the course of the process. What is precluded are 
indeterministic or stochastic evolutions in which an initial state may evolve under P in 
uncertain ways to different final states. A common representation of such a deterministic 
process is a single curve in the thermodynamic state space connecting initial and final 
states.

Assumption 2: Reversibility.3 There are special cases of processes for which there 
are reversed processes that trace out the same time evolution of the system and 
environment states, but in the reversed order.

In such processes, the thermodynamic entropy of the combined system and environment 
is constant. Since dissipation here just means creation of entropy, they are the least 
dissipative processes. If we represent a possible reversible process as

,( , ) ( , ),1 1 P rev 2 2Sys Env Sys Env

then the assumption assures us of the possibility of a second process:

’,( , ) ( , ).P revSys Env Sys Env2 2 1 1

The reversed procedure P’ is realized by reversing the direction of heat and work transfers 
of the original process P.

These assumptions support the following results:

Result 1. No reversible forks. We cannot have both of the processes with the 
same procedure P:

, ,( , ) ( , ) and ( , ) ( , ).1 1 P rev 2 2 1 1 P rev 3 3Sys Env Sys Env Sys Env Sys Env 

3 Norton (2016) has argued that reversible processes cannot be the evolution of a single 
state since the assumption of the perfect equilibrium of driving forces precludes change. 
Rather, talk of a reversible process is an abbreviated reference to a collection of real, dissipative 
processes such that limit operations return the properties associated the reversible process. 
The abbreviation will be employed here without further apology, since the complications of the 
more careful analysis will not alter the outcomes of the analysis.
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This follows since the evolution is deterministic and, if a reversible process has taken 
( , )1 1Sys Env  to a later state ( , )2 2Sys Env , this same process cannot also take it to a different state 
( , )3 3Sys Env . Moreover, this one process cannot take ( , )1 1Sys Env  also to ( , )3 2Sys Env , where 
we have set =3 2Env Env . A second result follows if we apply the condition of reversibility to 
Result 1.

Result 2. No reversible many-to-one processes (no strong erasure). We cannot have 
both of the processes with the same procedure P:

2 , ,( , ) ( , ) and ( , ) ( , )2 P rev 1 1 3 2 P rev 1 1Sys Env Sys Env Sys Env Sys Env  .

For if we assume otherwise and if we apply the condition of reversibility to these many-
to-one processes, we recover a forked process prohibited in Result 1. Bennett’s condition 
is applied in requiring that the environmental states are the same after the process is 
completed.

This result does not preclude many-to-one processes such as erasure. Rather it precludes 
strong erasure from being implemented by reversible, that is, non-dissipative, processes. 
The thermodynamic analysis of this section does not preclude implementation of weak 
erasure by a reversible process.

3.2 LIMITATIONS AND EXTENT OF APPLICATION

Purely thermodynamic analysis does not, I believe, have the means to assign a positive 
lower bound to the amount of entropy that must be created in strong erasure. This 
limitation is supported by the fact that statistical mechanical results must revert to 
thermodynamic results in the limit of vanishingly small Boltzmann’s constant k. Analyses 
within statistical mechanics derive positive lower bounds on entropy creation that are 
linear functions of Boltzmann constant k, such as the k log 2 commonly cited in Szilard’s 
problem. If we assume an arbitrarily small k, then these lower bounds to entropy creation 
become correspondingly small and have no non-zero lower bound.

In spite of these limitations, this thermodynamic result already ensures the failure of 
proposals for dissipationless strong erasure that only employ procedures that can be 
realized within phenomenological thermodynamics. This set is expansive and includes 
reversible heating and cooling, the reversible compression and expansion of the volume 
degrees of freedom of any thermal system, the reversible manipulation of the electric and 
magnetic properties of continuous media and a multiplicity of reversible processes applied 
to such continuous thermal systems undergoing phase transition. No combination of these 
processes, no matter how ingenious, can effect a dissipationless strong erasure, as long as 
the system is treated like one within phenomenological thermodynamics. In the case of 
Szilard’s problem, this means that the processes treat the one-molecule gas as a continuous 
fluid with the equation of state PV = kT. No procedure can implement strong erasure by any 
combination of reversible heatings or coolings or expansions or contractions, isothermal, 
adiabatic, or otherwise.

4. THE PHASE SPACE ANALYSIS
We can accommodate the statistical mechanical character of thermal systems by 
exploring their properties in a phase space analysis. It will be “Boltzmannian” in 
character. The totality of the system and its environment is represented by a single 
point in the phase space; and the evolution in time of the phase point is governed by an  
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unmanipulated4 Hamiltonian. Hence, the time evolution of the point representing 
the totality is restricted to a surface of constant energy in the total phase space. Since 
Szilard’s condition requires that a single procedure is used for erasure, it follows that 
the same Hamiltonian must be used, no matter which state is presented for erasure. 
This requirement plays a central role in the literature in establishing the existence of 
non-trivial lower bounds on dissipation. It is important in Myrvold’s (2021) analysis and 
again in the quantum dynamical recovery of lower bounds in Anderson (2022, 5–7, 11).

Drawing from the Boltzmannian approach, the Boltzmann entropy S of a state is defined 
by the phase volume phV  that represents the state as

 = log .phS k V  (1)

An independent assumption, distinctive of the Boltzmannian approach, is that the 
dynamical evolution of the phase point is such that the probability P that the system point 
will be in any given volume phV  of the phase space is proportional to its volume:

  ~ . phP V  (2)

The extent to which real systems conform with this assumption remains a topic of extensive 
debate in the literature on the foundations of statistical physics.

Liouville’s theorem of Hamiltonian mechanics asserts that volumes of phase space 
are preserved under Hamiltonian evolution. This preservation is incompatible with 
the Boltzmannian assumption that systems evolve to states of higher entropy and thus 
of greater phase volume, according to (1); and that they do so with greater probability, 
according to (2).

The standard solution within the Boltzmannian approach is to divide the phase space into 
coarse-grained volumes. They are then used to identify the state of a system whose phase 
point lies within a coarse-grained volume. For applications here, I believe it is adequate to 
identify a coarse-grained volume as the set of phase points compatible with some set of the 
macroscopic, thermodynamic variables. Consider, for example, a compressed volume of an 
ideal gas that expands to fill an otherwise evacuated and isolated chamber. It follows from 
Liouville’s theorem that the volume of phase space accessible to the gas’ phase point does 
not increase. Rather the accessible volume is drawn out into massively convoluted tendrils 
whose spatial degrees of freedom penetrate all parts of the larger chamber. The volume 
of that chamber is the macroscopic, thermodynamic variable that characterizes the spatial 
volume degrees of freedom of the gas. In this sense, the gas volume has increased and, when 
(3) is applied to the phase volume increase, it has done so with very great probability.

The most important characteristic of the Boltzmannian approach is that a process only 
advances with probabilistic assurances from an initial to a final state if the phase volume of 
the final state is significantly larger than that of the initial state. This phase space expansion 
corresponds to an increase in thermodynamic entropy and is the principal source of 
dissipation for all processes, erasure or otherwise, at molecular scales. We shall see below 
that it manifests in more familiar terms as the entropy creation needed to suppress the 
disruptive effects of thermal fluctuations.

4 In a Gibbsian analyses, a process might be represented by a Hamiltonian that varies over 
time as a function of an externally manipulated parameter. This one varied Hamiltonian can 
represent multiple procedures and thus violate Szilard’s condition. If it represents the rightward 
shift of the partition in a Szilard one-molecule gas cylinder, different mechanical couplings 
are needed according to whether the gas is trapped on the left and is expanding or the gas is 
trapped on the right and is compressed.
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The near universal practice in the present literature is to consider just the dissipation 
associated specifically with the many-to-one mapping of erasure. It ignores or mistakenly 
discounts these fluctuations as nuisances that can be idealized away without compromising 
the analysis. Because the practice is so wide-spread, the following will treat the dissipation 
specifically arising from the many-to-one mapping of erasure in the present in Section 4; 
and then treat fluctuations in Section 5.

The idea that changes in phase space volume determine an entropy cost of erasure has 
appeared often in the literature, but commonly only as a suggestive slogan. A more careful 
analysis, such as Oriols and Nikolic (2023, especially Figure 4), shows how coarse-graining 
must be considered if we are to recover the entropy costs of strong erasure. Turgut (2009) 
gives a similar if more complicated analysis. Hemmo and Shenker (2012, especially Ch. 12) 
investigated the same processes at some length from the phase space perspective. They do 
not arrive at a definite entropy cost for strong erasure because of concerns that the coarse-
grained macrostate is not uniquely defined.

4.1 WEAK ERASURE

Considerations of many-to-one mappings require no dissipation for the case of weak 
erasure for the simple reason that weak erasure does not require a many-to-one mapping. 
Consider a system initially in one of two distinct states, such as the L and R states of a 
one-molecule gas, and a reset state of equal phase volume. In weak erasure, both systems 
must evolve under the Hamiltonian to the same reset state. However, their environmental 
degrees of freedom can remain distinct so that the phase volumes associated with each 
state can remain the same in magnitude. In that case, it follows from (1) that there is 
no increase in entropy in each of the system and environment individually; and thus no 
heat is transferred from the system to the environment. The process is illustrated in the 
phase space of the highly stylized Figure 2. System degrees of freedom are represented 
horizontally; and environmental degrees of freedom are represented vertically.

This weak erasure, by design, does not conform with Bennett’s condition. If we neglect 
the dissipation required to suppress fluctuations, we can display a highly idealized, weak 
erasure procedure for the case of a Szilard one-molecule gas.5 Assume that the horizontal 
position only of the molecule in ordinary space in the divided gas cylinder is taken to be 
the system. Its vertical position is regarded a part of the environmental degrees of freedom. 
Then a thermodynamically reversible erasure procedure conforming with Szilard’s 
condition simply rotates the cylinder by ninety degrees as shown in Figure 3.

5 I believe this procedure was suggested to me by someone in informal communications 
and, if could recall who it was, I would credit them.

Figure 2 Weak erasure in 
phase space.

Figure 3 Weak Erasure of a 
Szilard One-molecule Gas 
System.
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While this procedure satisfies the formal definition of weak erasure, it does not realize the 
interesting case of erasure of a Szilard one-molecule gas where the trace of the erased state 
lies in a slight differential heating of the environment. I know of no procedure, conforming 
with Szilard’s condition, that does this.

4.2 STRONG ERASURE

A phase space analysis does show an unavoidable entropy cost in strong erasure, which 
must conform with both Szilard’s and Bennett’s conditions. If we take the initial states L 
and R to be distinct, each state and their associated environments will be represented by 
disjoint sub-volumes of the phase space ,ph LV  and ,ph RV ; and the reset state corresponds 
to another sub-volume ,ph resetV  that is not necessarily disjoint from the first two states in 
the system properties.6 For strong erasure, under Hamiltonian evolution, both system and 
environmental degrees of freedom must evolve to the same overall reset state. We might 
imagine that it must map the points in the volumes ,ph LV  and ,ph RV  to those in the reset state 

,ph resetV , as shown in Figure 4.

If this last specification is correct, it is already enough to assure us that strong erasure 
is impossible. The time evolution must take the two disjoint volumes of phase space 
associated with state L and R and evolve them to a single volume associated with the reset 
state. This many-to-one mapping in the phase space is precluded by the invertibility of the 
time evolution generated by the Hamiltonian.

The coarse graining of phase volumes escapes this difficulty and makes strong erasure 
possible. Using this conception, the Hamiltonian time evolution allows the phase 
volumes associated with each of the states L and R to evolve to disjointed volumes whose 
union, when coarse grained, represents a single state for both the system erased and the 
environment. This is shown in stylized form in Figure 5. The coarse-grained erasure state is 
the interleaved union of the two evolved states L and R on the right of the figure.

The figure shows how the time evolution respects the conservation of phase volume 
required by the Liouville theorem. The phase volume contributed by the state L to the reset 
state is the same in magnitude as state L’s initial phase volume; and state R contributes a 
corresponding volume to the reset state. However, the reset state corresponds to a coarse-
grained volume of phase space that is the union of the two component volumes. The 
coarse-grained volume is identified as all points in phase space whose system degrees of 
freedom conform with the reset state specification; and with the macroscopic variables that 

6 Resist the temptation to identify the pre-erasure state with the union of phase space 
volumes ,ph LV  and ,ph RV , so that it becomes the thermalized state “ +L R.” They differ in their 
dynamic properties. If the phase point is momentarily in L for the thermalized state, it may 
later be found in R, whereas this is impossible for pre-erasure state.

Figure 4 A Failed Many-to-
One Mapping.

Figure 5 A Coarse-grained 
Many-to-One Mapping.
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characterize the corresponding state of the environment after the erasure process. Typical 
erasure processes require a very slight heating of the environment, whose state is now 
characterized by a very slight increase in its temperature variable. Other environmental 
variables would include those that characterize the change of state of any machinery used 
to effect the erasure process.

These last conclusions can be given simple quantitative expressions. The coarse-grained 
volume of the reset state must equal or exceed in magnitude the sum of the individual 
volumes that evolve from states L and R. For the phase volume of the totality—system plus 
environment—we have:

 ,reset   ,   ,  + .ph ph L ph RV V V  (4)

Applying (1) to (4) we recover the minimum entropy cost of erasing each of the states L 
and R individually. That is,

 , , , , ,= – = k log ( / ) log (( + )/ ),L reset L ph reset ph L ph L ph R ph LS S S V V k V V VD  (5)

and similarly,

 , , ,k log (( + )/ ).R ph L ph R ph RS V V VD  (6)

In anticipation of the information-theoretic ideas to be introduced in Section 6 below, we 
can take the case in which we are uncertain over which state is presented for erasure. We 
assign probability p to state L; and probability 1–p to state R. The probabilistically-weighted 
entropy cost of erasure is:

 ( ), ,

, , , ,
+ (1 – ) – + 1 – .

+ +
ph L ph R

L R
ph L ph R ph L ph R

V V
p S p S k plog p log

V V V V

æ öæ ö æ ö÷ç ÷ ÷ç ç ÷ç ÷ ÷ç ç ÷÷ ÷D D ç ç ç ÷÷ ÷ç ç ç ÷÷ ÷ç ÷÷ ÷ç ç ÷ç è ø è øè ø
  (7)

It follows that the information-theoretic entropy infoS , defined below in (16), is a minimum 
entropy cost of erasure only when the probability p is tuned to one specific value:

 
      

,

, ,
= .

+
ph L

ph L ph R

V
p

V V
 (8)

The phase space and information theoretic analysis of Table 2 below considers the 
implications of this restriction in the value of p for the special case of ,   ,=ph L ph RV V , when 
=1/2p . This special case arises with a Szilard one-molecule gas, initially divided into equal 

cylinder volumes. Equations (5) and (6) entail an entropy cost of erasure of

 = log 2 log 2L R envS S k Q kT D D  (9)

The environmental heating envQ  follows when we assume that the environment is a heat 
bath at temperature T and that the reset state is one half the cylinder volume. These 
results are distinctive in specifying the entropy cost of erasure for each state presented 
individually.7

No procedure can realize these minima since, as we shall soon see, any such procedure 
must create further entropy to suppress fluctuations. However, if we neglect fluctuations, 
the following procedure, shown in Figure 6, realizes the minima (9) for the Szilard one-
molecule gas:

1. Remove the partition.

2. Reversibly compress the gas to the reset state.

7 Norton (2013, 4445) noted that erasure does not require dissipation in so far as it only 
involves the relocation equal volumes of phase space. This note applies only to weak erasure.
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The irreversible Step 1 only creates entropy in the amount indicated by equality in relations 
(5), (6), and (9). This procedure conforms with Szilard’s condition, since each step can be 
carried out independently of the physical state to be erased. It also conforms with Bennett’s 
condition. The reversible compression of Step 2 passes the same quantity of heat to 
environment, independently of the physical state to be erased. If we assume, with (9), that 
the system reset state is one half of the cylinder volume, the heat passed is = log 2envQ kT .

For more general cases of erasure, without some further specification of the systems 
involved, we can only conjecture that Szilard’s condition can be made to hold. Bennett’s 
condition will hold since the coarse-grained state of the reset system and auxiliaries is the 
same for each state erased.

5. THE ENTROPY COST OF SUPPRESSING 
FLUCTUATIONS
The inequalities of (5), (6), and (9) specify the minimum entropy cost of erasure. It is easy 
to see that the dynamical character of thermal systems prevents these lower bounds from 
being realized or even approached. This follows from the fact that thermal processes only 
advance when they are entropically favored, without their completion being absolutely 
assured. The absolute completion of the process discussed in Section 4 is an aspiration 
that cannot be fully achieved. An ideal gas expands since the expanded state has greater 
entropy. But a very rare, random fluctuation can still spontaneously recompress it back to 
the lower entropy state. A particle that has fallen into a deep energy well can still escape 
if it momentarily and improbably gains enough energy from a heat bath. Completion at 
molecular scales is always only probabilistic.

The general result governing this behavior is given by (4): The evolution in time of the 
phase point in the total phase space is such that the probability of being in a given region 
of phase space is proportional to the phase volume of the region, as shown in Figure 7.

Figure 6 Strong Erasure of 
a Szilard One-Molecule Gas 
System.

Figure 7 Occupation Times 
are Proportional to Phase 
Volume.
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Thus, if a process is to advance from some initial state “init” to a final state “fin,” the phase 
volume of the final state must be significantly larger than that of initial state. Only then 
can completion of the process be assured, and even then only probabilistically. There will 
always be some small probability that its migration takes the phase point back to the initial 
state. This expansion of the phase volume of the final state corresponds to the creation of 
entropy. The greater the entropy created, the more dissipative is the process, but the more 
probable is its completion.

The connection between phase volume and probability (4), combined with (1) above, yields 
what Einstein called “Boltzmann’s principle” or “ = logS k W .” It connects the entropy S of 
a system with its probability, P. Applied to the above process, Boltzmann’s principle asserts

 D D= – = log ( / ) or   / = exp( / ).fin init fin init fin initS S S k P P P P S k  (10)

This principle forces us to trade-off entropy creation against the probability of completion 
in processes on molecular scales, where entropies of a few k are significant. Take, for 
example, a process driven by an entropy increase:

= – = log 2,fin initS S S k

such as is common in Szilard’s problem. If this is the only entropy increase in the erasure 
process, then its completion is compromised. That is, we have from (10) that

/ = exp( / ) = exp(log 2) = 2.fin initP P S k

At any moment, the probability that erasure has been successfully completed is only twice 
the probability that the system has reverted by a fluctuation to the original, unerased state.

We need processes that are substantially more dissipative if we are to secure probabilistic 
completion of processes on molecular scales. That requires a coarse-grained reset state of 
substantially larger phase volume than the sum of ,ph LV  and ,ph RV , as shown in the stylized 
Figure 8.

In erasure, the phase volumes of states L and R are conserved, but their volumes are 
stretched into thin tendrils spread over the whole reset space. The coarse-grained reset 
state is the entirety of the rectangle in Figure 8 within which the evolved states L and R are 
found. As a phase point initially in L explores the tendrils, it spends much more time in the 

Figure 8 Expanded Reset 
State is Probabilistically 
Favored.
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large phase volume associated with the reset state than in the smaller volume of the initial, 
unerased state L (and similarly for phase points initially in R).

A modest probability ratio of only / = 20fin initP P  requires a twenty-fold increase in phase 
volume and an entropy creation of log 20 =3k k. Since the ratio of probabilities increases 
exponentially with entropy difference, the ratio rapidly grows large with modest increases 
in entropy creation and ceases to be a problem, outside the realm of molecular-scale 
processes.

These probabilistic disturbance to processes may seem abstruse. They are, however, familiar 
effects in thermal systems and are otherwise known as thermal fluctuations or, in electrical 
engineering, noise or static. They cannot be idealized away since they are intrinsic to the 
dynamical character of thermal properties. Two systems are in thermal equilibrium only 
when they are exchanging energy dynamically. Fluctuations—momentary imbalances—
are an ineliminable feature of those exchanges. Norton (2011, 2013, 2017) has computed 
many examples of fluctuations and the entropic cost of their suppression.

6. THE INFORMATION-THEORETIC ANALYSIS
While the phase space analysis above gives a compact and serviceable analysis of the 
entropic costs of erasure, by far the more common analysis uses information-theoretic 
ideas.8 That is, if we have a system that may be in either of two mutually exclusive states, 
L or R, but we know not which, an additional thermodynamic entropy (15) below is 
assigned to the system as a result of our lack of information.9 Erasure eliminates this lack 
of information and the thermal cost of erasure is determined from the ensuing decrease in 
the system’s thermodynamic entropy.

6.1 INTRODUCING INFORMATION ENTROPY

States L and R occupy disjoint phase spaces L  and R , where these spaces comprise only 
the degrees of freedom of the system L and R, excluding the degrees of freedom of the 
environment. Their union “ +L R” occupies phase space + =L R L R   . Their phase 
points are canonically distributed as:

 

( )
( )
( )+ +   +

( ) = exp – ( )/ / for
( ) = exp – ( )/ /  for
( ) = exp – ( )/ /  for

L L L

R R R

L R L R L R

x E x kT Z x
x E x kT Z x
x E x kT Z x

 

 

 





  (11)

where E(x) is the energy at phase point x and the normalizing partition functions are

 
+

+
Γ Γ Γ

( ) ( ) ( )= exp – = exp – exp – .
L R L R

L R L R
E x E x E xZ dx Z dx Z dx
kT kT kT

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è øò ò ò  (12)

Prior to erasure, the system is in one of states L or R. If, for example, the system is a Szilard 
one-molecule gas, the molecule is assuredly trapped by a partition on either the left or 
right side of the chamber, we know not which. This compounded state is represented by a 
weighted sum of the distributions:

8 For historical surveys of the earlier years, see Earman and Norton (1998, 1999) and Leff 
and Rex (2003).

9 This added probability is epistemic and does not conform with the dynamic conception of 
probability of condition (4) above.



13Norton 
Philosophy of  Physics 
DOI: 10.31389/pop.154

 ( ) = ( ) + (1 – ) ( ),comp L Rx p x p x    (13)

where 0< <1p  is a weight that may be an epistemic probability or a reflection of the rate 
of occurrence of the states.

The Gibbs entropy formula:

 
Γ

( ) = – log  ,S ρ k ρ ρ dxò  (14)

is applied to (13) to recover the entropy of the compound state:

+Γ

Γ Γ

= – log

– log – (1 – ) log – ( log + (1 – ) log(1 – ))

+ (1 – ) – ( log – (1 – ) log(1 – )).

L R

L R

comp comp comp

L L R R

L R

S k ρ ρ dx

p k ρ ρ dx p k ρ ρ dx k p p p p

pS p S k p p p p

=

=

ò
ò ò

 (15)

The third term in (15), an “information entropy” term, is reminiscent of Shannon’s 
information theory:

 ( )= – log + (1 – ) log(1 – ) .infoS k p p p p  (16)

The simplest case arises when entropies of the states L, R, and reset are equal, so that

= =L R resetS S S

This is, for example, the case of a Szilard one-molecule gas divided into equal volumes and 
then erased to L. In this case, the entropy change in the system upon erasure is

 = – = – < 0.sys L comp infoS S S S  (17)

Since total entropy totS  cannot decrease, it follows that the entropy of the environment 
increases by at least infoS . When the environment is represented by a heat bath at 
temperature T, this entropy increase corresponds to an environmental heat gain envQ  of at 
least infoTS . In sum, the dissipation associated with the erasure of the compound state is

 0 = – ( log + (1 – ) log (1 – )),tot env info env infoS S S Q TS kT p p p p     (18)

for =1/2,  infop S  takes its maximum value of log 2k  and log 2envQ kT .

6.2 ITS PROBLEMS

There are significant problems with these results. The most significant is that the lower 
bounds of (18) are unattainable. The information-theoretic analysis has neglected the 
dissipation arising from the need to suppress fluctuations.

If we set aside fluctuations and consider only the dissipation associated with many-to-
one mappings, these results are still inconsistent with the phase space analysis of erasure. 
Perhaps the most striking difference is that erasure in this information-theoretic analysis is 
not dissipative in the familiar sense of creating thermodynamic entropy. Rather, dissipation 
arises only in the sense that entropy is moved in a thermodynamically reversible process 
from the system to the environment, which results in a heating of the environment.

While this may seem unremarkable, it renders the information-theoretic approach 
incompatible with a simple formulation of what is called the “The Thermodynamics 
of Computing.” That simple formulation depends on an equation: Logically reversible 
computations are implemented by thermodynamically reversible processes; and, logically 
irreversible computations, such as erasure, are implemented by thermodynamically 
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irreversible processes. While Bennett’s (1982) is a standard presentation, the simple 
formulation is not endorsed by him. See Bennett (2003, 502).10

The information-theoretic conception of erasure is one of strong erasure in so far as it 
satisfies Bennett’s condition in passing the same quantities of heat (18) to environment, 
independently of the state erased. However, one reading of (18) is weak erasure. In it, these 
quantities are averages over many cases, so that differential heating of the environment 
may leave a trace of the state erased. Below, the information-theoretic analysis is compared 
with the phase space analysis for both weak and strong conceptions in Tables 1 and 2. 
There are mismatches in both cases.

To adjudicate the difference, we ask after the commonly discussed but fictional sorts of 
procedures applied to the Szilard one-molecule gas. Are there any that can realize these 
minima in the quantity observable through its heating effect, that is, through the heats 
passed to the environment? There is, as far as I know, no procedure that realizes the smaller 
minima, (18), when p differs from 1/2. To get a sense of the difficulty of finding a such a 
procedure, consider a simple candidate for the case of >1/2p , shown in Figure 9:

1. Reversibly move the partition rightwards from its position at half the volume to the 
larger pth fraction.

2. Remove the partition.

3. Reversibly compress the gas to the reset state of half the cylinder volume.

10 Erasure of data is thermodynamically reversible or irreversible, Bennett (2003) asserts, 
according to whether the data is “unknown” or “known,” respectively. In the first case 
of unknown data, thermodynamic reversibility is possible, since erasure is conceived as 
the conveyance of entropy—presumably the information entropy—from the system to the 
environment. In the second case, since there is no information entropy, erasure is conceived as 
thermodynamically irreversible, although it can be made reversible by the strategy of recording 
a trace of the data elsewhere.

PHASE SPACE ANALYSIS INFORMATION-THEORETIC ANALYSIS

Minimum total entropy change is zero. Minimum total entropy change is zero.

Minimum entropy change for system 
and environment individually is zero.

Minimum entropy change for system is – infoS
and for the environment is infoS .

Minimum heat passed to the 
environment is zero.

Minimum heat passed to the environment is 
= – ( log + (1 – ) log (1 – )) infoT S kT p p p p  and 

varies from 0 to log 2kT  depending on the 
value of p.

Results are independent of parameter p Results depend on parameter p

PHASE SPACE ANALYSIS INFORMATION-THEORETIC ANALYSIS

Minimum total entropy change is log 2k . Minimum total entropy change is zero.

Minimum total entropy change log 2k  
applies to erasure of each state L and R 
individually.

Minimum entropy change for the system is 
– infoS  and for the environment is infoS .

Minimum heat passed to the 
environment is log 2kT .

Minimum heat passed to the environment is 
= – ( log + (1 – ) log (1 – )) infoT S kT p p p p  and 

varies from 0 to log 2kT  depending on the 
value of p.

Results are independent of parameter p. Results depend on parameter p.

Table 1 Comparison for 
Weak Erasure.

Table 2 Comparison for 
Strong Erasure.
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This procedure is not a candidate for strong erasure, but only for weak erasure, since it 
violates Bennett’s condition. Different quantities of heat are passed to the environment 
according to which state is erased. It passes a net heat – logkT p if L is erased and a net 
heat of – log(1 – )kT p  if R is erased.11 If these two quantities are weighted with factors p 
and (1 – p) and summed, we recover infoTS , which is the minimum heat transfer to the 
environment of (18). The more serious problem is that Step 1. violates Szilard’s condition. 
Different apparatus are needed according to whether the gas is in L and Step 1. expands the 
gas, or the gas is in R and Step 1. compresses it. We may conjecture that a more elaborate 
procedure can conform with Szilard’s condition and perhaps even Bennett’s condition. If, 
however, the phase space analysis is correct for strong erasure, no such elaboration can 
succeed for strong erasure and the minimum environmental heating is just log 2kT .

If this last problem cannot be resolved, the entire rationale of the information-theoretic 
approach is undercut. The rationale is that erasure is thermodynamically costly because 
of our lack of information. The worse informed we are, supposedly the greater the cost. 
The extent of our lack of information is measured by the information entropy term (16), 
which also fixes the amount of thermal dissipation. The worst case is =1/2p , in which we 
are maximally unsure of which state is to be erased and (16) takes its maximum value. As 
p approaches 0 or 1, we become better informed as to which of L or R is to be erased. Now 
better informed, we should be able to erase with less dissipation, since the information 
entropy term (16) decreases to zero as p approaches these limits. However there seems to 
be no way to realize this lesser dissipation in strong erasure for more favorable values of p.

If the phase space analysis is correct, the parameter p has no place in the analysis at all, 
either as an epistemic probability or as a frequency of occurrence of states. The amount of 
dissipation derives only from the requirement that a single procedure must work equally 
on either of the two states presented for erasure in the one case at hand.

7. INFORMATION ENTROPY IS NOT GIBBS 
THERMODYNAMIC ENTROPY: THE FALLACY
The most serious problem facing the information-theoretic analysis is that the above 
introduction of the information-theoretic entropy term (16) is fallacious. The application 
of the Gibbs entropy formula (14) to the compound state (13) in the computation (15) 
is a misapplication of the Gibbs formalism. The full Gibbs entropy formula contains an 
additive constant whose evaluation leads to the elimination of the information entropy 
term in (15).

11 Step 1. passes heat – log 2kT p to the environment, if  L is erased; and – log 2(1 – )kT p  if  R 
is erased. The net heats transferred are recovered by adding the heat log 2kT  passed to the 
environment in Step 3.

Figure 9 Erasure of Szilard 
One-Molecule Gas System 
for Parameter p.
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7.1 DERIVING GIBBS ENTROPY

The Gibbs formalism, as developed in Gibbs (1914) and Einstein (1903), applies specifically 
to a canonically distributed system, such as in (11). It seeks to identify quantities that play 
the role of temperature, entropy, and the like in the statistical analysis by matching them 
with analogous terms in the thermodynamic analysis. A correlate of the Clausius entropy 
should match in two properties:

• Changes in expectation in this quantity correspond in reversible processes to the 
systems’ incremental gain in heat, divided by temperature; and

• Irreversible processes, driven by imbalanced generalized forces, correspond to those 
that increase the totality of this quantity.

Following the summary given in Norton (2005, §2.2), the change in the system’s mean 
energy E is determined under slow changes of the temperature ( )T t  and the Hamiltonian
( , ( ))E x t , where the changes are tracked by a path parameter t that affects the Hamiltonian 

through a parameter ( )t . The rate of change of the mean energy is given by:

Γ Γ Γ

( , )( , )= ( , ) ( , ) = ( , ) + ( , )  .
dρ x tdE d dE x λE x λ ρ x t dx ρ x t dx E x λ dx

dt dt dt dtò ò ò
The first term in the sum is identified as the rate at which work is done on the system. 
Comparing this expression with the thermodynamic equality

change in internal energy = work done on system + heat gained by system,

the second term is identified as the mean rate at which the system gains heat Q:

Γ

( , )
= ( , ) .

dρ x tdQ E x λ dx
dt dtò

Since this is a reversible process, we can use Clausius’ definition of entropy, rev= /dS dQ T, 
to introduce the thermodynamic entropy in terms of the mean heat gain revQ  as:

Γ

1 1 ( , )= = ( , )  = + log ( ) .revdQdS dρ x t d EE x λ dx k Z t
dt T dt T dt dt T

æ ö÷ç ÷ç ÷ç ÷ç ÷è øò
The last equality is recovered only after considerable manipulation. Integrating, we recover 
the expression for the canonical entropy:

=   + log + ,ES k Z constant
T

where the constant is independent of the variables altered in the reversible process with 
path parameter t.

This canonical expression is the one derived by Gibbs (1914, 44) and Einstein (1903, 182) 
and in subsequent developments of their work, such as Tolman (1927, 302–303). Recalling 
that the mean energy E and the partition function Z derive from the canonical distribution 
(11), this canonical entropy is equivalent to

 
Γ

= – log + ,S k ρ ρ dx constantò  (19)

Expressions like these appear in Gibbs’ analysis (e.g., 1914, 136) and in the Ehrenfests’ 
(1911, 51, 54, 61) comparison of Boltzmann’s and Gibbs’ developments. The unqualified 
identification of this expression as the “Gibbs entropy” comes much later in the history 
and may even be as late as Jaynes (1965).
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7.2 GIBBS ENTROPY OF A COMPOUND STATE

The derivation of the Gibbs entropy formula (19) assumes throughout that the probability 
distribution is canonical, that is, has the form exp(– ( )/ )/E x kT Z . In general, a compound 
probability distribution such as (13) does not have this form. It will only do so when the 
parameter p is adapted to the states L and R by

 = /( + ) and (1 – ) = / (  + ),L L R R L Rp Z Z Z p Z Z Z  (20)

for then,

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

+

Γ Γ

exp – exp – exp –
+ = .

( ) =  ( ) + (1 – ) (

+ +

)

=

L R

L R

L R L L R R L

R

R

comp L

E E E
Z kT Z kT kT

Z Z Z

x p x

Z

x p

Z Z Z

  

 

With p adapted to the states L and R, the Gibbs entropy formula (19) can be applied to a 
compound state (13) and, using computations analogous to (15), gives:12

  


+Γ
= – log +

= + (1 – ) – log + (1 – ) log(1 – ) + .
L R

comp comp comp

L R

S k ρ ρ dx constant

pS p S k p p p p constant  (21)

7.3 COMPATIBILITY OF ZERO STATES FOR ENTROPIES OF 
SIMPLE AND COMPOUND SYSTEMS

The presence of the constant in the canonical entropy and Gibbs entropy formulae is not 
generally noted. In familiar, simple states, such as a gas confined to a chamber, it is easily 
seen that it plays no role in the physics. It can be set to zero, which is the setting assumed 
for the following.

Matters become more delicate when we compare the entropies of different types of 
systems, such as a simple state and a compound state. While, overall, we can always set 
an arbitrary zero point for entropies, we must ensure that the entropies of simple and 
compound states are set with compatible zero points. Otherwise, we risk spurious terms 
confounding the comparison of the entropies of simple and compound states. To preclude 
this error, we continue the Einstein-Gibbs method of matching statistical quantities with 
analogous quantities in thermodynamics.

We can arrive at a compatible zero point for the entropies of simple and compound systems 
if we consider a process that connects them. It is the removal of the partition in the case of a 
Szilard one-molecule gas (and its analog for more general systems). That process precludes 
a zero value for the constant in (21) for compound states. For if we set the constant to zero, 
then the entropy of the compound system (13) is equal to the entropy of the thermalized 
system, that is, of the system “ +L R” of (11) prior to insertion of the partition:

+= .comp L RS S

12 This last consideration does not preclude application of the Gibbs entropy formula to other 
distributions. However, if the entropy recovered is to relate to the Clausius entropy rev= /dS dQ T , 
then a new justification beyond those of Gibbs and Einstein is needed. That such a justification is 
possible is suggested by the fact that a process that alters the entropies of states L and R in (21) by 

LS  and RS  leads to a new entropy = ( + )+ (1 – )( + )comp L L R RS p S S p S S  , which still has the form 
(23) below, even though p may not be adapted to the new states L and R by (20).
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This follows immediately from the Gibbs entropy formula, since the distribution (13) for 
the compound system adapted to the states by (20) is the same as that for the thermalized 
system in (11), so that +( ) = ( )comp L Rx x  .

Consider, thermodynamically, the process that ensues after removal of the partition in 
Szilard’s one-molecule gas. We momentarily have a one-molecule gas confined to one or 
the other side of the chamber. It will expand irreversibly to fill the chamber. Such expansion 
is an elementary example of an irreversible process in thermodynamics. If we have set the 
constant in (21) to zero for the compound state, then the momentarily compressed state 
and the thermalized state have the same entropy. In the absence of an entropic driving 
force, the two states are at equilibrium and we should not expect that one will evolve into 
the other.

This equality of entropies violates the fundamental notion of thermal dynamics, that 
changes are driven by entropy differences. If we are to preserve this notion, we must 
choose a different value for the constant in (21). The natural choice is

 ( )=+ log + (1 – ) log (1 – ) .constant k p p p p  (22)

With this choice, the entropy assigned to the compound system is merely

 = + (1 – ) .comp L RS p S p S  (23)

It is the natural value for the entropy. For, if we treat entropy like other extensive 
magnitudes in thermodynamics such as internal energy, we would expect the compounded 
value simply to be the weighted sum of the component magnitudes. The entropy of the 
thermalized state becomes

= + ( .1 – ) – ( log + (1 – ) log(1 – )) >therm L R L compS pS p S k p p p p S

Thus, the entropy of the thermalized state now exceeds that of the compound state by 
– ( log   + (1 – ) log (1 – ))k p p p p  and this entropy difference drives the irreversible process 
that takes the compound state to the thermalized state.

7.4 THE COMPOUND STATE IS A FLAWED CONCEPTION

These last considerations render unsustainable the information entropy term (16) in the 
expression (15) for the entropy of a compound state. However, they only make it “natural” 
to choose the specific value (22) for the constant that leads to the weighted sum of entropies 
(23). A simpler consideration indicates that (23) is the uniquely correct expression. It 
arises at the starting point of the information-theoretic analysis. Our goal at the outset is 
to find a way to represent our uncertainty over which of states L or R are present, using 
the parameter p.

If our concern is the entropy or energy or any other extensive magnitude among the states 
present, there is no other choice beyond a p weighted sum of the form (23). If p is read as 
a frequency of occurrence of the various states, then the p weighted sum of (23) simply 
is the average value of the entropy over many cases. If p is an epistemic probability, then 
(23) is the expectation value of the entropy. This is where the analysis should have started.

To start with the compounded distribution (13) as representing our uncertainty is 
an invitation for fallacy and confusion, for the compounding merges probabilities of 
different types. The probabilities of the canonical distributions ( )L x  and ( )R x  of (11) are 
dynamical and track the changes over time of the state of each system. They are the bearers 
of thermodynamic properties. The parameter p, introduced as a probability measure over 
the two canonical distributions ( )L x  and ( )R x , is static. It is set at the outset externally by 
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us and should not be presumed automatically to bear thermodynamic properties. Once the 
two are merged, we have a dangerous, blended measure that is neither a purely epistemic 
probability nor a purely thermodynamic probability. That does not preclude further 
computations with this hybrid structure. But it does mean that all such computations must 
proceed with the most extreme caution if a fallacy is to be avoided. The greatest danger 
is that thermodynamic properties are attributed incorrectly to the static probability p. 
The analysis of this section shows that the literature has not proceeded with the requisite 
caution and has committed precisely this fallacy.

There is, to my mind, something already dubious in the introduction of the parameter p. 
It is an additional term not present in the thermodynamics of the systems to be erased. 
Our circumstance is merely that we do not know which state is present. The phase space 
analysis shows that we can have a simple and serviceable analysis of erasure on that basis 
alone without any appearance of a “p.” We may hope that the introduction of the parameter 
p would be a benign detour whose influence can be eliminated. The accretion of problems 
for the information-theoretic analysis indicates otherwise.

8. CONCLUSION
On molecular scales, the dominant source of dissipation lies in the entropy creation needed 
to suppress thermal fluctuations and assure probabilistic completion of all processes of any 
type. In the case of erasure, there is a second, lesser source of dissipation that derives from 
the character of erasure itself as a many-to-one mapping. A major concern of this paper has 
been to determine the magnitude of this dissipation and to find its origin.

We have seen two competing analyses. The information-theoretic analysis locates this 
origin in the pre-erasure state itself. It attributes an additional thermodynamic entropy 
to this state that arises merely from our ignorance over which state is present for erasure. 
Dissipation consists merely in the passage of this extra entropy to the environment in what 
may otherwise be a thermodynamically reversible process.

The analysis fails in several ways. It indicates minima of dissipation in erasure that 
varies according to the extent of our ignorance, even though most of the minima appear 
unachievable in the case of strong erasure. More seriously, the attribution of this additional 
entropy is derived fallaciously from a misapplication of the Gibbs formalism that leads to a 
mistaken identification of information entropy and thermodynamic entropy.

The phase space analysis does not assign any increase in the entropy of the pre-erasure 
states from our uncertainty over which is present. Instead, the entropy cost of erasure 
arises from the core restriction that a single procedure must be employed in erasure, 
independently of the states presented for erasure what we may know of them.
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	1. INTRODUCTION
	1. INTRODUCTION
	In 1929, Leo Szilard () imagined a cylinder containing a gas of a single molecule at thermal equilibrium with its environment at temperature T. A partition is inserted and divides it into two parts, trapping the molecule on one side. If we conceive of this partitioned cylinder as a memory device recording either “left” L or “right” R, we can ask for the dissipation, that is, the minimum entropy created in returning it to a reset state, such as L, as shown in .
	1929
	Figure 1

	This standard example will be used to illustrate more general results about erasure in systems at molecular scales, that is, those in which quantities of heat and energy are of the order Boltzmann’s constant k.
	The entropy cost of erasure has been the locus of a literature that employs notions of information and computation. Szilard located an entropy cost in acquiring the information that identifies the location of the trapped molecule. Landauer () and Bennett () treated the relevant systems as computational devices that process information and located an entropy cost in the many-to-one logic of erasure. This focus on information and computation has, I believe, served only as an unproductive distraction. The many
	1961
	1987
	1
	1
	1



	The phase space analysis of Sections 4 and 5 adopts the assumptions of the “Boltzmannian” approach to statistical physics. Most notably, it assumes that the dynamical evolution of a system’s phase point is such that the probability of its being in some volume of the total system phase space is proportional to the phase space volume. Sections 6 and 7 draw on the “Gibbsian” approach. It employs the “Gibbs entropy” and the demonstration introduced by Gibbs and Einstein of the connection between Gibbs entropy a
	2023

	2. CONDITIONS ON ERASURE
	A transformation that takes either of two distinct states, such as L or R, to a reset state, such as L, is not by itself an erasure. The existing literature provides two additional conditions:
	1 It has, as shown in Norton (), made it easy to overlook a simple and serviceable exorcism of Maxwell’s demon that employs no information or computational notions.
	1 It has, as shown in Norton (), made it easy to overlook a simple and serviceable exorcism of Maxwell’s demon that employs no information or computational notions.
	2018


	Szilard’s condition. The erasure must be a single procedure, specified independently of which state is presented for erasure.
	This condition was fundamental to Szilard’s () attempt to use the gas to create a Maxwell’s demon, in which he needed to expand the gas reversibly and isothermally. The obstacle was that different mechanical couplings were needed, according to whether the molecule was trapped on the left or the right side of the partition. Prima facie, two different procedures were needed. Szilard sought to collapse them into a single procedure by including in the procedure the detection of the location of the molecule that
	1929

	Bennett’s condition. The completed erasure procedure must leave the environment in the same state, independently of which state was presented for erasure.
	If a many-to-one mapping leaves the environment in a different state according to which of the initial states was presented for erasure, then a trace of that original state remains. In computational terms, the data has not been erased but merely relocated. This condition is associated with Charles Bennett for his introduction of the notion of reversible computation. He sought to avoid Landauer’s () conclusion of an inevitable dissipation associated with erasure. Bennett’s () proposal was that data in one lo
	1961
	1973

	The importance of taking the global perspective is central to Bennett’s () exorcism of the Maxwell demon implicit in Szilard’s problem. Bennett argued erroneously that a dissipationless measurement of the position of Szilard’s molecule was possible and that it would enable a thermodynamically reversible resetting of Szilard’s cylinder. It would be a dissipationless erasure. The catch, Bennett argued, was that the device implementing the erasure must record the location of the molecule in its memory. Complet
	1987
	2
	2
	2



	What I shall call strong erasure satisfies both conditions. Weak erasure satisfies only Szilard’s condition. The weak notion, if it can be realized, may be useful in more practical applications in which the violation of Bennett’s condition consists of a very slight difference in the heating of the environment, according to the pre-erasure state.
	3. NO DISSIPATIONLESS, STRONG ERASURES IN THERMODYNAMICS
	The simplest theoretical analysis of erasure arises when we represent the system within a state space with the variables of ordinary thermodynamics: pressure P, volume V, internal energy U, entropy S, and so on. The one-molecule gas is represented as a continuous fluid, filling the volume accessible to it, conforming with the ideal gas law, PV = kT, where k is Boltzmann’s constant. The familiar laws of thermodynamics apply. Within this impoverished representation, no process corresponds to Szilard’s inserti
	2 Bennett’s detection device will be fatally disrupted by fluctuations, as noted in Earman and Norton ().
	2 Bennett’s detection device will be fatally disrupted by fluctuations, as noted in Earman and Norton ().
	1999, 13–14


	The result below in thermodynamics precludes a non-dissipative strong erasure. While I believe that something like it has long been implicit in discussions of erasure, I hope that it is useful to spell it out more fully so that its precise content is visible. The result is relevant to a statistical mechanical account of thermal systems. Such an account must either return the thermodynamic result in a suitable limit or give reasons for its failure.
	3.1 DERIVATION
	The two conditions for strong erasure are implemented in a thermodynamic analysis concerning a system “Sys,” such as Szilard’s one-molecule gas, and the environment “Env” with which it interacts. A procedure “P” includes familiar operations on thermal systems, such as heatings and coolings, compressions and expansions. It will evolve the pair from an initial state 1 to the final state 2. This evolution is written as
	(,)(,).11P22SysEnvSysEnv
	(,)(,).11P22SysEnvSysEnv

	The properties assumed for these processes are:
	Assumption 1: Determinism. The unique state  to which  evolves is fixed by  and P.
	(,)22SysEnv
	(,)11SysEnv
	(,)11SysEnv

	This assumption requires that the specification of the environment be sufficiently expansive as to include all parts that may affect the course of the process. What is precluded are indeterministic or stochastic evolutions in which an initial state may evolve under P in uncertain ways to different final states. A common representation of such a deterministic process is a single curve in the thermodynamic state space connecting initial and final states.
	Assumption 2: Reversibility. There are special cases of processes for which there are reversed processes that trace out the same time evolution of the system and environment states, but in the reversed order.
	3
	3
	3



	In such processes, the thermodynamic entropy of the combined system and environment is constant. Since dissipation here just means creation of entropy, they are the least dissipative processes. If we represent a possible reversible process as
	,(,)(,),11Prev22SysEnvSysEnv
	,(,)(,),11Prev22SysEnvSysEnv

	then the assumption assures us of the possibility of a second process:
	’,(,)(,).PrevSysEnvSysEnv2211
	’,(,)(,).PrevSysEnvSysEnv2211

	The reversed procedure P’ is realized by reversing the direction of heat and work transfers of the original process P.
	These assumptions support the following results:
	Result 1. No reversible forks. We cannot have both of the processes with the same procedure P:
	,,(,)(,)and(,)(,).11Prev2211Prev33SysEnvSysEnvSysEnvSysEnv
	,,(,)(,)and(,)(,).11Prev2211Prev33SysEnvSysEnvSysEnvSysEnv

	3 Norton () has argued that reversible processes cannot be the evolution of a single state since the assumption of the perfect equilibrium of driving forces precludes change. Rather, talk of a reversible process is an abbreviated reference to a collection of real, dissipative processes such that limit operations return the properties associated the reversible process. The abbreviation will be employed here without further apology, since the complications of the more careful analysis will not alter the outco
	3 Norton () has argued that reversible processes cannot be the evolution of a single state since the assumption of the perfect equilibrium of driving forces precludes change. Rather, talk of a reversible process is an abbreviated reference to a collection of real, dissipative processes such that limit operations return the properties associated the reversible process. The abbreviation will be employed here without further apology, since the complications of the more careful analysis will not alter the outco
	2016


	This follows since the evolution is deterministic and, if a reversible process has taken  to a later state , this same process cannot also take it to a different state . Moreover, this one process cannot take  also to , where we have set . A second result follows if we apply the condition of reversibility to Result 1.
	(,)11SysEnv
	(,)22SysEnv
	(,)33SysEnv
	(,)11SysEnv
	(,)32SysEnv
	=32EnvEnv

	Result 2. No reversible many-to-one processes (no strong erasure). We cannot have both of the processes with the same procedure P:
	.
	2,,(,)(,)and(,)(,)2Prev1132Prev11SysEnvSysEnvSysEnvSysEnv

	For if we assume otherwise and if we apply the condition of reversibility to these many-to-one processes, we recover a forked process prohibited in Result 1. Bennett’s condition is applied in requiring that the environmental states are the same after the process is completed.
	This result does not preclude many-to-one processes such as erasure. Rather it precludes strong erasure from being implemented by reversible, that is, non-dissipative, processes. The thermodynamic analysis of this section does not preclude implementation of weak erasure by a reversible process.
	3.2 LIMITATIONS AND EXTENT OF APPLICATION
	Purely thermodynamic analysis does not, I believe, have the means to assign a positive lower bound to the amount of entropy that must be created in strong erasure. This limitation is supported by the fact that statistical mechanical results must revert to thermodynamic results in the limit of vanishingly small Boltzmann’s constant k. Analyses within statistical mechanics derive positive lower bounds on entropy creation that are linear functions of Boltzmann constant k, such as the k log 2 commonly cited in 
	In spite of these limitations, this thermodynamic result already ensures the failure of proposals for dissipationless strong erasure that only employ procedures that can be realized within phenomenological thermodynamics. This set is expansive and includes reversible heating and cooling, the reversible compression and expansion of the volume degrees of freedom of any thermal system, the reversible manipulation of the electric and magnetic properties of continuous media and a multiplicity of reversible proce
	4. THE PHASE SPACE ANALYSIS
	We can accommodate the statistical mechanical character of thermal systems by exploring their properties in a phase space analysis. It will be “Boltzmannian” in character. The totality of the system and its environment is represented by a single point in the phase space; and the evolution in time of the phase point is governed by an unmanipulated Hamiltonian. Hence, the time evolution of the point representing the totality is restricted to a surface of constant energy in the total phase space. Since Szilard
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	Drawing from the Boltzmannian approach, the Boltzmann entropy S of a state is defined by the phase volume  that represents the state as
	phV

	  (1)
	=log.phSkV

	An independent assumption, distinctive of the Boltzmannian approach, is that the dynamical evolution of the phase point is such that the probability P that the system point will be in any given volume  of the phase space is proportional to its volume:
	phV

	  (2)
	 ~. phPV

	The extent to which real systems conform with this assumption remains a topic of extensive debate in the literature on the foundations of statistical physics.
	Liouville’s theorem of Hamiltonian mechanics asserts that volumes of phase space are preserved under Hamiltonian evolution. This preservation is incompatible with the Boltzmannian assumption that systems evolve to states of higher entropy and thus of greater phase volume, according to (1); and that they do so with greater probability, according to (2).
	The standard solution within the Boltzmannian approach is to divide the phase space into coarse-grained volumes. They are then used to identify the state of a system whose phase point lies within a coarse-grained volume. For applications here, I believe it is adequate to identify a coarse-grained volume as the set of phase points compatible with some set of the macroscopic, thermodynamic variables. Consider, for example, a compressed volume of an ideal gas that expands to fill an otherwise evacuated and iso
	The most important characteristic of the Boltzmannian approach is that a process only advances with probabilistic assurances from an initial to a final state if the phase volume of the final state is significantly larger than that of the initial state. This phase space expansion corresponds to an increase in thermodynamic entropy and is the principal source of dissipation for all processes, erasure or otherwise, at molecular scales. We shall see below that it manifests in more familiar terms as the entropy 
	4 In a Gibbsian analyses, a process might be represented by a Hamiltonian that varies over time as a function of an externally manipulated parameter. This one varied Hamiltonian can represent multiple procedures and thus violate Szilard’s condition. If it represents the rightward shift of the partition in a Szilard one-molecule gas cylinder, different mechanical couplings are needed according to whether the gas is trapped on the left and is expanding or the gas is trapped on the right and is compressed.
	4 In a Gibbsian analyses, a process might be represented by a Hamiltonian that varies over time as a function of an externally manipulated parameter. This one varied Hamiltonian can represent multiple procedures and thus violate Szilard’s condition. If it represents the rightward shift of the partition in a Szilard one-molecule gas cylinder, different mechanical couplings are needed according to whether the gas is trapped on the left and is expanding or the gas is trapped on the right and is compressed.

	The near universal practice in the present literature is to consider just the dissipation associated specifically with the many-to-one mapping of erasure. It ignores or mistakenly discounts these fluctuations as nuisances that can be idealized away without compromising the analysis. Because the practice is so wide-spread, the following will treat the dissipation specifically arising from the many-to-one mapping of erasure in the present in Section 4; and then treat fluctuations in Section 5.
	The idea that changes in phase space volume determine an entropy cost of erasure has appeared often in the literature, but commonly only as a suggestive slogan. A more careful analysis, such as Oriols and Nikolic (, especially ), shows how coarse-graining must be considered if we are to recover the entropy costs of strong erasure. Turgut () gives a similar if more complicated analysis. Hemmo and Shenker (, especially Ch. 12) investigated the same processes at some length from the phase space perspective. Th
	2023
	Figure 4
	2009
	2012

	4.1 WEAK ERASURE
	Considerations of many-to-one mappings require no dissipation for the case of weak erasure for the simple reason that weak erasure does not require a many-to-one mapping. Consider a system initially in one of two distinct states, such as the L and R states of a one-molecule gas, and a reset state of equal phase volume. In weak erasure, both systems must evolve under the Hamiltonian to the same reset state. However, their environmental degrees of freedom can remain distinct so that the phase volumes associat
	Figure 2

	This weak erasure, by design, does not conform with Bennett’s condition. If we neglect the dissipation required to suppress fluctuations, we can display a highly idealized, weak erasure procedure for the case of a Szilard one-molecule gas. Assume that the horizontal position only of the molecule in ordinary space in the divided gas cylinder is taken to be the system. Its vertical position is regarded a part of the environmental degrees of freedom. Then a thermodynamically reversible erasure procedure confor
	5
	5
	5


	Figure 3

	5 I believe this procedure was suggested to me by someone in informal communications and, if could recall who it was, I would credit them.
	5 I believe this procedure was suggested to me by someone in informal communications and, if could recall who it was, I would credit them.

	While this procedure satisfies the formal definition of weak erasure, it does not realize the interesting case of erasure of a Szilard one-molecule gas where the trace of the erased state lies in a slight differential heating of the environment. I know of no procedure, conforming with Szilard’s condition, that does this.
	4.2 STRONG ERASURE
	A phase space analysis does show an unavoidable entropy cost in strong erasure, which must conform with both Szilard’s and Bennett’s conditions. If we take the initial states L and R to be distinct, each state and their associated environments will be represented by disjoint sub-volumes of the phase space  and ; and the reset state corresponds to another sub-volume  that is not necessarily disjoint from the first two states in the system properties. For strong erasure, under Hamiltonian evolution, both syst
	,phLV
	,phRV
	,phresetV
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	6
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	,phLV
	,phRV
	,phresetV
	Figure 4

	If this last specification is correct, it is already enough to assure us that strong erasure is impossible. The time evolution must take the two disjoint volumes of phase space associated with state L and R and evolve them to a single volume associated with the reset state. This many-to-one mapping in the phase space is precluded by the invertibility of the time evolution generated by the Hamiltonian.
	The coarse graining of phase volumes escapes this difficulty and makes strong erasure possible. Using this conception, the Hamiltonian time evolution allows the phase volumes associated with each of the states L and R to evolve to disjointed volumes whose union, when coarse grained, represents a single state for both the system erased and the environment. This is shown in stylized form in . The coarse-grained erasure state is the interleaved union of the two evolved states L and R on the right of the figure
	Figure 5

	The figure shows how the time evolution respects the conservation of phase volume required by the Liouville theorem. The phase volume contributed by the state L to the reset state is the same in magnitude as state L’s initial phase volume; and state R contributes a corresponding volume to the reset state. However, the reset state corresponds to a coarse-grained volume of phase space that is the union of the two component volumes. The coarse-grained volume is identified as all points in phase space whose sys
	6 Resist the temptation to identify the pre-erasure state with the union of phase space volumes  and , so that it becomes the thermalized state “.” They differ in their dynamic properties. If the phase point is momentarily in L for the thermalized state, it may later be found in R, whereas this is impossible for pre-erasure state.
	6 Resist the temptation to identify the pre-erasure state with the union of phase space volumes  and , so that it becomes the thermalized state “.” They differ in their dynamic properties. If the phase point is momentarily in L for the thermalized state, it may later be found in R, whereas this is impossible for pre-erasure state.
	,phLV
	,phRV
	+LR


	characterize the corresponding state of the environment after the erasure process. Typical 
	characterize the corresponding state of the environment after the erasure process. Typical 
	erasure processes require a very slight heating of the environment, whose state is now 
	characterized by a very slight increase in its temperature variable. Other environmental 
	variables would include those that characterize the change of state of any machinery used 
	to effect the erasure process.

	These last conclusions can be given simple quantitative expressions. The coarse-grained volume of the reset state must equal or exceed in magnitude the sum of the individual volumes that evolve from states L and R. For the phase volume of the totality—system plus environment—we have:
	  (4)
	,reset , , +.phphLphRVVV

	Applying (1) to (4) we recover the minimum entropy cost of erasing each of the states L and R individually. That is,
	  (5)
	,,,,,=–=klog(/)log((+)/),LresetLphresetphLphLphRphLSSSVVkVVVD

	and similarly,
	  (6)
	,,,klog((+)/).RphLphRphRSVVVD

	In anticipation of the information-theoretic ideas to be introduced in Section 6 below, we can take the case in which we are uncertain over which state is presented for erasure. We assign probability p to state L; and probability 1–p to state R. The probabilistically-weighted entropy cost of erasure is:
	  (7)
	(),,,,,,+(1–)–+1–.++phLphRLRphLphRphLphRVVpSpSkplogplogVVVVæöæöæö÷ç÷÷çç÷ç÷÷çç÷÷÷DDççç÷÷÷ççç÷÷÷ç÷÷÷çç÷çèøèøèø

	It follows that the information-theoretic entropy , defined below in (16), is a minimum entropy cost of erasure only when the probability p is tuned to one specific value:
	infoS

	  (8)
	,,,=.+phLphLphRVpVV

	The phase space and information theoretic analysis of  below considers the implications of this restriction in the value of p for the special case of , when . This special case arises with a Szilard one-molecule gas, initially divided into equal cylinder volumes. Equations (5) and (6) entail an entropy cost of erasure of
	Table 2
	, ,=phLphRVV
	=1/2p

	  (9)
	=log2log2LRenvSSkQkTDD

	The environmental heating  follows when we assume that the environment is a heat bath at temperature T and that the reset state is one half the cylinder volume. These results are distinctive in specifying the entropy cost of erasure for each state presented individually.
	envQ
	7
	7
	7



	No procedure can realize these minima since, as we shall soon see, any such procedure must create further entropy to suppress fluctuations. However, if we neglect fluctuations, the following procedure, shown in , realizes the minima (9) for the Szilard one-molecule gas:
	Figure 6

	1. 
	1. 
	1. 
	1. 

	Remove the partition.

	2. 
	2. 
	2. 

	Reversibly compress the gas to the reset state.


	7 Norton () noted that erasure does not require dissipation in so far as it only involves the relocation equal volumes of phase space. This note applies only to weak erasure.
	7 Norton () noted that erasure does not require dissipation in so far as it only involves the relocation equal volumes of phase space. This note applies only to weak erasure.
	2013, 4445


	The irreversible Step 1 only creates entropy in the amount indicated by equality in relations (5), (6), and (9). This procedure conforms with Szilard’s condition, since each step can be carried out independently of the physical state to be erased. It also conforms with Bennett’s condition. The reversible compression of Step 2 passes the same quantity of heat to environment, independently of the physical state to be erased. If we assume, with (9), that the system reset state is one half of the cylinder volum
	=log2envQkT

	For more general cases of erasure, without some further specification of the systems involved, we can only conjecture that Szilard’s condition can be made to hold. Bennett’s condition will hold since the coarse-grained state of the reset system and auxiliaries is the same for each state erased.
	5. THE ENTROPY COST OF SUPPRESSING FLUCTUATIONS
	The inequalities of (5), (6), and (9) specify the minimum entropy cost of erasure. It is easy to see that the dynamical character of thermal systems prevents these lower bounds from being realized or even approached. This follows from the fact that thermal processes only advance when they are entropically favored, without their completion being absolutely assured. The absolute completion of the process discussed in Section 4 is an aspiration that cannot be fully achieved. An ideal gas expands since the expa
	The general result governing this behavior is given by (4): The evolution in time of the phase point in the total phase space is such that the probability of being in a given region of phase space is proportional to the phase volume of the region, as shown in .
	Figure 7

	Thus, if a process is to advance from some initial state “init” to a final state “fin,” the phase volume of the final state must be significantly larger than that of initial state. Only then can completion of the process be assured, and even then only probabilistically. There will always be some small probability that its migration takes the phase point back to the initial state. This expansion of the phase volume of the final state corresponds to the creation of entropy. The greater the entropy created, th
	The connection between phase volume and probability (4), combined with (1) above, yields what Einstein called “Boltzmann’s principle” or “.” It connects the entropy S of a system with its probability, P. Applied to the above process, Boltzmann’s principle asserts
	=logSkW

	  (10)
	DD=–=log(/)or /=exp(/).fininitfininitfininitSSSkPPPPSk

	This principle forces us to trade-off entropy creation against the probability of completion in processes on molecular scales, where entropies of a few k are significant. Take, for example, a process driven by an entropy increase:
	=–=log2,fininitSSSk
	=–=log2,fininitSSSk

	such as is common in Szilard’s problem. If this is the only entropy increase in the erasure process, then its completion is compromised. That is, we have from (10) that
	/=exp(/)=exp(log2)=2.fininitPPSk
	/=exp(/)=exp(log2)=2.fininitPPSk

	At any moment, the probability that erasure has been successfully completed is only twice the probability that the system has reverted by a fluctuation to the original, unerased state.
	We need processes that are substantially more dissipative if we are to secure probabilistic completion of processes on molecular scales. That requires a coarse-grained reset state of substantially larger phase volume than the sum of  and , as shown in the stylized .
	,phLV
	,phRV
	Figure 8

	In erasure, the phase volumes of states L and R are conserved, but their volumes are stretched into thin tendrils spread over the whole reset space. The coarse-grained reset state is the entirety of the rectangle in  within which the evolved states L and R are found. As a phase point initially in L explores the tendrils, it spends much more time in the large phase volume associated with the reset state than in the smaller volume of the initial, unerased state L (and similarly for phase points initially in R
	Figure 8

	A modest probability ratio of only  requires a twenty-fold increase in phase volume and an entropy creation of . Since the ratio of probabilities increases exponentially with entropy difference, the ratio rapidly grows large with modest increases in entropy creation and ceases to be a problem, outside the realm of molecular-scale processes.
	/=20fininitPP
	log20=3kk

	These probabilistic disturbance to processes may seem abstruse. They are, however, familiar effects in thermal systems and are otherwise known as thermal fluctuations or, in electrical engineering, noise or static. They cannot be idealized away since they are intrinsic to the dynamical character of thermal properties. Two systems are in thermal equilibrium only when they are exchanging energy dynamically. Fluctuations—momentary imbalances—are an ineliminable feature of those exchanges. Norton (, , ) has com
	2011
	2013
	2017

	6. THE INFORMATION-THEORETIC ANALYSIS
	While the phase space analysis above gives a compact and serviceable analysis of the entropic costs of erasure, by far the more common analysis uses information-theoretic ideas. That is, if we have a system that may be in either of two mutually exclusive states, L or R, but we know not which, an additional thermodynamic entropy (15) below is assigned to the system as a result of our lack of information. Erasure eliminates this lack of information and the thermal cost of erasure is determined from the ensuin
	8
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	6.1 INTRODUCING INFORMATION ENTROPY
	States L and R occupy disjoint phase spaces  and , where these spaces comprise only the degrees of freedom of the system L and R, excluding the degrees of freedom of the environment. Their union “” occupies phase space . Their phase points are canonically distributed as:
	L
	R
	+LR
	+=LRLR

	  (11)
	()()()++ +()=exp–()//for()=exp–()// for()=exp–()// forLLLRRRLRLRLRxExkTZxxExkTZxxExkTZx

	where E(x) is the energy at phase point x and the normalizing partition functions are
	  (12)
	++ΓΓΓ()()()=exp–=exp–exp–.LRLRLRLRExExExZdxZdxZdxkTkTkTæöæöæö÷÷÷ççç÷÷÷ççç÷÷÷ççç÷÷÷çççèøèøèøòòò

	Prior to erasure, the system is in one of states L or R. If, for example, the system is a Szilard one-molecule gas, the molecule is assuredly trapped by a partition on either the left or right side of the chamber, we know not which. This compounded state is represented by a weighted sum of the distributions:
	8 For historical surveys of the earlier years, see Earman and Norton (, ) and Leff and Rex ().
	8 For historical surveys of the earlier years, see Earman and Norton (, ) and Leff and Rex ().
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	9 This added probability is epistemic and does not conform with the dynamic conception of probability of condition (4) above.
	9 This added probability is epistemic and does not conform with the dynamic conception of probability of condition (4) above.

	  (13)
	()=()+(1–)(),compLRxpxpx

	where  is a weight that may be an epistemic probability or a reflection of the rate of occurrence of the states.
	0<<1p

	The Gibbs entropy formula:
	  (14)
	Γ()=–log ,Sρkρρdxò

	is applied to (13) to recover the entropy of the compound state:
	 (15)
	+ΓΓΓ=–log–log–(1–)log–(log+(1–)log(1–))+(1–)–(log–(1–)log(1–)).LRLRcompcompcompLLRRLRSkρρdxpkρρdxpkρρdxkpppppSpSkpppp==òòò

	The third term in (15), an “information entropy” term, is reminiscent of Shannon’s information theory:
	  (16)
	()=–log+(1–)log(1–).infoSkpppp

	The simplest case arises when entropies of the states L, R, and reset are equal, so that
	==LRresetSSS
	==LRresetSSS

	This is, for example, the case of a Szilard one-molecule gas divided into equal volumes and then erased to L. In this case, the entropy change in the system upon erasure is
	  (17)
	=–=–<0.sysLcompinfoSSSS

	Since total entropy  cannot decrease, it follows that the entropy of the environment increases by at least . When the environment is represented by a heat bath at temperature T, this entropy increase corresponds to an environmental heat gain  of at least . In sum, the dissipation associated with the erasure of the compound state is
	totS
	infoS
	envQ
	infoTS

	  (18)
	0=–(log+(1–)log(1–)),totenvinfoenvinfoSSSQTSkTpppp

	for  takes its maximum value of  and .
	=1/2, infopS
	log2k
	log2envQkT

	6.2 ITS PROBLEMS
	There are significant problems with these results. The most significant is that the lower bounds of (18) are unattainable. The information-theoretic analysis has neglected the dissipation arising from the need to suppress fluctuations.
	If we set aside fluctuations and consider only the dissipation associated with many-to-one mappings, these results are still inconsistent with the phase space analysis of erasure. Perhaps the most striking difference is that erasure in this information-theoretic analysis is not dissipative in the familiar sense of creating thermodynamic entropy. Rather, dissipation arises only in the sense that entropy is moved in a thermodynamically reversible process from the system to the environment, which results in a 
	While this may seem unremarkable, it renders the information-theoretic approach incompatible with a simple formulation of what is called the “The Thermodynamics of Computing.” That simple formulation depends on an equation: Logically reversible computations are implemented by thermodynamically reversible processes; and, logically irreversible computations, such as erasure, are implemented by thermodynamically irreversible processes. While Bennett’s () is a standard presentation, the simple formulation is no
	1982
	2003, 502
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	The information-theoretic conception of erasure is one of strong erasure in so far as it satisfies Bennett’s condition in passing the same quantities of heat (18) to environment, independently of the state erased. However, one reading of (18) is weak erasure. In it, these quantities are averages over many cases, so that differential heating of the environment may leave a trace of the state erased. Below, the information-theoretic analysis is compared with the phase space analysis for both weak and strong co
	Tables 1
	2

	To adjudicate the difference, we ask after the commonly discussed but fictional sorts of procedures applied to the Szilard one-molecule gas. Are there any that can realize these minima in the quantity observable through its heating effect, that is, through the heats passed to the environment? There is, as far as I know, no procedure that realizes the smaller minima, (18), when p differs from 1/2. To get a sense of the difficulty of finding a such a procedure, consider a simple candidate for the case of , sh
	>1/2p
	Figure 9

	Reversibly move the partition rightwards from its position at half the volume to the larger pth fraction.
	1. 

	Remove the partition.
	2. 

	Reversibly compress the gas to the reset state of half the cylinder volume.
	3. 

	10 Erasure of data is thermodynamically reversible or irreversible, Bennett () asserts, according to whether the data is “unknown” or “known,” respectively. In the first case of unknown data, thermodynamic reversibility is possible, since erasure is conceived as the conveyance of entropy—presumably the information entropy—from the system to the environment. In the second case, since there is no information entropy, erasure is conceived as thermodynamically irreversible, although it can be made reversible by
	10 Erasure of data is thermodynamically reversible or irreversible, Bennett () asserts, according to whether the data is “unknown” or “known,” respectively. In the first case of unknown data, thermodynamic reversibility is possible, since erasure is conceived as the conveyance of entropy—presumably the information entropy—from the system to the environment. In the second case, since there is no information entropy, erasure is conceived as thermodynamically irreversible, although it can be made reversible by
	2003


	This procedure is not a candidate for strong erasure, but only for weak erasure, since it violates Bennett’s condition. Different quantities of heat are passed to the environment according to which state is erased. It passes a net heat  if L is erased and a net heat of  if R is erased. If these two quantities are weighted with factors p and (1 – p) and summed, we recover , which is the minimum heat transfer to the environment of (18). The more serious problem is that Step 1. violates Szilard’s condition. Di
	–logkTp
	–log(1–)kTp
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	11
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	infoTS
	log2kT

	If this last problem cannot be resolved, the entire rationale of the information-theoretic approach is undercut. The rationale is that erasure is thermodynamically costly because of our lack of information. The worse informed we are, supposedly the greater the cost. The extent of our lack of information is measured by the information entropy term (16), which also fixes the amount of thermal dissipation. The worst case is , in which we are maximally unsure of which state is to be erased and (16) takes its ma
	=1/2p

	If the phase space analysis is correct, the parameter p has no place in the analysis at all, either as an epistemic probability or as a frequency of occurrence of states. The amount of dissipation derives only from the requirement that a single procedure must work equally on either of the two states presented for erasure in the one case at hand.
	7. INFORMATION ENTROPY IS NOT GIBBS THERMODYNAMIC ENTROPY: THE FALLACY
	The most serious problem facing the information-theoretic analysis is that the above introduction of the information-theoretic entropy term (16) is fallacious. The application of the Gibbs entropy formula (14) to the compound state (13) in the computation (15) is a misapplication of the Gibbs formalism. The full Gibbs entropy formula contains an additive constant whose evaluation leads to the elimination of the information entropy term in (15).
	11 Step 1. passes heat  to the environment, if L is erased; and  if R is erased. The net heats transferred are recovered by adding the heat  passed to the environment in Step 3.
	11 Step 1. passes heat  to the environment, if L is erased; and  if R is erased. The net heats transferred are recovered by adding the heat  passed to the environment in Step 3.
	–log2kTp
	–log2(1–)kTp
	log2kT


	7.1 DERIVING GIBBS ENTROPY
	The Gibbs formalism, as developed in Gibbs () and Einstein (), applies specifically to a canonically distributed system, such as in (11). It seeks to identify quantities that play the role of temperature, entropy, and the like in the statistical analysis by matching them with analogous terms in the thermodynamic analysis. A correlate of the Clausius entropy should match in two properties:
	1914
	1903

	• 
	• 
	• 
	• 

	Changes in expectation in this quantity correspond in reversible processes to the systems’ incremental gain in heat, divided by temperature; and

	• 
	• 
	• 

	Irreversible processes, driven by imbalanced generalized forces, correspond to those that increase the totality of this quantity.


	Following the summary given in Norton (), the change in the system’s mean energy  is determined under slow changes of the temperature  and the Hamiltonian, where the changes are tracked by a path parameter t that affects the Hamiltonian through a parameter . The rate of change of the mean energy is given by:
	2005, §2.2
	E
	()Tt
	(,())Ext
	()t

	ΓΓΓ(,)(,)=(,)(,)=(,)+(,) .dρxtdEddExλExλρxtdxρxtdxExλdxdtdtdtdtòòò
	ΓΓΓ(,)(,)=(,)(,)=(,)+(,) .dρxtdEddExλExλρxtdxρxtdxExλdxdtdtdtdtòòò

	The first term in the sum is identified as the rate at which work is done on the system. Comparing this expression with the thermodynamic equality
	change in internal energy = work done on system + heat gained by system,
	the second term is identified as the mean rate at which the system gains heat Q:
	Γ(,)=(,).dρxtdQExλdxdtdtò
	Γ(,)=(,).dρxtdQExλdxdtdtò

	Since this is a reversible process, we can use Clausius’ definition of entropy, , to introduce the thermodynamic entropy in terms of the mean heat gain  as:
	rev=/dSdQT
	revQ

	Γ11(,)==(,) =+log().revdQdSdρxtdEExλdxkZtdtTdtTdtdtTæö÷ç÷ç÷ç÷ç÷èøò
	Γ11(,)==(,) =+log().revdQdSdρxtdEExλdxkZtdtTdtTdtdtTæö÷ç÷ç÷ç÷ç÷èøò

	The last equality is recovered only after considerable manipulation. Integrating, we recover the expression for the canonical entropy:
	= +log+,ESkZconstantT
	= +log+,ESkZconstantT

	where the constant is independent of the variables altered in the reversible process with path parameter t.
	This canonical expression is the one derived by Gibbs () and Einstein () and in subsequent developments of their work, such as Tolman (). Recalling that the mean energy  and the partition function Z derive from the canonical distribution (11), this canonical entropy is equivalent to
	1914, 44
	1903, 182
	1927, 302–303
	E

	  (19)
	Γ=–log+,Skρρdxconstantò

	Expressions like these appear in Gibbs’ analysis (e.g., ) and in the Ehrenfests’ () comparison of Boltzmann’s and Gibbs’ developments. The unqualified identification of this expression as the “Gibbs entropy” comes much later in the history and may even be as late as Jaynes ().
	1914, 136
	1911, 51, 54, 61
	1965

	7.2 GIBBS ENTROPY OF A COMPOUND STATE
	The derivation of the Gibbs entropy formula (19) assumes throughout that the probability distribution is canonical, that is, has the form . In general, a compound probability distribution such as (13) does not have this form. It will only do so when the parameter p is adapted to the states L and R by
	exp(–()/)/ExkTZ

	  (20)
	=/(+)and(1–)=/( +),LLRRLRpZZZpZZZ

	for then,
	æöæöæö÷÷÷ççç÷÷÷ççç÷÷÷ççç÷÷÷çççèøèøèø+ΓΓexp–exp–exp–+=.()= ()+(1–)(++)=LRLRLRLLRRLRRcompLEEEZkTZkTkTZZZxpxZxpZZZ
	æöæöæö÷÷÷ççç÷÷÷ççç÷÷÷ççç÷÷÷çççèøèøèø+ΓΓexp–exp–exp–+=.()= ()+(1–)(++)=LRLRLRLLRRLRRcompLEEEZkTZkTkTZZZxpxZxpZZZ

	With p adapted to the states L and R, the Gibbs entropy formula (19) can be applied to a compound state (13) and, using computations analogous to (15), gives:
	12
	12
	12



	  (21)
	+Γ=–log+=+(1–)–log+(1–)log(1–)+.LRcompcompcompLRSkρρdxconstantpSpSkppppconstant

	7.3 COMPATIBILITY OF ZERO STATES FOR ENTROPIES OF SIMPLE AND COMPOUND SYSTEMS
	The presence of the constant in the canonical entropy and Gibbs entropy formulae is not generally noted. In familiar, simple states, such as a gas confined to a chamber, it is easily seen that it plays no role in the physics. It can be set to zero, which is the setting assumed for the following.
	Matters become more delicate when we compare the entropies of different types of systems, such as a simple state and a compound state. While, overall, we can always set an arbitrary zero point for entropies, we must ensure that the entropies of simple and compound states are set with compatible zero points. Otherwise, we risk spurious terms confounding the comparison of the entropies of simple and compound states. To preclude this error, we continue the Einstein-Gibbs method of matching statistical quantiti
	We can arrive at a compatible zero point for the entropies of simple and compound systems if we consider a process that connects them. It is the removal of the partition in the case of a Szilard one-molecule gas (and its analog for more general systems). That process precludes a zero value for the constant in (21) for compound states. For if we set the constant to zero, then the entropy of the compound system (13) is equal to the entropy of the thermalized system, that is, of the system “” of (11) prior to 
	+LR

	+=.compLRSS
	+=.compLRSS

	12 This last consideration does not preclude application of the Gibbs entropy formula to other distributions. However, if the entropy recovered is to relate to the Clausius entropy , then a new justification beyond those of Gibbs and Einstein is needed. That such a justification is possible is suggested by the fact that a process that alters the entropies of states L and R in (21) by  and  leads to a new entropy , which still has the form (23) below, even though p may not be adapted to the new states L and 
	12 This last consideration does not preclude application of the Gibbs entropy formula to other distributions. However, if the entropy recovered is to relate to the Clausius entropy , then a new justification beyond those of Gibbs and Einstein is needed. That such a justification is possible is suggested by the fact that a process that alters the entropies of states L and R in (21) by  and  leads to a new entropy , which still has the form (23) below, even though p may not be adapted to the new states L and 
	rev=/dSdQT
	LS
	RS
	=(+)+(1–)(+)compLLRRSpSSpSS


	This follows immediately from the Gibbs entropy formula, since the distribution (13) for the compound system adapted to the states by (20) is the same as that for the thermalized system in (11), so that .
	+()=()compLRxx

	Consider, thermodynamically, the process that ensues after removal of the partition in Szilard’s one-molecule gas. We momentarily have a one-molecule gas confined to one or the other side of the chamber. It will expand irreversibly to fill the chamber. Such expansion is an elementary example of an irreversible process in thermodynamics. If we have set the constant in (21) to zero for the compound state, then the momentarily compressed state and the thermalized state have the same entropy. In the absence of 
	This equality of entropies violates the fundamental notion of thermal dynamics, that changes are driven by entropy differences. If we are to preserve this notion, we must choose a different value for the constant in (21). The natural choice is
	  (22)
	()=+log+(1–)log(1–).constantkpppp

	With this choice, the entropy assigned to the compound system is merely
	  (23)
	=+(1–).compLRSpSpS

	It is the natural value for the entropy. For, if we treat entropy like other extensive magnitudes in thermodynamics such as internal energy, we would expect the compounded value simply to be the weighted sum of the component magnitudes. The entropy of the thermalized state becomes
	=+(.1–)–(log+(1–)log(1–))>thermLRLcompSpSpSkppppS
	=+(.1–)–(log+(1–)log(1–))>thermLRLcompSpSpSkppppS

	Thus, the entropy of the thermalized state now exceeds that of the compound state by  and this entropy difference drives the irreversible process that takes the compound state to the thermalized state.
	–(log +(1–)log(1–))kpppp

	7.4 THE COMPOUND STATE IS A FLAWED CONCEPTION
	These last considerations render unsustainable the information entropy term (16) in the expression (15) for the entropy of a compound state. However, they only make it “natural” to choose the specific value (22) for the constant that leads to the weighted sum of entropies (23). A simpler consideration indicates that (23) is the uniquely correct expression. It arises at the starting point of the information-theoretic analysis. Our goal at the outset is to find a way to represent our uncertainty over which of
	If our concern is the entropy or energy or any other extensive magnitude among the states present, there is no other choice beyond a p weighted sum of the form (23). If p is read as a frequency of occurrence of the various states, then the p weighted sum of (23) simply is the average value of the entropy over many cases. If p is an epistemic probability, then (23) is the expectation value of the entropy. This is where the analysis should have started.
	To start with the compounded distribution (13) as representing our uncertainty is an invitation for fallacy and confusion, for the compounding merges probabilities of different types. The probabilities of the canonical distributions  and  of (11) are dynamical and track the changes over time of the state of each system. They are the bearers of thermodynamic properties. The parameter p, introduced as a probability measure over the two canonical distributions  and , is static. It is set at the outset external
	()Lx
	()Rx
	()Lx
	()Rx

	There is, to my mind, something already dubious in the introduction of the parameter p. It is an additional term not present in the thermodynamics of the systems to be erased. Our circumstance is merely that we do not know which state is present. The phase space analysis shows that we can have a simple and serviceable analysis of erasure on that basis alone without any appearance of a “p.” We may hope that the introduction of the parameter p would be a benign detour whose influence can be eliminated. The ac
	8. CONCLUSION
	On molecular scales, the dominant source of dissipation lies in the entropy creation needed to suppress thermal fluctuations and assure probabilistic completion of all processes of any type. In the case of erasure, there is a second, lesser source of dissipation that derives from the character of erasure itself as a many-to-one mapping. A major concern of this paper has been to determine the magnitude of this dissipation and to find its origin.
	We have seen two competing analyses. The information-theoretic analysis locates this origin in the pre-erasure state itself. It attributes an additional thermodynamic entropy to this state that arises merely from our ignorance over which state is present for erasure. Dissipation consists merely in the passage of this extra entropy to the environment in what may otherwise be a thermodynamically reversible process.
	The analysis fails in several ways. It indicates minima of dissipation in erasure that varies according to the extent of our ignorance, even though most of the minima appear unachievable in the case of strong erasure. More seriously, the attribution of this additional entropy is derived fallaciously from a misapplication of the Gibbs formalism that leads to a mistaken identification of information entropy and thermodynamic entropy.
	The phase space analysis does not assign any increase in the entropy of the pre-erasure states from our uncertainty over which is present. Instead, the entropy cost of erasure arises from the core restriction that a single procedure must be employed in erasure, independently of the states presented for erasure what we may know of them.
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	ABSTRACT
	ABSTRACT
	1. 
	1. 
	1. 
	1. 

	Strong and weak notions of erasure are distinguished according to whether the single erasure procedure does or does not leave the environment in the same state independently of the pre-erasure state.

	2. 
	2. 
	2. 

	Purely thermodynamic considerations show that strong erasure cannot be dissipationless.

	3. 
	3. 
	3. 

	The main source of entropy creation in erasure processes at molecular scales is the entropy that must be created to suppress thermal fluctuations (“noise”).

	4. 
	4. 
	4. 

	A phase space analysis recovers no minimum entropy cost for weak erasure and a positive minimum entropy cost for strong erasure.

	5. 
	5. 
	5. 

	An information entropy term has been attributed mistakenly to pre-erasure states in the Gibbs formalism through the neglect of an additive constant in the “–k sum p log p” Gibbs entropy formula.
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