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Abstract

Quantum entanglement is widely regarded as a nonlocal phenomenon, but
Deutsch and Hayden (2000) have recently received growing support for their
claim that in the Heisenberg picture, entanglement can be characterised locally
using objects they call descriptors. I argue that the notion of locality under-
lying this claim is a flawed version of the principle of separability that I call
spatial separability. An improved version, spatiotemporal separability, reveals
that their claim is false. The proposed analysis of separability also reveals the
crucial feature of quantum theory that makes it “spooky” in any picture: quan-
tum entanglement entails that there are non-qualitative properties, which are
profoundly different from the qualitative properties we have come to expect
from classical physics.

1 Introduction

In 1935, Einstein, Podolsky and Rosen questioned the completeness of quan-
tum mechanics, partly based on their conviction that no real change in a system
could be a consequence of anything done to a spatially distant system. Ein-
stein’s later reflections would go on to give us further insights into his unshak-
able belief in locality. An analysis by Howard (1985, 1989) made it clear that
Einstein’s concerns can be separated into a principle of local action and a prin-
ciple of separability, even if Einstein himself did not always clearly distinguish
between the two. Loosely speaking, the former tells us that a physical theory
must have only local dynamics, while the latter tells us that the properties
postulated by the theory must always be reducible to local properties. Most
interpretations of quantum mechanics violate at least one of these principles.

The principle of local action is the better known of the two principles and
states that if A and B are spatially distant things, then an external influence
on A will have no immediate effect on B (Healey and Gomes 2022, para 63;
based on Einstein 1948). The overwhelming consensus is that Everett’s (1957)
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theory, which removes any wave function collapse, does not violate the principle
of local action. I will not retrace those well covered arguments, suffice it to say
that the theory’s dynamics are just those of unitary quantum mechanics, so
effects propagate along conventional causal chains. When a quantum system is
measured it can branch into different “worlds”, but there will be no immediate
effect on the local state of any distant system, even entangled partners. Only
when the results of measurements are physically brought together will any
correlation between the results be observed.

There is greater disagreement about whether Everett’s theory preserves sep-
arability (which we will cover in more detail shortly), leading a number of
authors to conclude that some form of locality is violated, as we see below.

“[In Everettian quantum physics] the dynamics of the theory are
local: there is no action at a distance. . . But quantum entanglement
means that a great deal of the information contained within the
quantum state is nonlocal. . . ” (Wallace 2012, 304-5)

“. . . a theory [such as the Everettian interpretation] can be dynam-
ically local, whilst violating local causality. . . nonseparable theories
allow additional ways in which correlations can be causally explained
without action at a distance.” (Brown and Timpson 2016, 117-8)

“[On Everettian accounts] we have some sort of nonlocality, but not
action at a distance.” (Myrvold 2016, 254)

Sitting on the other side of the divide, Deutsch and Hayden (2000) have received
growing support (Rubin 2001, Horsman and Vedral 2007, Kuypers and Deutsch
2021, Bédard 2021, Kong 2024) for the view that it is possible to characterise
quantum properties in an entirely local manner by using the Heisenberg picture
of quantum mechanics.

The aim of this paper is twofold. First, it is to show that Deutsch and
Hayden’s criterion for locality relies on a qualified version of the principle of
separability and that removing the qualification renders their approach nonlo-
cal. Second, it is to clarify the fundamental difference between quantum and
classical properties that underlies our intuition that entanglement is a nonlocal
phenomenon.

To achieve these ends, the paper proceeds as follows. I first review the
essential features of the Heisenberg picture and what Deutsch and Hayden
call descriptors, the objects they take to represent the intrinsic properties of
a quantum system. Because Heisenberg states do not in general represent the
physical state of system at a given time, it will be necessary to clarify our notion
of separability. Taking our cue first from Howard 1989 and then from Healey
and Gomes 2022, we will take it that to be separable, the intrinsic properties
of a compound system must supervene on those of its subsystems.
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Intrinsicality plays such an important role in separability that it will require
some unpacking. Of particular importance will be the condition that a physical
property of a thing is intrinsic only if it does not entail the existence of any other
thing. We will see that descriptors represent physical properties that do entail
the existence of other things, so cannot be intrinsic. However, the properties
can claim a restricted form of intrinsicality that I will call spatial intrinsicality.
Consequently, descriptors satisfy a similarly restricted version of separability,
spatial separability, but not the more general form that I call spatiotemporal
separability.

I will then examine the link between separability and locality, which will
require that I first clarify the difference between properties that are nonlocal
and those that are merely not local (extrinsic). I will propose that Deutsch and
Hayden’s notion of locality aligns with spatial separability but I will provide
examples to demonstrate that spatial separability is not an adequate criterion
for locality. Instead, I will argue that any property that is not spatiotemporally
separable is nonlocal, implying that descriptors do in fact represent nonlocal
properties.

Finally, the analysis of separability will have revealed a crucial but under-
appreciated fact that lies at the heart of the locality debate: the properties
of entangled systems are non-qualitative. That is, entangled systems have a
unique and continuing relation with the particular systems they have become
entangled with, which differs profoundly from the relations of classical physics.

2 Deutsch-Hayden Descriptors

Deutsch and Hayden propose that by using the Heisenberg picture, quantum
systems can be completely described using only local information, even when
they are entangled. In this section, we will review the Heisenberg picture
generally and more specifically the formalism Deutsch and Hayden introduce
to represent the properties of a system.

In the Schrödinger picture, we begin by specifying an initial state vector
|ψ(0)⟩ (or more generally, a density operator ρ(0)). The state vector is intended
to represent the intrinsic properties of a system at a point in time. We represent
any influence that might change that state by applying a unitary operator
U , which evolves the state to |ψ(t)⟩ = U |ψ(0)⟩. We link the state vector
with experimental outcomes by using it to determine expectation values for
some observable q̂. An observable is also represented by an operator (in this
case Hermitian) whose eigenvalues represent the possible values we might, in
principle at least, observe through measurement. In the Schrödinger picture,
the operator representing the observable never changes, so q̂=q̂(t)=q̂(0) for all
t. The expectation value of the observable at time t is given by ‘sandwiching’
the fixed observable between the state vector at that time and its conjugate
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transpose. Accordingly, the expectation value of the evolved state is given by:

⟨ψ(t)| q̂ |ψ(t)⟩

which, through substitution, could also be expressed as:

⟨ψ(0)|U †q̂(0)U |ψ(0)⟩

In the Heisenberg picture, by contrast, the expectation value is calculated by
taking the state vector to remain fixed (ψ = ψ(t) = ψ(0)) for all t, but evolv-
ing the observable by ‘sandwiching’ the initial observable between the unitary
operators, such that q̂(t) = U †q̂(0)U . So the expectation value is:

⟨ψ| q̂(t) |ψ⟩

which through substitution returns the same result:

⟨ψ(0)|U †q̂(0)U |ψ(0)⟩

Deutsch and Hayden take one further step and propose that the Heisenberg
state |ψ(0)⟩ need not represent any actual property of the system but can be
a standard constant, usually |0, . . . , 0⟩. In this case, the Heisenberg state does
not represent the initial state of the system but should rather be thought of as
a reference vector.1 As a consequence, the initial properties of the system must
be introduced via an operator U(0).

While unconventional, Deutsch and Hayden claim that including a U(0)
operator can be theoretically beneficial because it explicitly accounts for the
resources required to initially prepare the system (a claim we will not investigate
here).

Deutsch and Hayden’s real contribution to the locality debate comes from
their discussion of the evolving Heisenberg observables, which they call the
descriptors of a system. They claim that these descriptors provide us with all
the necessary information to locally and completely describe a system, even
after it becomes entangled with other systems.

Deutsch and Hayden develop their argument exclusively in terms of qubits
(quantum bits), which they maintain can simulate any quantum system with
arbitrary accuracy. Within that framework, the descriptor for qubit a of an
n-qubit network is described by a triple of its observables, which we shall call
its x-, y- and z-observables:

q̂qqa(t) = (q̂ax(t), q̂ay(t), q̂az(t))

The three observables are represented as Hermitian matrices, which are analo-
gous to the familiar 2×2 Pauli matrices with several important differences: the

1. As Bédard 2021 points out.
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matrices are much larger, at 2n × 2n; each matrix is associated with a specific
qubit; and, the matrices evolve over time (I will elaborate on these differences
shortly).

The descriptor q̂qqa (0) = U †(0)(1̂a−1 ⊗ σ̂σσ ⊗ 1̂n−a)U(0) represents the ini-
tial properties of the system. If the system is prepared such that the initial
Schrödinger state aligns with the reference vector (|0, . . . , 0⟩), then U(0) is sim-
ply the identity operator and the observables of the initial descriptor q̂qqa (0) will
be:

q̂ax(0) = 1̂a−1 ⊗ σ̂x ⊗ 1̂n−a

q̂ay(0) = 1̂a−1 ⊗ σ̂y ⊗ 1̂n−a

q̂az(0) = 1̂a−1 ⊗ σ̂z ⊗ 1̂n−a

These observables are matrices in which the ath item in the tensor product
is one of the three Pauli matrices (σ̂x, σ̂y, σ̂z), with the remainder identity
matrices. From here, each descriptor evolves according to:

q̂qqa(t) = U †q̂qqa(0)U

where U represents the cumulation of all operations acting on the qubit up
until time t.

This is not the place to delve into the full machinery of Deutsch and Hay-
den’s approach, for which the reader should consult their original paper and
the papers that build on their approach.2 Instead, I will consider the key fea-
tures with respect to a simple network. Take two qubits, denoted with the
subscript a and b respectively, prepared in the Schrödinger state |0a0b⟩. The
initial descriptors would then be:

q̂qqa(0) = (q̂ax(0), q̂ay(0), q̂az(0)) = (σ̂x ⊗ 1̂, σ̂y ⊗ 1̂, σ̂z ⊗ 1̂)

q̂qqb(0) = (q̂bx(0), q̂by(0), q̂bz(0)) = (1̂⊗ σ̂x, 1̂⊗ σ̂y, 1̂⊗ σ̂z)

These descriptors, derived as they are from the Pauli matrices, will satisfy the
algebraic relations:

[q̂qqa(0), q̂qqb(0)] = 0 (a ̸= b)

q̂ax(0)q̂ay(0) = iq̂az(0) (and cyclic permutations)

q̂aw(0)
2 = 1̂ (w ∈ {x, y, z})

From the second line above, we see a redundancy that means we only need two
of the three descriptors to fully describe any qubit, so henceforth, we will just
specify descriptors in terms of the observables q̂ax(0) and q̂az(0).

2. Such as Horsman and Vedral 2007, Kuypers and Deutsch 2021, and Bédard 2021.
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An important feature of a descriptor is that it is a large matrix that contains
enough information to ‘record’ the relations between the qubit it is assigned
to and every other qubit. The descriptors q̂qqa(0) and q̂qqb(0) initially tell us that
there are no relations between the observables of each qubit, which we read
from the identity matrices in the tensor products for each. But as the qubits
interact, the matrices will begin to fill with values that tell us how the relations
between them have evolved.

Conveniently, every operation (gate) that acts on the system can be ex-
pressed as a function of the observables, since between them they represent all
of the identity and Pauli matrices for each qubit. So, for example, the Pauli X
(NOT) gate applied to the first qubit is the operator UNOT = σ̂x ⊗ 1̂, which we
can equivalently represent as UNOT = q̂ax(0).

While the functional representation of gates in terms of initial observables is
convenient, the real power of the Deutsch-Hayden notation lies in its represen-
tation of multi-qubit gates. A controlled Pauli X (CNOT) gate, which performs
the NOT operation to qubit b just in case qubit a is in the Schrödinger state
|1⟩, can be expressed as:

UCNOT = (1̂ + q̂az(0) + q̂bx(0)− q̂az(0)q̂bx(0))/2

Using this framework, some rather elegant results begin to emerge. The impact
of three common gates – the NOT, the Hadamard (H), and the CNOTa,b gates
(where a is the control and b the target qubit) – are shown below with the time
arguments removed to reduce notational clutter:

(q̂ax, q̂az)
NOTa−−−→ (q̂ax,−q̂az)

(q̂ax, q̂az)
Ha−−−→ (q̂az, q̂ax){

(q̂ax, q̂az)
(q̂bx, q̂bz)

}
CNOTa,b−−−−→

{
(q̂axq̂bx, q̂az)
(q̂bx, q̂bz q̂az)

}
We can read from the first line that the NOT gate toggles the value of the
z-observable, while the second line tells us that the H gate swaps the x- and z-
observables, both of which seem familiar given their representation on the Bloch
sphere. Of more interest is the last operation, in which two qubits interact.
We see that the CNOT gate effectively results in both qubits ‘exchanging’ an
observable value. The CNOT demonstrates a necessary (but not sufficient3)
condition for entanglement that is writ large in the Deutsch-Hayden formalism
– a full description of the properties of an entangled qubit must contain a
reference to a property (or properties) of its entangled partner (more on this
and its implications later).

3. Because there may be no observable consequence, such as applying a CNOT to the |00⟩ state,
which has no impact on the Schrödinger state and so leaves it unentangled.
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It is also possible to use this approach to describe arbitrary rotations and
phase shifts such that we could define a universal quantum gate set, but the few
gates above will suffice for our purposes. More to the point, we now have the
resources to represent a Bell state, in particular the Schrödinger state (|00⟩ +
|11⟩)/

√
2, which we achieve by applying a Hadamard followed by a CNOT gate.

In terms of descriptors, the operation can be represented as:{
(q̂ax, q̂az)
(q̂bx, q̂bz)

}
Ha,CNOTa,b−−−−−−−→

{
(q̂az q̂bx, q̂ax)
(q̂bx, q̂bz q̂az)

}
This combination of operations sees an exchange of observable values between a
and b, but only after a’s observables have been swapped, highlighting a second
necessary condition for entanglement. Because the Heisenberg state is |00⟩, the
two qubits initially have a definite value in the computational basis. That is, if
measured, each system would be found in the |0⟩ state with certainty. For two
systems to be considered entangled, neither qubit can have a definite value in
any basis. As |0⟩ is an eigenstate of q̂az and q̂bz, if the system evolves such that
either qubit has an observable in which only q̂az, q̂bz or their product appear,
then we know that the qubits cannot be entangled because at least one qubit
has an observable with a definite value.4

For our purposes, the two key messages we should take from this analysis
are: first, that descriptors provide a means to completely describe the properties
of each individual qubit in a network; and second, that nothing other than these
descriptors is required to completely describe the properties of the network as
a whole.

3 Separability

As outlined earlier, two key principles have long been associated with locality:
the principle of local action and the principle of separability. There seems
little doubt that unitary quantum mechanics, and therefore Deutsch-Hayden
descriptors, satisfy the former, but their status with respect to the latter is
contentious. My goal is to demonstrate that Deutsch-Hayden descriptors only
satisfy a qualified version of the principle, so the first step will be to establish
clear criteria with which we can assess separability.

Howard was the first to clearly articulate the principle of separability, draw-
ing on passages from Einstein such as the following:

It is characteristic of these physical things that they are conceived of
as being arranged in a space-time continuum. Further, it appears to

4. More generally, for pure bipartite entanglement, qubits a and b are said to be entangled if and
only if there exists descriptors q̂ai(t) and q̂bj(t) such that ⟨q̂ai(t)q̂bj(t)⟩ ≠ ⟨q̂ai(t)⟩⟨q̂bj(t)⟩.
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be essential for this arrangement of the things introduced in physics
that, at a specific time, these things claim an existence independent
of one another, insofar as these things “lie in different parts of space.”
(Einstein 1948, translated by Howard 1985, 187)

To sharpen Einstein’s idea, Howard introduced the notion of separability. He
proposed that physical systems are separable if and only if they possess distinct
physical states and the joint state of the systems is wholly determined by the
separate states (Howard 1989, 225-226). On a conventional understanding of
the determination relation, we can infer that the state of a compound system
AB would be separable only if there is a function that maps the states of A and
B to the states of AB. The simplest form of separability obtains when the state
of a compound system AB is a simple conjunction or summation of the states
of its subsystems. For instance, the mass of a compound system might simply
be the summed mass of its subsystems. But more complex functions are also
possible. For instance, the temperature of a system is wholly determined by the
mass and velocity of its particles, but the function is not a simple summation
of those masses or velocities.

On a technical note, determination is not precisely the right relation for
our separability criterion because determination is typically taken to be an ir-
reflexive relation. If A and B determine AB, then AB cannot also determine A
and B. But there is no good reason to suppose that the relation relevant here
should be irreflexive. It is of no concern if the state of a separable compound
system AB also maps back to the state of the subsystems A and B – in fact,
we expect it to be so in quantum mechanics. In the context of separability, the
more precise relation is the philosopher’s friend, supervenience, which entails
a mapping from the subvenient set to the supervenient set but does not pre-
clude a mapping in the opposite direction. Accordingly, instead of Howard’s
formulation, we will adopt Healey’s (2022) version of state separability:

State separability: The state assigned to a compound physical
system is separable if and only if it is supervenient on the states
assigned to its component subsystems.

In quantum mechanics, state separability has a clear mathematical formula-
tion that satisfies this condition, which for pure states, only obtains when the
subsystems are not entangled.5 A pure state of a bipartite quantum system

5. For mixed states, the state can be represented as a density operator ρAB , which is is considered
separable in quantum mechanics if and only if it can be written as ρAB =

∑
i piρ

A
i ⊗ ρBi where pi ≥ 0,∑

i pi = 1. As an anonymous referee points out, this type of separability does not always align with
the general notion of state separability. For instance, when the states of the subsystems are classically
correlated they are considered separable (not entangled) but would not satisfy Healey’s condition.
We can take it that both Howard and Healey have implictly assumed we have full knowledge of the
state of the systems, and therefore the separability condition applies only when the joint system is
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∣∣ψAB
〉
, defined on a Hilbert space HA ⊗ HB, is separable if and only if it

can be written as the tensor product of the state of its subsystems, that is:∣∣ψAB
〉
=

∣∣ψA
〉
⊗

∣∣ψB
〉
. To satisfy this condition, the state of AB must su-

pervene on the states of A and B, so we can understand the condition as the
quantum mechanical implementation of the more general separability criterion.6

A hallmark of state separability is that when the states of the individual
subsystems are completely specified, those states will also be sufficient to com-
pletely specify the state of the whole. And conversely, with nonseparable states,
specifying the state of the subsystems is not enough to specify the state of the
compound system. This is exactly what we find with entangled systems in the
Schrödinger picture – the joint state of the compound system is not completely
specified by the state of its individual subsystems; we also need information
about the relations between the states of each subsystem.

We will shortly examine whether Deutsch and Hayden’s approach conforms
with the principle of separability but before we do, we will need to address an
issue that threatens to derail our efforts. While state separability is regarded
an appropriate test of separability in the Schrödinger picture, what is referred
to as a state in the Heisenberg picture is quite different from a Schrödinger
state or a classical state. For a start, Heisenberg states do not change over
time. For Deutsch and Hayden, the properties of a system are encoded in its
descriptor and the Heisenberg state rather than in the state alone, so it will
be important to ensure our criterion for separability holds across the different
pictures of quantum mechanics, and ideally across different physical theories.

4 Theory independent separability

The type of separability we have considered thus far is state separability, which
is the standard approach to understanding separability in quantum mechanics.
In the Schrödinger picture, a state is conventionally taken to represent the
properties of a system at a point in time (as it is for most classical theories).
So when the state of a system is separable, it follows that the properties of
that system are separable. That is, the properties of the compound system
supervene on the properties of its subsystems.

But a Heisenberg state rarely represents the properties of a system. The
Heisenberg state is a constant that does not change over time and, under the

in a pure state. To examine Deutsch and Hayden’s proposal, we need only consider pure states, so
will not consider mixed states further.

6. Strictly speaking, the product function presented here is a sufficient but not necessary condition
for the more general form of separability which, as Winsberg and Fine (2003) point out, could also
be satisfied with other functions. However, if A and B are the only objects in the subvenient set
(and not, for example, both measurement settings), the product function seems the most plausible
choice. Fogel (2007) surveys the options and provides a more comprehensive analysis of each.
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Deutsch-Hayden approach, is an arbitrary reference vector that need not repre-
sent the system’s properties at any time. Instead, the information that repre-
sents the system’s properties at each point in time is encoded in its descriptor,
which must be combined with the Heisenberg state to arrive at a complete
representation of its physical state.

Because the Heisenberg state does not (on its own) represent the physical
state of the system at any time, separability of the Heisenberg state is cer-
tainly not a sufficient condition for separability. Instead, separability should
obtain whenever the properties of a system (its physical state) supervenes on the
properties (physical states) of its subsystems. As we will see shortly, Howard’s
separability more specifically requires that the intrinsic properties of a system
should supervene on the intrinsic properties of its subsystems. In fact, intrin-
sicality will turn out to be such a critical feature of our theory independent
version of separability that it is worth taking a few moments to review the
concept.

We will understand intrinsicality in the sense proposed by Lewis (1983):
that statements that ascribe intrinsic properties to something must be entirely
about that thing. (Lewis’s original characterisation also included several other,
overlapping notions,7 but the differences will be largely irrelevant for our pur-
poses.) Intrinsic properties can be contrasted with extrinsic properties.8 State-
ments ascribing extrinsic properties tell us about a thing’s relations with other
things. We might say of system A, for instance, that it is heavier than system
B, a statement that expresses a property of system A but is not entirely about
system A.

Lewis’s original characterisation of intrinsicality is not precise enough for
our purposes but later work by himself and others provides greater clarity.
After refining Kim’s (1982) definition of an “internal property”, Langton and
Lewis (1998) and later Lewis (2001) proposed that an intrinsic property must be
compatible with what they call loneliness. To be compatible with loneliness, it

7. “A sentence or statement or proposition that ascribes intrinsic properties to something is
entirely about that thing; whereas an ascription of extrinsic properties to something is not entirely
about that thing, though it may well be about some larger whole which includes that thing as part.
A thing has its intrinsic properties in virtue of the way that thing itself, and nothing else, is. Not so
for extrinsic properties, though a thing may well have these in virtue of the way some larger whole is.
The intrinsic properties of something depend only on that thing; whereas the extrinsic properties of
something may depend, wholly or partly, on something else. If something has an intrinsic property,
then so does any perfect duplicate of that thing; whereas duplicates situated in different surroundings
will differ in their extrinsic properties.” (Lewis 1983, 197) See Marshall (2016), for a more fulsome
discussion of the differences between each criterion. The duplication criterion is somewhat distinct
from the others but yields similar overall conclusions, albeit via a more circuitous path.

8. Extrinsic properties are sometimes called relational properties, but we will avoid that term
because relations can also exist between the internal parts of a system so a property could be both
intrinsic and relational.
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must be possible for something to have that property, even if no other physical
thing existed.

The intuition behind this condition is clear: the intrinsic properties of a
thing should be the properties of that thing and that thing alone, so should not
depend on its relations with other things. That is, an intrinsic property should
not depend on the properties of any other thing, including whether any other
thing exists. The ultimate test of intrinsicality is therefore whether a property
could be instantiated even if the thing it was ascribed to were the only thing
in existence.

By way of example, being a person can be an intrinsic property because
something could be a person even if it was alone in the universe, but being a
sister cannot, because it requires a certain relation with another person – a
sibling. Being a sister is not compatible with loneliness because a person could
only have that property if at least one other person existed.

Let us formalise this notion of intrinsicality as follows:9

Intrinsicality: A property is intrinsic to a system if and only if it
does not entail the existence of any other system.

With that established, we can return to see why properties must be intrinsic to
be separable. If separable properties did not need to be intrinsic, we would find
that entanglement would be ruled separable on a technicality. The extrinsic
properties of a subsystem include the relations that subsystem has with other
subsystems. If A and B are entangled, then being entangled with B would be an
extrinsic property we could ascribe to system A. In that case, the entanglement
property would supervene on the properties of system A alone because being
entangled with B is an extrinsic property of A. In fact, any relation between the
systems could be expressed as an extrinsic property of either of the component
systems, so separable properties must be intrinsic to avoid the situation where
every relation automatically qualifies as separable.

If separability entails that the properties of component systems are intrinsic,
it is easy to see that the properties of the compound system must also be
intrinsic. If not, any extrinsic property of a compound system would qualify as
nonseparable because it would not supervene on the intrinsic properties of the
subsystems. For instance, being smaller than the Sun is an extrinsic property
of the Earth and the Moon as a compound system, but the property does not
supervene on the intrinsic properties of the Earth and the Moon because it also
depends on the size of the Sun.

9. While this version of intrinsicality is appropriate for straightforward physical properties such
as those represented by descriptors, it does not generalise to all properties. Langton and Lewis show
that compatibility with loneliness is not always a necessary or sufficient condition for intrinsicality.
In particular, they argue that properties that entail loneliness and disjunctive properties must also
have (or lack) certain other features. Fortunately, a descriptor could never entail loneliness and it
does not represent disjunctive properties, so we can safely ignore these complications.
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There is one last aspect of intrinsicality that will be important for analysing
Deutsch-Hayden descriptors. Intrinsicality can be spatial, temporal or spa-
tiotemporal. We are most familiar with spatiotemporally intrinsic properties,
which are properties that are compatible with loneliness in both space and time;
that is, properties that do not depend on the existence of any other thing now
or ever. A property such as being over six feet tall is spatiotemporally intrinsic.
A person could be over six feet tall even if no other physical thing existed at
any other place or any other time.

Other properties might be compatible with spatial or temporal loneliness,
but not both. If we say that a person is taller now than when they were a
child, the property does not depend on the existence of any physically separate
thing now but does depend on the existence of another temporal part of the
same person in the past. We might call such a property spatially but not
temporally intrinsic. By contrast, the property being presently taller than their
sister depends on the existence of a sister now but does not depend on the
existence of any physical thing in the past or future, so would be temporally
but not spatially intrinsic. (See the footnote for more rigorous conditions.10)

We now have all the pieces we need to formulate our criteria for separa-
bility. Rather than referring to the “subsystems” of a compound system, we
will formulate these criteria in terms of parts so that we can more naturally
accommodate compounds composed of either (or both) spacelike or timelike
separated parts. We will also assume that the systems and their parts are
always physical. With these refinements in place, our most general notion of
separability is:

Separability: An intrinsic property of a compound system is sep-
arable iff it supervenes on the intrinsic properties of the compound
system’s parts.

As with intrinsicality, we can then identify three subcategories of separability:
spatial separability, where the spatially intrinsic properties of a compound sys-
tem supervene on those of its spatially separated parts; temporal separability,
where the temporally intrinsic properties of a compound system supervene on
those of its temporally separated parts; and spatiotemporal separability, where
a property is both spatially and temporally separable. The last of these seems
equivalent to the version of spatiotemporal separability proposed by Healey
(1991) and Healey and Gomes (2022). However, where Healey describes spatial
separability in terms of properties and spatiotemporal separability in terms of

10. Take a property P ascribed to a time extended physical object A, with A∆t representing a
temporal part of that object. P is spatially intrinsic to A∆t iff P ’s instantiation is compatible with
there being no physical thing existing at spacelike separation from any temporal part of A∆t. P
is temporally intrinsic to A∆t iff P ’s instantiation is compatible with there being no physical thing
(including A) existing at timelike separation from every temporal part of A∆t. P is spatiotemporally
intrinsic iff it is both spatially and temporally intrinsic.

12



processes (a term he does not fully explain), I have opted for a more consistent
presentation of these intimately connected concepts.

5 Separability of Descriptors

With the assessment criteria clarified, we can now return to evaluate the sepa-
rability of the properties represented by Deutsch-Hayden descriptors. We have
established that separable properties must be intrinsic properties, and that in-
trinsic properties must be compatible with loneliness. Our first question then:
are the properties represented by descriptors compatible with loneliness?

First, let us consider the way descriptors are represented mathematically. A
descriptor is composed of three matrices, one for each observable. The entries
of each matrix are complex numbers that can change over time. For an isolated
qubit, each observable is represented by a 2×2 matrix that does not depend on
any other qubit and so represents a property that is compatible with loneliness.
But if the qubit is part of a larger network, the size of the matrix for each
observable must be increased according to the number of qubits in the network
(2n × 2n). The larger matrix is required to record the potential interactions
between the qubit to which they are assigned and every other qubit in the
network. The entries in the matrix will also differ depending on which qubit is
being represented.

To illustrate: say the descriptor for the x-observable of qubit a has the
initial matrix value σ̂x⊗ 1̂⊗ 1̂. The two identity matrices in the tensor product
imply that there are exactly two other qubits in the network. Furthermore,
the location of σ̂x (the first term in the product) is a unique identifier, which
in this case we have assigned to qubit a. The descriptors for the two other
qubits, call them b and c, would also be composed of three terms, two of which
are identity matrices, but the sigma value would become the second and third
terms respectively. Despite containing no explicit reference to qubits b and c,
the matrix for qubit a implicitly entails their existence. In fact, the matrix
entails their existence even before the qubits have interacted. Accordingly, the
descriptor does not represent a property that is compatible with loneliness, so
does not represent an intrinsic property of qubit a.

As the number of qubits in the network increase, the matrix representation
of the descriptors become exponentially large. For a realistic system, the total
number of other systems it could potentially interact with is enourmous, and
therefore the descriptor would be astronomically large. But it is not the size of
the descriptor that should concern us (although it may concern some). Instead,
it is the fact that each system in the universe has a specific, uniquely identifying
position in each other system’s descriptor.

One response Deutsch and Hayden could make is that, initially at least, the
matrices representing a qubit only contain local information, with the elements
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representing other qubits filled entirely with identity matrices, so providing no
information about them. In fact, these other qubits may not even exist. The
matrix might be made large enough to accomodate some arbitrarily large, even
infinite, number of other potential qubits. If so, the size of the matrix might
tell us nothing about how many other qubits there actually were, or indeed if
there were any other qubits at all, and so would be compatible with loneliness.

But this response would fail to recognise that when the Heisenberg state
is set to |0, ..., 0⟩, as Deutsch and Hayden suggest, the initial descriptor q̂qqa (0)
is determined by the operator U(0).11 The operator U(0) acts on the full
Heisenberg state and is identical for every qubit, so must encode the initial
properties of every qubit in the network. Consequently, the matrix elements
representing other qubits are not, in general, filled with identity matrices. U(0)
is not compatible with loneliness because it contains information about the
initial properties of every system in the network.12

One might object that the matrices underlying the Deutsch Hayden ap-
proach are just artefacts we find useful for calculations. While the matrices for
each qubit need to be large enough to allow for potential interactions with other
qubits in the future, it is possible that no interactions will ever take place. In
that case, the properties represented by the descriptor for a qubit might never
depend on the properties of any other qubit. If a qubit never interacts with
any other, the full mathematical representation becomes redundant and a sin-
gle 2× 2 matrix would suffice for each observable. In that case, the formalism
adopted by Deutsch and Hayden, where observables at any time are shown as
a function of the t0 observables of specific qubits, provides a more economical
representation of each qubit’s properties. If qubit a and qubit b interact, the
descriptor for qubit a could evolve to (q̂axq̂bx, q̂az), which more accurately ex-
presses the fact that the current properties of qubit a depend only on the past
properties of qubit a and b. Nevertheless, it is clear that the descriptor for
qubit a entails the existence of qubit b at some time in the past, because the
observable q̂bx (more fully, q̂bx(0)) could only have been instantiated by qubit b
at t0. Regardless of the formalism, the unique identification of each observable
with a specific qubit is necessary to capture the fact that quantum interference
only manifests between entangled qubits (more on this point later).

It is logically possible that qubit b once existed, interacted with qubit a,
and then ceased to exist. In that sense, descriptors represent properties that
are compatible with spatial loneliness. The qubit could have the properties
represented by the descriptor at any moment in time, even if no other physical
thing existed at that time. However, descriptors do not, in general, represent

11. More completely: U†(0)(1̂a−1 ⊗ σ̂σσ ⊗ 1̂n−a)U(0).
12. More conventionally, the Heisenberg state would simply be identical to the initial Schrödinger

state, which similarly contains information about the initial properties of every system in the net-
work.
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properties that are spatiotemporally intrinsic because the observables of en-
tangled qubits do depend on the existence of their entangled partners at some
time.

Having resolved the issue of intrinsicality, we can readily address the ques-
tion of separability. Recall that a property of a compound system is spatially
separable iff it is a spatially intrinsic property that supervenes on those of its
spacelike separated parts. The descriptors for any network of qubits are nothing
more than the set of descriptors for the individual qubits, so if descriptors repre-
sent spatially intrinsic properties, they must also represent spatially separable
properties. Conversely, descriptors do not, in general, represent spatiotem-
porally separable properties because they do not represent spatiotemporally
intrinsic properties.

Before we move on to discuss the connection between separability and lo-
cality, it is worth pausing to understand how we should categorise the prop-
erties represented by Schrödinger states. While the Heisenberg picture and
the Schrödinger picture are mathematically equivalent, they ascribe different
properties to a qubit. In Deutsch and Hayden’s formulation of the Heisenberg
picture, the properties of the world are represented by descriptors, which in
effect describe how the system was prepared and how it has evolved over time.
In the Schrödinger picture, state vectors describe the properties of a system
at a single point in time. By construction, the latter do not refer to any past
or future property, so they are temporally intrinsic.13 But the state vector for
entangled qubits necessarily entails the existence of both qubits, so the joint
Schrödinger state represents a property that is spatially intrinsic to the pair of
qubits but does not supervene on the spatially intrinsic properties of each qubit
individually. So, in contrast to Deutsch-Hayden descriptors, Schrödinger states
represent properties that are temporally separable but not spatially separable.
The common ground between both pictures is that the joint states represent
properties that are not spatiotemporally separable.

13. A number of papers purport to demonstrate steering or entanglement through time (for in-
stance, Ma et al. 2012; Megidish et al. 2013). These papers use the Schrödinger picture and represent
relations between timelike separated systems as nonseparable. While the experiments can equally
well be explained using conventional entanglement between spacelike separated systems, the ease
with which they can be reinterpreted as relations between timelike separated systems does high-
light the fragility of the distinction. Indeed, Glick (2019) argues that there is nothing incoherent or
paradoxical about taking entanglement between timelike separated systems seriously.
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6 Do Descriptors Represent Local Proper-

ties?

We have seen that descriptors represent spatially separable properties, which
suggests they satisfy a qualified version of the principle of separability, but
does that warrant describing them as local? In this section, we will look at how
property locality is generally understood and then consider how Deutsch and
Hayden have framed it. I will propose that their notion of locality aligns with
spatial separability but will show why this account is flawed. (In the discussion
to follow, recall that we are focussing on property locality and have taken for
granted that the dynamics of Everettian quantum mechanics are local.)

To begin, let us step back and consider why any property might be regarded
as nonlocal. Marshall and Weatherson (2018) propose that any property that
is not intrinsic is nonlocal, which has some intuitive merit. Extrinsic relations
are not instantiated in just one location. For instance, being shorter than the
Eiffel Tower is not a local property of mine because its instantiation depends
on the properties of the Eiffel Tower, which is physically distant from me.

But bearing in mind the history of the nonlocality debate, a more nuanced
approach is called for. Nonlocality has long been associated with something
“spooky” and mundane extrinsic properties such as being shorter than the Eiffel
Tower hardly seem to fit that description. Such properties are clearly not local
properties of the object to which they are ascribed, but nor do they seem
exceptional enough to qualify as nonlocal. I propose to differentiate between
properties that are extrinsic (not local) and the subset of those properties we
would describe as nonlocal. That is, to agree with Marshall and Weatherson
that extrinsic properties are not local but to reserve the term nonlocal for the
type of non-classical relation that bothered Einstein so much.

We might say that the relations between the intrinsic properties of things,
such as x is shorter than y, are mere extrinsic properties. But it would seem
appropriate to call a property nonlocal if it was held in virtue of a relation that
did not supervene on the intrinsic properties of its relata; that is, if the relation
was nonseparable (we will return to which type of nonseparability is relevant
in a moment).

I should also clarify that with the conditions I have proposed, nonseparabil-
ity is not itself a nonlocal property because it is ascribed to compound systems
rather than subsystems. The classification seems natural when we consider
that when a nonseparable relation such as entanglement is ascribed to a group
of systems, there is a clear sense in which the relation is local to the group
because it is an intrinsic relation among members of the group. That is, the
nonseparable relation is a property of the group that does not depend on the
properties of any system that is spatially or temporally distant from the group.
It is only when the relation is translated into an extrinsic property and ascribed
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to some subset of the group that the property could even be described as not
local. For instance, if systems x and y are entangled with each other and no
other systems, then the entanglement relation is local to the compound system
xy in the sense that it does not depend on the properties of any systems that
are physically distant from xy. But while the relation might be local to the
compound system, we can confidently say that being entangled with y could not
be a local property of system x. If we regard entanglement as a nonseparable
relation, then we would also be justified in taking being entangled with y to be
a nonlocal property of x.

I have discussed the relationship between nonseparability and nonlocality
but have not yet been clear about which type of separability I have been invok-
ing: spatial, temporal or spatiotemporal. Deutsch and Hayden do not explicitly
mention separability in their paper, but their account of locality appears to align
with spatial separability. They claim that the local characterisation of quantum
information (which I take to represent the properties of a qubit) must satisfy
the criterion, attributed to Einstein, that “the real factual situation of the sys-
tem S2 is independent of what is done with the system S1, which is spatially
separated from the former” (Deutsch and Hayden 2000, 1760). A plausible
reading of the criterion is that the “real factual situation of the system S2” is
referring to the physical properties of S2 and “what is done with the system S1”
is referring to variations to the physical properties of S1. Furthermore, because
the criterion does not contemplate that there could be “real facts” about S1
and S2 as a compound system that are independent of the “real facts” about
S1 and S2 individually, it almost certainly presupposes that the former would
somehow supervene on the latter.

Since “what is done” to a distant system could include eradicating it from
existence, the “Einstein criterion” entails that to be local, a property ascribed to
a thing must be independent of the existence of any other spatially separated
system in the universe. In other words, local properties must be spatially
intrinsic. Further, if the properties of every compound system supervene on
the spatially intrinsic properties of their subsystems (as they do in Deutsch
and Hayden’s approach), then those higher-level properties will all be spatially
separable.

But the Einstein criterion does not require local properties to be spatiotem-
porally intrinsic. In fact, it is entirely silent on properties of systems that
are timelike separated, and for good reason – based on his work on relativity,
Einstein would almost certainly have allowed that the properties of S2 could
depend on what was done to the properties of S1 when S1 was in the past light
cone of S2.

So on Deutsch and Hayden’s view, it appears that local properties must
be spatially intrinsic but need not be spatiotemporally intrinsic. The primary
challenge for this view is that there are many properties that meet the Einstein
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criterion, and so are spatially intrinsic, that are clearly not local properties. For
instance, I could be ascribed the property being 6 inches shorter than Abraham
Lincoln. This property meets the Einstein criterion because being 6 inches
shorter than Abraham Lincoln is not affected by what is done to any system
that is spatially separated from me.

In the language of intrinsicality, being 6 inches shorter than Abraham Lin-
coln is a spatially intrinsic property of mine. This odd classification comes
about because Lincoln and I exist at two different times. I could have that
property even if there were presently no other physical things in the universe,
so the property is compatible with spatial loneliness. The property may not
be nonlocal, but as an extrinsic property, it is certainly not a local property of
mine either.

More to the point, this view of property locality would lead us to conclude
that every relation between time-extended things was local, regardless of the
nature of the relation. To see why, consider two systems, a and b, and some
arbitrary relation between them at tn, which we can denote R(an, bn). The
relation R(an, bn) is not spatially intrinsic to a, but the relations between a
now and b at some previous time are spatially intrinsic, because they do not
depend on b existing now. Consequently, the relations R(an, a0) and R(an, b0)
qualify as spatially intrinsic properties of system a at tn. Similarly, the relations
R(bn, b0) and R(bn, a0) qualify as spatially intrinsic to system b at tn. Because
R(an, bn) supervenes on these spatially intrinsic properties, we must conclude
the relation – which could be any arbitrary relation – will be spatially separable.

More concretely, consider a relation that seems paradigmatically nonlocal.
Imagine that two particles (a and b) were in an entangled state despite never
having interacted. Locally, each particle is in a maximally uncertain state that
never changes over time (assuming no external influences), but globally their
values display perfect correlation. Such a property would seem as nonlocal
as we could hope for. But the relation will be spatially separable because it
supervenes on their spatially intrinsic properties – namely, the relations between
the particles at different times. That is, the relation between an and bn (perfect
correlation) supervenes on the relations between: an and a0 (identity); an and b0
(perfect correlation); and bn and b0 (identity). The first two relations qualify as
spatially intrinsic properties of an, while the last qualifies as a spatially intrinsic
property of bn.

Clearly, the “Einstein criterion” (spatial intrinsicality) does not provide
us with an adequate account of locality. A better criterion would codify our
intuition that a local property of a thing must be a property of that thing and
that thing alone.14 That is, the local properties of a thing should not depend on

14. There might, arguably, be one exception. If we regard a temporal part as a “thing”, then a
relation between (say) part A and part B could conceivably be regarded as a local property of part A
alone, despite depending on the existence of part B. For instance, we might take being heavier than
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the properties of other things, regardless of where or when those other things
existed. More precisely:

Local property: A property is local to a system at time t iff it is
a spatiotemporally intrinsic property of that system at time t.

This criterion has the welcome consequence of clarifying that being six inches
shorter than Abraham Lincoln is not a local property of mine. It also clari-
fies that the local properties of a system at a specific time do not include its
properties at other times. For instance, we would not say that an object’s
properties on Tuesday are (necessarily) local to it on Wednesday. The criterion
also allows a nonseparable property (such as entanglement) to be considered a
local property of a compound system, regardless of whether we consider it a
nonlocal property when ascribed to the individual subsystems.

We finally find ourselves in a position to provide a definitive criterion for
assessing whether a property is nonlocal. Nonlocal properties are not merely
extrinsic properties, they are the subset of extrinsic properties that are held in
virtue of a nonseparable relation between the system they are ascribed to and
another system. More precisely:

Nonlocal property: A property of a thing is nonlocal iff it is not
spatiotemporally intrinsic to that thing in virtue of a spatiotempo-
rally nonseparable property ascribed to a compound system of which
the thing is a part.

On this definition, a Deutsch-Hayden descriptor for an entangled qubit rep-
resents a nonlocal property because it is not spatiotemporally intrinsic, and
it is not so in virtue of the spatiotemporally nonseparable relation that holds
between it and the qubits it is entangled with.

We have established that descriptors represent properties that are nonlocal
in at least some sense. But the place we have arrived at seems far removed
from our original conception of nonlocality. It may have initially seemed that
nonlocal properties should be properties of spacelike separated systems, but we
are now ascribing nonlocal properties to timelike separated systems. Are these
properties really that different from classical properties? Has nonlocality lost
the “spookiness” that Einstein once saw in it?

In the next section, I examine the underlying feature of nonlocal properties
that makes them radically different from the relations of classical physics.

it was yesterday to be a local property of a system even though it implies the same system existed
yesterday. We might allow some leeway here if we (rightly or wrongly) take different temporal parts
of the same time extended system to be numerically identical with each other. For our purposes, we
can ignore this complication because our focus is only on relations between different systems.

19



7 Why Are Nonlocal Properties Spooky?

The concept of property locality presented in this paper hinges on the con-
cept of spatiotemporal separability. Our intuitions might have supported a
close connection between locality and spatial separability, but the link with
spatiotemporal separability may be less obvious. Spatiotemporal separability
requires that the properties of a system must not depend on properties of any
other system in the past, present or future. But even classical intrinsic prop-
erties seem to violate this condition because they depend on the properties of
other things in the past. For instance, the velocity of a coloured ball struck
by a white ball will depend (among other things) on the previous velocity of
the white ball. However, the dependence in this case is causal, rather than
the sort of ontological dependence we see with nonseparability. The white ball
has played a causal role in the current velocity of the coloured ball, but that
velocity does not entail any particular property of the white ball in the past,
nor that the white ball even existed in the past. The influence of the white
ball is a contingent fact; it is possible that the coloured ball could have had the
very same velocity, but from entirely different causes.

By contrast, a descriptor assigned to an entangled qubit necessarily entails
the previous existence of its entangled partner(s). The notation makes the de-
pendence clear. If the x-observable for qubit a at time t is q̂ax(t) = q̂ax(0)q̂bx(0),
qubit b must have existed at t0. If there were no qubit b, there could be no
property with the unique value represented by q̂ax(0)q̂bx(0).

The properties descriptors represent will causally depend on the properties
of their entangled partners, but they will also exhibit a form of ontological
dependence. Specifically, the properties a descriptor ascribes to an entangled
qubit could not exist unless a particular individual (the entangled partner)
existed at some time in the past.15

The way we represent classical properties might ostensibly imply a similar
form of dependence, but the similarity is deceptive. To explain: say the current
velocity of the coloured ball equals half the previous velocity of the white ball,
which we denote vc(t) = vw(t−1)/2. The identity relation in this case expresses
a relation between the current state of ball c and the past state of ball w, so
appears to entail the existence of w in the past. However, we could equally
replace vw(t−1)/2 with a value, such as 5m/s, or with a function of the velocity
of some causally unrelated system x, so vc(t) = vx(t). The value representing
the velocity of these disparate systems can be identical because the classical
property is qualitative – that is, the instantiation of the property does not
depend on the existence of any particular individual.

By contrast, a descriptor for an entangled qubit does not represent a qual-

15. Implying that the dependence could be more narrowly classified as past rigid existential de-
pendence.
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itative property. The property can only be instantiated if the particular qubit
referenced in the descriptor existed at some previous time. The fact that the de-
scriptor is associated with specific individuals is no mere artifice either, it plays
a critical role in the theory by telling us when we will see interference. Because
the observables from different qubits at t0 commute, we will only see interfer-
ence when the descriptors for interacting qubits include observables from the
same qubit. Loosely speaking, when a qubit becomes entangled with another,
it passes on a unique property that could not, even in principle, have originated
from any other qubit.16

Here we see the underlying connection between nonlocality and spatiotem-
poral nonseparability. Unlike classical relations, relations that are spatiotempo-
rally nonseparable are relations between the particular individuals that form a
compound system. The properties of each subsystem are nonlocal because they
are not entirely independent of each other. The properties may have been the
result of causal interactions in the past, but they remain a unique and continu-
ing relation between the entangled subsystems. The Deutsch-Hayden approach
is nonlocal in just this sense – the descriptors for a network might supervene
on the descriptors for the individual qubits, but the descriptors for individ-
ual qubits are not entirely about that qubit so do not represent independent
properties.

In the Schrödinger picture, nonlocality is clearer but the non-qualitative
nature of entanglement is obscured because it is represented as a single state of
a compound system rather than a relation between independent states. Even so,
the joint state must (explicitly or implicitly) identify the individual subsystems
precisely because the state is assigned to a compound system.17 Regardless of
the formalism we use, entanglement must be represented as a unique relation
between individuals, a fact the Deutsch-Hayden approach brings sharply into
focus.

As a non-qualitative property, entanglement is profoundly different to the

16. Descriptors, or at least t0 observables, could potentially be thought of as representing tropes
– particular properties of individual qubits. But the matter is complicated by the fact that, after
an interaction, an observable for one qubit can appear as a term in the other qubit’s descriptor.
Further investigation would be required before we could conclude that accepting descriptors as a
representation of quantum properties entailed accepting trope theory as a general ontology.

17. For instance, when we assign the state (|00⟩+ |01⟩+ |11⟩)/
√
3 to a compound system, we must

also specify which terms in the tensor products are assigned to which qubits, although in practice
we often omit labels and simply assign each qubit a position in the tensor products. (In symmetrical
states, such as Bell states, the qubits’ positions would be interchangeable and would not strictly
need assignment, but those are special cases.) We can see the non-qualitative nature of such states
when we consider that when assigned to different compound systems the states are equivalent but
not identical, because they specify relations between different individuals. Accordingly, it would be
inappropriate to propose, for example, that (|0a0b⟩+ |0a1b⟩+ |1a1b⟩)/

√
3 was identical to (|0c0d⟩+

|0c1d⟩+ |1c1d⟩)/
√
3.
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properties we find in classical physics.18 Properties such as an object’s mass,
size, charge or velocity may have been affected by interactions with other sys-
tems in the past, but their current properties could also have been the result of
different interactions with a different set of systems. In quantum mechanics, by
contrast, it is of fundamental importance that it is this system that is entangled
with that system.

8 Concluding remarks

Deutsch and Hayden have argued that the Heisenberg picture allows us to char-
acterise quantum properties locally using objects they call descriptors. I have
assessed their claim against the principle of separability and found that descrip-
tors only conform with the principle in a restricted sense. Descriptors represent
properties that are spatially separable – that is, they supervene on the spatially
intrinsic properties of individual qubits. But spatially intrinsic properties are
not intrinsic simpliciter because they include extrinsic relations between tem-
porally separated things. Moreover, spatial intrinsicality is an inadequate cri-
terion for locality because we can use temporally extrinsic properties to recast
any physical relation as spatially separable.

I have proposed a more stringent criterion for property locality, spatiotem-
poral separability, which requires that a local property of a thing must not entail
the existence of any other thing. Spatiotemporal separability may at first seem
too strong a criterion, but our analysis has revealed why this form of sepa-
rability is relevant to locality. A nonseparable relation such as entanglement
is a relation between the properties of a particular set of systems. The non-
qualitative nature of this property sets it apart from the qualitative properties
we have come to expect from classical physics. While there might not be action
at a distance in the Heisenberg picture, there is still something spooky about
it.
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