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We present a first-principles derivation of the standard formalism of quantum theory through an 

information-theoretic analysis of single-variable physical systems –systems characterized by only 

one independent variable. These systems, with a minimal information capacity of exactly one bit, 

exhibit inherently indeterministic behavior under independent measurements while permitting 

probabilistic descriptions for dependent measurements. By enforcing probability conservation in the 

transformations of outcome probabilities across different measurement scenarios, we derive the core 

components of standard quantum theory, including the Born rule, the Hilbert space structure, and 

the Schrödinger equation. Furthermore, we demonstrate that the experimental requirements for 

observing quantum phenomena –specifically, preparing physical systems in coherent states under 

strict conditions, such as ultralow temperatures or high fields– effectively constrain the number of 

independent variables to one, thereby enforcing single-variable behavior. This first-principles, 

information-theoretic derivation establishes that quantum theory fundamentally describes the 

physics of single-variable systems and provides a concrete realization of Wheeler’s “it from bit” 

idea. 

 

I. INTRODUCTION. 

 

Quantum mechanics constitutes a cornerstone of modern 

physics, providing fundamental insights into the behavior of 

particles at atomic and subatomic scales. It has been 

remarkably successful in explaining phenomena such as 

atomic structure, quantum tunneling, and electron behavior in 

solids. Despite its overwhelming empirical success, the 

foundational principles of quantum theory –particularly the 

derivation of its core equations from first physical principles– 

remain a subject of ongoing investigation. Traditional 

approaches to quantum theory often rely on abstract, 

axiomatic postulates [1-8], leaving the physical basis for its 

mathematical formalism unresolved. 

In this paper, building on information-theoretic 

interpretations of quantum phenomena [9-14], we address this 

gap by deriving quantum theory through the study of physical 

systems with exactly one independent variable. Due to their 

minimal information capacity, such systems inherently 

exhibit indeterministic behavior upon measurements, 

necessitating a probabilistic description. By enforcing the 

principle of probability conservation in the transformations of 

outcome probabilities across different measurement 

scenarios, we derive the complete mathematical framework of 

standard quantum theory, including the Born rule, Hilbert 

space structure, and unitary dynamics. Furthermore, we 

demonstrate that the coherence requirements for conducting 

quantum experiments impose constraints on physical 

systems, effectively reducing their number of independent 

variables and confining their dynamics to a single variable in 

practice. 
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By completing this first-principles, information-theoretic 

derivation of quantum theory, we conclude that quantum 

mechanics fundamentally describes the physics of systems 

with a single independent variable. We subsequently apply 

this theoretical framework to re-examine foundational 

quantum concepts, offering novel insights into the meaning of 

coherence, the quantum-classical boundary, the epistemic 

nature of the state function, and the information-theoretic 

structure of entanglement. Beyond its theoretical significance, 

this work has the potential to drive future advancements in 

both quantum technologies and fundamental physics. 

 

II. METHODS 

 

A. Informational description of physical systems 

Translating concepts from physics into the language of 

information theory is straightforward. A physical 

measurement 𝑀𝐾 with 𝑁 possible outcomes {𝑚1
𝐾 , … , 𝑚𝑁

𝐾} and 

their corresponding probabilities {𝑝1
𝐾 , … , 𝑝𝑁

𝐾} (where 

∑ 𝑝𝑖
𝐾𝑁

𝑖=1 = 1) can be modeled as an informational query 𝑄K, 

asking, “What is the outcome of measurement 𝑀𝐾?”, with 

answers {𝑞1
𝐾, … , 𝑞𝑁

𝐾} obeying the same probabilities. The 

relationships between dependent and independent 

measurements mirror those between correlated and 

uncorrelated questions. These parallels enable the application 

of tools from information theory –such as Shannon entropy, 

information content, and information gain– to analyze 

physical systems. 

Physical systems inherently contain and convey 

information. Each independent variable within a physical 

system can be viewed as a discrete communication channel 

carrying a single piece of information (message). 
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Accordingly, the number of independent messages a physical 

system can convey is equal to the number of its independent 

variables. The length of each message is determined by the 

number of possible configurations of the variable. For 

instance, a variable with eight possible states can encode a 

three-bit message.  

 

B. Single-variable physical systems  

Microscopic systems often involve only a small number of 

independent variables. We define single-variable systems as 

those characterized by exactly one independent variable, 

constraining their information capacity to a single message. 

This property distinguishes them from classical systems, 

which can simultaneously convey multiple independent 

messages.  

A significant consequence arises when attempting to 

extract two independent pieces of information from a single-

variable system: the second measurement inevitably yields 

zero information content. From an information-theoretic 

perspective, zero information corresponds to randomness [14, 

15]. Translated into the physics domain, this implies that 

performing independent measurements on a single-variable 

system will always yield random outcomes. This observed 

randomness is a direct consequence of fundamental 

information capacity limitations rather than any underlying 

hidden variables.  

While independent measurements on single-variable 

systems yield random outcomes, dependent measurements 

permit probabilistic analysis of their behavior. In dependent 

measurements, the probability of obtaining a specific 

outcome in one measurement correlates with the outcome of 

the other. These probabilistic correlations are quantified by 

conditional probabilities, where 𝑝(𝑚𝑗
𝐿|𝑚𝑖

𝐾) denotes the 

probability of obtaining outcome 𝑚𝑗
𝐿 in measurement 𝐿 given 

outcome 𝑚𝑖
𝐾 in measurement 𝐾. The law of total probability 

ensures that for a given outcome in the first measurement, the 

conditional probabilities sum to unity, formally expressed as 

 

∑ 𝑝(𝑚𝑗
𝐿|𝑚𝑖

𝐾)𝑁
𝑗=1 = 1,   (1) 

 

for any fixed 𝑖. 
 

C. Probability calculations  

Given the probability state of the system for measurement 

𝐾, denoted as 𝑷𝐾 = [𝑝1
𝐾, … , 𝑝𝑁

𝐾]𝑇, the probabilities for the 

outcomes of measurement 𝐿 can be calculated using their 

conditional probabilities as 

 

𝑝𝑗
𝐿 = ∑ 𝑝(𝑚𝑗

𝐿|𝑚𝑖
𝐾)𝑝𝑖

𝐾𝑁
𝑖=1 .  (2) 

 

The mapping 𝑃𝑗𝑖
𝐿𝐾 = 𝑝(𝑚𝑗

𝐿|𝑚𝑖
𝐾) preserves total probability: 

 

         ∑ 𝑝𝑗
𝐿

𝑗 = ∑ ∑ 𝑃𝑗𝑖
𝐿𝐾

𝑖 𝑝𝑖
𝐾

𝑗 = ∑ 𝑝𝑖
𝐾 ∑ 𝑃𝑗𝑖

𝐿𝐾
𝑗𝑖 =

                         ∑ 𝑝𝑖
𝐾 ∑ 𝑝(𝑚𝑗

𝐿|𝑚𝑖
𝐾)𝑗𝑖 = ∑ 𝑝𝑖

𝐾
𝑖 = 1,                (3) 

given the law of total probability (1). Conversely, mapping 

the probabilities from measurement 𝐿 to measurement 𝐾 

involves 𝑃𝑖𝑗
𝐾𝐿 = 𝑝(𝑚𝑖

𝐾|𝑚𝑗
𝐿), and the probabilities can be 

calculated as  

 

𝑝𝑗
𝐾 = ∑ 𝑃𝑗𝑖

𝐾𝐿
𝑖 𝑝𝑖

𝐿.   (4) 

 

While these mappings conserve total probability, they are 

not bidirectionally reversible. Reversibility would require 

 

𝑝𝑗
𝐾 = ∑ 𝑃𝑗𝑖

𝐾𝐿
𝑖 𝑝𝑖

𝐿 = ∑ 𝑃𝑗𝑖
𝐾𝐿

𝑖 ∑ 𝑃𝑖𝑛
𝐿𝐾

𝑛 𝑝𝑛
𝐾 =

                                ∑ ∑ 𝑃𝑗𝑖
𝐾𝐿

𝑖 𝑃𝑖𝑛
𝐿𝐾

𝑛 𝑝𝑛
𝐾 ,    ∀𝑗, 𝑛.                       (5) 

 

Since this equation must hold for all 𝑗 and 𝑛, the linear 

independence of the probability vectors implies: 

 

∑ 𝑃𝑗𝑖
𝐾𝐿𝑃𝑖𝑛

𝐿𝐾
𝑖 = 𝛿𝑗𝑛,   (6) 

 

where 𝛿𝑗𝑛 is the Kronecker delta. This condition is generally 

not satisfied, because (6) requires that the product of strictly 

positive values sum to zero when 𝑗 ≠ 𝑛, which is 

mathematically impossible. The positivity constraint on the 

mapping elements fundamentally prevents bidirectional 

reversibility in direct probability mappings. 

To resolve this limitation and establish consistent, 

reversible transformations between probability spaces, we 

introduce probability amplitudes 𝜎𝑖
𝐾 related to probabilities 

through a function 𝑓 such that 𝝈𝐾 = 𝑓(𝑷𝐾). These 

probability amplitudes transform according to 

 

𝜎𝑗
𝐿 = ∑ 𝜌𝑗𝑖

𝐿𝐾𝜎𝑖
𝐾𝑁

𝑖=1 ,   (7) 

 

(and likewise for 𝐾 and 𝐿 swapped), where the revised 

mappings 𝜌𝑗𝑖
𝐿𝐾 must permit non-positive elements. 

Consequently, we require a probability measure that can 

accommodate non-positive values while preserving 

fundamental properties of probability. 

This probability measure must satisfy several mathematical 

constraints: it must preserve probabilities at 0 and 1, i.e., 

𝑃(0) = 0, and 𝑃(1) = 1; it must be a monotonic function 

with 𝑃(𝑥) ∈ [0,1] for all permissible inputs; and finally, it 

must be scale-invariant, i.e., 𝑃(𝜆𝑥) = 𝜆𝛼𝑃(𝑥). These criteria 

uniquely determine the form of the probability measure as 

 

𝑃(𝑥) = |𝑥|𝛼, where 𝛼 ∈ ℝ+,  (8) 

 

which is defined by the 𝛼-th power of the absolute values of 

the probability amplitudes associated with events. This power 

function represents the general class of probability measures 

that satisfy these constraints while allowing non-positive 

elements in transformations. Thus, the revised mappings take 

the form 

 

 𝜎𝑗
𝐿 = ∑ 𝜌𝑗𝑖

𝐿𝐾
𝑖 𝜎𝑖

𝐾,   (9) 
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where 

 

|𝜌𝑗𝑖
𝐿𝐾|

𝛼
= 𝑝(𝑚𝑗

𝐿|𝑚𝑖
𝐾),   and   |𝜎𝑖

𝐾|𝛼 = 𝑝𝑖
𝐾.   (10) 

 

III. RESULTS 

 

A. The quadratic probability measure  

We now determine the exponent 𝛼 that enables 

bidirectional reversible mappings, satisfying the condition: 

 

∑ 𝜌𝑎𝑛
𝐿𝐾𝜌𝑛𝑏

𝐾𝐿
𝑛 = ∑ 𝜌𝑎𝑖

𝐾𝐿𝜌𝑖𝑏
𝐿𝐾

𝑖 = 𝛿𝑎𝑏,  (11) 

 

while conserving total probability. From the law of total 

probability, we have ∑ 𝑃(𝑚𝑛
K|𝑚𝑖

L)𝑛 = 1, which can be 

equivalently written as 

 

∑ |𝜌𝑛𝑖
𝐾𝐿|𝛼

𝑛 = 1.    (12) 

 

Comparing this with the (𝑖, 𝑖) element of 𝝆𝐿𝐾𝝆𝐾𝐿 from (11) 

yields: 

 

∑ |𝜌𝑛𝑖
𝐾𝐿|𝛼

𝑛 = ∑ 𝜌𝑖𝑛
𝐿𝐾𝜌𝑛𝑖

𝐾𝐿
𝑛 , ∀𝑛, 𝑖.  (13) 

 

Since this equation must hold for any 𝑛 and 𝑖, it must hold 

term-by-term. Given that our formulation allows for complex-

valued elements, we express  

 

𝜌𝑛𝑖
𝐾𝐿 = |𝜌𝑛𝑖

𝐾𝐿|𝑒𝑖𝜙𝑛𝑖,   (14) 

 

where 𝑒𝑖𝜙𝑛𝑖 is a phase factor satisfying |𝑒𝑖𝜙𝑛𝑖| = 1. 

Substituting this into (13) results in the term-wise constraint: 

 

𝜌𝑖𝑛
𝐿𝐾 = 𝑒−𝑖𝜙𝑛𝑖|𝜌𝑛𝑖

𝐾𝐿|𝛼−1.   (15) 

 

Combining (15) with the law of total probability for 𝝆𝐿𝐾, i.e.,  

 

∑ |𝜌𝑖𝑛
𝐿𝐾|𝛼

𝑖 = ∑ 𝑃(𝑚𝑖
L|𝑚𝑛

𝐾)𝑖 = 1,  (16) 

 

leads to: 

 

1 = ∑ |𝜌𝑖𝑛
𝐿𝐾|𝛼

𝑖 = ∑ |𝑒−𝑖𝜙𝑛𝑖|𝜌𝑛𝑖
𝐾𝐿|𝛼−1|

𝛼
𝑖 = ∑ |𝜌𝑛𝑖

𝐾𝐿|𝛼2−𝛼
𝑖 .

 (17) 

 

Using (15) along with the (𝑛, 𝑛) element of 𝝆𝐾𝐿𝝆𝐿𝐾 from 

(11), we obtain 

 

1 = ∑ 𝜌𝑛𝑖
𝐾𝐿𝜌𝑖𝑛

𝐿𝐾
𝑖 = ∑ 𝜌𝑛𝑖

𝐾𝐿𝑒−𝑖𝜙𝑛𝑖|𝜌𝑛𝑖
𝐾𝐿|𝛼−1

𝑖 = ∑ |𝜌𝑛𝑖
𝐾𝐿|𝛼

𝑖 .

 (18) 

 

Comparing (17) and (18), we obtain 𝛼2 − 𝛼 = 𝛼, with the 

unique nonzero solution: 

 

𝛼 = 2.   (19) 

 

Substituting this value into (8), we arrive at the quadratic 

probability measure: 

 

𝑃(𝑥) = |𝑥|2,   (20) 

 

which is based on the square of probability amplitudes. 

 

Unitarity of the mappings  

Moreover, substituting (19) into (12) and (18) shows that 

 

∑ |𝜌𝑛𝑖
𝐾𝐿|2

𝑛 = 1,    and    ∑ |𝜌𝑛𝑖
𝐾𝐿|2

𝑖 = 1, (21) 

 

indicating that the sum of the squares of the mapping elements 

in each row and each column equals one. This property 

reveals that the transformation matrices, 𝝆𝐿𝐾 and 𝝆𝐾𝐿 are 

unitary. 

Mathematically, our goal was to identify a diffeomorphic 

transformation between probability spaces associated with 

different measurements. We found that probability 

conservation in bidirectional transformations uniquely leads 

to the quadratic probability measure as the only solution that 

ensures the preservation of total probability in both forward 

and reverse mappings. 

This analysis reveals that the fundamental object 

undergoing transformation is the “probability amplitude 

state” of the system, defined by 

 

𝝈𝐾 = [𝜎1
𝐾 , … , 𝜎𝑁

𝐾]𝑇,  (22) 

 

which satisfies: 

 

|𝜎𝑖
𝐾|2 = 𝑝𝑖

𝐾.   (23) 

 

Rather than the “probability state” 𝑷𝐾, it is the probability 

amplitude state that transforms consistently between 

measurement probability spaces. These transformations are 

governed by the unitary mappings: 

 

𝝈𝐿 = 𝝆𝐿𝐾𝝈𝐾,   (24) 

 

where the mapping elements are related to the conditional 

probabilities of measurement outcomes through 

 

|𝜌𝑖𝑗
𝐿𝐾|

2
= 𝑝(𝑚𝑖

𝐿|𝑚𝑗
𝐾).  (25) 

 

These unitary transformations ensure the preservation of total 

probability across different measurement scenarios by 

maintaining the norm of the probability amplitude vectors: 

 

∑ |𝜎𝑖
𝐿|2𝑁

𝑖=1 = ∑ |𝜎𝑖
𝐾|2𝑁

𝑖=1 = ∑ 𝑝𝑖
𝐾𝑁

𝑖=1 = 1. (26) 

 

B. The Hilbert space formalism 

The algebraic structure derived above forms the foundation 

of the Hilbert space, where the systems are represented by 𝑁- 
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dimensional complex vector spaces associated with 

measurements. The unitary transformations and quadratic 

probability measure –rigorously derived from first principles 

in our framework– are naturally embedded within this Hilbert 

space structure. Specifically, the probability amplitude state 

𝝈𝐾 resides in a linear vector space spanned by the independent 

outcomes of a specific measurement, ranging from 𝑚1
𝐾 to 𝑚𝑁

𝐾 . 
These states transform between different probability spaces 

via the unitary mappings given in (24). 

In this representation, the unitary transformations of the 

system’s probability amplitude state correspond to rotations 

of its state vector in the Hilbert space. Using conventional bra-

ket notation, the state of the system in the derived algebraic 

structure can be written as an N-dimensional vector:  

 

|𝜎𝐾⟩ = ∑ 𝜎𝑖
𝐾|𝑚𝑖

𝐾⟩𝑁
𝑖=1 ,   (27) 

 

with the norm:  

 

⟨𝜎𝐾|𝜎𝐾⟩ = ∑ |𝜎𝑖
𝐾|2𝑁

𝑖=1 = 1,  (28) 

 

defined through the quadratic probability measure. The 

evolution of these states is described by unitary 

transformations that map them between probability spaces of 

different measurements, according to: 

 

|𝜎𝐿⟩ = 𝝆LK|𝜎𝐾⟩.   (29) 

 

It is mathematically significant that the fundamental 

principle of probability conservation in single-variable 

physical systems naturally gives rise to the complete Hilbert 

space structure of quantum theory, including its key features 

such as linearity, inner product preservation, and unitary 

evolution. This result demonstrates that mathematical 

formalism of quantum mechanics emerges directly from the 

information-theoretic constraints imposed on single-variable 

systems. 

 

C. The Born probability rule 

The Born rule for calculating probabilities is naturally 

embedded in our framework through the quadratic probability 

measure. The probability of a specific measurement outcome 

is given by the square of the inner product between the 

system's current state and the outcome state: 

 

𝑝𝑎𝑏
𝐿𝐾 = |𝜌𝑎𝑏

𝐿𝐾|2 = |⟨𝜎𝑏
𝐾|𝜎𝑎

𝐿⟩|2.  (30) 

 

Our derivation reveals that the Born rule is not merely an 

axiom but rather a conservation law, arising directly from 

probability conservation in bidirectional transformations 

between different measurements. This provides a principled 

explanation for one of the most fundamental postulates of 

quantum mechanics, grounding it in first principles rather 

than assuming it axiomatically. 

 

 

D. The Schrödinger equation 

Time evolution can be incorporated into our framework by 

associating the unitary transformations with a time parameter. 

Specifically, we introduce time dependence into the unitary 

mappings in (24) by defining them as time-dependent 

operators: 

 

𝝈𝐿 = 𝝆𝐿𝐾(𝑡)𝝈𝐾.  (31) 

 

Recall that these mappings are functions of the correlations 

between two measurements 𝐾 and 𝐿. Since the correlations 

between the measurements are time-independent, the time 

evolution of 𝝆𝐿𝐾(𝑡) over an interval Δ𝑡 = 𝑡2 − 𝑡1 is governed 

by a unitary transformation 𝐔(𝛥𝑡) according to: 

 

𝝆𝐿𝐾(𝑡2) = 𝐔−1(Δt)𝝆𝐿𝐾(𝑡1)𝐔(Δ𝑡). (32) 

 

Under the standard requirements for a time-translation 

operator –i.e., continuity ( lim
Δt→0

𝐔(Δt)  = 𝟏) and the 

semigroup property (𝐔(t1)𝐔(t2) = 𝐔(t1 + t2))– this 

transformation takes the form:  

 

𝐔(Δ𝑡) = 𝑒−𝑖𝑯(Δ𝑡),  (33) 

 

where 𝑯 is a self-adjoint operator (the Hamiltonian) 

governing the system's dynamics. Shifting the focus to the 

time evolution of the state itself, 𝝈, rather than the 

transformation, 𝝆 (i.e., switching from the Heisenberg picture 

to the Schrödinger picture), we derive the time evolution of 

the probability amplitude state 𝝈K(𝑡): 

 
𝑑

𝑑𝑡
𝝈K(𝑡) = −𝑖𝑯𝝈K(𝑡).  (34) 

 

Equation (34) is the Schrödinger equation in our formalism, 

demonstrating that the time evolution of the state of single-

variable systems is governed by unitary dynamics under the 

Hamiltonian 𝑯. 

 

IV. DISCUSSION 

 

In the above, we have developed a mathematical framework 

to describe the behavior of single-variable physical systems 

with a finite number of states. This framework can be 

systematically extended to the infinite-dimensional case using 

standard techniques from functional analysis. Remarkably, 

our framework directly yields the three fundamental elements 

of standard quantum theory –namely, the Hilbert space 

structure with its operator algebra, the Born probability rule, 

and the Schrödinger equation– through an analysis of 

information-theoretic constraints imposed on single-variable 

systems.  

By identifying the minimal physical principles required to 

establish the mathematical foundation of quantum theory, we 

reveal that the principle of probability conservation in single-

variable physical systems serves as the cornerstone of 
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quantum mechanics. Although we have now derived the 

complete mathematical structure of quantum theory, we must 

still address how this formalism –derived specifically for 

single-variable systems– corresponds to and explains 

quantum phenomena observed in practice, and whether 

physical quantum systems indeed satisfy this single-variable 

criterion. 

Quantum mechanics (QM) is traditionally regarded as the 

framework for describing microscopic systems and 

elementary particles. This perspective, however, has been 

contested, as the formalism of QM does not inherently impose 

a scale limit, and there appears to be no clear boundary 

between classical and quantum domains, often referred to as 

the quantum-classical boundary or the Heisenberg cut. While 

Schrödinger’s cat thought experiment [16] was originally 

conceived to highlight the paradoxical consequences of 

applying QM to macroscopic objects, numerous experiments 

have since expanded the scale at which quantum effects can 

be observed. These include interference experiments with 

progressively larger macromolecules [17-21] and Bose-

Einstein condensates comprising millions of atoms. Despite 

these advances, the question of whether QM can serve as a 

truly universal theory remains unresolved in foundational 

physics. 

In the preceding section, we derived quantum theory as the 

fundamental framework for physical systems with a single 

independent variable. Our findings not only establish 

quantum theory from first principles but also offer a 

fundamentally new perspective on the nature of quantum 

systems. Specifically, we propose that quantum systems can 

be fundamentally characterized as physical systems with no 

more than one independent variable. This perspective 

suggests that the Heisenberg cut is not dictated by physical 

scale but rather by the number of independent variables in a 

system. In the following sections, we demonstrate how this 

interpretation aligns with the physical realization of quantum 

experiments and precisely delineates the scope of quantum 

theory’s applicability.  

 

A. Coherence 

As experimental physicists recognize, the success of 

quantum experiments relies on the ability to prepare and 

maintain systems in coherent states, typically achieved under 

stringent laboratory conditions, such as extremely low 

temperatures, strong fields, or high vacuum environments. In 

these conditions, many of the system’s variables are 

effectively suppressed, reducing the number of independent 

variables. We assert that strong coherence –essential for 

observing quantum phenomena– enforces a single 

independent variable in the system, which becomes the sole 

degree of freedom accessible to measurement. 

To illustrate this, consider electron guns and lasers, two 

essential tools in quantum experiments for generating 

coherent electron and photon beams, respectively. An 

electron gun (Fig.1) extracts electrons from a heated filament 

via thermionic emission. These electrons are accelerated by 

an anode and focused through a collimator, directing them 

into a uniform beam. This design ensures that the electrons 

possess nearly identical energy and momentum distributions, 

leaving spin as their only effectively independent variable. 

Similarly, a coherent beam of light consists of photons with 

well-defined energy and propagation direction, leaving 

polarization as the sole remaining independent variable. 

While laser pointers have made the demonstration of 

interference phenomena widely accessible, it is crucial to note 

that ordinary incoherent light sources fail to produce 

interference patterns. 

 

 
FIG 1. Schematic of an electron gun structure, a device 

that produces single-variable systems (not to scale): 

Electrons are produced through thermionic emission from a 

heated filament at the cathode. Attracted to the anode, they 

travel in parallel trajectories through a collimator. The 

applied voltage accelerates the electrons to high velocities. 

The resulting electron beam consists of electrons with nearly 

identical energy and momentum distributions, leaving spin as 

their only independent variable. This device effectively 

generates a stream of single-variable particles suitable for 

quantum experiments. 

 

Achieving coherence involves constraining the values of a 

system’s variables, a task that becomes increasingly difficult 

as the size of the system –and concurrently, the number of 

variables– increases. Figure 2 illustrates the patterns observed 

in interference experiments with particle beams exhibiting 

varying degrees of coherence. The appearance of interference 

fringes is directly linked to the presence of coherence within 

the particle ensemble. While coherence can be easily achieved 

in microscopic systems, macroscopic systems, such as golf 

balls, cannot be prepared in coherent states, and their patterns 

exhibit classical distributions, lacking the characteristic 

undulations in intensity that signify quantum behavior.  

At intermediate scales, full coherence remains elusive, 

although partial coherence is achievable. This results in 

hybrid interference patterns (Fig.2, bottom), where 

interference fringes are superimposed on a classical pattern, 

indicating the simultaneous presence of quantum effects 

alongside the classical expectations. Unlike in fully coherent 

cases, interference fringe minima in partially coherent cases 

do not reach zero, as observed in experiments with 

macromolecules. The results, however, can be rescaled or 

framed (see, for example, Refs. [21-23]) to closely resemble 
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full coherence, potentially creating the impression of pure 

quantum behavior even in macroscopic systems. 

 

   
FIG 2. Effect of coherence on the intensity of interference 

fringes: This illustration shows the resulting patterns 

observed in interference experiments performed with particle 

beams of different degrees of coherence. Top: full coherence 

(quantum behavior). Middle: no coherence (classical 

behavior). Bottom: partial coherence (hybrid behavior) 

where interference fringes remain visible but less 

pronounced. Notably, in partially coherent cases, the fringe 

minima do not reach zero intensity, as seen in interference 

experiments with macromolecules. However, selective data 

framing (dashed line inset) can make these patterns resemble 

those of fully coherent systems. 

 

B. The Heisenberg cut 

Our results offer new insights into the Heisenberg cut, 

suggesting that the boundary where quantum theory ceases to 

apply is not determined by the size of a system, but by the 

number of its independent variables. Systems with many 

independent variables, such as cats or measuring devices, 

cannot be characterized as single-variable systems and thus 

fall outside the formalism of quantum theory. On the other 

hand, quantum theory can be applied on large scales in 

degenerate stars [24, 25], which exist in coherent states under 

extreme gravitational fields. Systems with partial coherence 

exhibit a blend of quantum and classical behavior, with 

quantum effects manifesting according to the degree of 

coherence. 

This perspective resolves the traditional difficulty in 

locating the quantum-classical boundary and the apparent 

arbitrariness of the Heisenberg cut in conventional 

interpretations –what Bell called the “shifty split” [26]. Rather 

than representing a fundamental size-based division in nature 

that distinguishes ‘microscopic’ from ‘macroscopic’, or a 

subjective choice made by the observer [27], the quantum-

classical boundary emerges from the informational structure 

of physical systems. As our framework indicates, measuring 

devices are not single-variable systems, and coupling a single-

variable system to them effectively transitions the latter into 

the classical realm. Furthermore, in experiments involving 

ensembles of identically prepared systems, as the number of 

independent variables increases, the ability to induce and 

maintain efficient coherence becomes progressively more 

difficult, leading to a transition toward predominantly 

classical behavior. This perspective implies that in such 

experiments, the quantum-to-classical transition occurs 

gradually as the ensemble evolves from predominantly single-

variable behavior to multi-variable dynamics, rather than at 

an arbitrary division point. This explains the traditional 

difficulty in pinpointing this boundary [28]: coherence exists 

on a continuum rather than as a binary property. 

 

C. The state function 

Our derivation also sheds light on the nature of the quantum 

state function, which we identify as the probability amplitudes 

of single-variable systems corresponding to different 

measurement outcomes. Essentially, the state function 

represents the system’s propensities for specific measurement 

outcomes. These propensities are inherently relational, 

depending on both the system’s current state and the type of 

measurement being performed. While they are objective, the 

state function does not correspond to any intrinsic physical 

attribute of the system itself but represents knowledge about 

correlations between measurements. Borrowing from 

philosophical terminology [29], quantum state functions are 

best characterized as epistemic realities –representations of 

knowledge about measurement correlations– rather than as 

ontological objective realities. 

That being said, one must still address where in the physical 

world these propensities reside. Our derivation suggests that 

these propensities are mathematically embedded in the 

transformations 𝝆𝐼𝐼,𝐼 that map the state of the system to the 

planned measurement. These transformations, in turn, reflect 

the correlations between two measurements –one that defines 

the state of the system and the other that constitutes the 

planned measurement. As our derivation demonstrates, the 

transformations that map the state function between different 

measurements involve conditional probability amplitudes of 

the measurement outcomes. Therefore, the propensities are 

not contained within the quantum system itself but are 

encoded in the correlations between measurements. 

 

D. Quantum entanglement 

An intriguing implication of our findings relates to quantum 

entanglement. Single-variable physical systems can, in 

principle, be multipartite and physically extended, with parts 

separated by large distances. This is precisely the case for 

entangled quantum systems, where the entire system behaves 

as a single-variable entity despite its multipartite nature. 

Consider, for example, the generalized Greenberger-Horne-

Zeilinger (GHZ) state [30], which is a superposition of 𝑛 

subsystems, all in the state | ↑⟩ with all in the state | ↓⟩, 
represented as 

 

|GHZ >=
1

√2
(| ↑⟩⊗𝑛 + | ↓⟩⊗𝑛) .  (35) 
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Although a collection of 𝑛 single-variable subsystems 

might initially suggest 𝑛 independent variables, the 𝑛 − 1 

correlations between the subsystems in the GHZ state (i.e., 
|𝑠1〉 =  |𝑠2〉, |𝑠2〉 = |𝑠3〉, …, and |𝑠𝑛−1〉 = |𝑠𝑛〉, where |𝑠𝑖〉 
represents the state of a subsystem) reduce the number of 

independent variables in the system to just one. Thus, the 

entire 𝑛-component entangled system effectively comprises a 

single variable.  

The unified description of quantum systems –single-

variable systems constrained to convey only one piece of 

information– offers a novel interpretation of quantum 

entanglement. Rather than viewing entanglement as “spooky 

action at a distance,” the fundamental information-theoretic 

constraint manifests in entangled systems by restricting them 

to convey only one piece of information, regardless of their 

physical separation. This confinement of shared information 

capacity enforces perfect correlations between subsystems as 

the entire system can convey only one piece of information.  

The GHZ state exemplifies this principle perfectly, as it 

represents a maximally entangled state where the 

measurement of any single qubit immediately determines the 

state of all others. Viewed through our single-variable 

framework, this behavior is not mysterious but rather a natural 

consequence of the fundamental limitation on the system's 

information capacity. This perspective provides a 

conceptually clear resolution to the presumed ‘nonlocality’ of 

quantum mechanics by recognizing that entangled systems –

despite being spatially distributed– are fundamentally single-

variable systems whose subsystems exhibit strong 

informational correlations. 

 

V. CONCLUSIONS 

 

In this work, we have presented a rigorous, step-by-step 

derivation of the mathematical formalism of quantum theory 

by analyzing the properties of physical systems with minimal 

information capacity –specifically, those with only one 

independent variable. The constraints imposed by probability 

conservation in these systems, which are fundamentally 

probabilistic in nature, necessarily lead to the quadratic 

probability measure, which in turn yields the complete 

formalism of quantum theory. Furthermore, we have 

demonstrated how the practical requirements for performing 

quantum experiments –specifically, preparing physical 

systems in coherent states– effectively transform these 

systems into single-variable systems. Thus, we conclude that 

quantum theory fundamentally describes the physics of 

single-variable systems. 

This approach represents a significant departure from 

traditional axiomatic formulations, offering instead a first-

principles derivation grounded in information-theoretic 

principles applied to physical systems. Rather than 

postulating the mathematical structure of quantum mechanics, 

we demonstrate how it emerges naturally from the analysis of 

systems with inherently limited information capacity. By 

deriving quantum theory from first principles and clearly 

specifying its domain of applicability, we provide new 

insights into key concepts such as coherence, the quantum-

classical boundary, and entanglement. Our framework reveals 

that the Heisenberg cut is determined not by a system’s size 

but by the number of independent variables it possesses, while 

quantum entanglement arises as a direct consequence of the 

informational constraints imposed on spatially extended 

single-variable systems. These findings support Wheeler's “it 

from bit” idea, suggesting that physical reality emerges from 

information-theoretic constraints rather than the reverse. This 

perspective also offers a unified lens through which other 

well-established quantum concepts can be reinterpreted. 

The implications of our derivation extend beyond 

theoretical insights. By establishing that quantum behavior is 

fundamentally linked to information capacity rather than 

physical scale, we provide clear criteria for identifying 

systems that are expected to exhibit quantum effects. This 

perspective resolves longstanding paradoxes in quantum 

foundations while suggesting practical guidelines for 

experimental design and technological implementation. It not 

only clarifies existing quantum phenomena such as the 

mechanisms underlying coherence and entanglement but also 

suggests novel approaches to quantum technology 

development, particularly in identifying candidate systems for 

quantum information processing and communication –with a 

focus on the informational capacity of physical systems. 

Ultimately, the cohesive and consistent framework for 

understanding quantum physics presented here has the 

potential to reshape and enrich our comprehension of the 

fundamental physical principles that govern the universe. 
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