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Abstract

In Yang-Mills gauge theory on a Euclidean Cauchy surface the group of gauge symmetries
carrying direct empirical significance is often believed to be GDES = GI/G∞

0 , where GI is the
group of boundary-preserving gauge symmetries and G∞

0 is its subgroup of transformations
that are generated by the constraints of the theory. These groups are identified respectively
as the gauge transformations that become constant asymptotically and those that become
the identity asymptotically. In the Abelian case G = U(1) the quotient is then identified as
the group of global gauge symmetries, i.e. U(1) itself. However, known derivations of this
claim are imprecise, both mathematically and conceptually. We derive the physical gauge
group rigorously for both Abelian and non-Abelian gauge theory. Our main new point is
that the requirement to restrict to GI does not follow from finiteness of energy only, but from
the requirement that the Lagrangian of Yang-Mills theory be defined on a tangent bundle to
configuration space. Moreover, we explain why the quotient consists precisely of a copy of
the global gauge group for every homotopy class, even if the various gauge transformations
apparently have different asymptotic rates of convergence. Lastly, we consider Yang-Mills-
Higgs theory in our framework and show that asymptotic boundary conditions differ in the
unbroken and broken phases.1

1 Introduction

The physical status of gauge symmetries is a central topic in contemporary physics, both in
Yang-Mills theory and general relativity. The term “gauge” is sometimes used as a synonym for
“unphysical” or “empirically insignificant,” but gauge transformations can acquire a physical
meaning in the presence of boundaries. A well-known example is the Josephson current flow-
ing between two superconductors that are brought close together [2]. This current depends only
on the relative difference between the global U(1) phases of the superconductors’ Ginzburg-
Landau order parameters, suggesting that global gauge symmetries are physical. Similarly,
some gauge symmetries are physical on asymptotic boundaries. For instance, the asymptotic

1This article grew out of the master thesis of the corresponding author, supervised by the other author and by
Sebastian de Haro [1].
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symmetry group of gravity in asymptotically flat spacetimes is the well-known BMS group [3–5]
and asymptotic symmetries of Yang-Mills fields on both the null and spatial conformal bound-
aries of Minkowski spacetime are studied in the context of celestial holography, see e.g. [6–9].
The general idea is that the asymptotic symmetry group consists of all “allowed symmetries”
quotiented by all “trivial symmetries” [7]. Here “allowed” means those symmetries that re-
spect the boundary conditions of the system and “trivial” means those symmetries that have no
physical effect on the system. In this article we will identify the trivial symmetries as the gauge
transformations that are generated by the Hamiltonian constraints of the theory.

Our aim is to rigorously derive the quotient of boundary-preserving gauge symmetries by
trivial gauge symmetries for the specific case of Yang-Mills and Yang-Mills-Higgs theory on a
Cauchy surface isomorphic to R3. Our motivation to do so comes from the desire to understand
the physical content of the Higgs mechanism [10–13], which is thought to happen at a particular
instant in time during the electroweak phase transition. This means that we introduce a 3+1 split
of spacetime into Σ× R and discuss instantaneous spatial asymptotic symmetries, for which the
time t is held fixed and the radial coordinate r on Σ is taken to infinity. This means that we do
not consider the asymptotic symmetry group of full spatial infinity of Minkowski spacetime.2

It is sometimes said that asymptotic analyses are more of an art than a science [7, p. 34], but
for the specific case of Yang-Mills theory on a Euclidean Cauchy surface we will present a fairly
algorithmic and unambiguous method for deriving the physical gauge group. It is probable
that this method can be extended at least to Yang-Mills theory on Cauchy surfaces in other
spacetimes than Minkowski, and perhaps also to the gravitational field itself.

The case of Maxwell theory, possibly with a Higgs field, on Euclidean space has been stud-
ied extensively in the foundations of physics community, see e.g. [14–25]. The terminology used
there to describe physical and trivial gauge symmetries respectively is that of direct empirical sig-
nificance (DES) and redundant gauge transformations [18]. We will stick to this terminology. Re-
dundant gauge transformations are contrasted with formal gauge transformations, which make
up the full infinite-dimensional gauge group G without any regard for their physical status. For
pure electromagnetism on Σ with spatial asymptotic boundary conditions, the group of gauge
symmetries carrying DES has been identified as the asymptotic symmetry group

GDES = GI/G∞
0 ,

where GI denotes the subgroup of the formal gauge group G whose elements leave asymptotic
boundary conditions invariant3 (the “allowed” symmetries), and G∞

0 is the subgroup of re-
dundant gauge transformations that are generated by the primary first-class constraints of the
theory (the “trivial” symmetries). Here the ∞-superscript stands for the trivial action of these
transformations at infinity4 and the subscript 0 denotes the identity component of G∞. The
identification of redundant gauge symmetries as the ones generated by the primary5 first-class6

constraints is based on the Dirac-Bergmann theory of constraints, in which one takes Poisson
brackets of the primary first-class constraints with the fields of the theory to generate gauge
transformations. For details see e.g. [26–29].

2Spatial infinity understood as the timelike boundary at which spacelike geodesics end connects the infinite past
with the infinite future, and is therefore itself infinitely long in time and not instantaneous.

3Hence the notation I, which will be used throughout to denote classes of maps that leave the asymptotic boundary
conditions invariant, i.e. which are constant at infinity (except in the broken phase of the Yang-Mills-Higgs theory,
where boundary-preserving transformations must actually vanish at infinity, see Section 5).

4Throughout this article we use the subscript ∞ to denote certain conditions (usually the vanishing of classes of maps)
at asymptotic infinity, which is not to be confused with the superscript denoting infinite differentiability (smoothness).
Only for G∞

0 have we used ∞ as a superscript since there we already have the 0 and there is no danger of confusion.
5Primary constraints are constraints that are obtained without using the equations of motion.
6First-class constraints are constraints whose Poisson bracket with any other constraint vanishes.
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For electromagnetism (with structure group U(1)) on three-dimensional space Σ, the group
GI is identified as consisting of those gauge transformations g : Σ → U(1) that become asymp-
totically constant [18, 20]. Furthermore, the subgroup G∞

0 is identified as the one generated by
the Gauss law constraint, consisting of all transformations g : Σ→ U(1) that asymptotically ap-
proach the identity [18, 30]. The quotient is then said to be isomorphic to U(1) itself, i.e. the
group of global (or rigid) gauge symmetries [17, 18, 20].

However, the derivations supporting these results are at the least shaky and sometimes sim-
ply incorrect. The common lore is that one must impose asymptotic fall-off boundary conditions
on gauge fields, e.g.

Ai → 0+O(r−2), i = 1, 2, 3,

to ensure finiteness of energy and/or action, and that the gauge group must preserve these
conditions [17, 31]. But this argument is problematic, since energy and action only depend on
gauge-invariant quantities (the field strength tensor). Thus there is no need to require gauge
fields to become zero asymptotically, but only that they become pure gauge. Any gauge trans-
formation preserves this condition, so it would seem naively that one can always allow the
full gauge group G, instead of restricting to GI.7 If true, this would greatly enlarge the group
GDES, well beyond the group of global (rigid) gauge transformations. The aim of this article is
to explain why we can in fact still only allow the subgroup GI, although this does not follow
from finiteness of energy only but also from the requirement that the Lagrangian be defined on
the tangent bundle to configuration space. For finite-dimensional systems this latter requirement is
the foundation for proving the equivalence of the Euler-Lagrange equations and stationarity of
the action in variational principles, see e.g. [32, Chapter 8] or [33, Chapter 19]. But gauge field
theories are infinite-dimensional systems with infinite-dimensional symmetry groups, resulting
in the added difficulty that the Lagrangian is degenerate (exhibits constraints) [26, 34]. In that
case, not all vectors in the tangent bundle to configuration space admit solutions to the Euler-
Lagrange equations of which they are the initial datum [34, Section 6.4]. Still, the constraints are
found in the first place through the Legendre transform L : TQ→ T∗Q from the tangent bundle
to the cotangent bundle of the configuration space Q. The constraint surface C is the image
L(TQ) of the tangent bundle under the Legendre transform [26, 34]. Thus, even in gauge field
theories, one always starts with a Lagrangian defined on the tangent bundle to configuration
space.

Besides the problem of finding GI, there is further obscurity in the literature when GDES is
identified with the group of global gauge symmetries. This pertains to the question of the ap-
propriate rate at which transformations g ∈ GI must become constant asymptotically, and the
rate at which elements g ∈ G∞

0 must become the identity. It is only when these rates are exactly
equal that we can conclude that the quotient of these two subgroups of G is isomorphic to U(1)
(in the Abelian case). However, in the usual approach it is not obvious that these rates are the
same. To see this, note that, in 3-dimensional space, the electric field must vanish asymptoti-
cally with order O(r−3/2−ϵ) to guarantee that it is square-integrable,8 where ϵ > 0 is any (small)
number. As we will explain later, this same rate is needed for the gauge field itself. It is then
concluded that gauge transformations g : Σ → G must become constant asymptotically to pre-
serve this boundary condition. But at what rate? In the Abelian case, we would need the gauge
parameter λ : Σ→ R to be such that its derivative ∂iλ becomes constant with order O(r−3/2−ϵ),

7There is another way to formulate this critique: the very statement Ai → 0 is made in a specific gauge. What we
call “zero” is therefore gauge-dependent. Thus, the fact that this asymptotic boundary condition is not preserved by
most gauge transformations is not surprising - it is a consequence of our working in a gauge.

8Square-integrability is required because the energy carried by the electric field is the integral of the square of its
norm, and this energy is required to be finite.
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if it is to be boundary-preserving. But what does this imply for λ itself? It is not obvious that
we can simply conclude that λ→ 0+O(r−1/2−ϵ), i.e. that λ falls off with one power of r fewer.
Indeed, there are examples of functions which themselves vanish in a certain limit but whose
derivative behaves very badly. Besides, the choice of asymptotic behavior of the fields has a
great effect on what transformations GI contains precisely, as already noted in [17, 18].

Similar issues arise when considering the order of asymptotic behavior for transformations
g ∈ G∞

0 . In fact, in the argument by Balachandran [30], which formed the basis for Teh’s deriva-
tion [18], the requirement that g→ 1 asymptotically is based on the need for a certain boundary
term to vanish in the calculation of a specific Poisson bracket. But this boundary term con-
tains the electric field, and so its vanishing could also be guaranteed simply by requiring rapid
enough asymptotic fall-off of the electric field, such that gauge transformations do not need to
go to the identity to make sure this Poisson bracket exists. We will run into this issue again
in Section 4.1. At any rate, it is clear that quite a lot of fine-tuning of asymptotic behavior is
needed to ensure that, in the end, the quotient GDES = GI/G∞

0 corresponds precisely to the
group of global gauge transformations. This arbitrariness is highly unsatisfactory.

These ambiguities contrast sharply with other characterizations of the special status of global
gauge symmetries, from which it is obvious that it is precisely the global gauge group that
stands apart from other gauge transformations. We mention three such characterizations.

Firstly, in the formalization of gauge theories using fiber bundles, connections live on a
principal G-bundle P → Σ. Gauge transformations correspond to bundle automorphisms P →
P. But in the Abelian case, there is clearly a special class of gauge transformations, namely
the ones that are given by the global action G : P → P, which forms part of the very definition
of a principal bundle.9 A connection on P is a choice of horizontal subspace at every point
p ∈ P. Since the global action of G on P is, by definition, perfectly vertical, it is not felt by the
connections.

Secondly, but relatedly, in the symplectic formulation of gauge theories, the global gauge
group appears precisely as the obstruction to the possibility of a smooth symplectic reduction.
To see this, recall that any Hamiltonian group action on a symplectic manifold can be used to
define a momentum map (Definition 4.1) such that, if the group acts freely10 and properly11 on
the zero set of this momentum map, one can take a symplectic quotient [32–34]. However, since
global gauge transformations can be viewed as the constant maps g : Σ → G, they do not act
freely. In the Abelian case, a connection A transforms as

A→ A+ g−1dg,

so if g is constant then dg is zero, and any connection will be a fixed point of the global gauge
group action. This prevents the possibility of a smooth symplectic reduction. The symplectic
quotient will instead be a stratified space. In the non-Abelian case even constant gauge trans-
formations act by conjugation g−1Ag, because non-Abelian gauge bosons are charged under
the force they themselves carry, but then the central global gauge transformations still do not
act freely.12

9In the non-Abelian case the action g : P → P defined by g(p) = pg does not necessarily define a bundle automor-
phism, since g(ph) = phg, which is not necessarily the same as g(p)h = pgh, as g and h need not commute. Yet the
central elements of G do define a bundle automorphism this way.

10The action of a group H on a set X is called free if h · x = x for some x ∈ X implies that g is the identity.
11The action of a topological group H (such as a Lie group) acting by homeomorphisms on a topological space X

(such as a manifold) is called proper if the map H× X → X× X is proper. A map between topological spaces is called
proper if the inverse image of a compact set is itself compact.

12Another possibility would be to consider the group G∗ of pointed gauge transformations, i.e. those transformations
that are the identity at some arbitary fixed point x0 ∈ Σ. Then the only global transformation is the trivial one and the
action of G∗ is free, so that the symplectic reduction is a smooth space. This approach is pursued in [35]. We could also
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Thirdly, Gomes has identified the global gauge group in electromagnetism as the one car-
rying empirical significance [21–23, 37]. This is achieved by means of horizontal symplectic
geometry, in which the dressing

h[A] =

∫
Σ

dy3

4π

∂iAi

|x − y|

singles out the gauge-invariant component of the gauge field A on 3-dimensional space Σ. This
dressing corresponds to a projection onto the Coulomb gauge and is insensible precisely to the
global gauge transformations, as these do not change A. Clearly this is related to the previous
point: the common idea is that (central) global gauge transformations do not change the gauge
field, whereas these do change the global phase of matter fields.13

Thus, we arrive at the central goal of this article: unifying the various approaches to de-
riving precisely the global gauge group as the one carrying DES, by carefully considering the
configuration space of Yang-Mills fields and their spatial asymptotic boundary conditions. Our
approach is as follows. We first construct the configuration space of gauge fields in Section 2,
without working in a particular gauge. In Section 3 we then use this construction to define
boundary conditions that are necessary to ensure finiteness of energy, and we examine their
consequence for the structure of the configuration space of gauge fields. Subsequently, we find
the redundant gauge symmetries, i.e. those generated by the Gauss law constraint, in Section
4, finally giving us the quotient of transformations with DES. Lastly, we study what happens
when a Higgs field is added in Section 5, in which case we find different boundary conditions
for the unbroken and broken phases.

2 The configuration space of gauge fields

In this Section we explain what the configuration space of Yang-Mills theories, on whose tan-
gent bundle the Yang-Mills Lagrangian is defined, looks like. We do this without working in a
particular gauge. This is of paramount importance for conceptual clarity because, if we impose
boundary conditions such as Ai → 0, then we are already working in a specific gauge. It is
therefore not surprising that gauge transformations change this boundary condition. However,
it is not clear whether this violation of the boundary condition is really problematic or just an
artifact of our choice to work in a specific gauge, and we should avoid this ambiguity.

The results of this Section are a necessary prerequisite for understanding the main point of
Section 3: that the need to restrict the gauge group to GI, i.e. the subgroup of transformations
that leave the boundary conditions invariant, comes not directly from the boundary conditions
themselves, but rather from the requirement that the domain of the Lagrangian be a tangent
bundle.

Throughout this article we assume a 3+1 split of flat spacetime into Σ × R, where Σ ∼= R3,
and work in the temporal gauge, thus setting A0 = 0. This means that we do not consider
gauge transformations in the temporal component of the gauge field, but only in its spatial
components. We do this because we are ultimately interested in understanding the breaking
of spatial gauge transformations in the Higgs mechanism. For details on the relation between
such a 3+1 split and covariant formulations of Yang-Mills theory, we refer the reader to Section
8.3 of [34] and to [40, 41].

consider so-called irreducible connections, i.e. connections for which the holonomy group acts irreducibly. The gauge
group does act freely on the space of irreducible connections [36].

13For this reason they are used in so-called ’t Hooft beam splitter [38] constructions, see e.g. [39].
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We consider a principal G-bundle P → Σ, where the structure group G is some compact
matrix Lie group such as U(1) or SU(N), with Lie algebra Lie(G) = g. The structure group
should not be confused with the gauge group G = Aut(P) of all gauge transformations. A
gauge field in Yang-Mills theory is a connection on this bundle P, i.e. a choice of horizontal
distribution in the tangent bundle TP. Equivalently a gauge field can be viewed as a Lie algebra-
valued 1-form on P, i.e. an element A ∈ Ω1(P, g), that is both G-equivariant and reproduces
the Lie algebra generators of the fundamental vector fields14 [42]. G-equivariance means that
r∗h ◦ A = Adh−1 ◦ A for all h ∈ G, where Ad : G → GL(g) denotes the adjoint representation15

and r∗h : g → g the pullback of the right multiplication rh : G → G by h ∈ G. Such a connection
1-form A can be pulled down to Σ if we have a gauge, i.e. a section s : Σ→ P, in which case it is
acted upon by the gauge group G in the usual way:

s∗g̃A = g̃−1s∗Ag̃+ g̃−1dg̃, g̃ ∈ C∞(Σ,G).

Here s∗ : Ω1(P, g) → Ω1(Σ, g) denotes the pullback of the gauge s, and we have used the iso-
morphism G = Aut(P) ∼= C∞(Σ,G), which sends g 7→ g̃, induced by s.16 Henceforth we drop
the ∼, meaning that we freely switch between the gauge-invariant definition G = Aut(P) and
the gauge-dependent definition G = C∞(Σ,G).

If we write Conn(P) for the space of all connection 1-forms on P, then the space of “coordi-
nates” and “velocities” of Yang-Mills theory naively consists of the tangent bundle TConn(P) to
Conn(P). However, as we will see in Section 3, asymptotic boundary conditions are required on
the tangent vectors (electric fields) in this tangent bundle, thereby complicating the construc-
tion. But (asymptotic) boundary conditions are usually imposed on fields on the space Σ and
not on the bundle P, so we need to bring down our fields to Σ. We could do this by working
in a gauge as above, but we have just explained that it is vital to work gauge-invariantly. For-
tunately it is also possible to work gauge-invariantly on Σ, using the following definitions and
results.

A k-form ω ∈ Ωk(P, g) is called horizontal if it vanishes whenever at least one vector it eats
is vertical, i.e. if for all p ∈ P we have ωp(X1, ..., Xk) = 0 whenever Xi ∈ VpP = ker(π∗) for
some 1 ≤ i ≤ k. Here VpP = ker(π∗) denotes the space of vertical vectors at the point p, which
should be thought of as the vectors that lie along the fibers (which are isomorphic to G) of P.
Furthermore, we say a k-form is of type Ad if r∗h ◦ω = Adh−1 ◦ω for any h ∈ G. We denote the
set of horizontal k-forms of type Ad byΩk

hor(P, g)
Ad. We have the following result [42].

Proposition 2.1. Let P → Σ be a principal G-bundle. If A,A ′ ∈ Ω1(P, g) are two connection
1-forms then A − A ′ ∈ Ω1

hor(P, g)
Ad and for any ω ∈ Ω1

hor(P, g)
Ad we have that A + ω is a

connection 1-form. For the curvature we have F(A) ∈ Ω2
hor(P, g)

Ad.

In other words: differences of connections as well as curvatures are horizontal forms of type
Ad. This is extremely useful because of the following well-known theorem [42].

Theorem 2.2. Let π : P → Σ be a principal G-bundle. Then Ωk
hor(P, g)

Ad and Ωk(Σ,Ad(P)) are
canonically isomorphic as vector spaces through the pullback π∗.17

14That is: A(Xξ) = ξ for all ξ ∈ g, where Xξ denotes the fundamental vector field in X(P) generated by ξ through the
right action of G on P.

15Defined by Adh(X) = hXh
−1, where h ∈ G,X ∈ g.

16The isomorphism between the two groups is as follows. If we have aG-valued map g : Σ→ G, then we can produce
a bundle automorphism f : P → P using the section s : Σ→ P. We simply define f(p) = p · s(π(p)).

17Recall that for a fiber bundle E → N any map f : M → N induces a pullback bundle f∗E → M. In this case the
pullback (of the adjoint bundle) is the trivial vector bundle P × g.
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Here Ad(P) denotes the adjoint bundle.18 Thus, if we choose a basis connection Aref, we
can view the space of connection 1-forms Conn(P) as the vector space Ω1(Σ,Ad(P)). In other
words: we can view differences of connections as well as curvatures as forms on Σ instead
of on P in a gauge-invariant manner, as long as we remember that it is in reference to the basis
connectionAref. For an Abelian structure group the adjoint bundle Ad(P) is even trivial, i.e. just
Ad(P) = Σ× g, so that the space of connections becomes simplyΩ1(Σ, g).

Now, we know what the tangent space to a vector space looks like: it is just isomorphic
to the original vector space. This allows us to obtain the tangent bundle to the space of con-
nections. We find that the enigmatic space TConn(P) is just TΩ1(Σ,Ad(P)) ∼= Ω1(Σ,Ad(P)) ×
Ω1(Σ,Ad(P)). In electromagnetism g = iR, so that TConn(P) reduces toΩ1(Σ)×Ω1(Σ).

3 Asymptotic boundary conditions and the gauge group

This far we have not considered any boundary conditions on the connection 1-forms or the tan-
gent vectors in TΩ1(Σ,Ad(P)), nor on the curvature, even though this is essential for ensuring
finiteness of the Lagrangian and/or Hamiltonian and/or action. The Lagrangian is an integral
over Σ ∼= R3, so terms that appear in it must fall off asymptotically with order at least O(r−3−ϵ)
in order to make this integral well-defined. Let us now see what these terms are and what
imposing boundary conditions implies for the group of gauge transformations G.

Our goal is to identify a subspace Q ⊂ Ω1(Σ,Ad(P)) of the space of all gauge fields which
is such that its tangent bundle TQ consists only of fields that satisfy the asymptotic boundary
conditions dictated by the Lagrangian. To know what these boundary conditions are, we need
to find the Lagrangian of Yang-Mills theory on Σ, which is a map L : TQ → R. Elements of TQ
consist of pairs (A,α) ∈ Q × TAQ of gauge fields and tangent vectors. We think of α as the
electric field, but it is entirely independent of A as long as we do not impose the equations of
motion, which is why we have chosen not to use the symbol E. The tangent vectors αA are the
“velocities” at the “coordinate” A. The Lagrangian of Yang-Mills theory in temporal gauge is
then [43]

L(A,α) = 1

2
∥α∥2 − 1

2
∥F(A)∥2 . (1)

Here F(A) denotes the curvature 2-form of the connection 1-formA, which is the magnetic field,
and ∥·∥ is the usual norm on forms:

∥ω∥2 =

∫
Σ

Tr(ω∧ ∗ω),

where ∗ denotes the Hodge star operator. We can derive this expression for the Lagrangian
from the usual covariant action on spacetimeM = Σ× R:

S(Ã) = −
1

2

∫
M

Tr F(Ã)∧ ∗F(Ã) = −
1

2

∫
R

∫
Σ

Tr F(Ã)∧ ∗F(Ã).

Here we have written Ã to stress that this is a gauge field on spacetime M instead of on space
Σ. Denoting coordinates on Σ by xi and the coordinate on R by t = x0, it is not difficult to show

18The adjoint bundle is the associated real vector bundle Ad(P) = P ×Ad g constructed through the adjoint rep-
resentation Ad : G → GL(g). Here the product P ×ρ g signifies that we quotient P × g by the equivalence relation
(p, X) ∼ (ph,Adh−1 (X)) for h ∈ G.
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that the action in coordinates becomes the usual [42]

S(Aµ) = −
1

4

∫
R
dt

∫
Σ

d3xTr FµνF
µν = −

1

4

∫
R
dt

∫
Σ

d3xTr
(
2F0iF

0i + FijF
ij
)
,

where µ = 0, 1, 2, 3, i = 1, 2, 3 and Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] is the antisymmetric field
strength tensor (which clearly satisfies F00 = 0). The term Tr F0iF0i is (minus) the energy of the
electric field (the “kinetic” energy) and the term Tr FijFij twice the energy of the magnetic field
(the “potential” energy).

If we now impose temporal gauge A0 = 0 we obtain F0i = ∂0Ai = Ȧi. We can then rewrite
the action as

S(Aµ) =
1

2

∫
R
dt

∫
Σ

d3xTr
(
−ȦiȦ

i − FijF
ij
)
=

∫
R
dtL(Ai, Ȧi).

But Fij is just the curvature of the connectionAi on three-dimensional space Σ, so in coordinate-
free notation we find19

S(Aµ) =
1

2

∫
R
dt

∫
Σ

Tr
(
Ȧ∧ ∗Ȧ− F(A)∧ ∗F(A)

)
=
1

2

∫
R
dt

(∥∥Ȧ∥∥2 − ∥F(A)∥2
)
,

where it is understood that A ∈ Ω1(Σ,Ad(P)) should now be viewed as only the spatial part
of Aµ. Writing α = Ȧ and realizing that these velocities are tangent vectors we obtain the
Lagrangian in Eq. 1.

Now, we want the Lagrangian to be well-defined as an integral over Σ, and so we require
both ∥α∥ and ∥F(A)∥ to be separately finite, anticipating also that the energy is the sum of these.
As these norms are just integrals over 3-dimensional space, square-integrability requires that α
and F(A) fall-off sufficiently quickly towards spatial asymptotic infinity. It is enough to require
that they approach 0 asymptotically with order r−3/2−ϵ, where ϵ > 0 is a small number. Thus,
we find two asymptotic boundary conditions:

(i) α→ 0+O(r−3/2−ϵ) as r→ ∞;
(ii) F(A) → 0+O(r−3/2−ϵ) as r→ ∞.

That is: the gauge field A must become flat at asymptotic infinity sufficiently quickly and the
tangent vector “electric field” α must vanish at infinity. We note that there is NO requirement
for the gauge field itself to vanish at infinity, since it does not appear in the Lagrangian directly.
It only needs to become flat [20]. This raises the question: do the above boundary conditions
produce a proper tangent bundle TQ? That is: if we take Q to consist of those connections that
become flat asymptotically at the right rate, will its tangent space TAQ at a point A ∈ Q then
consist precisely of those α that approach zero asymptotically at that same rate? The answer
is no. To see this, we consider the space of flat connections at infinity and examine its tangent
space. It should consist of the zero vector only, since we require α to vanish at infinity. In other
words: the tangent space at infinity should be 0-dimensional, which in turn implies that the
space of flat connections at infinity should be 0-dimensional, i.e. a discrete space. For simplic-
ity we take it to consist of a single point, i.e. some fixed boundary choice of flat connection at
infinity. This is why gauge transformations must become constant at infinity: they must leave
this fixed, flat connection invariant.

Let us be more precise about this. As explained in Sections 8.4 and 8.5 of [34], the conformal
invariance of Yang-Mills theory allows us to make use of a conformal embedding of Minkowski

19We use (−,+,+,+) signature for the metric, which explains the minus sign in −ȦiȦ
i.
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spacetime (M,η) into a Lorentzian manifold (M̂, η̂) with compact Cauchy surfaces. Such an
embedding is map f : (M,η) → (M̂, η̂) which sends M into the interior of M̂ and which is such
that f∗η̂ = K2η for some positive function K.20 The Cauchy surface Σ ∼= R3 is then mapped
into the interior of a compact space Σ̂ with boundary ∂Σ̂ ∼= S2 (the celestial sphere of directions
at infinity), so we can view asymptotic infinity of Σ as S2. This conformal embedding is very
useful for making precise statements about the asymptotic behavior of fields as well as gauge
transformations.

It can straightforwardly be seen that the space of flat connections on ∂Σ̂ is large enough to
have a tangent space which is not zero-dimensional. Indeed, if we choose some flat connec-
tion Â∞ on ∂Σ̂, then any connection obtained from this connection by a gauge transformation
at infinity, i.e. by an element of Aut(P̂∂Σ̂), will also yield a flat connection. After all, gauge
transformations do not change the flatness of a connection. Thus, the space of flat connections
at infinity contains at least the orbit of Â∞ under the action of the gauge group at infinity. The
tangent space to this orbit is C∞(∂Σ̂, g), i.e. the g-valued maps on S2. But this tangent space is
clearly not 0-dimensional.

Thus we see that we must restrict Q to those connections that, through the conformal em-
bedding, approach some fixed choice of flat connection on the asymptotic boundary, denoted
Â∞. Then the space of connections at infinity will be 0-dimensional (consisting only of this one
fixed connection) and its tangent space too. However, such a choice of a fixed flat connection at
infinity obviously breaks gauge invariance, but in a trivial sense: any gauge transformation that
is not constant at infinity will change Â∞. In the Abelian case, the group of gauge transforma-
tions that do preserve this fixed choice of flat connection consists precisely of all transformations
that are constant at infinity. In the non-Abelian case one has to take into account the fact that
even constant transformations may change the fixed flat connection at infinity by means of a
conjugation. The orbit of a flat connection under the conjugation action of the group of con-
stant gauge transformations is itself a smooth manifold (whose dimension depends on G), with
tangent vectors which are nonzero unless the connection takes a value that is invariant under
Ad(G). Intuitively, this corresponds to the fact that non-Abelian gauge fields carry currents
even in the absence of matter fields. Avoiding such currents with infinite energy at infinity
forces us to pick a connection which is invariant under Ad(G), e.g. zero. Then the asymptoti-
cally constant gauge group will still leave this boundary choice invariant. This choice of picking
the zero connection at infinity so that the full asymptotically constant gauge group is allowed,
rather than allowing for any flat connection but only the central constant transformations, har-
monizes with Doplicher-Haag-Roberts superselection theory in algebraic quantum field theory,
in which the global gauge group gives rise to observable superselection sectors and can in turn
be reconstructed from such a superselection structure [44–49].

In this way, we again arrive at the familiar fact that the group of boundary-preserving “al-
lowed” gauge transformations GI consists of those that become constant at infinity at the ap-
propriate rate. We need not worry anymore about what this rate is precisely, since it does not
play a role when working on the compact space Σ̂, where there is only one simple condition
on the transformations in GI, namely that they are constant on ∂Σ̂. It is also clear why gauge
fields A, when viewed on Σ̂, automatically approach the fixed flat connection Â∞ ∈ Ω1(∂Σ̂, g)
at the same rate that tangent vectors α approach zero. This follows from the requirement that
the space of “electric fields” is precisely the tangent space to Q. Since TAQ ∼= Q, any choice of
asymptotic behavior for elements in TAQ automatically translates this behavior onto toQ itself.

20In more detail, we can take M̂ to be R× S3 with the metric gM̂ = −dτ2 + gS3 . Using standard angular coordinates
(α, β, γ) for S3 and spherical coordinates (r, θ, φ) for R3, the embedding R × R3 → R × S3 is explicitly given by
τ = arctan(t + r) + arctan(t − r), α = arctan(t + r) − arctan(t − r), β = θ and γ = φ [34, Equation 8.4.5].
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4 Redundant gauge symmetries and constraints

Having reproduced the result that the subgroup of boundary-preserving gauge transformations
GI consists of those transformations that become constant at infinity - interpreted properly as
the boundary of the compact space Σ̂ - it is time we turn to the question of the redundancy or
“triviality” of these gauge transformations. That is: which elements of GI are generated by the
Gauss law constraint, which is the primary first-class constraint of Yang-Mills theory,21 and can
therefore be interpreted to be unphysical, i.e. to not have DES?

In constrained Hamiltonian analysis, gauge orbits are null directions22 of the symplectic form
pulled back to the constraint surface C [26]. These null directions give a clear definition of
“gauge” in the redundant sense: they are not felt by the symplectic form, which is the central
object in the classical structure of the theory. It was Dirac’s great insight that these gauge orbits
are generated by the primary first-class constraints. In symplectic geometry, this idea is made
precise by means of the momentum map, which formalizes infinitesimally generated symme-
tries. Indeed, in Yang-Mills theory the constraint surface equals the inverse image of zero under
the momentum map for the group of redundant, trivial gauge symmetries [34]. Thus, in order
to discover precisely which transformations in GI are redundant, we pursue the following strat-
egy: we calculate for which infinitesimal gauge transformations the momentum map is given
by the Gauss law constraint. This approach can be seen as a precise version of the argument
from [30], and we will follow it now to highlight how local and global gauge symmetries obtain
a different physical status: only the former have the Gauss law constraint as their momentum
map and should therefore be viewed as redundant.

However, we will then explain the weakness of such an approach: we run into the same
issues about the appropriate rates of asymptotic behavior as those highlighted in the intro-
duction. Thus we will be forced to revert back to the compact space Σ̂ related to Σ through a
conformal embedding. We will then see that the redundant gauge transformations ĝ are the
ones that equal the identity on the conformal boundary ∂Σ̂, even though it is not a priori clear
that, on a compact space, it is only these transformations that can be generated by the Gauss law
constraint. We will clarify this confusion by explaining the notion of an infinitesimal localizable
symmetry, which in the mathematical literature are the symmetries that yield Noether’s second
theorem and the resulting constraints, and are therefore redundant. Only global gauge sym-
metries are not localizable, so these should be viewed as carrying a different empirical status
than local gauge symmetries. They are symmetries that do not lead to constraints, similar to
e.g. rotational symmetry for a point particle moving in Euclidean space.23

4.1 The momentum map for the gauge group

Let Q ⊂ Ω1(Σ,Ad(P)) denote the space of connections on P → Σ satisfying the boundary con-
ditions we arrived at in the previous Section, i.e. approaching a fixed choice of flat connection
invariant under Ad(G) at infinity at the right rate. Let us, for simplicity, assume P has now
been trivialized, i.e. that we work in a specific gauge. Then Ad(P) = P ×Ad g ∼= Σ × g, so that
Q ⊂ Ω1(Σ, g). To study the momentum map for Yang-Mills theory, we need to know what the
phase space looks like. In Section 2 we already found the domain of the Lagrangian, namely

21Besides the Π0 = 0 constraint that tells us that the time-component A0 of the gauge field is a Lagrange multiplier,
but which is excluded in our analysis because we are working in temporal gauge A0 = 0 from the beginning.

22A symplectic form is required to be non-degenerate only on the full phase space and not on the constraint surface.
23The Lagrangian for such a particle is L(q, v) = 1

2
gq(v, v) − V(q), where gq : TqR3 × TqR3 → R is a metric.

The symmetries of the system are the isometries that leave the potential V invariant. If the potential is rotationally
symmetric, then rotations are symmetries. But the Legendre transform L : TR3 → T∗R3 is given by vq → gq(v, ·),
which is clearly a diffeomorphism. This means that there are no constraints.
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the tangent bundle to configuration space TQ ∼= Q ×Q. The phase space is a dense subspace24

P := Q ×Ω2∞(Σ, g) ⊂ T∗Q of the cotangent bundle [32]. It consists of pairs (A,E) with A ∈ Q
and E ∈ Ω2∞(Σ, g) ⊂ T∗AQ. Here Ω2∞(Σ, g) denotes the space of 2-forms that approach zero
asymptotically at the appropriate rate. These 2-forms can indeed be viewed as elements of the
cotangent space T∗AQ, which consists of covectors TAQ→ R, through their action on an element
α ∈ TAQ ∼= Q ⊂ Ω1(Σ, g) by means of the conjugate pairing [43]

E(α) = ⟨α, E⟩ =
∫
Σ

Tr α∧ E.

The constraint for Yang-Mills theory is the Gauss law [50]

DAE := dE+ [A∧ E] = 0 .

The action of the boundary-preserving gauge group GI lifts to phase space in the obvious way:

∀g ∈ GI : g · (A,E) = (g−1Ag+ g−1dg, g−1Eg) .

The Lie algebra Lie(GI) is isomorphic toC∞
I (Σ, g), i.e. the space of smooth gauge transformation

parameters that become constant towards infinity at the “right rate” (we recall that this rate
could be found by reverse-engineering the conformal embedding from the previous Section).
We equip P ⊂ T∗Q with the canonical symplectic form ω =

∫
Σ

dA ∧ dE, where the d symbol
is used to stress that this is the derivative operator on the infinite-dimensional phase space of
fields and not the d on 3-space Σ. Henceforth we will occasionally use double-slashed symbols
to stress that these objects are defined on an infinite-dimensional phase space P .

We should like to check that, with this symplectic form, the Gauss law constraint generates
gauge transformations, i.e. check for which gauge parameters ξ ∈ Lie(GI) the momentum map
equals the Gauss law. Let us recall the definition of the momentum map [33].

Definition 4.1. Let (P,ω) be a symplectic manifold and H a Lie group that acts on P by sym-
plectomorphisms.25 Let h denote the Lie algebra of H with dual h∗, and write ⟨·, ·⟩ : h∗ × h → R
for the pairing of the algebra and its dual. Then a momentum map for the H-action on P is an
equivariant26 map µ : P → h∗ such that, for all ξ ∈ h, we have:

d⟨µ, ξ⟩ = ιXξ
ω = ω(Xξ, ·) .

Here, Xξ denotes the fundamental vector field27 generated by ξ, and ⟨µ, ξ⟩ is understood as a
function ⟨µ, ξ⟩ : P → R, defined as follows: ⟨µ, ξ⟩(x) = ⟨µ(x), ξ⟩.

The idea behind this definition is that the fundamental vector field Xξ infinitesimally gener-
ates the H-action with parameter ξ, while the values ⟨µ, ξ⟩ of the momentum map for specific
ξ provide constants of motion. The required relation d⟨µ, ξ⟩ = ω(Xξ, ·) can then be viewed
in the light of Noether’s theorem: it relates the conservation of the constants of motion to the
symmetry of the theory.28

24The full cotangent bundle would include distribution-like functionals that are not smooth and which we want to
exclude. One could of course also consider restricting Q further and allow for the full cotangent bundle T∗Q. For
instance, one could considering taking Q to consist of only Schwarz functions, so that T∗Q consists of tempered distri-
butions. The power of our argument in this article is that such alterations would not change the main result that the
asymptotic symmetry group is the global gauge group.

25I.e. the action of H preserves the symplectic formω.
26With respect to the H-action on P and the coadjoint action on h∗.
27In this definition we use the double-slashed notation because this agrees with our subsequent calculations, but of

course this definition of the momentum map is also valid for finite-dimensional symplectic manifolds.
28For technical details see [32–34], for a conceptual exposition see [51].
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We will now check that the Gauss law constraint is indeed the momentum map for the
gauge group. We find that, by partial integration, the smeared Gauss constraint splits into a
“bulk” term corresponding to the infinitesimally generated gauge symmetries and a boundary
term. The boundary term must vanish, leading to a condition on the gauge transformation
parameters. We will present our derivation on the Cauchy surface Σ ∼= R3, interpreting ∂Σ as an
asymptotic boundary, but the exact same derivation would work on the compact space Σ̂ with
actual boundary ∂Σ̂.

The momentum map µ : P → Ω3
I (Σ, g) for the action of the gauge group GI on P ⊂ T∗Q

is supposed to be the Gauss law29 constraint µ(A,E) = DAE [34, 50]. Here we identify η ∈
Ω3

I (Σ, g) as an element in the dual C∞
I (Σ, g)∗, through the pairing ⟨η, ξ⟩ =

∫
Σ

Tr ξ ∧ η, similar
to the pairing defined above. Thus, for any ξ ∈ C∞

I (Σ, g) (and using Stokes’ theorem/partial
integration), we have:

⟨µ, ξ⟩(A,E) =
∫
Σ

Tr DAE∧ ξ =

∫
Σ

Tr (dE+ [A,E])∧ ξ =

∫
Σ

Tr (dE∧ ξ− [E,A]∧ ξ)

= −

∫
Σ

Tr E∧ dξ+

∫
∂Σ

Tr E∧ ξ−

∫
Σ

Tr E∧ [A, ξ] = −

∫
Σ

Tr E∧DAξ+

∫
∂Σ

Tr E∧ ξ ,

(2)

where we have used the ad-invariance of the trace, i.e. Tr [E,A] ∧ ξ = Tr E ∧ [A, ξ]. Note that
for consistency we have used the ∧ symbol even on ξ ∈ C∞

I (Σ, g), even though it is a 0-form.
But, if µ(A,E) = DAE really is to define the momentum map for the action of GI, then by

definition it must satisfy the property

d⟨µ, ξ⟩ = ιXξ
ω := ω(Xξ, ·), ξ ∈ C∞

I (Σ, g), (3)

where Xξ ∈ X(P) denotes the fundamental vector field on P ⊂ T∗Q generated by the Lie
algebra element ξ. We will now check what assumption on the asymptotic behavior of the
gauge transformation parameter is required for the above condition to hold.

To this end we first calculate the right- and left-hand sides of Eq. (3) separately and then
compare them. We begin with the right-hand side, i.e. ω(Xξ, ·). By definition, for any function
F ∈ C∞(P), we have:

Xξ(F)(A,E) =
d

dt

∣∣∣∣
t=0

F
(
etξ · (A,E)

)
=
d

dt

∣∣∣∣
t=0

F
(
e−tξAetξ + e−tξd(etξ), e−tξEetξ

)
.

For the functions F = A and E, this simply gives:

Xξ(A) =
d

dt

∣∣∣∣
t=0

(
e−tξAetξ + e−tξd(etξ)

)
= −ξA+Aξ+ dξ = [A, ξ] + dξ = DAξ ,

Xξ(E) =
d

dt

∣∣∣∣
t=0

(
e−tξEetξ

)
= −ξE+ Eξ = [E, ξ] .

Thus if we put Xξ in the first slot of the symplectic form ω =
∫
Σ

Tr dA∧ dE, i.e. the right-hand
side of Eq. (3), we get:

ω(A,E)(Xξ, ·) =
∫
Σ

Tr (dA(Xξ)∧ dE− dE(Xξ)∧ dA) =
∫
Σ

Tr (Xξ(A)∧ dE− Xξ(E)∧ dA)

=

∫
Σ

Tr (([A, ξ] + dξ)∧ dE− [E, ξ]∧ dA) =
∫
Σ

Tr (DAξ∧ dE− [E, ξ]∧ dA) .
(4)

29If we consider Maxwell theory, then the momentum map µ applied to an element ξ ∈ C∞
I (Σ, g) is just the familiar

Gauss law ∇ · E smeared with ξ. This can be seen by switching to the physicists’ convention ξ = iλ and writing
DAE = ∇ · E, yielding i

∫
Σ
d3x λ(x)∇ · E(x).
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The left hand-side of Eq. (3) gives:

d⟨µ, ξ⟩ = d
∫
Σ

Tr DAE∧ ξ =

∫
Σ

Tr (d(DAE)∧ ξ−DAE∧ dξ) .

However, we cannot immediately see how this agrees with the expression in Eq. (4), because
Eq. (4) contains a term linear in DAξ, while the above result has a term that is linear in ξ. Thus
we need to do the partial integration in Eq. (2), which gives:

d⟨µ, ξ⟩ = −

∫
Σ

Tr (dE∧DAξ− E∧ d(DAξ)) + d
∫
∂Σ

Tr E∧ ξ . (5)

The second term in the first integral can be rewritten as:

E∧ d(DAξ) = E∧ d(dξ+ [A, ξ]) = E∧ d[A, ξ] = E∧ [dA, ξ] = E∧ dAξ− E∧ ξdA

= −Eξ∧ dA+ ξE∧ dA− ξE∧ dA+ E∧ dAξ = −[E, ξ]∧ dA+ [E∧ dA, ξ] .

Thus, the first integral in Eq. (5) equals:∫
Σ

Tr (DAξ∧ dE+ E∧ d(DAξ)) =

∫
Σ

Tr (DAξ∧ dE− [E, ξ]∧ dA+ [E∧ dA, ξ]) .

But the trace of the full commutator term gives zero,30 so we obtain precisely the final expression
in Eq. (4)! This implies that from requiring that the Gauss constraint µ(A,E) = DAE is the
momentum map for the action of the gauge group, it follows that the boundary term in Eq. (5)
must be zero. To guarantee this, we require that ξ vanishes asymptotically. Since we originally
demanded E → 0 + O(r−3/2−ϵ), we must have ξ → 0 + O(r−1/2) to guarantee that there is
no boundary term, for then the integrand E ∧ ξ on the 2-dimensional boundary ∂Σ has fall-off
behavior of order O(r−2−ϵ). However, if we require only slightly stronger asymptotic fall-off
conditions on the electric field, e.g. E → 0 + O(r−2−ϵ), then there is no longer any need for
asymptotic requirements on ξ. Thus, a “Balachandran-like approach” [30], even if formalized in
this way, does not provide a completely unambiguous and satisfactory answer to the question of
precisely what asymptotic behavior of gauge transformations is required to be able to call them
redundant. Moreover, even if we do conclude that we must have ξ→ 0+O(r−1/2), it is not very
clear that the quotient GI/G∞

0 will be precisely the group of global gauge transformations, even
though this global group can be pristinely deduced from other approaches, as was explained in
Section 1.

Still, there is a useful conclusion to be drawn from the above derivation. By partial integra-
tion the momentum map naturally falls into two parts, i.e. two integrals, viz.

∫
Σ

Tr E ∧ DAξ
and the boundary term

∫
∂Σ

Tr E∧ ξ. The first corresponds precisely to the symmetries that are
infinitesimally generated by the fundamental vector fields Xξ, whereas the second does not.
The boundary term must therefore vanish. If we allow the most liberal asymptotic behavior on
E that is still consistent with finiteness of energy, then this requirement that the boundary term
vanishes in turn leads to the requirement that gauge transformations vanish asymptotically.
This means that only gauge transformations vanishing at infinity, i.e. local transformations,
are associated to the Gauss law constraint through Noether’s second theorem [34, Proposition
7.2.6]. Only these should be viewed as unphysical. Global gauge transformations, which do act
at infinity, are not included and only appear in Noether’s first theorem [52].

30Or, since the trace is ad-invariant, we could also immediately have rewritten Tr E ∧ [dA, ξ] = −Tr [E, ξ] ∧ dA.
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4.2 Infinitesimal localizable symmetries

As we have just explained, the problem with the above conclusion is that it seems to depend
on the choice of asymptotic boundary conditions for E. If we choose stronger conditions than
E→ 0+O(r−3/2−ϵ), e.g. E→ 0+O(r−3) or that E is a Schwarz function, then the boundary term
in Eq. 2 automatically vanishes, regardless of the asymptotic behavior of the gauge parameter
ξ. The goal of this Section is to explain why global gauge symmetries still never play a role in
Noether’s second theorem, i.e. why they do not give rise to constraints, and should therefore
not be considered to be redundant even if the boundary term in Eq. 2 vanishes due to stricter
boundary conditions.

In the mathematical physics literature the symmetries that give rise to constraints through
Noether’s second theorem are the so-called infinitesimal localizable symmetries. These form an
ideal (under the Lie bracket) G ⊂ Lie(GI) of the Lie algebra of the full symmetry group, and
the constraint surface is the zero set of the momentum map for the infinitesimal localizable
symmetries (see Section 7.5 of [34]), i.e.

C = µ−1
G (0).

For this reason the infinitesimal localizable symmetries should be identified as the redundant,
“trivial” ones. When exponentiated, they generate the minimal symmetry group that must be
called gauge in the sense of “unphysical” in order to guarantee an appropriate form of deter-
minism. These infinitesimal localizable symmetries are introduced in Definition 7.2.5 of [34],
but we will not reproduce that definition here, since it is based on the formalism of jet bundles
and the De Donder equations. However, when adapted to our case at hand, it reads as follows:

Definition 4.2. An infinitesimal symmetry ξ ∈ Lie(GI) = C∞
I (Σ, g) is called localizable if it

vanishes on the asymptotic boundary of Σ and if for any pair of open setsU,V ⊂ Σwith disjoint
closures, there exists a ξ ′ ∈ Lie(GI) such that

ξ(x) = ξ ′(x), x ∈ U;
ξ ′(x) = 0, x ∈ V.

In other words: an infinitesimal symmetry is localizable if it is zero at asymptotic infinity
and for any two disjoint open regions we can always find another infinitesimal symmetry that
is equal to the original one on the one region, but zero on the other. That is: we can always
localize the infinitesimal symmetry to some open region of space.

Clearly, global gauge transformations are not localizable since they do not vanish at asymp-
totic infinity, or more precisely, at the boundary ∂Σ̂ of the compact space Σ̂ from Section 3. The
question, then, is whether all other infinitesimal symmetries in Lie(GI) are localizable. If this is
so, then the quotient GI

0/G∞
0 equals precisely the global gauge group G, where GI

0 is the identity
component of GI and G∞

0 denotes the group generated by all eξ with ξ ∈ G.
Let us therefore check that all gauge symmetries except the global ones are localizable. This

is done most easily by working on the compact space Σ̂. There Lie(GI) consists of all maps
ξ̂ : Σ̂ → g that are constant on ∂Σ̂. We note that Lie(GI)/g, with g viewed as the constant maps
in C∞

I (Σ, g), consists of all maps ξ̂ : Σ̂ → g that vanish on ∂Σ̂. We denote the algebra of these
latter maps by G∞ and check that G∞ = G.

There are two situations to consider: if U,V are the open subsets from the above definition,
such that ξ̂ ∈ Lie(GI) must be localized on U relative to V , then either U could lie in the interior
of Σ̂ or contain (part of) the boundary ∂Σ̂. In the first case it is obvious that ξ̂ can be localized:
we just use a g-valued bump function f̂ that is the identity on U and becomes zero very quickly
outside of U, in particular on V . It is then clear that f̂ · ξ̂ will be the required element of Lie(GI)
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that agrees with ξ̂ on U and is zero on V . In the case in which U contains part of the boundary
it is not immediately clear whether f̂ · ξ̂ ∈ Lie(GI). But since ξ̂ is zero on ∂Σ̂, so is the product
f̂ · ξ̂. This means f̂ · ξ̂ ∈ G∞ ⊂ Lie(GI). We conclude that the algebra of infinitesimal localizable
symmetries G is indeed G∞. Thus we find that, in Yang-Mills theory, localizability effectively
reduces to just the condition of vanishing at infinity.31 Of course, this is not a surprising result,
since gauge symmetries are meant to be localizable. But we clearly see that if a field theory
contains only global (rigid) symmetries, then no infinitesimal transformation is ever localizable,
in which case G would be zero and there would be no constraints.

We finally arrive at the result we were aiming to derive all along. The subalgebra G∞ gen-
erates (through the exponential map) the subgroup G∞

0 of gauge transformations that become
the identity at asymptotic infinity at the appropriate rate and lie in the identity component of G
(i.e. can be obtained by exponentiating Lie algebra elements). The quotient of physical gauge
transformations

GDES = GI/G∞
0

then looks like a copy of the global gauge group G for every homotopy class. which is what we
wanted to show. These homotopy classes are determined by the fundamental group π3(G) in
three dimensions, since gauge transformations on Σ that are constant at asymptotic infinity can
be viewed as maps S3 → G. For G = U(1) this homotopy group is trivial,32 but for G = SU(2)
we have π3(SU(2)) ∼= π3(S

3) ∼= Z.

5 Adding the Higgs field

Over the past two decades there has been a substantial conceptual debate about the Higgs mech-
anism [17, 53–57]. Much of this debate centers around the physical status of gauge symmetries
in relation to gauge symmetry breaking. As has been pointed out in [17, 20], a key point is that
the unbroken and broken phases of the Higgs model exhibit differing asymptotic boundary
conditions. However, the derivation of this point has not been performed rigorously. We can
now do this in the framework developed in the previous Sections.

To include a Higgs field, we must enlarge the configuration space Q of Yang-Mills fields to
Q × Q̃, where Q̃ is the space of Higgs fields, which are sections of an associated vector bundle
P×ρ V → Σ through a representation ρ : G→ GL(V), where V is the Higgs vector space.33 If we
equip V with an inner product ⟨·, ·⟩, then we can define a norm on the sections in Γ(P×ρ V) in a
similar way as for the gauge fields: by integrating the absolute value of such a section over all
of Σ.

The tangent space TφQ̃ at a point φ ∈ Γ(P×ρ V) is itself just a copy of Q̃. However, we need
to restrict both Q̃ and TQ̃with appropriate asymptotic boundary conditions. These follow from
the Yang-Mills-Higgs Lagrangian,34 which is given by

LYMH(A,α,φ,ψ) =
1

2
∥α∥2 − 1

2
∥F(A)∥2 + 1

2
∥ψ∥2 − 1

2
∥DAφ∥2 −

∫
Σ

V(φ)dVol,

31Note that this result is quite independent of the precise form of Q and GI. No matter what asymptotic conditions
on the fields are required, we always find that the redundant gauge transformations are all elements of GI which vanish
at infinity.

32In one dimensions we do have an interesting topology for electromagnetism since π1(S1) ∼= Z.
33It is C for G = U(1), and C2 for both G = SU(2) and G = U(1)× SU(2) [42].
34For the well-posedness of the Yang-Mills-Higgs initial value problem see [58].
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for A ∈ Q,α ∈ TAQ,φ ∈ Q̃, ψ ∈ TφQ̃. Here V(φ) is the well-known Higgs potential, DAφ is
the covariant derivative of the Higgs field and ψ ∈ TφQ̃ must be thought of as the velocity of
φ ∈ Q̃.

In order to guarantee finiteness of action and energy, we require that each individual term
in the above Lagrangian is finite. We already know that this requires α → 0 and F(A) → 0,
but now we also need ψ → 0 and DAφ → 0, as well as a condition related to V(φ). This last
condition is ambiguous. If the Higgs potential has the familiar shape

V(φ) = −µ ∥φ∥2 + λ ∥φ∥4 ,

then clearly the zero-point of V(φ) lies at φ = 0, as well as some other manifold of roots at
which φ ̸= 0, if µ > 0. Thus, we expect the boundary condition φ → 0. However, we may
instead want to think of the minimum of V(φ) as the true vacuum, therefore requiring φ→ min
instead. These two possibilities respectively correspond to the so-called unbroken and broken
phases of the Higgs model. Let us now study what the group GI of boundary-preserving gauge
symmetries looks like in both cases.35

The unbroken phase. In the unbroken phase, we assume that φ = 0 is the vacuum for the
Higgs field, i.e. that this state carries zero energy. We can either think of this state as lying in
the symmetric middle of the “Mexican hat potential,” or as the potential itself being such that it
only has a minimum at φ = 0, e.g. by taking µ < 0. Since φ = 0 corresponds to zero energy, we
require the asymptotic boundary condition φ → 0, besides the common boundary conditions
ψ → 0 and DAφ → 0 which are always needed. Note that this indeed gives the configuration
space at infinity the right structure: the space of Higgs fields at infinity is zero-dimensional,
since it consists only ofφ = 0. The tangent space at infinity then also consists only of zero, which
is what we want since we require ψ→ 0. Now, the conditions ψ→ 0 and DAφ→ 0 are always
preserved by any gauge transformation g : Σ→ G. This is obvious for the condition DAφ→ 0,
since the covariant derivative transforms covariantly via the linear Higgs representation ρ : G→
GL(V). Similarly the condition ψ → 0 is preserved since ψ also transforms covariantly.36 This
means that the conditions ψ→ 0 andDAφ→ 0 are automatically preserved. The same goes for
the condition φ → 0, since zero is mapped to zero by any ρ(g) with g ∈ G. We already know
that for pure Yang-Mills theory the group GI consists of transformations that become constant
asymptotically, so for the full Yang-Mills-Higgs theory we find the same.

The broken phase. In the broken phase things are different. The asymptotic conditions are
now ψ → 0,DAφ → 0 and φ → min. That is, the Higgs field must become a covariantly
constant minimum of the potential V(φ), and its velocity must become zero. At first sight,
this seems to still allow GI to contain all asymptotically constant transformations. After all, a
gauge transformation maps a minimum of V(φ) to another minimum. However, this is wrong,
for the same reason as for pure Yang-Mills theory. Allowing for gauge transformations which
act at infinity in this case gives rise to a nontrivial configuration space Q̃∞ at infinity. After
all, if we let φ∞ denote some covariantly constant minimum at infinity, then Q̃∞ will consist
at least of an orbit of GI. But this means that the tangent space Tφ∞Q̃∞ is far from being 0-
dimensional. In fact, it has the dimension of G, since we can think of it as the tangent space to
an orbit of constant gauge transformations at infinity, i.e. as g. But we cannot allow Tφ∞Q̃∞ to
contain nonzero vectors, since we required that the tangent vectors ψ ∈ TφQ̃ vanish at infinity!
Like for pure Yang-Mills theory, the requirement that the Lagrangian be defined on the tangent

35We note that our ideas agree with [20], but fill in the missing argument, namely the Lagrangian must be defined
on the tangent bundle to configuration space. Without this added argument one cannot deduce that the physical gauge
group is different in the two cases.

36To see this, recall that, in covariant notation, we have Dµφ → ρ(g) · Dµφ, so in particular D0φ → ρ(g) · D0φ. In
the 3+1 formalism we work in the temporal gauge A0 = 0 and replace D0φ = ∂0φ − eA0φ = ∂0φ by ψ.
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bundle to configuration space forces us to put boundary conditions on the Higgs field itself,
even though only the tangent vectors and derivatives appear in the Lagrangian.

Thus we are forced to require a stricter asymptotic boundary condition on the Higgs field:
we need thatφ→ φ∞

0 , whereφ∞
0 denotes some fixed, covariantly constant minimum at infinity.

This ensures that the configuration space at infinity is zero-dimensional, consisting only of φ∞
0 .

The tangent bundle at infinity is therefore also zero-dimensional, consisting only of ψ∞ = 0, as
required for finiteness of energy. But clearly this stricter asymptotic boundary condition breaks
gauge invariance, in the sense that it is not preserved by gauge transformations which act non-
trivially at infinity. Only gauge transformations that are the identity at infinity preserve φ∞

0 , so
we find that the groups of boundary-preserving and redundant gauge symmetries are equal up
to connected components, i.e. GI = G∞, where G∞ denotes the group of gauge transformations
that are constant at infinity (but only its identity component G∞

0 is generated by the Gauss law
constraint).

In this way we conclude that the physical gauge group GI/G∞
0 equals (several copies of) the

global gauge group in the unbroken phase and is discrete (trivial in the Abelian case) in the
broken phase. This conclusion results from the difference of what we call the “vacuum” in the
two cases: either φ = 0 or a minimum of the potential V(φ). Gauge symmetry breaking in the
Higgs mechanism must therefore be understood as an alteration in the vacuum itself, leading
to different asymptotic boundary conditions.

6 Conclusion

In this paper we have given a rigorous derivation of the identification of (several copies of) the
group of global gauge symmetries with the quotient of asymptotic symmetries

GDES = GI/G∞
0

in Yang-Mills theory on a three-dimensional Euclidean Cauchy surface. Here GI denotes the
group of allowed or boundary-preserving transformations and G∞

0 the group of transforma-
tions that are trivial in the sense that they yield the Gauss law constraint through Noether’s
second theorem, and must therefore be viewed as redundant. Global gauge symmetries thus
correspond to the asymptotic symmetry group with DES. There were two main points to this
derivation, corresponding to obtaining GI and G∞

0 respectively.
Firstly, we found that instantaneous spatial asymptotic boundary conditions on Yang-Mills

fields that ensure finiteness of energy only lead to requirements on tangent vectors α and on
the curvatures F(A) of the connections A. However, as we want the domain of the Lagrangian
to be the tangent bundle TQ to the configuration space Q of Yang-Mills fields, we need to also
impose some asymptotic fall-off behavior on the gauge fields A ∈ Q themselves. We have
shown that it is not enough to require that gauge fields become flat at infinity, since this would
still allow for non-zero tangent vectors α at infinity, which would spoil the finiteness of energy
and action. Intuitively, this means gauge transformations acting at infinity create infinite energy,
even if the energy depends only on gauge-invariant quantities. To counter this, we need to
require that A approaches a fixed flat connection at infinity. In the non-Abelian case we must
also choose this flat connection to be invariant under the adjoint action of the structure group
G. The gauge transformations that leave this fixed flat connection at infinity invariant are then
precisely the elements of G that are constant at infinity. Properly interpreted, this means that
we consider the equivalent problem on a conformal compactification Σ̂ of Σ, and require that
gauge transformations be constant on ∂Σ̂. This yields the group of boundary-preserving gauge
symmetries GI.
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Secondly, we explained that redundant gauge transformations in the Hamiltonian formu-
lation of Yang-Mills theory must be understood as the infinitesimal localizable symmetries G.
These give rise to the Gauss law constraint and must therefore be interpreted as unphysical if
(an appropriate form of) determinism is to survive. All infinitesimal symmetries in Lie(GI) are
localizable, except for the global ones. Thus G∞

0 indeed consists precisely of all gauge transfor-
mations that are the identity at infinity and lie in the identity component of GI. Again, properly
interpreted this means we move to Σ̂ from Σ and require elements of G to be zero on ∂Σ̂, so that
elements of G∞

0 are the identity on ∂Σ̂. The quotient GDES then consists of a copy of the global
gauge group G for every homotopy class in π3(G).

Subsequently, we applied these ideas to Yang-Mills-Higgs theory, where we derived that GI

equals the group of asymptotically constant gauge transformations only in the unbroken phase.
In the broken phase one can only permit asymptotically trivial transformations, for otherwise
the action of the gauge group at infinity would create non-zero velocities of the Higgs field,
carrying infinite energy.

In a future article [59] we aim to consider the implications of this last result for gauge sym-
metry breaking. We will argue that the Higgs mechanism must be understood as an instance
of global gauge symmetry breaking, as has been proposed in the Abelian case [1, 17, 60–62]. In
future research it would also be of interest to extend our results to spacetimes with a nonzero
cosmological constant and to better understand the relation of our work to asymptotic symme-
tries of Yang-Mills fields on the full boundary of spacetime (e.g. in celestial holography), as well
as to edge modes [63, 64] and boundaries which are not asymptotic [22, 37, 65]. Additionally, it
may be conceptually cleaner to reformulate our derivation of the physical gauge group entirely
on the cotangent bundle instead of (partly on) the tangent bundle.
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