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In order to understand cognition, we often recruit analogies as building blocks of theories to
aid us in this quest. One such attempt, originating in folklore and alchemy, is the homuncu-
lus: a miniature human who resides in the skull and performs cognition. Perhaps surprisingly,
this appears indistinguishable from the implicit proposal of many neurocognitive theories, in-
cluding that of the ‘cognitive map,’ which proposes a representational substrate for episodic
memories and navigational capacities. In such ‘small cakes’ cases, neurocognitive represen-
tations are assumed to be meaningful and about the world, though it is wholly unclear who
is reading them, how they are interpreted, and how they come to mean what they do. We
analyze the ‘small cakes’ problem in neurocognitive theories (including, but not limited to,
the cognitive map) and find that such an approach a) causes infinite regress in the explana-
tory chain, requiring a human-in-the-loop to resolve, and b) results in a computationally inert
account of representation, providing neither a function nor a mechanism. We caution against
a ‘small cakes’ theoretical practice across computational cognitive modelling, neuroscience,
and artificial intelligence, wherein the scientist inserts their (or other humans’) cognition into
models because otherwise the models neither perform as advertised, nor mean what they are
purported to, without said ‘cake insertion.’ We argue that the solution is to tease apart ex-
planandum and explanans for a given scientific investigation, with an eye towards avoiding
van Rooij’s (formal) or Ryle’s (informal) infinite regresses.
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One cannot have a recipe for cake that lists a cake, not
even a small cake, as an ingredient.

Fred Dretske (1994, p. 469)

Cognitive and computational neurosciences aim to explain how
the human organism creates and uses internal representations
of external posited structures (see Box 1; Egan, 2020). Repre-
sentational content is construed as patterns over neuroimaging
read-outs (see Figure 1). And this is taken as a stand-in for what
is used by the neurocognitive system to carry out the experimen-
tal task (cf. Ritchie et al., 2019; Vigotsky et al., 2024). External
posited structures, on the other hand, are experimentally manip-
ulated variables such as the organism’s location or orientation in
physical space. These structures can also be conceptualised as
aspects of stimuli, e.g. properties such as colour or tone, that are
used by scientists to infer representational content at play for a
cognitive capacity if the task involves, e.g. categorisation or lan-
guage (Egan, 2020; Schellenberg, 2018). In addition, cognitive
and neuroscientific conceptualisations serve as scaffolds for ar-
tificial intelligence and machine learning research (e.g. Banino
et al., 2018; Kitchin, 1994).

On the one hand, practitioners sometimes subscribe to the rel-
atively innocuous claim that “a representation is a state that car-
ries [empirically evaluable] information” (Ritchie et al., 2019,
p. 591). On the other, there is also the much stronger claim that
decoding models (statistical models that take neuroimaging data
as input and output the experimental variables) are “mechanisti-
cally interesting” (Vigotsky et al., 2024; also see: Carlson et al.,
2018; Chirimuuta, 2013; Chirimuuta, 2024; Popov et al., 2018;
Ross and Bassett, 2024; Zednik, 2014). In other words, prac-
titioners believe that statistical analyses provide a mechanistic

account of representation and do not constitute epiphenomenal
byproducts that “may not be causally related to perceptual expe-
rience." (Cohen et al., 2019, p. 11) Where do such commitments
leave neurocognitive research on representations? “How do the
posited internal representations get their meanings? [And w]hat
is it for an internal state or structure to function as a representa-
tion, in particular, to serve as a representational vehicle?” (Egan,
2020, pp. 26–27; Camp, 2007; Hurley, 1998b; Millikan, 1991)
Neurocognitive theories of representations promise us answers
to these questions, but do they deliver?

In this paper, we explore aspects of neurocognitive accounts
of representation that have either remained implicit or under-
explored (cf. Ritchie et al., 2019; Vigotsky et al., 2024). We
explain how certain metatheoretical properties of neurocogni-
tive conceptions of representation can have a detrimental ef-
fect on our scientific thinking (Guest, 2024; also Bennett, 1996;
Pylyshyn, 1973, 2002, 2003). To do this, we take the case of
the cognitive map, a type of posited representation, and explain
how if used carelessly commits us to the following frustrating
but avoidable properties:

1. an infinite regress in the explanatory chain, which rears
its head when we try to explain away cognition using the
homunculus — the canonical ‘smaller cake’ per Dretske
(1994) — which we explain in All ghost, no machine; and

2. explanatory and computational inertness of representa-
tion; where representations like cognitive maps provide no
mechanistic nor functional analysis, which we explain in
All form, no function.

When the nominal computationalist theorises like we describe
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Figure 1: Cartoon depiction of the methodology scientists de-
ploy when they investigate neurocognitive phenomena or ca-
pacities. On the left is a scene a participant (represented by an
eyeball) might be asked to navigate through. On the right is a
series of external posited structures, so-called landmarks in the
case of the cognitive map (viz. Maguire et al., 1999): a mountain
range, a minaret, a house, a palm tree; which the participant is
assumed to be using to navigate. To substantiate the claim that
indeed a subset of these landmarks are mentally represented —
and therefore, incorporated into a cognitive map — scientists
lean on statistical analyses of read-outs from the neurocognitive
system, e.g. neuroimaging data. In other words, correlations be-
tween the externally posited structures (e.g. landmarks, features
of the task or stimuli) and the experimental data (e.g. voxels,
single-cell recordings).

above (also see Figure 1), they introduce serious problems in
the neurocognitive examination of the hippocampus (viz. Han-
nula & Duff, 2017) and other brain areas, in the discussion of
neurally-based accounts of representation generally, and in the
parallelling of connectionist models, i.e. artificial neural net-
works, with brain, cognition, and behaviour (Guest & Martin,
2023, 2024; Guest et al., 2020). And so when scientists aim to
explain, understand, and investigate the human organism’s ca-
pacity to represent the world, we need to take explicit action
and care in order to avoid these traps of our own making.

2 What is a cognitive map?
The cognitive map has been called an “a priori as-
sumption” that “should be abandoned” (Benhamou,
1996, p. 211), “an unwarranted exercise of anthropo-
morphism” (Shettleworth, 2010, p. 310), “one of the
holy grails of cognition” (Breed, 2017, p. 57), and
“one of the most important neuroscientific results in
recent decades” (Shea, 2018, p. 113).

Kelle Dhein (2023, p. 62)

In modern mainstream use, cognitive map is a phrase that is re-
cruited to cover a broad range of neurocognitive capacities, most
often tied to the hippocampus and subserving the capacity of
navigation and of episodic memory (see Figure 1; Behrens et al.,
2018; Epstein et al., 2017; Jensen, 2006; Maguire et al., 1999;
Marozzi and Jeffery, 2012; McNaughton et al., 2006; O’Keefe

and Dostrovsky, 1971; O’Keefe and Nadel, 1978; Shettleworth,
2010; Tolman, 1948). Historically, this breadth of reference for
the phrase was the case too with Edward Chace Tolman (1948)
extolling its virtues to solve inter alia racism, sexism, and bring-
ing about world peace through its use as part of a pedagogical
method.1 Tolman “concluded that the animals must have access
to spatial knowledge about the environment, akin to the spatial
knowledge obtainable from a map, that could be used to guide
behavior in a flexible manner.” (Epstein et al., 2017, p. 1504; cf.
Simon, 2022)

These cognitive maps are held to be able to represent, or
to be representations of, both physical space and non-physical
so-called semantic or categorical space (Lisman et al., 2017;
O’Keefe & Nadel, 1978). Through its origin with Tolman, the
cognitive map as a scientific object has strong links both to
his earlier purposive behaviourism (a type of behaviourism that
does not rule out cognitive or mental states; Good & Still, 1986;
Innis, 1999; Tolman, 1932) and his later cognitive realist views,
i.e. “he accepted the notion that a concept such as the cogni-
tive map was a real, albeit unobserved, entity.” (Carroll, 2017,
p. 181).2 Perhaps unsurprisingly, the original presentation of
the cognitive map came under attack from both operationalists
and mainstream behaviourists (viz. Good & Still, 1986; Guthrie,
1935; MacCorquodale & Meehl, 1954). In present cognitive and
computational neuroscientific use, however, this type of theory
about mental representation passes with little critique (most cri-
tique is from previous decades, if not century, and often from
outside the computationalist framework: Benhamou, 1996; Ben-
nett, 1996; Jensen, 2006; Mackintosh, 2002; Pylyshyn, 1973;
Shettleworth, 2010; Skinner et al., 2003). Indeed, by the 70s,
statements such as this pass uncontroversially: “the representa-
tional implication of Tolman’s ‘cognitive maps’ is implicit in
one form or another in virtually all current cognitive theorizing”
(Hammond, 1976, p. 248).

Another important aspect of the contemporary use of cogni-
tive map is its relationship with the hippocampus, spearheaded
by John O’Keefe and Lynn Nadel (1978). The cognitive map
is called upon to give a more cognitive scientific and less
neuroanatomical, or otherwise more theoretical, label to both
the representational or functional role of the hippocampus (cf.
Konishi, 1986; Mackintosh, 2002) and to support modelling
its neuronal mechanisms (viz. Darden, 2006; cf. Chirimuuta,
2018a). And vice versa, the findings of certain cell types in the
hippocampal formation (Hafting et al., 2005; M.-B. Moser &
Moser, 1998; O’Keefe & Dostrovsky, 1971) enabled the cross-
fertilisation and even merger of cognitivism and behaviourism
(viz. Thinus-Blanc, 1987, 1996).

So in many ways, and according to multiple experts (viz.
Kitchin, 1994; Lisman et al., 2017), the cognitive map appears
to furnish the neurocognitive practitioner with all the virtues
they ask for (Guest, 2024). Not only is it recruited to explain
the contents of the hippocampus in both rodents and humans
through analogising them with a map or map-like structure (e.g.
GPS system; Craig & McBain, 2015; M.-B. Moser & Moser,
2016), the cognitive map also embodies a proposed mechanistic
and functional analysis of both the capacity for episodic mem-

1So much for modern technoscientific hype needing to be reigned in!
Notwithstanding, Tolman was incredibly principled and even accepted being
fired for his beliefs on academic freedom (Carroll, 2017).

2It is unsurprising if these views appear to be cognitivist from the get-go,
since scientific constructs like cognitive maps were developed around the cog-
nitive revolution by essentially proponents of such ideas (Carroll, 2017).
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Box 1: A description of the core ideas and terminology to unpick mental representations under computationalism.

Mental representation under computationalism

Base computationalism, or just computationalism, is
the idea that cognition is, in part or whole, explainable
through computation. It is an umbrella term for all types of
computationalism, and therefore computationalists of all
stripes must subscribe to this notion definitionally (Hard-
castle, 1995; van Rooij et al., 2024).

Multiple realisability is the idea, and multiple realisa-
tion is the fact, that the same function can be instantiated
by different substrates (Chirimuuta, 2018b; Egan, 2017;
Figdor, 2010; Hardcastle, 1995, 1996; Litch, 1997; Polger
& Shapiro, 2016; Ross, 2020). For example, a calculator
and a person appear to both perform addition, digital and
clockwork timepieces both measure time, and a train and
a horse both can carry us from A to B. Multiple realisation
is core to computationalism.

Naive computationalism is the lack of attention to, ig-
norance of, or the explicit rejection of the formal reper-
cussions of computationalism, typically manifesting as
misrepresenting formal findings, e.g. misapplying the uni-
versal approximation theorem (Guest & Martin, 2024),
ignoring tractability constraints (van Rooij, 2003, 2008;
van Rooij et al., 2019), or neglecting multiple realisability
(Guest & Martin, 2023).

Non-naive computationalism bites the bullet and ac-
cepts that theoretical computer science must have some-
thing to say about cognition under the computationalist
paradigm, and that computationalism is a series of be-
liefs, and not (just) the methodological usage of comput-
ers to do our science, e.g. to run models.

In cognitive and computational neuroscience, compu-
tationalism is largely, minimally tacitly, accepted. This
means that neurons and their assemblies are described
as computing, artificial neural networks are widespread
as models of neurocognitive capacities, phenomena, and
experimental tasks, and generally computationalist vo-

cabulary and methods are often deployed (Guest & Mar-
tin, 2021, 2023, 2024). Computationalism binds practi-
tioners to constrained ways of modelling and of metathe-
oretically adjudicating over models’ apparent successes
(Guest, 2024).

f (x)

vehicle content

Under computationalism, capacities can be described
in terms of mathematical functions (van Rooij, 2008).
When it comes to mentally representing, the neurocog-
nitive system can be analysed into representational ve-
hicle and the representational content (see schematic
above; Egan, 2018; Hurley, 1998b; Millikan, 1991). Ide-
ally, emphasis for formal theorising is not on the compu-
tationally inert content, which has a more pedagogical or
illustrative role as a gloss, but on the computationally ac-
tive vehicle (viz. Egan, 2020, pp. 26–27). For example, in
our attempts to formally specify a function (i.e. a cognitive
capacity), focussing on subsets of the range (e.g. stimuli)
and domain (e.g. actions) while neglecting to specify the
operations it performs does not further development of
the formal theory (Guest & Martin, 2021).

With respect to mechanism, in neuroscience it is often
synonymous to substrate (e.g. Darden, 2006; Lisman et
al., 2017), but under computationalism a substrate will
not, cannot, cut it as a mechanistic analysis. Non-naive
computationalists in fact do the opposite, they — through
multiple realisability and other principles — completely
rule out using substrate and mechanism interchangeably.
Any computationalist within cognitive neuroscience will
need to thread this needle.

ory and for spacial navigation, e.g. by “providing a spatial and
temporal framework” and “neural network mechanisms”, and
through “computing distances and angles” (Lisman et al., 2017,
p. Reid and Staddon, 1997). A small leap from the above gives
us all-encompassing versions of the cognitive map, i.e. as a syn-
onym for all mental representation — both deflating and inflat-
ing the account in various ways (viz. Aly & Turk-Browne, 2017;
Bennett, 1996; Downs & Stea, 1973; Gallistel, 1989; Jacobs,
2003; O’Connor, 2019; Schlichting & Preston, 2017; Shettle-
worth, 2010; Thinus-Blanc, 1987, 1996). This betrays the im-
portant fact that “[d]espite using the notion of cognitive maps
in a loose and sometimes divergent way, [scholars] agree on the
need to identify different forms of cognition, their nature, and
how they work and interact with our language-like systems.”
(Aguilera, 2016, p. 350)

Based on all this, it appears as if explanandum and explanans
are interwoven: does the hippocampus supply the mechanisms,

or is it what needs to explained? Can mechanisms be supplied
by neuroanatomy — is this possible in principle that a scientific
explanation can be the thing itself? Does the cognitive map as
a theory deliver? How does it offer computational explanation?
The next few sections analyse potential answers to these ques-
tions, demonstrating how cognitive map as a case study serves
us well to understand slippages between the theory sec and the
pre-theoretic object of theory, i.e. the label for a cognitive ca-
pacity.

3 All ghost, no machine

The charts do not control the movements of the ship;
hence this particular scientific model is seriously lack-
ing in predicting the rat’s movements.

Edwin Ray Guthrie (1935, p. 199)

3



Table 1: A selection of related neurocognitive scientific entities about representation in the brain and their quasi-theoretical prop-
erties to help us understand the case study in question: the cognitive map. Concept cells (first row) are held to exist in inter alia
the medial temporal lobe and the hippocampus (Calvo Tapia et al., 2020; Quiroga, 2012, cf. Bowers, 2009). While spatial cells
(second row), e.g. place and grid cells, are present in a brain area known as the hippocampus and its related structures, and have to
do with the cognitive capacities: of navigation; of representing spatial aspects of the organism in its environment; and of episodic
memory, of autobiographical sensations, feelings, and events (Marozzi & Jeffery, 2012). In contrast to these examples of more
straightforward phenomena or explananda: concept and spatial cells (first two rows) is the cognitive map (last two rows), which
some consider a theory or explanans (third row). Each of these entities is analysed into its status as explanandum or explanans
(second column) and its mechanistic aspects and functional role (third and fourth columns; recall Box 1).

Scientific entity Status Mechanism Function

CONCEPT CELL
as-is

EXPLANANDUM:
something we seek to ex-
plain, a phenomenon, an ob-
servation, a pattern in data.

The “predictable characteris-
tics of an abstract, memory-
based representation” (Con-
nor, 2005).

To represent concepts, i.e.
invariant properties of stimuli;
“building blocks for declar-
ative memory functions.”
(Quiroga, 2012)

SPATIAL CELLS
as-is

EXPLANANDUM:
something we seek to ex-
plain, a phenomenon, an ob-
servation, a pattern in data.
There “are the gallimaufry of
spatial cell types” (Marozzi
& Jeffery, 2012, p. 942), de-
fined based on involvement,
firing patterns, in navigation-
or spatial-related behaviours.

“[T]heir spatial firing struc-
ture reflects computations
internally in the system”
(E. I. Moser et al., 2008,
p. 69) , e.g. “grid-like pro-
cessing” of navigation in the
entorhinal cortex (Horner
et al., 2016); a spandrel (viz.
Gould & Lewontin, 1979) of a
clustering-like process (Mok
& Love, 2019).

To represent spatial proper-
ties of the agent, of the exper-
iment, or of the environment
generally; “these cell types
interact to form a cognitive
map, and [...] may cooperate
in service of both spatial and
episodic memory.” (Marozzi &
Jeffery, 2012, p. 939).

COGNITIVE MAP
as-is

EXPLANANS:
something that does (or
aids in) the explaining, a
“metaphor” (Buzsáki in Lis-
man et al., 2017; Stachenfeld
et al., 2017), “hypothesis”
(Dhein, 2023; Thinus-Blanc,
1996), “theory” (Bouchekioua
et al., 2021; Fenton, 2024;
Maguire et al., 1999; O’Keefe,
1994; Tolman, 1959; Wiken-
heiser & Redish, 2015)

Concept and spatial cells are
the cognitive map’s “neurobi-
ological substrate” (Farzanfar
et al., 2023) or “neurophysi-
ological basis” (Bouchekioua
et al., 2021); “the cognitive
map is supported by the lo-
cale system, a cognitive mod-
ule located in the hippocam-
pus of vertebrates.” (Shettle-
worth, 2010, p. 297)

The cognitive map is “a 2- or
3-dimensional vector space,
on which navigation-relevant
vector functions are defined.”
(Langille and Gallistel, 2020;
also Peer et al., 2021); “a
model detailing the structure
of a decision-making environ-
ment [in order] to predict the
impact of action choice on po-
tential future rewards.” (Moran
et al., 2021)

COGNITIVE MAP
as should be
discussed

EXPLANANDUM:
something we seek to ex-
plain, a cognitive capacity
(Newcombe & Liben, 1982;
Thinus-Blanc, 1987; Weis-
berg & Newcombe, 2018);
“[the] ability to return to a goal
by processing the location-
based (site-dependent) infor-
mation provided by the cur-
rent apparent configuration
of landmarks” (Benhamou,
1996, p. 201).

WORST CASE:
no mechanism can be pro-
posed because other ex-
plananda (first and second
rows, here), as well as phe-
nomena and observations,
cannot play this role, and
models of those phenomena
are not models of the cogni-
tive map per se (recall Box 1).

BEST CASE: see Table 2.

WORST CASE:
no functional role can be pro-
posed because a cognitive
capacity exists in and of itself
(recall Box 1). e.g. the func-
tion of the capacity of vision is
to perform vision. Vision, i.e.
seeing, is to vision, i.e. the ca-
pacity, what pump blood is to
heart.

BEST CASE: see Table 2.

Cognitive maps appear to be a specific case of an accepted but
often unacknowledged norm in computational (neuro)cognitive
modelling and artificial intelligence, in which the scientist in-
serts themselves or other humans’ cognition into their own mod-
els because otherwise models do not perform as advertised e.g.
if a computational model is intractable (van Rooij, 2003, 2008;

also see Schaeffer et al., 2022). Computational (neuro)cognitive
modelling, especially in connectionist tendencies (Guest & Mar-
tin, 2023, 2024), so-called neuroAI (Zador et al., 2023), and arti-
ficial intelligence broadly, make use of human-labelled data, re-
inforcement learning from human feedback, “explicitly encod-
ing human priors into the training process” (Ilyas et al., 2019,
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p. 9), and other human-in-the-loop techniques. This is direct hu-
man labour that is obfuscated and repackaged as an automated
machine process: human cognition masquerading as a formal
model. This human-in-the-loop, “ghost in the machine” (Ryle,
1949), technique is a long-standing thread within the automation
of labour and the scientific modelling of cognitive capacities that
has its roots in at least the pre-modern period and the industrial
revolution (Bainbridge, 1983; Erscoi et al., 2023; Jones, 2021;
Pfaffenberger, 1988; Taylor, 2018; van der Gun & Guest, 2023).

Importantly, if too much human-in-the-loop occurs a theory
or model is likely less useful than might seem, or even vicious.3

This is because a core requirement for such scientific objects
is to function the same regardless of who controls their running
(Guest, 2024). If a non-interested party versus a proponent being
in charge of the model changes its ability to perform, alarm bells
should ring. That is to say, human-in-the-loop in the general case
is inevitable in science. Science is not only a uniquely human
activity, but also only people can carry out scientific theorising,
i.e. it requires a human-in-the-loop even when parts may seem
to be automated (P. Rich et al., 2021; van Rooij et al., 2024).
But this requirement does not license portraying a mechanis-
tic or otherwise account as a theory that stands without human
guidance for its critical explanatory parts.

This leads us to the case of the homunculus: a miniscule
human-in-the-loop, originating from folklore and alchemy (Fri-
etsch, 2021; Murase, 2020). In the 17th century, some be-
lieved that “sperm cells contained perfectly formed homunculi
that were developed into life-sized infants in the matrix of the
womb.” (Campbell, 2010, p. 5) In its most literal form, in our
context, a homunculus is a miniature human who resides in
the skull and performs cognition; or performs parts of cogni-
tion currently escaping formalisation or otherwise scientific de-
scription or understanding. Uncontroversially, such a claim is
problematic, as it leads to an infinite regress, also known as
Ryle’s regress (Bäckström & Gustafsson, 2017; Hornsby, 2011;
Nizami, 2018; Ryle, 1949; Tanney, 2011). Appealing to the ho-
munculus does not serve us well scientifically if we are to ex-
plain what drives cognition, what cognition is, and how cogni-
tion manifests because the homunculus appears to be merely a
‘smaller cake’ (recall quote from Dretske, 1994; also see: Daw-
son, 2013; Figdor, 2018a, 2018b; Fodor, 1968).

The criticism of infinite regress for homunculus-like theoris-
ing holds unless perhaps if grounded directly, i.e. if framed as
an observation or a phenomenon. Nonetheless, even such cases
require scientific theorising to be understood and explained , i.e.
the scientific entity is an explanandum, something we seek to
explain. Such a case appears to be that of cortical homunculi,
e.g. somatosensory or motor homunculi, which are brain regions
that have areas dedicated to sensory input from the skin or inter-
nal organs or movement (Dall’Orso et al., 2018; Schmahmann,
2019; Wright and Foerder, 2021; although also controversial
Catani, 2017). These brain areas have certain homunculus-like
properties, i.e. are described as representing or mapping parts of,
e.g. the body in the case of the somatosensory homunculus (Pen-
field & Boldrey, 1937). Although some aspects remain contro-
versial, such as the gendered aspect, which was only addressed
recently (Wright & Foerder, 2021), cortical homunculi remain
“largely valid to this day.” (Catani, 2017, p. 358; cf. Gordon et

3A useful example of such a vicious theory is physiognomy, which is consid-
ered pseudoscientific but nonetheless has been making a comeback in machine
learning systems that perform facial recognition (Andrews et al., 2024; Guest,
2024; Spanton & Guest, 2022).

al., 2023) In addition, many other such ‘topographic maps’ ap-
pear to emerge in the brain, such as retinotopic and tonotopic
maps (Kaas, 1997; cf. Catani, 2017). “The functional role of
these maps is difficult to establish, because the coding of spatial
information may not be the factor determining their topographic
organisation.” (Konishi, 1986, p. 163) Such statements betray
the scientists’ desire to understand which functional roles may
be filled by these maps and which proposed mechanisms may
be at play that give rise to such topographic maps, that give rise
to observations that indicate that, as Susan B Udin and James W
Fawcett (1988) describe it, “sensory inputs to the central ner-
vous system (CNS) are topographically arranged.” (p. 289) In
other words, these maps are not taken to be explanatory, but
something to-be-explained, an explanandum.

Another such case of a proposed map-like representation is
that of concept cells (see first row, Table 1), which “are highly
selective neurons [in e.g. the hippocampus and the medial tem-
poral lobe,] that seem to represent the meaning of a given stim-
ulus in a manner that is invariant to different representations
of that stimulus.” (Reddy and Thorpe, 2014, p. 249; also see:
Bausch et al., 2021; Calvo Tapia et al., 2020; Quiroga et al.,
2005; Quiroga, 2012; cf. Bowers, 2009) Such cells have also
been called ‘grandmother’ (originally as a joke) or ‘gnostic’
cells (Gross, 2002). These neurons are also described as per-
forming a mapping, creating a representation, of the task in the
abstract that the participant is being asked to perform, i.e. they
appear to selectively respond to the same concept or category.
With respect to accommodating such findings under a connec-
tionist framework, the logistics of assigning single neurons to
each concept, known as localist representations, seems imprac-
tical and violates certain tenants of connectionism, especially
the parallel distributed processing (PDP) variety (Guest & Mar-
tin, 2024). Notwithstanding such localist (e.g. one-hot encoding;
Harris and Harris, 2015) as opposed to distributed (Eckhardt,
2004), representations are commonly used by connectionists in
their artificial neural network models of capacities (e.g. of vi-
sion Krizhevsky et al., 2012; cf. Lycan, 1991).

Additionally, taking the map-likeness even further, “are the
gallimaufry of spatial cell types” (Marozzi and Jeffery, 2012,
p. 942; see second row, Table 1): so-called place (Dostrovsky
& O’Keefe, 1971), head-direction (Ranck, 1985; Taube et al.,
1990a, 1990b), border (Barry et al., 2006; Lever et al., 2009;
Solstad et al., 2008), and grid (Fyhn et al., 2004; Hafting et al.,
2005; Rowland et al., 2016) cells, and more (Grieves & Jeffery,
2017), collectively spatial cells (viz. Bush et al., 2014; Grieves
& Jeffery, 2017; Jeffery et al., 2018; Marozzi & Jeffery, 2012).
This is in contrast to the topographic maps mentioned previ-
ously, which are forwarded as representations, maps, or tracings
of what the sensory surfaces are experiencing (viz. Camp, 2007;
Hurley, 1998a; Schellenberg, 2018) — place cells are not to-
pographically arranged, “adjacent cells do not necessarily have
adjacent place fields.” (Marozzi & Jeffery, 2012, p. 939).

[Instead] a place cell fires whenever an animal ven-
tures into, say, a particular region of an enclosure, no
matter which direction it approaches from, whether
the lights are on or off, etc., and so the signal is re-
markably stable no matter what the animal is doing or
perceiving.

Kate J Jeffery et al. (2018, p. 96)

As in the case of the concept cells, these spatial cells are de-
scribed as a representation of the experiment, but in this case not
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that of the experimental task’s abstracted concepts or categories,
but that of the experimental environment’s physical space or the
rodent or human participant’s relationship to it, e.g. some map-
ping of the maze in which we place a rat (Egan, 1999; Epstein
et al., 2017). Furthermore, they are held to “provide the build-
ing blocks of a cognitive map, including direction, distance, and
boundaries” (Marozzi & Jeffery, 2012, p. 942), framing these
cell types as a substrate or a mechanism (recall 1) for the cog-
nitive map. Thus, these two proposals for neural representation
of space and concept are proposed to be two sides of the same
coin and grouped together under the heading ‘cognitive map’.
In other words, “[t]he spatial positioning system supported by
these cells is often taken to be a model system for understand-
ing how the brain processes high-level cognitive information.”
(Epstein et al., 2017)

Unlike the theoretical content of topographic cortical maps,
which are phenomena to be explained, the cognitive map ap-
pears to be a very different kind of proposal for the neurocogni-
tive system. In other words, so-called ‘cognitive maps’, such as
spatial and semantic neurons or brain areas are proposed as an
explanatory theory for rats’, human’s, and other species’, cogni-
tive capacities. This leaves open the problem of who, or what is
reading these maps — and who or what is making these maps?
Recall cognitive maps are “akin to the spatial knowledge obtain-
able from a map” (Epstein et al., 2017, p. 1504). The knowledge
obtained from an actual geographic map is not found in nature,
directly falling onto our sensory surfaces; if it was, then who
needs maps? It is found as the output of cognition, presented on
paper or a screen, after another human (or we ourselves) make
the map, and as a function of us reading the map. And making
maps involves many computationally hard problems, not solv-
able by just observing nature (viz. E. Rich et al., 2008).

To recapitulate, the cognitive map as a theory does not furnish
us with an explanatory account of representation nor indeed of
behaviour (viz. Guthrie, 1935; cf. Behrens et al., 2018). In fact
quite the opposite, it creates — like the original homunculus
as an explanation for sexual reproduction — an infinite regress
in the explanatory chain. Amusingly, not only downwards,
homunculi-inside-homunculi, but upwards: with so-called meta-
learning and “meta-maps” (Ambrogioni & Ólafsdóttir, 2023).
These theoretical contortions cause minimally the scientific
problem of not explaining while seeming to explain, violat-
ing an important desideratum under computationalism dubbed
“explaining without assuming” by Marieke Woensdregt et al.
(2024), falling under the theoretical vice of underexplaining
(viz. Egan, 2020). And thus obfuscating that: we do not have an
account for representations in this context; we have inserted a
ghost into a machine (i.e. model, theory, or account) in which
we promised there was no ghost; and ultimately, we looped
in a human, ourselves, to do the dirty work. This is what the
“viciously circular” (Fodor, 1968; also see Dawson, 2013) ho-
munculus does to our theorising, i.e. forces us into a type of
scientific dishonesty, wittingly or not.

Furthermore, the cognitive map underexplains representa-
tional capacities because it presupposes somebody is reading the
map. In other words, what we present as formal theory, or other-
wise complete, is a description of data that requires much more
specification work to function as an explanation at all. And this
is the case even if we have a candidate substrate, i.e. the brain as
a whole, or various postulated kinds of neurons (recall 1). No-
tably, this holds for all neurocognitive theories: the substrate is
largely known, uncontested. Others have noticed this too, e.g.

neurons that respond to [environmental] events can-
not intrinsically represent anything because they can-
not relate or compare their firing to something else.
In contrast to the observing human [e.g. the scientist],
neurons in, for example, sensory areas driven by en-
vironmental signals alone cannot ground their activity
to anything meaningful. Grounding refers to the abil-
ity of the brain’s circuits to assign meaning to changes
in neuronal firing patterns that result from sensory in-
puts.

György Buzsáki and David Tingley (2023, p. 193)

Additionally, of note is that it appears some avoidance of defin-
ing these term is present in papers, e.g. while the abstract claims
“exploration gives rise to a cognitive map” (p. 191) nowhere else
in this paper is the phrase ‘cognitive map’ used again (Buzsáki
& Tingley, 2023). This parallels that “GPS” is not mentioned
again outside the title Navigating the circuitry of the brain’s
GPS system by Craig and McBain (2015).

Maximally, this form of obfuscated human-in-the-loop that
we have outlined herein also causes problems with respect to
scientific pedagogy and practice, making neurocognitive prac-
tise poorer if taken as a standard for a typical theoretical ac-
count of representation (viz. Guest, 2024; Jensen, 2006). That is
to say,

a psychological theory [that] purports to explain a
behavior by postulating an unexplained intelligent
process, [...] begins an infinite regress of homunculi
within homunculi [and] should be rejected on the
grounds that it begs the question

Gualtiero Piccinini (2007, pp. 112–113)

This is in fact the central warning of Iris van Rooij’s The
Tractable Cognition Thesis (2003, 2008) because it remains the
case such a problem can occur even in fully formalised theo-
retical objects such as computational models. When “cognitive
tasks that are performed effortlessly by humans are presently
being modelled by computationally intractable functions” (van
Rooij, 2008, p. 965, also: van Rooij, 2003), the models are
falling prey to a formal subtype of Ryle’s regress that we dub
van Rooij’s regress (see Box 2). And so, under computation-
alism, the practitioner must “concede that [...] the capacities
are incorrectly modelled (i.e., [the presence of the regress or
the ghost-in-the-machine requires a theoretical revision])” (van
Rooij, 2008, p. 965). Or alternatively, the practitioner may con-
clude that “the hypothesized capacity [e.g. the cognitive map]
does not exist at all” (van Rooij, 2008, p. 952). These explana-
tory regresses are held to be both avoidable and extremely im-
portant to avoid under computationalist and cognitivist common
sense (Tanney, 2013).

4 All form, no function
The term “cognitive” refers to an activity, a dynamic
process. The word “map” is essentially static; it sug-
gests a static image of the real world. Tolman has said
too much and not enough. Too much for his hypothe-
sis to be forgotten. And not enough for his subtleties
to outweigh his overstatements.

Catherine Thinus-Blanc (1987, p. 4)
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Box 2: The core problems of theorising under computationalism (Box 1), or indeed any formal framework, is that regresses such as
those described below inevitably crop up. These cases require acknowledgment and demarcation, and furthermore deep discussion
to avoid problems further down the line.

Two types of explanatory regress

Ryle’s regress states “if, for any operation to be intel-
ligently executed, a prior theoretical operation had first
to be performed and performed intelligently, it would be
a logical impossibility for anyone ever to break into the
circle.” (Ryle, 1949, p. 31; Tanney, 2011, 2013) Theories
can result in an infinite regress if they violate the desider-
atum of “explaining without assuming” (Woensdregt et
al., 2024).

Van Rooij’s regress is a formal subtype of Ryle’s
regress. It occurs when “cognitive tasks that are per-
formed effortlessly by humans are presently being mod-
elled by computationally intractable functions” (van Rooij,
2008, p. 965; also: van Rooij, 2003).

Both explanatory regresses can be — and in fact of-
ten are — imperceptible to the scientific practitioners in-
volved in the use and deployment of computational ac-
counts and models. In the formal case, especially be-
cause of the heightened epistemic status of compu-
tational models that appear to produce desirable out-
comes, criticisms tend not to stick (Guest, 2024). And so
in the case of intractability, or other forms of naive com-
putationalism (see Box 1), infinite regress is hidden in
plain sight because code compiles, computational mod-
els run, the output correlates with some desirable met-
ric (see Figure 1), the human-in-the-loop does the work:
the ghost not only runs the machine, but constitutes it as
such (also see the frame problem, Shanahan, 2016). In
this context, the success-to-truth inference is fallacious;
claims such as “if the program works then we can be
certain that all homunculi have been discharged from
the theory” (Dennett, 2017, p. 81) are wrong prima fa-
cie (see Nizami, 2018, specifically on Dennett, 2017; and

generally: Chirimuuta, 2021; Guest and Martin, 2023,
2024; Morris, 1991; van Rooij et al., 2024). The trap of
the success-to-truth inference ensnares many (from At-
tneave, 1961 to Dennett, 2017) because a recipe that
lists a cake as an ingredient still results in a cake (re-
call opening quote; Dretske, 1994). If one needs a cake,
and takes the first and only step of purchasing one from
a confectioner, then one will certainly have the desired
output. Such an account provides no theory for how the
capacity of cake making is realised; it merely has super-
ficially appropriate output. Thus providing neither mech-
anistic nor functional understanding for the capacity at
hand, be it cake-making or cognition broadly.

Resolution may be out of reach (P. Rich et al., 2021;
van Rooij et al., 2024) using modern methodologies and
frameworks, but that is not licence to halt all cognitive sci-
entific theorising nor to assume formalism is useless nor
that anything goes and that success-to-truth is the only
way forward. Quite the opposite: if our formal tools and
proposed theories give way to van Rooijan and Rylean
regresses understanding more about why we as a field
fall victim to such sleights of hand is protective and pro-
ductive. Our metatheoretical calculus, our adjudication
over our theories, cannot contain success-to-truth under
computationalism without risking the whole enterprise
(Guest, 2024; Guest & Martin, 2023). On the contrary, it
should be explicitly embracing non-naive computational-
ism (recall Box 1). Catherine Thinus-Blanc (1987) under-
lines: “These issues will not be solved in a day. This does
not mean however that we should be unaware of them
or be crippled by the difficulties involved instead of facing
the promising challenge of inter-disciplinary exchanges.”
(p. 15)

That is to say, we are endangering our science both in the gen-
eral case that Gilbert Ryle warns against (Bäckström & Gustafs-
son, 2017; Hornsby, 2011; Ryle, 1949; Tanney, 2011, 2013,
2022) and the specific formal case that Iris van Rooij (2003,
2008) proves is at play under computationalism (recall Box 2).
In this section, we tackle questions such as: What do proponents
advertise cognitive map as offering? What do practitioners get
when they deploy cognitive maps? What neurocognitive or com-
putationalist mechanisms or functions does it furnish us with?

Cognitive and computational neuroscience deals in two broad
types of function (recall Box 1). First, it attempts to describe
or delimit the functional role an entity plays, which is the pur-
pose of an entity within the system, e.g. the heart pumps blood
(also known as natural function; Dretske, 1994; Guest & Mar-
tin, 2023; Kristan & Katz, 2006; Millikan, 2021; Schellenberg,
2018). Second, it tries to formally capture the mathematical
function — what input-output mappings hold for a system that
performs computations — i.e. “the interpretation of a computa-
tional system should connect the formal apparatus of the theory

with its pre-theoretic explananda.” (Egan, 1999, p. 183; also see
Blokpoel, 2018; Guest and Martin, 2021; Hardcastle, 1996; van
Rooij and Baggio, 2021)

Proponents of the cognitive map, as described, promise a
functional explanation (recall section 2, What is a cognitive
map?), i.e.

Tolman conceived of cognitive maps as extending
generally to mapping life’s experiences in any behav-
iorally relevant domain. He conceived the function of
these maps as organizing specific events in systematic
fashion appropriate to the dimensions of the relevant
context, and he argued strongly that the function of
cognitive maps is to support expectancies and plan-
ning of behavior to obtain sought goals.

Daniela Schiller et al. (2015, p. 13909)

It appears as if the only thing provided by including cognitive
map here is: First, the idea of a map-like representation that is
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held to exist because behaviour appears to be like that of some-
body reading a map just like how it appears to be the case that
a small human exists that could be controlling our cognition.
Second, a synonym for the contents of the hippocampus, the en-
torhinal cortex, and other related structures. For example, “hip-
pocampal neural representations can be thought of as cognitive
maps” (Ambrogioni & Ólafsdóttir, 2023, p. 702). However, such
a label is not necessary for the mechanistic nor functional un-
derstanding of a brain area. And so, just like how the contents
of random access memory, or any specific subset of the input-
output pairs of a function, are not what is relevant to describing,
specifying, and ultimately understanding what these systems do,
the same goes for labels or what are called contents, the cogni-
tive map (recall Box 1). For example, notice how when describ-
ing the goal of such research, as “unravelling the circuitry of the
hippocampal formation navigation system” (Craig & McBain,
2015, p. 737), it is apparent that phrases like “navigation sys-
tem” perform only the service of labelling the capacity and syn-
onymising it with the hippocampus and related brain structures.
The same usage pattern can be seen here: “Spatial navigation is
thought to be guided by the internal representation of spatial re-
lations in a specific environment, referred to as a cognitive map”
(Farzanfar et al., 2023, p. 64). Finally, here is another exam-
ple, wherein the cognitive map is deployed in framing empirical
findings:

if both spatial and temporal inferences are driven from
the same cognitive map, the distortion should simi-
larly affect sketch-maps and travel-time estimations.
But if the temporal and spatial aspects of cognitive
map are represented or processed separately, distor-
tions on temporal and spatial expressions may dissoci-
ate. [...] In conclusion, we found dissociation between
effects of familiarity on the spatial and temporal es-
timations of an environment, which we suggest may
relate to differences in temporal and spatial tuning of
cognitive maps or the speed of accessing source mem-
ories.

Anna Jafarpour and Hugo Spiers (2017, p. 12 & 16)

Cognitive map is then either a label or synonym with the ca-
pacities under study, navigation, planning, and so on, or a la-
bel or synonym for the hippocampus or any collection of rele-
vant neural substrates, hence mentioning “tuning” in the extract
above. This synonimising role was also noted in MacCorquo-
dale and Meehl (1954, p. 30): “Tolman has shown a tendency to
restate the system by revising its vocabulary (i.e., ‘sign-gestalt-
expectations’ become ‘cognitive maps’)”. But a synonym is nei-
ther necessary nor sufficient for building a theoretical account.

Experimentalists wish to use cognitive map to enrich our un-
derstanding through framing their results — a sensible request
to lay at the feet of a purported theoretical construct. But this
means, by definition, we are falling short of what is required of
us. In other words:

Cognitive scientists attempt to model such capaci-
ties by constructing precise characterizations of the
hypothesized inputs and outputs of cognitive capac-
ities as well as the functional mappings between
them. This is what David Marr (1982) called the
computational-level theory of a cognitive process.

Iris van Rooij (2008, p. 939)

But if cognitive map is the name of a proposed capacity, then
what is it adding in of itself to functional or mechanistic de-
scriptions and understandings of the cognitive system? Is it de-
livering explanatory power? If cognitive map is a synonym of
hippocampus, what is it adding? It is to-be-explained, and nei-
ther a sufficient nor necessary part of an explanation. Quite the
opposite. Others have noticed this too, e.g.

For a cognitive map to be useful, the organism must
have a mechanism for connecting map coordinates to
fixed aspects of the environment that can be identified
by perceptual systems. [...] A second requirement for
a cognitive map to be useful is that it must include a
mechanism for planning a route to one’s destination.

Russell A Epstein et al. (2017, pps. 1506–1508)

These are yet to be found. And claims such as those that some
make along the lines of place cells provide “neural network
mechanisms” (p. 1437) or a “neuronal embodiment” (Lisman
et al., 2017, p. 1444) for the cognitive map do not hold water
because these are phenomena. The thing to-be-explained can-
not be explained by another thing to-be-explained. So when we
see in literature claims such as, Alexandra O. Constantinescu et
al. (2016, p. 1465) claiming that “[t]he ability to interact with
knowledge in this flexible and generalizable fashion is the cen-
tral advantage of maintaining an explicit cognitive map”, we
must ask what do these framings of experimental results offer
us? For a cognitive map to be a useful theory, we must know
where such map-like structures come from and what computa-
tions they perform?

So even if mounting correlational evidence supports the idea
of map-like constructs being readable off the neurocognitive
system, this does not mean it is in and of itself evidence for
a cognitive map (for analyses of this argument, and why it is
problematic, see: Carlson et al., 2018; Chirimuuta, 2013; Cohen
et al., 2019; Guest & Martin, 2023; Popov et al., 2018; Ritchie et
al., 2019; Ross & Bassett, 2024; Vigotsky et al., 2024; Zednik,
2014). “The semantic interpretation of these states in the envi-
sioned models would play a purely heuristic role, allowing us to
keep track of what the network is doing” (Egan, 1995, p. 183).
This is “because [these so-called representations] play no char-
acterizable causal roles in connectionist models” (Egan, 1995,
p. 185).

This framing of the existence of correlations — between what
falls on the sensory surfaces or between neural or neuroimaging
data and the structure of the experimental task participants are
carrying out — as somehow constituting a theory for their ex-
istence, that a cognitive map is explanatory, is problematic. The
map is being created and read by the human-in-the-loop, the sci-
entist. In and of itself, the map explains nothing, it is something
the scientist should seek to explain. A copy of the environment
or even a richer redescription of it, uncovered by correlation, is
not an explanatory account of how “brain systems and computa-
tions support concept learning, memory, and spatial navigation.”
(Mok & Love, 2019, p. 2) So to recruit such a metaphor — of
the map — is to ignore the thing to be explained, shifting to the
infinite regress wherein the explanation is relegated outside the
system under study (e.g. spatial navigation) even though it is the
capacity we aim to explain and understand.

Cognitive maps, like other neurocognitive representations,
are often evaluated using (2nd order) isomorphisms (correla-
tions over correlations). This is problematic as such isomor-
phisms do not evaluate everything or indeed much of anything,
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because they confuse the map for the territory and invite falla-
cies of causation, or the attribution of causation based on corre-
lation. They can only tell us that the current task demands are
isomorphic to an ideal that is hand-selected or is at least simi-
larly requested from another source of data (recall Figure 1). If
we think of cognition or the brain as something close enough
to a universal Turing Machine, i.e. if we are computationalist,
a match says only that our postulated map is possible, but not
how it is used or arises. Something which we could a priori
know: the task contains the however derived correlation or trac-
ing, the external posited structures, by definition, that is how
we found that map to begin with. Finding an isomorphism with
the organisation of our home and the so-called organisation of
our brain, e.g. knives and forks are stored closer to each other
than they are to bedsheets, means very little. Meaningful find-
ings involving isomorphisms exist, indubitably — but they are
not coherent theories, almost entirely useless on their own (re-
call, e.g. the somatosensory homunculus). The cognitive map
does not even constrain the space of possible maps, importantly,
it merely states maps are somehow computed/produced by the
neurocognitive system. In contrast, basic computationalist as-
sumptions do offer useful constraints, but the map adds none to
them to aid us in theorising.

Furthermore, for a simple case of understanding why reading
something off an entity is not relevant to the entity’s represen-
tational powers, consider the following case: A brick in a wall
exposed to the elements can be subject to measurement of its
temperature and moisture, and these measurements will corre-
late with the weather. Does this correlation allow us to conclude
that the brick represents the weather? If yes, then it is possible
one is either a panrepresentationalist, i.e. everything represents.
And under the computationalist flavour one could thus ascribe to
pancomputationalism, i.e. everything computes something more
than the identity function. Alternatively, one does not believe in
representations at all, and therefore one allows this absurd con-
clusion as a reductio argument.

The [person] on the street acknowledges that minds
are rather mysterious, but [they are] definitely sure
that a mind is something that you either have or you
haven’t. Bricks haven’t.

Edwin Ray Guthrie (1935, p. 1)

Trying to neither fully deflate representation nor assign every-
thing representational abilities, neurocognitive scientists likely
want to be very careful when they conclude from brain read-outs
that representation is indeed taking place. In this context, there
is nothing that licenses correlational read-outs to be indicative of
the nature of, structure of, or even existence of, representations,
map-like or otherwise.

We are forced to conclude that the cognitive map, in
its current instantiation, is frustratingly computationally in-
ert (Rescorla, 2009; cf. Aguilera, 2016, 2018; Camp, 2007;
Rescorla, 2020). It is either a label for a capacity as we see in de-
velopmental investigations of children’s abilities, or a synonym
for the representations (however deficient) themselves that are
used by the broader capacities of e.g. navigation, route planning,
and so on. And this is why it is not a proper theory, and certainly
not a computational one, and never can be without drastic addi-
tions (recall Box 1 and Table 1). “The theory proper comprises
a specification of the function (in the mathematical sense) com-
puted by the mechanism[. Cognitive content] is ascribed to facil-

itate the explanation of the relevant cognitive capacity.” (Egan,
2020, p. 33) She goes on to elaborate:

[T]he computational theory proper can fully explain
the interaction between organism and environment,
and hence the organism’s success, without adverting
to cognitive content. The [cognitive content] charac-
terizes the interaction between the organism and its
environment that enables the cognitive capacity in
terms of the former representing elements of the lat-
ter; the theory does not.

Frances Egan (2020, p. 34)

The computational theory is tasked with explaining the cogni-
tive capacity, i.e. how does the cognitive system achieve per-
formance in, e.g. navigation. The cognitive content, such as the
cognitive map, does not and cannot do this if it is a representa-
tion of the environment, be it the abstract properties: of the ex-
perimental task, e.g. concept cells (recall Table 1), or of (some
posited structure of) what falls on the sensory surfaces, e.g. light
intensity (recall Figure 1).

Forwarding the cognitive map as-is as a theory of how the
brain represents — i.e. over and above evidence that it repre-
sents — offers little above a meagre piece of evidence that the
neurocognitive system might have some tracking of the experi-
mental task, because even this is not certain as such readouts do
not guarantee such representations are formed or used (also see
Mackintosh, 2002). As part of a theory the cognitive map is min-
imally unfinished, just the gloss per Frances Egan (2020) and
not needed for a computational theory, and maximally confus-
ing, since it offers nothing theoretically. Computationalists al-
ready commit theoretically to the brain having representational
content, which is why we are on the hunt for a theory on how
this is done (viz. Hardcastle, 1996).

5 Here be dragons
The human brain is, by all accounts, the most com-
plex and wonderful object in the world. But so far we
are left with no reason to suppose that an answer to
the question about why our beliefs line up with our
actions is one that can be given by looking at second-
order properties that supervene on matter that is to be
found inside the agent’s skull.

Julia Tanney (2011, p. 7)

Frances Egan (2018) opens with: “Much of computational cog-
nitive science construes human cognitive capacities as represen-
tational capacities, or as involving representation in some way.”
(p. 247) Indeed, many computationalist connectionist theories
and models — from classical models of the hippocampus (e.g.
Zipser, 1985) to models of cognitive capacities such as categori-
sation, vision, language (see examples in Guest & Martin, 2024)
— all make use of representation (Egan, 2010; cf. Lycan, 1991).
Since ‘representation’ as a cognitive scientific term undergirds
so much of our science, we should strive to untangle it from
harmful conceptualisations. Alarm bells should ring in cases
where connectionist accounts capture “critical behaviours[, but
these] are driven by statistical regularities in the model’s input”
(Guest et al., 2020, p. 293); the content-vehicle distinction is
being violated (recall Box 1). Herein, the cognitive map has
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Table 2: Potential (re)conceptualisions for ‘cognitive map’ to avoid the traps. In the column ‘Taken to be’ are the types of potential
non-mutually exclusive uses of cognitive map. The darker the box, the more work the contents imply for the theoretician with
respect to both formalisation and verbal theorising. The 2nd and 3rd columns give examples and constraints imposed as a function
of the scientific status, e.g. ‘cognitive map taken as theory’ binds us to constructing a theory proper, a representational vehicle
(recall Box 1).

Taken to be Examples Constraints

PHENOMENON
To the experimenter it looks
like an organism is reading a
map to navigate.

None because within reason, anything can look like anything.
It definitely looks like the Sun goes round the Earth. See rel-
evant analyses by Dhein (2023) for insects’ cognitive maps.

CAPACITY

A synonym for the cognitive
capacity of mental represen-
tation, memory generally, or
specifically of navigation and
spacial cognition.

Computationalist methods and analyses can be employed
(viz. Blokpoel, 2018; Guest & Martin, 2021; van Rooij et al.,
2019). Primal is the need to explain how this is different
from extant named capacities, e.g. navigation, spatial learn-
ing, episodic memory.

FUNCTIONAL ROLE

The hippocampus, or an-
other candidate brain region,
computes cognitive maps as
part of its raison d’être.
And so ‘cognitive map’ is to
hippocampal formation what
‘pumps blood’ is to heart.
This can be teleological (e.g.
Millikan, 2021).

The broader theory must explain if this is a unique functional
role and specify if functional roles are definitive for a given
brain region (see Mackintosh, 2002). Does computing cogni-
tive maps define if a brain region is part of, e.g. the hippocam-
pal formation in the same way that an organ (even if artificial)
which pumps blood is (therefore) a heart? Functional role may
therefore be unintuitive or less useful for the cognitive and
computational neuroscientist.

SUB-THEORY

A synonym for (a subtype of)
‘mental representation’ with
a commitment to map-like
content. A static representa-
tion of, e.g. relationships be-
tween landmarks.

The broader theory must: explain why map-like and not, e.g.
linguistic representations (see Aguilera, 2016, 2018), are at
play; avoid descent into such gloss (content details) remain-
ing a stand-in for formal theory because content is not vehi-
cle (recall Box 1; Egan, 2020). Coexistence with non-map-like
representations is possible (Aguilera, 2021; Camp, 2007).

THEORY
A label for a future theory,
or a synonym for an existing
theory.

The theory must focus on the vehicle (recall Box 1; e.g. Aguil-
era, 2016; Camp, 2007; Egan, 2020) and avoid Ryle’s and
van Rooij’s regresses (recall Box 2).

provided us with a case study with conclusions and potential
lessons learned that apply to any proposed theory of mental rep-
resentations or of cognition in general. First, let us look at the
lessons specifically for the cognitive map, before taking stock
of what we could learn for theorising and metatheorising about
mental representations in general.

Potential repairs, or indeed complete reconceptualisation and
re-formalisation, of the cognitive map, such as the work by
Mariela Aguilera (2021) and Elisabeth Camp (2007), are likely
to be the only way forward, one of many steps on a long jour-
ney for those who wish to retain cognitive maps. Other attempts
to theorise using the cognitive map, as described above, regard-
less of the use of implementation-level (viz. Guest & Martin,
2021) — both senses: appealing to substrates in the brain, and
appealing to computational mechanism (recall Box 1) — com-
putational models, do not provide a relevant or solid basis for
continued theorising.

To wit, cognitive map as-is is likely a rhetorical spandrel
(Gould & Lewontin, 1979), i.e. a remnant of problematic oth-
erwise abandoned theorising, and therefore has a deleterious ef-
fect on our scientific reasoning. It is usefully framed as a histori-
cal remnant from a time when behaviourism was staunchly anti-
cognitivist (recall What is a cognitive map?). Importantly, this
role, which the cognitive map played arguably well in Tolman’s
time, has ended; the field moved to a more compatibilist stance,

thus mainstreaming the use of mental representation (e.g. Favela
and Machery, 2023; cf. Amundson, 1983). Notwithstanding,
and recalling the careful threading of the needle described in
Box 1:

It is a paradox that the “Tolmaniacs” [Tolman’s stu-
dents] from Berkeley who tend to speak of rats as
“little furry people” are much more likely to search
for central neural mechanisms than S-R[i.e. stimulus-
response] theorists who speak of rats as “little furry
machines.”

John Garcia (1976, p. 81)

To recapitulate our main point, herein we have built the case
for cognitive map needing careful use, mindful deployment
when verbally and formally theorising. And so in the case of
neurocognitive mental representations cognitive maps can be
“systematically misleading” per Ryle, i.e.

the sense in which such quasi-ontological statements
are misleading is not that they are false and not even
that any word in them is equivocal or vague, but only
that they are formally improper to the facts of the
logical form which they are employed to record and
proper to facts of quite another logical form.

Gilbert Ryle (1931, p. 150)
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Solutions encompass more than throwing away the presently
improper cognitive map completely (viz. Bennett, 1996). Such
drastic action is not required, especially if a scientist is commit-
ted to map-like representations or similar (viz. Aguilera, 2016,
2018; Camp, 2007; Casati & Varzi, 1999; Schellenberg, 2018).
To put it simply, the practitioner who wishes to be a non-naive
computationalist and to keep such phraseology in their mod-
elling and theorising needs to shift focus to formally specifying
the neurocognitive computational mechanisms and functions,
the vehicle itself (recall Box 1; cf. Egan, 2017; Smortchkova et
al., 2020). A zooming out from the status quo described in Ta-
ble 1 is required to then zoom back in with fresh eyes. In the
most methodologically and terminologically committed case,
the scientist can think deeply about what it is that ‘cognitive
map’ instantiates, if not (just) a theory (see Table 2).

To provide some rectification to cognitive map, we must an-
swer: is cognitive map just a synonym for mental representa-
tion, under a scheme of map-like or spatially-based mental rep-
resentations? Then the practitioner should take heed of the con-
straints for such a sub-theory case (see relevant row of Table 2).
Such mutually inclusive (re)conceptualisations of cognitive map
as phenomenon (first row, Table 2) all the way to full-blown
theory (last row, Table 2) require increasingly more theoretical
and formal work as we move down the table. Notwithstanding,
choosing at least one row of Table 2 is required for intra- and
interdisciplinary communication, theorising, and modelling en-
deavours, if we wish to retain the cognitive map. Because when,
for example,“we know little about how the acquisition of cogni-
tive maps is shaped by different features of exploratory behav-
ior” (Brunec et al., 2023, p. 1), what is most important is how
to house them in a theory than continue collecting data (viz.
Buzsáki & Tingley, 2023; Guest & Martin, 2021; Hardcastle,
1996; Hardcastle & Stewart, 2002; van Rooij & Baggio, 2021).

Our analyses have been in service of understanding how sci-
entists within our fields explain mental representations of ex-
ternally posited structures. Given that we have used the scien-
tific entity of the cognitive map as a case study for theorising
with respect to mental representions, what general lessons can
be drawn out?

First, we warn that externally posited structures, such as land-
marks (recall Figure 1) or other features of experiments, such
as of tasks and of stimuli are representational content. Con-
tent is a pedagogical or illustrative gloss (recall Box 1; Egan,
2020) that cannot constitute the theory. Thus confusing repre-
sentational content for representational vehicles not only causes
homonculus-like infinite regress in the explanatory chain (recall
Box 2), it also causes the related problem for evaluating formal
theory through obfuscating the human in the loop who does the
work under a computational veneer. In other words, when van
Rooijan or Rylean regresses take place, solving them through
human-in-the-loop techniques, as discussed in All ghost, no
machine is computational modelling only in name. In practice,
such formalisms and computational accounts are no different to
the titular aphorism and opening quote, wherein a recipe for a
cake lists ‘buy a cake’ as the first and only step (Dretske, 1994;
recall Box 2). Indubitably, such a method works in terms of out-
put, but offers no insight into cake making — in this context
the success-to-truth inference is a fallacious one (recall Box 2).
And this holds no matter how much we might study the process
of travelling to the confectioner’s, picking out a cake, and buy-
ing it. Cognitive map as-is is a non- or even anti-mechanistic
account portrayed as mechanistic.

Second, we warn that any scientific entity, not just the cogni-
tive map, is misleading if use by the broader field is not openly
discussed — especially to focus on what it is the entity is captur-
ing (recall Table 1). Furthermore, in the case of neurocognitive
theorising, we are on the hunt for an explanation as to how the
representations are created and used. These problems likely ex-
ist in, and the critiques we make can apply to, many cases, e.g.
from mirror neurons (neurons are held to fire, represent, when
the organism both performs and observes another perform an ac-
tion; Heyes, 2010; Rizzolatti & Sinigaglia, 2008) to predictive
coding (brain areas are held to represent predictions of other
brain ares or of aspects of the environment; Grush, 2004; Rao &
Ballard, 1999) — when we implicate neurocognitive accounts
of mental representation, we must consider what such accounts
claim to offer versus their status as-is. In our case study, cog-
nitive map could be vehiculized (Aguilera, 2021; Camp, 2007),
but this is not something reflected in the extant research within
cognitive and computational neuroscience, as we have shown
in All form, no function. In other words, if the cognitive map
becomes commonly accepted and formally ensconced as a ve-
hicle, we will be on a much firmer footing for reasoning about
such mental representations. But such a vehiculization will still
be agnostic as to how such presentations emerge, which appears
a mechanistic desideratum broadly. Nonetheless, retaining the
cognitive map but reconceptualising it is possible (recall Ta-
ble 2), e.g. preserving a commitment to map-like representa-
tions (as content), or towards reconciling such representations
(as both content and vehicle) with other types.

Third, in the case of reading mental representation off the
brain or other similar framings of data, we caution against rea-
soning that takes as the antecedent correlational matching be-
tween external posited structures, e.g. features of task or stimuli,
and the data we collect. This form of metatheoretical reason-
ing harms our thinking as theory is underdetermined by data,
multiple realisability interferes with correlational matches, and
computationalism in general should never descend into the naive
variety (recall Box 1). Metatheoretical calculi, ways we adjudi-
cate over theories, that permit such reasoning are minimally er-
rant and maximally damaging (recall Box 2; Guest, 2024; Guest
and Martin, 2023, 2024). No amount of correlations will ever li-
cense the conclusion that the neurocognitive system represents
in a certain way — correlation does not imply cognition (viz.
Guest & Martin, 2023). Cognitive map as-is is a non- or even
anti-theoretical account portrayed as theoretical.

Thus, it is both the case that:

Picture theorists often explicitly deny the claim that
there are literally pictures in the brain. Yet appealing
to a pictorial format to explain experimental phenom-
ena invariably requires such a literal picture. [...] What
has sometimes been called a ‘functional space’ (such
as a matrix data structure) will not do because such a
space, being a fiction, can have any properties we like.

Zenon W. Pylyshyn (2003, p. 114)

And that:

Setting the problem in functional terms does not mean
that maps, spatial representations, images of “the
world in the head” do not exist. We will never be able
to see what they are, but we already have some notion
of how they work. Furthermore, according to the dy-
namic nature of the cognitive mapping system, maps
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should be subjected to continuous changes and hence
difficult for investigators to grasp.

Catherine Thinus-Blanc (1987, p. 14)

In other words, from the correlations nothing follows. Our for-
mal and verbal theories are the antecedents (Guest & Martin,
2023, 2024). And it is those theories that we should strive to for-
malise, improve, and curate. What remains true from the time of
Tolman to now is that if “the only sure criterion is to have fun”,
(Tolman, 1959, p. 152) then not all our ideas will be formally
defensible within the hard bounds of non-naive computational-
ism.
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