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Abstract 

In current philosophy of science, extrapolation is seen as an inference from a study to a distinct target 

system of interest. The reliability of such an inference is generally thought to depend on the extent to which 

study and target are similar in relevant respects, which is especially problematic when they are heterogeneous. 

This paper argues that this understanding is underdeveloped when applied to extrapolation in ecology. 

Extrapolation in ecology is not always well characterized as an inference from a model to a distinct target but 

often includes inferences from small-scale experimental systems to large-scale processes in nature, i.e., 

inferences across spatiotemporal scales. For this reason, I introduce a distinction between compositional and 

spatiotemporal variability. Whereas the former describes differences in entities and causal factors between model 

and target, the latter refers to the variability of a system over space and time. The central claim of this paper is 

that our understanding of heterogeneity needs to be expanded to explicitly include spatiotemporal variability and 

its effects on extrapolation across spatiotemporal scales. 
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1. Introduction 

 

The extent to which we can generalize knowledge acquired in particular situations to new contexts, 

questions, and environments is a pressing problem in ecology (Spake et al. 2022). Transferring findings from 

experiments not only supports our predictive ability and forms the basis for management intervention and public 

policy but is also a part of determining the scope of causal relationships. Recently, this problem has received 

growing attention in terms of the problem of extrapolation (Baetu 2016; Bareinboim and Pearl 2013; Currie 

2020; Guala 2003; Howick, Glasziou, and Aronson 2013; Marcellesi 2015; Reiss 2019). There is already a rich 
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literature on extrapolation in econometrics and in the biomedical sciences that has produced several different 

approaches to justifying extrapolations and methodological principles of how to deal with remaining 

uncertainties (Weber 2005; Cartwright and Hardie 2012; Guala 2005, 2010; Khosrowi 2019, 2022, 2023). These 

are important and interesting cases, and they have considerably advanced our philosophical understanding of 

how knowledge transfer across systems works and under what conditions it is problematic. In particular, the 

recent literature has focused on two problems. Firstly, the problem of heterogeneous populations, according to 

which extrapolation becomes all the more problematic, the more heterogeneous the experimental and target 

systems are in themselves. Second, the extrapolator’s circle, according to which assessing whether a particular 

extrapolation is justified, may require substantive research on the target system itself, which undermines the 

epistemic significance of extrapolation (Steel 2008; Khosrowi 2019). 

A pivotal problem case of extrapolation that was also instrumental in shaping large parts of the 

discussion within the philosophy of biology was the use of animal models (Burian 1993; LaFollette and Shanks 

1995; Schaffner 2001; Weber 2005). In addition to the question of whether they can serve as an adequate 

mechanistic analog for their (primarily human) targets, issues of scale pertaining to body size and differences in 

metabolic rates, among other things, continue to be pervasive problems in this context (Martignoni, Groothuis, 

and de Kanter 2006; Reagan-Shaw, Nihal, and Ahmad 2008). Biology is ripe with scaling relations that describe 

how various properties of organisms change with their size (Spence 2009). This aspect of scaling, or 

extrapolation across scales, is also significant in transferring causal relationships across ecological systems. 

However, in this case, it relates not only to the size of the organisms but also to the size of their habitats or, more 

generally, the extent of the area in which they live. 

Extrapolation in ecology often includes inferences from small-scale experimental mesocosms to large-

scale natural ecosystems because, in many cases, the patterns and processes of interest cannot be directly 

manipulated at the large, extensive scales at which they need to be understood (Englund and Cooper 2003; 

Gardner et al. 2001; Miller et al. 2004). This is especially so in cases where large-scale relationships, such as the 

effects of global warming, biodiversity loss, or environmental pollution, operating over extensive spatial and 

temporal extents, need to be estimated from smaller-scale experimental systems because of the often unavoidable 

mismatch between the scales at which ecological processes can be studied and the scales at which they take 

place in nature (cf. Miller et al. 2004, 310). However, an ecological system studied at small scales may appear 

considerably different in composition and behavior than the same system studied at larger scales. Patterns and 

processes characteristic of a system measured at small spatial and temporal scales may not necessarily hold or be 

relevant drivers in the large-scale system (Wiens 1989; Schneider 2001). While extrapolation can sometimes be 
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done with the tacit assumption that differences in scale can be ignored without introducing high epistemic risk, 

this is rarely the case in ecology. 

For this reason, I will argue in this paper that we must consider different forms of variability between 

the experimental and target systems. Whereas our current understanding of extrapolation primarily emphasizes 

similarity in terms of causal mechanisms and interactive factors, an important aspect to include in assessing 

extrapolation in ecology is how relevant factors are distributed across space and time. A crucial piece of the 

puzzle of understanding the challenging nature of extrapolation in ecology thus lies in the spatiotemporal 

variability of ecological systems. By clarifying the problem of extrapolation in ecology in this way, it is possible 

to broaden the philosophical debate on this topic and advance our general understanding of the multifaceted 

problems that arise when transferring knowledge across different systems of interest. My discussion also has 

significant consequences for the epistemology of ecological experiments and points towards different strategies 

to deal with the problem of extrapolation in ecological practice. 

The argument will proceed as follows: In section 2, I will review and synthesize recent philosophical 

analyses of extrapolation and its problems. Section 3 argues that heterogeneity between study- and target system 

can be understood differently and that this difference matters when extrapolation involves scaling relations. To 

describe this problem, I will further introduce the notion of spatiotemporal variability and contrast it with what I 

will call compositional variability. This is followed by a discussion of the relation between spatiotemporal 

variability and scale dependence (section 4). Section 5 discusses the implications of spatiotemporal variability 

for experimentation and extrapolation in ecology. Section 6 concludes. 

 

2. Extrapolation in current philosophy of science 

 

Extrapolation (Steel, 2008), transferability (Spake et al. 2022), or transportability (Bareinboim and Pearl 

2013), as it is sometimes also called in the literature, is an inference from a study- to a target system or 

population (in the statistical sense), typically but not necessarily involving causal claims. Extrapolating 

inferences may be necessary if direct investigation of the target system is prohibited for ethical or legal reasons 

or is not feasible due to practical limitations in data collection and performing direct manipulations of the target. 

Furthermore, the problem of extrapolation is intricately related to the practice of experimentation. Since 

experimentation is also about testing hypotheses, how well experimental results generalize is central to whether 

they can fulfill this function. Finally, in cases where knowledge is supposed to guide intervention in and 

management of real-world systems, the question is not only whether a causal process can be ascertained under 
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specific experimental conditions but also to what extent this is significant for the behavior of their natural targets. 

The general structure of an extrapolating inference is thus the transfer of a known causal relationship from a 

study system or population to a single or class of target systems or populations about which we have no direct 

knowledge concerning the transferred relation. Extrapolating inferences are thus related to generalization in that 

they extend a relationship beyond the measured or ascertained domain, and the problem is how to warrant the 

validity of such inferences. 

Most philosophical accounts of extrapolation pick up on this understanding by essentially following a 

model-target conceptualization of extrapolation as transferring a causal relationship from some source domain to 

a target domain of interest and by focusing on the question of how such an inference can be epistemically 

justified (Guala 2005; Steel 2008; Khosrowi 2019; Marcellesi 2015; Reiss 2019). What source and target are or 

can be is understood differently among accounts. Steel (2008), Bareinboim and Pearl (2013), and Khosrowi 

(2019) speak of extrapolation as inferences from one population to a different population. Guala (2010) views it 

as an ”attempt to generalize from an epistemically privileged system (experimental mechanism, animal model, 

etc.) to a less privileged target of interest” (ibid., 1071). Reiss (2019) finally subsumes all these usages under the 

terms “model system” and “target system(s)” (ibid., 3105). 

The question of how such an inference can be justified ultimately revolves around how similar study- 

and target systems are. The heuristic principle underlying that thought is that similarity between study and target 

raises the likelihood that similar processes are occurring in the two systems, which in turn, prima facie, supports 

transferability. However, as the philosophical discussion has made clear, similarity between model and target 

systems is generally neither the only nor the primary ground on which extrapolation is justified. Furthermore, 

similarity simpliciter may even lead to erroneous conclusions in cases where outward similar factors have 

different causal effects in different systems (Cartwright 2011; Cartwright and Hardie 2012). 

For this reason, philosophical accounts of extrapolation differ in their respective understanding of 

similarity and the degree to which it must be satisfied. Depending on the specific goal of the extrapolative 

inference, what must be shown on most accounts is that model and target are similar in at least some relevant 

respects (Guala 2010), be they similarities of (certain stages of the) causal mechanisms (LaFollette and Shanks 

1995; Steel 2008) or of the distribution of covariates and interactive factors (Bareinboim and Pearl 2013; 

Cartwright and Hardie 2012). 

Assessing the similarity of a study and target system can be more or less challenging and epistemically 

demanding. This pivotal role of similarity is also evident in recent philosophical accounts that have highlighted 

two problems that come with extrapolation: the problem of heterogeneous populations and the problem of the 
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extrapolator’s circle. According to the first, extrapolating causal effects from one population to another becomes 

more uncertain when model and target populations are highly heterogeneous. This is because heterogeneity 

increases the likelihood of causally relevant dissimilarities between model and target such that the transfer of a 

causal effect from one to the other can become erroneous (Steel 2008). The second problem is the extrapolator’s 

circle (LaFollette and Shanks 1995; Steel 2008; Khosrowi 2019). The point here is that determining the required 

similarity between model and target may require extensive investigations of the target itself. We need to ascertain 

that similar causal processes operate in model and target to ensure that the extrapolative inference is reliable. 

However, if ascertaining similarity already involves extensive research and knowledge of the causal structure of 

the target itself, this threatens to make extrapolation from the model superfluous. 

While a complete account of extrapolation must be able to explain the feasibility of extrapolation given 

the heterogeneity of study and target and incomplete knowledge of the latter, my aims in this paper are more 

modest. I will not attempt to give a comprehensive account of extrapolation but instead focus on the problem of 

heterogeneity of study and target systems. I will argue that by studying extrapolation in ecology, we can add a 

dimension of heterogeneity that has not received equal attention in the philosophical literature. For this reason, I 

will save a discussion of the extrapolator’s circle in ecological extrapolation for a future paper and instead dive 

into the problem of heterogeneous study- and target systems for the rest of this paper. 

In the next section, I will examine the problem of heterogeneous populations more closely and argue 

that the current conception of heterogeneity misses crucial elements relevant to understanding extrapolation from 

ecological experiments. This will show that the problem of heterogeneous populations is vital to extrapolation in 

ecology, albeit in a different way than currently assumed. 

 

3. Compositional and spatiotemporal variability 

 

The problem of heterogeneous populations describes difficulties when extrapolating a causal effect from 

a model to a distinct target. According to Steel (2008), the fundamental problem is that we should expect 

causally relevant differences between model and target in heterogeneous populations since causal effects “are 

prone to vary according to changes in the distribution of factors in the population that affect the outcome” (Steel, 

2008: 18). Khosrowi (2019, 46) builds on this understanding and provides a more fine-grained classification of 

ways in which model and target can be heterogeneous: i) differences in the probability distribution of interactive 

factors or moderating variables between the two systems; ii) differences in the coefficients that measure the 
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influence of an independent variable on a dependent variable; and iii) qualitative differences in the mechanisms 

or causal processes responsible for the observed effect in the model and the target (ibid.). 

Both these views have in common that heterogeneity refers to differences in the internal composition of 

model and target system. Model and target are regarded as sets of entities with specific, measurable properties 

engaging in certain activities and processes. The causally relevant context in which these entities act and interact 

is represented by a set of covariates or interacting factors that modify the effect of one on the other. I call this 

understanding of heterogeneity compositional variability from now on. 

Compositional variability explains well the difficulties we encounter in extrapolations where a causal 

effect is extrapolated from a model to a distinct target but where considerations of the spatial and temporal scales 

over which model and target are observed do not play a decisive role. However, when extrapolating across scales 

in ecology, the relevant heterogeneity to consider is not only about the internal composition of study and target 

system in terms of entities and causally relevant factors but also about their variability over spatial and temporal 

extent, what I will call spatiotemporal variability in the following. The reason for this has to do with how 

ecologically relevant factors are distributed across space and time on the one hand and with how well different 

scales of observation are suited to capture the resulting spatial structure. Let me start with the first point about 

the distribution of relevant factors across space and time, returning to the second point in section 4. 

A simplifying assumption for studying ecosystems is that a system measured at local scales is similar to 

the same system measured at regional scales and, likewise, that patterns and processes observed at local scales 

are similar at regional or even larger scales.1 According to this assumption, the observed systems are relatively 

constant over spatial and temporal extent. Study and target systems would not differ in composition when 

observed on different measurement scales, and for this reason, we were justified in assuming that causal 

relationships would persist with the same drivers responsible for them. Under this assumption, compositional 

variability would be sufficient to identify the criteria for justifying extrapolative inferences from ecological 

experiments. However, in ecological systems, there is little support for this assumption. 

 

1 While spatiotemporal variability principally encompasses both spatial and temporal scales, I will limit myself to 

the spatial dimension in the following explanation of spatiotemporal variability. I will do this not only to simplify 

the discussion but also because it presents additional and interesting problems relative to variation in the wake of 

temporal dynamics. 
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One of the many aspects of the complexity of ecological systems is their nonstationarity, meaning that 

statistical parameters like the mean and variance of a variable of interest vary across space and time (Rollinson et 

al. 2021; Brian and Catford 2023). This naturally has consequences for drawing conclusions about ecological 

processes that can only be observed over limited spatial and temporal scales. ”Nonstationarity in this context is a 

case where conclusions drawn from a single location or point in time are typically insufficient for explaining 

large-scale patterns because they only provide glimpses into broad ecological processes that occur over a wider 

range of conditions” (Rollinson et al. 2021, 66). This means that as we move across space and time in ecological 

systems, we will likely encounter ”a wide range of conditions” which we can understand as variability not only 

in the composition but also the spatial structure of ecological systems. 

Ecologists have long been aware that the spatial structure of ecological systems matters. As early as 

1966, Robert MacArthur and Eric Pianka (1966) incorporated the assumption of a patchy environment into their 

optimal foraging theory. According to this model, the environment, from the perspective of a particular 

organism, is structured as a heterogeneous spatial mosaic of favorable and unfavorable patches distributed across 

space. This distribution, in turn, necessitates different foraging strategies to optimize resource intake while 

simultaneously minimizing the time spent scrambling through the heterogeneous, patchy environment. 

A similar conception of the spatial structuring of ecological systems underlies the use of meta-

population models in ecology and conservation biology (Hanski and Simberloff 1997). In the meta-population 

approach, a population is modeled as a spatially structured set of sub-populations that inhabit favorable habitat 

patches (favorable from the perspective of the organism) while avoiding the unfavorable patches or areas in 

between (see Fig. 1). Patches can be of different sizes and different habitat-quality. Migration among patches 

connects the local sub-populations and partially accounts for the meta-population dynamics. 

Letting P stand for the proportion of occupied patches, and c and e stand for colonization and extinction 

rates, respectively, the basic form of a meta-population model would be: 

𝑑𝑃

𝑑𝑡
= 𝑐(1 − 𝑃) − 𝑒𝑃 

(Odenbaugh 2019). These models implicitly incorporate spatial structure into the dynamics of the population 

without explicitly representing space in terms of location or distance. They express that the environment is 

heterogeneous, that this heterogeneity has a spatial structure, and that this structure, in turn, plays a role in how 

biotic entities are distributed, moving, and interacting across space. 
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Figure 1: Spatial structure of a meta-population. Nodes represent patches of local sub-populations, while arrows indicate 

migration patterns. 

 

While consideration of the spatial structure of the environment and its role in ecological processes has 

thus arguably always been a part of ecological theorizing, further developments in spatial- and landscape ecology 

have added considerably to our understanding of how spatial variation needs to be accounted for in both the 

statistical analysis and the conceptual understanding of processes in ecological systems (Tilman and Kareiva 

1998; Fletcher and Fortin 2018). 

To make that more precise, Wagner and Fortin (2005) distinguish two types of spatial heterogeneity: 

The first is environmental heterogeneity, which is variation in the distribution of environmental factors that is 

itself spatially structured. The second is the ”patchiness of species and other ecological response variables” 

(2005, 1975). While the first describes the variability of environmental conditions in space, the second describes 

patterns that may be due to species’ responses to these spatially structured environmental conditions, given their 

specific resource demands and/or the result of biotic interactions and other ecological processes. 

The most obvious examples of these types of heterogeneity is species distributions in geographic space. 

Organisms of a population can be spatially distributed according to different patterns within a landscape. 

Theoretically, their distribution might be random, but in reality, it will often be non-random, i.e., either regular or 

clustered in a particular way. However, the resulting pattern will depend on how favorable environmental 

conditions are distributed across space and how the suitable habitat patches are connected. This spatial 

configuration can then, in turn, influence ecological processes such as predator-prey interactions with further 

potential downstream effects for community structure and dynamics (Borregaard, Hendrichsen, and Nachman 

2008). As Borregaard et al. (2008, 3304) point out, ”patterns of spatial distribution play an important role in 

shaping a wide range of ecological dynamics, such as intra- and interspecific competition, mating systems, 

predation, population genetics, and the spread of contagious diseases.” 
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However, to the extent that spatial patterns play an important role in ecological processes, it becomes a 

relevant question to what extent these processes can be extrapolated to different scales, where spatial patterns 

will likely be very different than in the study system even though the system at larger scales might still be 

relatively similar in terms of composition. In this case, more than compositional variability is needed to approach 

this problem because it is not only variation in the composition of study and target system but also variation in 

the spatial distribution of environmental factors and ecological entities that matter. 

Based on these considerations, I suggest distinguishing compositional variability in the sense defined 

above from spatiotemporal variability. Spatiotemporal variability is the variation in the distribution of entities or 

factors of interest over spatial and/or temporal extent reflecting the spatial structure and/or the temporal 

dynamics within an observed area. 

Spatiotemporal variability is heterogeneity that has an irreducible spatial or temporal component. The 

difference between compositional and spatiotemporal variability is thus related to the difference between static 

and dynamic perspectives on extrapolation. Under the assumptions of temporal stability and irrelevance of 

spatial structure, compositional variability is a suitable heuristic for approaching extrapolation. However, in 

cases where these simplifying assumptions are not met, consideration of spatiotemporal variability becomes an 

important aspect of justifying extrapolation. To put it in another way, while the variation between two 

ecosystems is always variation in space and time since ecosystems exist in space and time, spatiotemporal 

variability is not necessarily always relevant. Depending on the objective of a study, a static perspective, i.e., one 

that focuses on similarities and differences between ecosystems without an explicit spatial component, may be 

appropriate for the given purpose. However, in some cases where processes are strongly spatially dependent or 

differences in scale between study and target systems are significant, the static perspective is not appropriate, and 

spatial or temporal variation must be considered when assessing transferability to reduce uncertainty and risk of 

error. 

Nevertheless, spatiotemporal variability is generally important for the philosophical justification of 

extrapolation because it shows that study and target system can be similar or dissimilar in more than one sense, 

namely, in terms of their composition but also in the way entities of interest and relevant environmental 

conditions are distributed and structured over spatial and temporal extent which in turn can have consequences 

for causal inference and subsequently for extrapolation. 

 

4. The relation between variability and scales of measurement 
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Since ecological systems can vary across spatial extent, as we have just seen, a system measured at local 

scales can show considerably different levels of variability if compared to the same system studied at more 

extensive landscape scales. Not only are ecological systems variable across space and time but how well we can 

capture this variability depends on the scales of observation. Ecologists typically understand scale as 

encompassing both the grain and extent of observation (Wiens 1989; Schneider 2001; Englund and Cooper 

2003). Englund and Cooper (2003) define scale more formally as “the grain, which usually refers to the area or 

time span covered by individual samples, and the extent, which refers to the total range in time or space over 

which samples are distributed” (Englund and Cooper 2003, 163). 

 

 

Figure 2: The relationship between the scales of observation and spatiotemporal variability of an ecological system. The 

outer circumference defines the extent of observation of the system, i.e., the total area covered. The small squares with dashed 

lines represent experimental plots that are either left untreated for controls or on which treatments are carried out. The 

smaller square with solid lines at the bottom left represents a small-scale measurement of the same system that differs in 

extent but not grain size. The shades of green represent a gradient of environmental factors (increasing towards the center), 

while the differently shaded and sized dots represent different (biotic) entities and their distribution in space. Together, the 

environmental gradient and the distribution of entities make up the system’s spatial structure. 

 

The extent of an experiment is thus the total area it covers. At the same time, the grain describes the size 

of the individual samples, usually called ”plots” in terrestrial systems, observed within the total extent (Fig. 2). 

Plots are the individual units of experimentation to which treatments are administered (save the control plots). 

Therefore, the relation between grain and extent can be considered the resolution at which the experiment tracks 

patterns and processes occurring within the study area (cf. Wiens 1989, 387). Suppose we enlarge the total 

extent. In that case, we will increase the number of different features of the total area we are investigating and 
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likely increase spatial variability because larger areas will cover a more extensive range of different 

environmental conditions. 

Suppose we change the grain of the experimental plots. In that case, we will be more or less sensitive to 

these differences within the studied area (see Fig.2). In general, large grain size will lead to small differences and 

details within the plots being lost to our view because they get averaged out. In contrast, small grain size allows 

us more differentiation and covers more detail but also risks missing large-scale patterns of the system (Wiens 

1989). Therefore, the spatial resolution determines the observed variability of the system under investigation 

and, in this way, also our chances to detect ecological patterns (cf. Englund and Cooper 2003, 174-175). 

In ecology, this is known as scale dependence. Scale dependence means that ecological patterns and 

processes observed at small spatial scales do not necessarily translate to larger scales of observation and are thus 

dependent on the spatial extent (and temporal duration) of the observation or experiment (Kemp, Petersen, and 

Gardner 2001; Pace 2001; Schneider 2001; Englund and Cooper 2003). The realization of scale-dependent 

processes arguably brought with it a shift in general theoretical assumptions underlying experimentation in 

ecology: 

“In the 1990s ecologists began to address larger scales again, largely in response to questions about 

conservation that concern large scales. Initially, the unspoken assumption was that this would conform to the 

expectation that experiments done at that small scale would provide an understanding of large-scale phenomena. 

But there was a growing realization that the processes important at larger scales are often fundamentally different 

from those observed at lower scales.” (Potochnik and McGill 2012, 134; see Mikkelson 2007 for a similar 

argument). 

Scale dependence can mean several things. It can imply that the spatial distributions of entities in an 

ecosystem might have different structures depending on the scales of observation. For example, while a 

population may appear clustered at local scales (bottom left section of Fig. 2), it could appear more evenly 

distributed at the landscape level. Consequently, processes observed in an experimental system at a particular 

scale do not (necessarily) translate across spatial or temporal scales to the more extensive natural target systems. 

Lastly, and most importantly, the relative importance of different drivers of observed causal processes might also 

change with scale. For example, McGill (2010) lists four processes that have been proposed to determine the 

spatial distribution of species: (i) random chance dispersal, (ii) habitat preferences, (iii) species interactions, and 

(iv) climate. However, the relative importance of each process varies with the scale of observation. For instance, 

while climate is an important driver at small scales, competition is more important at intermediate scales. At the 

largest biogeographic scales, however, climatic factors become the primary driver again. As McGill points out, 
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this means that the question of which of the four hypothesized drivers is the most important one is ill-posed. 

Instead, the correct question would be, which factor drives species distribution at which scale? This also implies 

that the relevance of specific drivers of species distributions at local scales cannot generally be extrapolated to 

elucidate the relationship at larger, regional sales. 

This points to another important distinction I want to make, namely the one between scaling in the 

narrower sense and what I have called extrapolation across spatiotemporal scales at the beginning of this paper. 

So far, I have not formally differentiated between scaling and extrapolation across scales as modes of inference; 

however, as I will argue here, they are not necessarily identical and should be distinguished. 

As already pointed out, scaling relations are ubiquitous in biology and ecology. A pertinent example 

within the latter is the species-area relationship (SAR). Ecologists have long been aware that levels of species 

richness increase with the spatial extent of the observed area and that this relation can be approximated using a 

power function of the form S= cAz, where S is the number of species, A the size of the area and c and z are 

parameters, estimated from empirical data (Harte et al. 1999). We can use this function to predict species 

richness levels according to the area’s size. We can also use it to upscale the relationship between species 

richness and area size from small to larger scales, thereby calculating the expected saturating shape of the curve. 

However, as we have just seen, estimating the expected shape of the species-area curve is different from 

predicting which mechanisms are responsible for certain levels of species richness at small and large spatial 

scales because different processes drive species distribution at different spatial scales. For this reason, finding a 

scaling function that approximates the shape of the relationship through different scales is different from trying 

to extrapolate the mechanism responsible for that relationship from small to larger scales, and to capture this 

difference, I suggest distinguishing between scaling and extrapolation across scales. 

So far, I have pointed out that ecological systems not only differ in their composition but also in the way 

that these differences are distributed across space and time and that because of this spatiotemporal variability, 

how similar or dissimilar study and target systems appear to us also depends on the scale of observation. I have 

further pointed out that patterns and processes in ecological systems are often scale-dependent, meaning that 

they are observable on some scales but not on others and that the relevance of specific factors as drivers for 

ecological processes differs across scales. 

As should have become clear by now, spatiotemporal variability has two distinct aspects: The first is 

about the spatial and temporal distribution of entities and environmental factors and the resulting spatial structure 

or temporal dynamics that can influence ecological processes at specific scales (but not necessarily across 

smaller or larger scales). The second is about how we can measure and represent this variability in experimental 
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and observational studies. While the first is ontological in that ecological systems are composed of different 

entities that inhabit different environments and in that both are distributed according to specific patterns across 

space and time, the second aspect is epistemological in that it is about how much knowledge of an ecological 

system and the processes therein we can get by measurements performed at different spatial scales that only 

provide point estimates of a particular section of a more extensive and essentially open ecological system. I will 

further discuss this epistemic aspect in the following section. 

 

5. The epistemology of spatial variation and scale in ecological experiments 

 

In section 2 of this paper, I emphasized that justifying extrapolation requires identifying relevant 

similarities between study- and target system. I have also argued that in ecosystems, these similarities often 

encompass irreducible spatial and temporal dimensions. In this section, I integrate this argument with an analysis 

of the epistemological underpinnings of experimentation in ecology and how different experimental approaches 

are suited to address spatiotemporal variability. 

Ecologists use various experimental techniques to study ecological phenomena, ranging from 

laboratory- and mesocosm- to field experiments that differ in how they approach the trade-off between external 

and internal validity (Naeem 2001). Laboratory or bottle experiments test ecological interactions under 

controlled conditions using artificial and simplified environments. Field experiments are on the opposite side of 

the spectrum in studying ecological interactions under realistic conditions in the natural environment. In contrast, 

mesocosm experiments are located somewhere in between these two endpoints. They simulate field conditions to 

some extent but also create semi-artificial environments by using tanks, enclosures, and other containers to 

stabilize environmental conditions and keep out external influences (ibid.). Laboratory and bottle experiments in 

ecology were often accused of being too unrealistic and, therefore, of not being able to provide results that can 

be extrapolated to populations in natural environments, which at times has led to heated methodological debates 

(Carpenter 1996; Diamond 1983, 1986; Drenner and Mazumder 1999). Against this background, field 

experiments were supposed to solve this problem by providing a method of testing hypotheses in the natural or at 

least semi-natural environment (Englund and Cooper 2003; Hairston 1989; Tilman 1989). 

In the following, I will argue that this juxtaposition of non-extrapolable laboratory and extrapolable 

field experiments is misleading. First, building on arguments by Currie (2020) and Odenbaugh (2006), we can 

construe the significance of laboratory experiments in ecology differently by dropping the requirement that 

extrapolation is their primary goal. Second, the assumption that results from field or mesocosm experiments can 
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be extrapolated to natural systems has been controversial among ecologists themselves, not least because of 

frequent unexpected variation of ecological relationships between seemingly similar locations (Kemp, Petersen, 

and Gardner 2001; Price and Billick 2010; Pulliam and Waser 2010; Resetarits and Fauth 1998; Schindler 1998; 

Tilman 1989; Underwood 1986). Given compositional and especially spatiotemporal variability, the use of field- 

and mesocosm experiments is therefore far from solving the problem of extrapolation but instead requires 

justification itself. 

Let me begin with the first point about laboratory experiments. Currie (2020) has recently argued that 

the failure of laboratory experiments to illuminate causal relationships in natural systems and, thus, their low 

degree of external validity should not lead us to discount them wholesale. Instead, he suggests that these 

experiments have an additional epistemic value in enhancing our general understanding of ecological processes, 

specifically of what he calls the “space of ecological possibility” (ibid., 913). Second, laboratory experiments are 

often used not to test hypotheses derived from field observations of natural systems in the first place but to test 

hypotheses derived from mathematical models. Accordingly, in these cases, the experimental design is not 

supposed to represent real ecosystems but to realize the conditions the model specifies (Naeem, 2001). 

Odenbaugh (2006) takes a complementary view of the role of laboratory experiments in that they can, in turn, 

provide “evidential constraints” to model building (Odenbaugh 2006, 720). 

It is also essential to avoid taking the concept of extrapolation for generality wholesale. In a sense, 

laboratory experiments are also highly general, albeit only for artificial systems similar to those constructed in 

the experimental setup. What they achieve is generality in the sense that simple mathematical models are highly 

general (Elliott-Graves 2022). Thus, what distinguishes laboratory from field experiments is that laboratory 

experiments prioritize generality without the implication of being representative of particular real-world systems. 

Consequently, for our discussion of extrapolation, we might be justified to exclude laboratory experiments 

because extrapolation is not their primary goal in the first place, quite unlike mesocosm and field experiments, 

where extrapolation can very well be seen as a primary goal (Pace 2001). 

Coming then to the second argument of this section, let us see why field experiments alone do not 

bridge the gap between the laboratory and the real world. The logic underlying the use of field experiments is 

that greater similarity between study and target system will generally reduce the uncertainty involved in 

extrapolation. 

However, the problem and the crucial point of my argument is that just like variability, so too can 

similarity be understood in two different senses: On the one hand, similarity can be understood as matching or 

corresponding properties of study- and target system in terms of entities and environmental factors. On the other 
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hand, as I have argued throughout this paper, similarity can also be understood in terms of spatial and temporal 

structure, i.e., the distribution of environmental factors and biotic entities across space and time. 

However, maximizing similarity in one sense does not necessarily imply maximizing it in the other. 

Suppose we aim to extrapolate a causal effect found in one particular system to a different system at roughly 

similar spatial and temporal scales. In that case, similarity in the first sense is undoubtedly essential and may 

already be sufficient for describing the general conditions under which such an inference may be justified. 

However, the situation becomes more complicated if we aim to extrapolate from small- to large-scale systems. In 

this case, the relevant similarity is not exhausted by matching the properties of the study- and target system 

without paying attention to whether the scale at which the study system is observed allows for the inference to 

the spatial and temporal dynamics of the larger scale target system. 

Ecologists have suggested different strategies to cope with this uncertainty. The first and most obvious 

one is to avoid extrapolation if it is unnecessary. For example, Englund and Cooper (2003) suggest this strategy 

as a remedy for scale dependence, which is doable by “matching the physical size of experimental units with the 

size of the system of interest or by designing small-scale experimental systems so that the processes of interest 

are given a realistic representation” (Englund and Cooper, 2003: 162). If extrapolation cannot be avoided, it may 

be possible to directly up-scale an observed relationship from the small-scale study system to the larger scales of 

the natural system by calculating the proportionate increase. Of course, this only works under the assumption 

that “the relationship of a variable to changes in scale is linear or additive” (Miller et al., 2004: 314). Scaling 

relationships between ecological variables from small to large is more complicated if the scaling function is non-

linear or non-continuous, i.e., when it exhibits breaks, jumps, or other thresholds (Miller et al. 2004; Wiens 1989, 

2001). For example, Wiens (2001) shows that even the already mentioned species-area relationship exhibits 

thresholds at some points, in which case up-scaling could easily lead to aggregation error and mistaken 

extrapolations. 

If avoiding extrapolation and direct upscaling is impossible, ecologists can develop new research 

strategies and experimental designs sensitive to spatiotemporal variability and its effects. Instead of relying on 

single studies of randomly chosen locations, experimenters could pursue designs that incorporate variability by 

studying interactions at multiple scales, locations, and along significant environmental gradients (Hewitt et al. 

2007; Snelgrove et al. 2014). In all these cases, however, understanding the problems and limits of extrapolation 

requires consideration of spatiotemporal variability. 

 

6. Conclusion 
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In this paper, I have argued that extrapolation from ecological experiments is an interesting case for 

philosophical analyses of knowledge transfer because it presents a variety of relatively specific problems that 

have hitherto not been considered as much. In particular, I have argued that the problem of heterogeneous 

populations is incomplete if only considered along the lines of compositional variability. Likewise, philosophical 

analyses of extrapolation fall short when only referring to differences in composition without considering how 

compositional variability is distributed and structured over space and time, i.e., without considering 

spatiotemporal variability. In this sense, spatiotemporal variability does not replace compositional variability but 

complements it. Spatiotemporal variability is another way in which study- and target systems in an extrapolative 

inference can be heterogeneous. 

Finally, in referring to arguments advanced by Currie and Odenbaugh, I have pointed out that different 

experiments in ecology can serve different epistemic functions and that extrapolation is not necessarily one of 

them. However, I have also claimed that even in experimental practices where extrapolation is a relevant 

epistemic function, this is not always straightforward and presents epistemic challenges to ecologists. While this 

is not sufficient to discard extrapolation at all, general limits to its application need to be understood. 
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