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Abstract

This paper reconsiders the metaphysical implication of Einstein algebras, prompted
by the recent objections of Chen (2024) on Rosenstock et al. (2015)’s conclusion.
Rosenstock et al.’s duality theorem of smooth manifolds and smooth algebras sup-
ports a conventional wisdom which states that the Einstein algebra formalism is not
more “relationalist” than the standard manifold formalism. Nevertheless, as Chen
points out, smooth algebras are different from the relevant algebraic structure of an
Einstein algebra. It is therefore questionable if Rosenstock et al.’s duality theorem
can support the conventional wisdom. After a re-visit of John Earman’s classic
works on the program of Leibniz algebras, I formalize the program in category the-
ory and propose a new formal criterion to determine whether an algebraic formalism
is more “relationalist” than the standard manifold formalism or not. Based on the
new formal criterion, I show that the conventional wisdom is still true, though sup-
ported by a new technical result. I also show that Rosenstock et al. (2015)’s insight
can be re-casted as a corollary of the new result. Finally, I provide a justification
of the new formal criterion with a discussion of Sikorski algebras and differential
spaces. The paper therefore provides a new perspective for formally investigating
the metaphysical implication of an algebraic formalism for the theory of space and
time.
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1 Introduction

In a recent paper, Lu Chen (2024) advocates for several potential algebraic formalisms for
the theory of space and time, and for an accompanying philosophical thesis named alge-
braic relationalism. According to Chen’s algebraic relationalism, the algebraic formalism
for the theory of space and time should be a genuine implementation of relationalism
(Chen, 2024, p2). However, as Chen reports, the conventional wisdom has it that, the
algebraic formalism for the theory of space and time that is discussed the most by philoso-
phers, i.e. the Einstein algebra formalism, is not more “relationalist” than the standard
manifold formalism for the theory of space and time, which is usually associated with
substantivalism. This conventional wisdom is supported by the categorical equivalence
of Einstein algebras and relativistic spacetimes established by Rynasiewicz (1992) and
Rosenstock et al. (2015). Chen hence casts serious doubts on this conventional wisdom.

This paper aims to provide a new perspective for drawing philosophical implications
on the substantivalism versus relationalism debate from the Einstein algebra formalism,
and from algebraic formalisms for the theory of space and time in general. Philosophers
of physics have worked with Robert Geroch (1972)’s formalism of Einstein algebras for
decades, starting with classic works of John Earman (1977, 1979, 1986, 1989) propos-
ing his program of Leibniz algebras. In response to Earman, Rynasiewicz (1992) and
Rosenstock et al. (2015) show various senses in which Einstein algebras are equivalent to
relativistic spacetimes. They both point out that the structure of a smooth manifold and
the relevant algebraic structure of the collection of smooth scalar fields on a manifold
turn out to be mutually constructible from each other. Rosenstock et al. identify the
relevant algebraic structure to be the smooth algebra introduced by Jet Nestruev (2003),
and illustrate the equivalence of smooth manifolds and smooth algebras by establishing a
categorical duality. On top of that, they show another categorical duality that holds for
relativistic spacetimes and Einstein algebras. The philosophical takeaway, as Rosenstock
et al. (2015) suggest, is that insofar as one wants to associate the two formalisms with
the two metaphysical views about the nature of space and time, the Einstein algebra for-
malism is as “substantivalist” as — and, for the same reason, as “relationalist” as — the
standard manifold formalism (p17). Chen (2024) raises several challenges against Rosen-
stock et al.’s argument. This paper takes on these challenges, reformulates Rosenstock
et al.’s equivalence result, and defends the conventional wisdom, i.e. that the Einstein
algebra formalism is not more “relationalist”.

Here I give a more detailed plan of the paper. Section 2 provides the technical back-
ground. I first introduce the standard manifold formalism, the Einstein algebra formal-
ism, and Rosenstock et al. (2015)’s categorical duality theorem of smooth manifolds and
smooth algebras. Then I present Chen’s arguments against the conventional wisdom.
To respond, I take a step back to reconsider Rosenstock et al.’s work. Among Chen’s
objections, I agree with her that smooth algebras that Rosenstock et al. work with have
more constraints than the Einstein algebras originally formulated by Geroch. Neverthe-
less, I believe that Rosenstock et al.’s result can be reformulated to still support their
philosophical conclusion. This is shown in section 3. In this section, I formalize under
the categorical framework Earman’s program of Leibniz algebras, which is a forerunner
of Chen’s idea of algebraic relationalism. Inspired by this formalization, I propose a new
formal criterion which states that the appropriately defined representation functor from
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the category of smooth manifolds to the category of algebraic models in consideration
has to fail to be full and faithful for the algebraic formalism to be more “relationalist”
than the standard manifold formalism. Then I show that the Einstein algebra formalism
is not more “relationalist” than the standard manifold formalism based on this criterion
and re-cast Rosenstock et al.’s duality theorem. In section 4, I further illustrate the idea
that only the fullness and faithfulness of the representation functor matter, with the ex-
ample of Sikorski algebras (to be defined in section 4) and differential spaces. Finally,
the paper concludes with re-affirming the conventional wisdom and defending the new
formal criterion to determine the metaphysical implications of algebraic formalisms for
the theory of space and time on the nature of space and time.

2 Two Formalisms and a Duality Theorem

2.1 Two Formalisms

In the standard presentation of general relativity, one starts with the notion of smooth
manifolds1. An n-dimensional smooth manifold (M,C) consists of a set M and an atlas
C of n-charts on M , which defines a topology that is Hausdorff and second-countable,
and introduces a smoothness structure on M , that allows us to identify smooth maps
from M to another smooth manifold. Two manifolds (M,C) and (M ′, C ′) are called
diffeomorphic to each other if there is a bijective smooth map between M and M ′ whose
inverse is also smooth — this map is called a diffeomorphism. A tensor field on M is
an assignment of a tensor to each point of the manifold. A relativistic spacetime is de-
fined to be a Lorentzian manifold, which is a four-dimensional connected manifold with
a smooth metric (tensor) field of Lorentzian signature. Relevant physical fields, such as
the electromagnetic field, can be defined as tensor fields on the background spacetime.
This is the standard manifold formalism for the theory of space and time.

On the other hand, alternative algebraic formalisms strive to define fields by their alge-
braic structures only, without referring to an underlying manifold. The mostly discussed
algebraic formalism by philosophers of physics is the Einstein algebras, formulated by
Robert Geroch (1972). Geroch observes that, for any smooth manifold M , the collection
of all smooth scalar fields on M forms a commutative ring with pointwise addition and
multiplication. Denote this commutative ring by C∞(M). The collection of all constant
functions on M forms a subring of C∞(M) that is isomorphic to R. He then illustrates
how the mathematical notions, including tensor fields, needed for general relativity can be
introduced by just constructing relevant algebraic structures based on C∞(M), instead of
defining them on the points of the underlying smooth manifold. Geroch therefore defines
an Einstein algebra to consist of a commutative ring F which has a subring R isomorphic
to R and a metric defined algebraically on F 2 (Geroch, 1972, p274).

1This brief presentation follows Malament (2012)’s and Wald (1984)’s definition of smooth manifolds.
Refer to these textbooks for the full definitions of the notions presented in this paragraph.

2According to Geroch, we can define a contravariant vector field on M as a derivation on C∞(M).
The collection D of all smooth contravariant vector fields forms a module over the commutative ring
C∞(M). The dual module D∗ of D is the collection of all smooth covariant vector fields. A metric g
is then defined to be an isomorphism from D to D∗ that satisfies the symmetry condition: for any ξ
and η in D , g(ξ, η) = g(η, ξ), where g(ξ, η) is defined to be g(ξ)(η). This is equivalent to the symmetry
condition in the standard manifold formalism. The fact that a metric is defined to be an isomorphism
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For simplicity, this paper does not deal with the metrics in either the standard man-
ifold formalism or the Einstein algebra formalism.3 This simplification should not com-
promise the arguments of the paper, as Chen makes the same simplification (Chen, 2024,
footnote 10). Call a commutative ring which has a subring isomorphic to R an Einstein
ring. The following discussions will focus on smooth manifolds and Einstein rings exclu-
sively, from which we draw conclusions about the standard manifold formalism and the
Einstein algebra formalism.

There are two main metaphysical views about the nature of space and time, namely
substantivalism and relationalism4. Relationalism is the view that only material bodies
exist, standing in various relationships with each other. Substantivalism, on the other
hand, is the view that there exists a fundamental spatio-temporal structure in addition to
and independent of material bodies. The difference of the two metaphysical views can be
illustrated by the different takes they have on the representational goal of the spacetime
manifold in the standard manifold formalism. For substantivalists, the mathematical
structure of the spacetime manifold is supposed to represent the fundamental spatio-
temporal structure5. Relationalists, on the other hand, deny that very assumption of the
representational goal for the spacetime manifold, as they do not believe that there exists
a fundamental spatio-temporal structure. That is to say, relationalists should expect the
spacetime manifold in the standard manifold formalism to contain excess structures, in
the sense that these excess structures do not characterize any relationalist physical real-
ity, but are only posited to support other mathematical structures in the formalism that
do characterize something real.

The job for relationalists is therefore to establish the presence of excess structures in
the standard manifold formalism. Here the Einstein algebra formalism enters the picture:
if the standard manifold formalism can to shown to contain excess structures compared
to the Einstein algebra formalism, then these excess structures can potentially be what
relationalists are looking for. Moreover, if this turns out to be the case, Einstein algebras
can also potentially be argued to characterize only the relational physical reality — hence
a formal implementation of relationalism. Note that we don’t need to commit to the idea
that the standard manifold formalism is an implementation of substantivalism. We only
need to assume that the standard manifold formalism is not the most desirable imple-
mentation of relationalism, due to excess structures manifested by the representational
redundancy of the spacetime manifold. A formalism that gets rid of these excess struc-
tures can thus potentially be a better implementation of relationalism than the standard
manifold formalism, or, in fewer words, more “relationalist”. The flip side of finding
excess structures is to establish in-equivalence: if two formalisms are not equivalent in a
relevant sense, then we can argue that one of the two posits excess structures compared
to the other.

guarantees that it is non-degenerate. This algebraic definition of a metric therefore corresponds to the
definition of a metric in the standard manifold formalism.

3Despite of the importance of the metric field, we can still draw useful insights from comparing simpler
mathematical structures without metrics, as demonstrated recently by Wu & Weatherall (Forthcoming).

4For an overview of the two metaphysical views, see (Pooley, 2013).
5I do not assume whether or not the spacetime manifold does successfully represent the fundamental

spatio-temporal structure that substantivalists may have in mind. It is the representational goal that is
important here.
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2.2 The Duality Theorem

As surveyed by Weatherall (2019), philosophers of physics have discussed widely formal
criterions of identifying theoretical equivalence. One prevalent criterion in the recent
literature is the categorical criterion of equivalence. According to the categorical crite-
rion of equivalence, two theories are equivalent if the categories of models of the two
theories are equivalent as categories. This equivalence of categories is made precise by
well-behaved functors between two categories6. Let C and D be two categories, and let
F be a contravariant functor from C to D. F is said to be faithful if and only if for any
two objects A and B in C, the induced map (f : A → B) 7→ (F (f) : F (B) → F (A))
taking arrows between A and B in C to arrows between F (A) and F (B) in D is injective.
F is said to be full if and only if for any two objects A and B in C, the induced map
(f : A → B) 7→ (F (f) : F (B) → F (A)) taking arrows between A and B in C to arrows
between F (A) and F (B) in D is surjective. F is said to be essentially surjective if and
only if for any D in D, there is an object A in C such that F (A) is isomorphic to D in
D — that is to say, there are arrows f : F (A) → D and f−1 : D → F (A) in D such that
f−1 ◦ f = 1F (A) and f ◦ f−1 = 1D. If F fails to be faithful, we say that F forgets stuff.
If F fails to be full, we say that F forgets structure. If F is faithful, full, and essentially
surjective, then F is said to realize a categorical duality of C and D, and the categories
C and D are said to be dual to each other. Dual categories are equivalent to each other,
as they can be viewed as “mirrored copies” of each other in the sense that the direction
of their arrows is systematically reversed.

The category of models for smooth manifolds in the standard manifold formalism is
defined by Rosenstock et al. (2015) as SmoothMan with the following:

• objects: smooth manifolds M,N, · · · , and
• arrows: smooth maps φ :M → N where M and N are smooth manifolds.

On the algebraic side, Rosenstock et al. work with the notion of smooth algebras intro-
duced by Jet Nestruev (2003). To give the definition of smooth algebras, some prelimi-
naries are needed. We start with R-algebras :

Definition 1 (R-algebras). An R-algebra A is a vector space over R with an additional
associative and commutative vector multiplication and a multiplicative identity.

It is not hard to see that an Einstein ring is an R-algebra. We call the collection of
R-algebra homomorphisms — which preserve the vector space operations, products, and
the multiplicative identity — from an R-algebra A to R (which is also an R-algebra) the
dual algebra of A, denoted by |A|. Elements in the dual algebra of A are called points of
the algebra A. If A has only the zero element in the intersection of kernels of all the points
of A, then elements in A can be canonically identified with functions taking points of A
to R by a bijective map. Such an algebra A is said to be geometric (Nestruev, 2003, p23).
Define the coarsest topology on |A| that makes every element of A, canonically identified
in the way described just now continuous. An R-algebra A is said to be complete if it
contains all the maps on |A| that are locally equivalent to elements of A, in the sense
that if f : |A| → R agrees with some g ∈ A restricting to some neighborhood of p for
any p ∈ |A|, then f ∈ A (Nestruev, 2003, p30-31). Restricting to a subset U ⊂ |A|, A|U

6The following presentation of the categorical criterion of equivalence follows Weatherall (2019) and
Rosenstock et al. (2015). It assumes familiarity with definitions of categories and functors, which can be
found in standard textbooks on category theory such as (Awodey, 2010).
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is defined to be the R-algebra containing all the functions f : U → R that are locally
equivalent to some element of A. Now we give the definition of smooth algebras:

Definition 2 (Smooth algebras). A complete, geometric algebra A is called a smooth
algebra if there is an at most countable open covering {Uk}k∈N of |A| such that all the
algebras A|Uk

, k ∈ N, are isomorphic to C∞(Rn) for some fixed natural number n.

Given a smooth manifold M , the collection C∞(M) of all its smooth scalar fields is
not just an R-algebra, but a smooth algebra (Nestruev, 2003, 7.5 & 7.6). The category
of models for smooth algebras, SmoothAlg, is defined to consist of:

• objects: smooth algebras A,B, · · · , and
• arrows: R-algebra homomorphisms7 f : A → B whereA and B are smooth algebras.

The two categories SmoothMan and SmoothAlg turn out to be equivalent, as
shown by the following duality theorem:

Theorem 1. SmoothMan is dual to SmoothAlg. (Rosenstock et al., 2015, Theorem
3.5)

According to the categorical criterion of theoretical equivalence, smooth manifolds
and smooth algebras are equivalent. That is to say, the standard manifold formalism
does not posit excess structures compared with the smooth algebra formalism. There-
fore, smooth algebras cannot help relationalists single out any structure in the standard
manifold formalism that does not characterize relational physical reality. The smooth al-
gebra formalism is hence not more “relationalist” than the standard manifold formalism.
Rosenstock et al. then identify an Einstein algebra as a 4-dimensional smooth algebra
with additional structures defined on it (Rosenstock et al., 2015, Section 4). They show
that the Einstein algebra formalism and the relativistic spacetime formalism are equiva-
lent, by establishing another categorical duality (Rosenstock et al., 2015, Theorem 4.5),
and conclude that the two formalisms “encode precisely the same physical facts about
the world, in somewhat different languages” (Rosenstock et al., 2015, p316). The con-
ventional wisdom is therefore established that the Einstein algebra formalism is not more
“relationalist” than the standard manifold formalism.

2.3 Chen’s Objections

In her paper, Chen gives three objections to the conventional wisdom presented above
and to the Einstein algebra formalism itself. Chen’s first objection concerns the algebraic
purity of smooth algebras. Recall that in Definition 2, an R-algebra is defined be complete,
geometric, and smooth for it to be a smooth algebra. Chen raises concerns for each of the
three requirements: geometric-ness, completeness, and smoothness. For the geometric-
ness, she claims that this requirement rules out nilpotent algebras for no good reason
other than that Rosenstock et al. want to establish a categorical duality:

Why should we rule these out for algebraicism? No rationale is given by
the authors other than the apparent reason that without this condition, we
wouldn’t be able to recover standard manifolds through categorical duality.
(Chen, 2024, p10)

7An R-algebra homomorphism is a map that preserves the vector space operations, the product, and
the multiplicative identity; a bijective algebra homomorphism is an R-algebra isomorphism.
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For the completeness, Chen argues that, to make sense of the idea of local equivalence of
maps, we have to treat a neighborhood of |A| as a set of points on |A| so that restrict-
ing an R-algebra homomorphism to a neighborhood makes sense. Hence she claims that
“to require algebras to be complete, we make reference to geometric objects, which sug-
gests this requirement as a disguised geometric discourse” (Chen, 2024, p10). Finally, for
smoothness, Chen states that geometric concepts are directly invoked as the smoothness
requirement is stated with topological vocabularies like open coverings. To sum up, Chen
believes that the smooth algebra formalism is not properly algebraic, for the reasons that
parts of its definition invoke geometric concepts and that the only motivation to work
with smooth algebras seems to be recovering the standard manifold formalism.

The second objection that Chen raises concerns the metaphysical interpretation of
the Einstein algebra formalism. She argues that the collection of smooth scalar fields
in an Einstein algebra, i.e. the Einstein ring, is “essentially a surrogate manifold that
represents spacetime” (Chen, 2024, p11). This is because, she explains, if one interpret
the Einstein algebra formalism realistically, then one has to make an ontological commit-
ment to scalar fields before any other type of fields. However, she points out that there is
no fundamental real-valued scalar field acknowledged by current physics supporting this
ontological fundamentality of scalar fields8. Therefore, she claims that, from a relational-
ist’s perspective, the Einstein ring essentially plays a role equivalent to the one that the
spacetime manifold plays in the standard manifold formalism, as both lack metaphysical
support. As a result, algebraic relationalists should not be content with the Einstein
algebra formalism:

All these indicate that the scalar field behaves just like substantival spacetime.
If algebraic relationalists are unhappy with the ghostly arena of physical on-
goings, they should be equally unhappy about a ghostly background scalar
field that must be posited in addition to those acknowledged by standard
physics. (Chen, 2024, p12)

Finally, Chen claims that the Einstein algebra formalism is not sufficiently interesting
for physicists, for the reason that it is not clear how much the Einstein algebra formalism
can contribute to physics (Chen, 2024, p13). She then presents three different poten-
tial algebraic formalisms for the theory of space and time: nilpotent algebras, natural
operator algebras, and non-commutative algebras. She argues that each of these alge-
braic formalism possesses conceptual advantages over the standard manifold formalism.
Furthermore, she claims that they are also “demonstratively not equivalent to manifold
substantivalism” (Chen, 2024, p22), because neither of them satisfy the requirements of
smooth algebras (Chen, 2024, p13, p19).

Chen concludes that her paper defends algebraic relationalism, which states that the
algebraic formalism for the theory of space and time is a genuine implementation of re-
lationalism and “not equivalent to substantivalism” (Chen, 2024, p2, p22). To properly
understand her formulation of algebraic relationalism, we note that Chen endorses the
substantivalist reading of the standard manifold formalism, i.e. that the standard mani-
fold formalism is an implementation of substantivalism. For the algebraic formalism for

8Chen claims that one cannot avoid this issue by interpreting the Einstein ring abstractly, since
“elements of C∞(M) are invoked to describe the spacetime coincidence of fields”(Chen, 2024, p12).
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the theory of space and time to be not equivalent to substantivalism, it hence has to be
not equivalent to the standard manifold formalism. But what is the algebraic formalism
for the theory of space and time in consideration? Chen didn’t give a definite answer, but
according to her, it should not be the Einstein algebra formalism, since she thinks it is
not sufficiently interesting for physicists or relationalists. Furthermore, the examples of
new algebraic formalisms she gives in the paper, despite that she acknowledges that they
are preliminary, are argued by her to have greater conceptual advantages for physicists
and relationalists than the Einstein algebra formalism does. Therefore, Chen calls for an
exploration of new algebraic formalisms for the theory of space and time, and defends an
optimistic prospect for algebraic relationalism.

2.4 Some Preliminary Responses

Chen’s arguments are more ambitious and wide-ranging than the scope of this paper, i.e.
the relationship between the Einstein algebra formalism and relationalism. In this sub-
section, I give some preliminary responses to her objections and single out the relevant
parts for the purpose of this paper.

Chen’s first objection is the only one of the three that concerns the smooth algebra
formalism, hence the only one that directly concerns Theorem 1 and its philosophical
implications. To start, I agree with Chen that a crucial motivation behind the smooth
algebra formalism is to recover the standard manifold approach, as it is clearly stated by
Nestruev9 and recognized by Rosenstock et al.. I agree with Chen that smooth algebras
have more stringent requirements than Einstein rings do. As stated before, it is not
hard to see that an Einstein ring is an R-algebra, but there is no indication in Geroch’s
original paper that Einstein rings must be geometric, complete, and smooth as defined
in Definition 2. Therefore, it is unclear whether the categorical duality between smooth
algebras and smooth manifolds shown in Theorem 1 is able to lead to any philosophical
conclusion about the Einstein algebra formalism and relationalism. If Rosenstock et al.
were to establish a conventional wisdom concerning the smooth algebra formalism and
relationalism, then they would have succeeded with their duality theorem, but again in
that case, as Chen pointed out, it would seem redundant to do so, as smooth algebras
are defined to be equivalent to smooth manifolds in the first palce. This casts a doubt
on the philosophical significance of Rosenstock et al.’s result, hence the conventional wis-
dom that the Einstein algebra formalism is not more “relationalist” than the standard
manifold formalism — is it still true?

Nevertheless, I do not share Chen’s concerns about the presence of so-called “geo-
metric discourse” and geometric concepts in the definition of smooth algebras. Chen
believes that they make smooth algebras not algebraic. It is not clear from her paper
what definition of “algebraic-ness” she has in mind. But regardless of what it may be,
it is not compatible with mathematical practice to regard any mathematical notion that
involves concepts and terminologies like “neighborhood of points” or “open coverings”
as not algebraic. To give a trivial example, there is nothing stop anyone from defining a
trivial topology on a given algebraic structure, and in this way one can meaningfully talk

9The two definitions of smooth manifold (in which the algebraic approach and the coordinate approach
result) are of course equivalent. . . . Essentially, this book is a detailed exposition of these two approaches
to the notion of smooth manifold and their equivalence (Nestruev, 2003, p11)
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about neighborhood of points and open coverings. Numerous existing mathematical no-
tions also deny the possibility of any clean division of “algebraic” versus “not algebraic”
that Chen might have in minds. C∗ algebras is a Banach space, Boolean algebras admit
stone space representations, and Lie algebras are closely related to Lie groups and hence
smooth manifolds. All of them are algebraic and at the same time involve “geometric
discourse” and geometric concepts. Furthermore, it is not clear how being free from
“geometric discourse” and geometric concepts is helpful for relationalism either. Rela-
tionalists, as explained in subsection 2.1, are motivated to get rid of excess structures of
the spacetime manifold, for it doesn’t represent anything in the relationalist’s physical
reality. However, that motivation doesn’t necessarily extend to getting rid of everything
non-algebraic. Therefore, I believe that smooth algebras are still algebraic, and that it
is not necessary to insist that an algebraic formalism for the theory of space and time
cannot involve “geometric discourse” or geometric concepts at all.

Chen’s second and third objections concern Einstein algebras instead of smooth al-
gebras. In a word, they raise the following question: why do we grapple with Einstein
algebras at all, given that, as Chen believes, they are metaphysically (second objection)
and physically (third objection) not desirable?

Recall that Chen argues that, since an Einstein ring has to be posited before other
fields are defined, it enforces an ontological fundamentality of scalar fields. She then
claims that it shows that an Einstein ring plays the role of a “ghostly background scalar
field” (Chen, 2024, p12), which, she argues, is equivalent to that of the spacetime manifold
in the standard manifold formalism and hence not desirable for relationalists. However,
it is not clear that relationalists will share Chen’s metaphysical worry. The thesis of rela-
tionalism is compatible with a possible hierarchy of ontological fundamentality of fields,
describing a hierarchy of metaphysical fundamentality of relationships that exist among
material bodies. Whether there is a legitimate hierarchy of metaphysical fundamentality
of either can be an open question, which doesn’t have to be settled for us to investigate
questions concerning substantivalism and relationalism. Similarly, relationalists do not
have to be unhappy about a “ghostly background scalar field” as they are unhappy about
a spacetime manifold, as Chen suggests. The reason why relationalists want to get rid
of the spacetime manifold is that it doesn’t directly represent anything that can be real
according to the relationalist’s view of physical reality. Rather, it is usually supposed
to represent a fundamental spatio-temporal structure whose existence is denied by re-
lationalists. It is not clear that a similar remark can be made that scalar fields don’t
represent anything that can be real according to relationalism. Therefore, there is no
sufficient reason why relationalists should reject the Einstein algebra formalism for the
reasons that Chen gives.

Finally, I respond to her third objection. I echo Chen’s call for exploring alternative
algebraic formalisms, as there are sufficient interests of physicists and mathematicians
to do so. This call for exploration, I believe, can be adequately justified without any
metaphysical consideration. Nevertheless, it doesn’t imply that it is not meaningful for
philosophers to engage with Einstein algebras. The reason why it appears meaningless
to do so is because that, in Chen’s formulation of algebraic relationalism, it states that
the algebraic formalism for the theory of space and time is a genuine implementation of
relationalism. Therefore, it seems that, to establish or refute algebraic relationalism, one
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should first find out what the algebraic formalism for the theory of space and time is,
then figure out whether it is a genuine implementation of relationalism in an appropri-
ate sense. I doubt whether it is feasible to establish or refute algebraic relationalism in
this formulation at all. Unless we can determine the algebraic formalism for the theory
of space and time once and for all, or at least determine fairly many properties that it
must have, algebraic relationalism in this formulation can only remain indeterminate.
Nevertheless, it is unclear how one can determine what is the algebraic formalism for the
theory of space and time. It is therefore questionable whether algebraic relationalism
in this formulation is fruitful for philosophers to pursue, at least at the current stage.
If we do not have algebraic relationalism in the form formulated by Chen as our goal,
then her third objection against Einstein algebras cannot dissuade philosophers from en-
gaging with Einstein algebras. Given that there is existing literature in philosophy of
physics spanning several decades concerning Einstein algebras and relationalism, there is
evidently enough interest for philosophers of physics to still investigate questions about
Einstein algebras, despite that they might very well turn their attention to new algebraic
formalisms in the future.

Therefore, we are left with only one objection of Chen, namely that Rosenstock et al.’s
categorical duality established between smooth algebras and smooth manifolds doesn’t
seem to inform us anything about the relationship between the Einstein algebra formalism
and the standard manifold formalism, for Einstein rings are defined much less stringently
than smooth algebras are. It is not clear whether we should still trust their philosophical
claim that the Einstein algebra formalism is not more “relationalist” than the standard
manifold formalism. In the next section, I show that we should, via a re-visit to classic
works of John Earman.

3 Re-cast the Categorical Duality

In this section, I take a step back to reflect on the role that Einstein algebras can be
expected to play for relationalism. I will start with illustrating and formalizing the
ideas behind Earman’s classic works of his program of Leibniz algebras, for it is the first
introduction of Einstein algebras to the substantivalism and relationalism debate. The
formalization results in a new formal criterion for an algebraic formalism for the theory of
space and time to be more “relationalist” than the standard manifold formalism. We will
see that, based on the new criterion, the conventional wisdom that the Einstein algebra
formalism is not more “relationalist” than the standard manifold formalism still holds,
and the idea behind Rosenstock et al.’s categorical duality result can be preserved.

3.1 Einstein Algebras and the Program of Leibniz Algebras

In a series of publications, Earman (1977, 1979, 1986, 1989) introduces Einstein algebras
as he explicates Leibniz’ relational view on the spatio-temporal structure, which is extrap-
olated from Leibniz’ writings on the nature of space and motion. Earman calls any model
of the spatio-temporal structure of the form ⟨M,O1, O2, · · · ⟩ a substantivalist world model,
where M is a smooth manifold and Oi, i ∈ N are geometric object fields on M , which
indicates that he believes that the spatio-temporal structure written in the standard man-
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ifold formalism carries a substantivalist interpretation10. Given two substantivalist world
models ⟨M,O1, O2, · · · ⟩ and ⟨M ′, O′

1, O
′
2, · · · ⟩, if there is a diffeomorphism φ : M → M ′

such that O′
i = φ∗(Oi), i ∈ N — in Earman’s words, φ∗ denotes “dragging along” by

the mapping φ (Earman, 1979, p268) — a relationalist like Leibniz must take the two
substantivalist models as giving different descriptions of the same physical reality, instead
of different physical realities. After all, space-time points are “descriptive fluff” (Earman,
1989, p170) for relationalists. In other words, one can say that these substantivalist world
models are Leibnizian equivalent, which consequently gives rise to equivalence classes of
substantivalist world models. According to Earman, an equivalence class of substanti-
valist world models corresponds to a single physical reality in the relationalist’s sense11.
However, it is not sufficient for relationalists to stop there, according to Earman. They
need to complete an additional program, later called by Rynasiewicz (1992) “the program
of Leibniz algebras”, which consists of the following steps: (1) give a direct characteri-
zation of the relationalist’s physical reality, i.e. the equivalence classes of substantivalist
world models, without referencing to smooth manifolds. Earman (1977, 1979) calls such
a direct characterization a Leibniz world model ; (2) show that the laws of physics can be
expressed directly in terms of Leibniz world models; (3) explain how Leibniz-equivalent
substantivalist world models arise as different but equivalent representations of the same
Leibniz world model; (4) show that the Leibniz world models are not subject to the hole
argument.12

The motivation for first two steps can be attributed to the substantivalist interpreta-
tion that Earman attaches to the standard manifold formalism and the Quine-Putnam
style indispensability argument for substantivalism. One notable Quine-Putnam style
indispensability argument is given by Hartry Field, who states that, since space-time
points seems indispensable to positing physical fields, relationalists have to come up a
different way of describing fields to avoid a realist’s commitment to space-time points.
We see from the following quote that Earman shares Field’s worry:

But drawing circles around groups of space-time models and labeling them
equivalence classes does not show that there is a viable alternative to sub-
stantivalism. To show that one would have to show how to do all the physics
we did before without treating the fields Oj as residing in M ; in effect, one
would have to show how to do differential geometry without the differential
manifold. (Earman, 1986, p237)

But more importantly, it is also evident that Earman expects more from relationalists
than merely coming up with an alternative formalism for the theory of space and time
that is manifold-free. Immediately after the previous quote, he states the following:

10The notation of a substantivalist world model varies in different pieces of Earman’s writings. Here
we follow (Earman, 1989, p171). He also calls certain substantivalist world models by certain names.
For example,Earman (1977) defines a Leibnizian pre-model, which consists of a so-called intermediate
Leibnizian space-time and a momentum field on the intermediate Leibnizian space-time (p100). The
precise definition of the intermediate Leibnizian space-time does not concern us here. What’s important
for the purpose of this paper is that it is formulated in the standard manifold formalism, hence a
substantivalist world model.

11See (Earman, 1977, p101), (Earman, 1979, p268), (Earman, 1986, p236-237), and (Earman, 1989,
p171).

12My presentations of the program of Leibniz algebras is a combination of what Earman writes in
(Earman, 1979) and (Earman, 1989). Step (4) is only explicit in (Earman, 1986, 1989), though a concern
about indeterminism is visible in (Earman, 1977). See (Weatherall, 2020) for details.

11



one would need to show how the old space-time models can be regarded as
representations of the new models and prove that under the representation
relation a single new model corresponds precisely to an equivalence class of
old models. (Earman, 1986, p237)

That is to say, Leibnizian world models should correspond to Leibnizian-equivalent classes
of substantivalist world models in the sense that a representation relation13 between sub-
stantivalist world models and Leibniz world models should be defined, and that Leibniz-
equivalent substantivalist world models represent one and the same Leibniz world models.
This requires the step (3) of the program. In other words, Leibniz world models are ex-
pected to get rid of the “descriptive fluff” in the substantivalist world models, via the
“many-to-one” representation relation from substantivalist world models to Leibniz world
models.

Finally, Earman claims that “the desire for the possibility of determinism . . . provides
an independent motivation for a program like the above” (Earman, 1989, p172)14. The
worry that the standard manifold formalism and the substantivalist interpretation of it
imply the impossibility of determinism is most notably spelled out in (Earman & Norton,
1987), in the form of the hole argument. To briefly summarize, the hole argument is
based on the Hole Corollary that’s proven in the same paper, which states that given
a substantivalist world model ⟨M,O1, O2, · · · ⟩ and a neighborhood U ⊆ M , there exists
arbitrarily many ⟨M,O′

1, O
′
2, · · · ⟩ which differ from ⟨M,O1, O2, · · · ⟩ only within U and is

identical to ⟨M,O1, O2, · · · ⟩ on the boundary and outside of U . The neighborhood U is
called a hole. If we place a hole U in the future of a time slice, then, for substantivalists,
all the history up to that time slice is unable to determine the future, as all substanti-
valist world models which only differ within U match the history up to the given time
slice. As Earman & Norton assume that substantivalists think distinct substantivalist
world models are distinct physical realities, they argue that substantivalists have to deny
any possibility of determinism for the theory of space and time15. The hole argument
leads Earman to believe that the standard manifold formalism for the theory of space and
time has excess structures and to suggest the Einstein algebra formalism as a suitable
modification of it, as (Weatherall, 2020, p86) points out. That is to say, Earman expects
relationalists to get rid of the excess structures in substantivalist world models, which he
believes are shown to exist by the hole argument. This is what step (4) is for.

To sum up, the program of Leibniz algebras aims to ward off the indispensability
argument and, more importantly, to get rid of excess structures in the standard manifold
formalism. This is compatible with the role of Einstein algebras in the substantivalism
versus relationalism debate explained in subsection 2.1, which is the conceptual basis
for this paper. More specifically, the reasons why Earman believes that there are excess
structures in the standard manifold formalism are that, on the one hand, relationalists
should regard Leibniz-equivalent substantivalist world models as mere different descrip-
tions of the same physical reality, and on the other hand, he believes that the standard

13Earman also calls a realization relation in several other places.
14Similar remarks can be found in (Earman, 1977) and (Earman, 1986).
15The hole argument receives great attention in the subsequent philosophical literature, including

objections by Weatherall (2018) and Halvorson & Manchak (2024). This paper does not discuss the
validity of the hole argument. The purpose of presenting the hole argument is solely to explain Earman’s
program of Leibniz algebras, for which it plays an important role (Weatherall, 2020, p81).
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manifold formalism is subject to the hole argument. As a result, Leibniz algebras are
expected to get rid of excess structures by accomplishing step (3) and (4).

3.2 Formalizing the Program of Leibniz Algebras

The program of Leibniz algebras specifies what it takes for a formalism for the theory
of space and time to be more “relationalist” than the standard manifold formalism in
Earman’s view. We can formalize his ideas in the framework of categorical criterion of
theoretical equivalence, and therefore connect them with the contemporary literature on
theoretical equivalence. The program of Leibniz algebras concerns two kinds of world
models: substantivalist world models and Leibniz world models. Substantivalist world
models are connected by smooth maps that preserve geometric fields. Similarly, Leib-
niz world models are connected by algebraic homomorphisms that preserve fields defined
algebraically. Suppose that we can describe the two kinds of world models by two cat-
egories — call them the substantivalist category and the Leibniz category respectively.
Since substantivalist world models are expected to represent Leibniz world models, in
the language of category theory, we can think of the representation relation as a functor
to be defined from the substantivalist category to the Leibniz category. Call this the
representation functor. If the representation functor, appropriately defined, can show the
ways in which Earman expects Leibniz world models to get rid of the excess structures
in substantivalist world models, then there are good reasons to believe that the Leibniz
world models, i.e. the Leibniz algebras, provide a more “relationalist” formalism for the
theory of space and time.

Returning to smooth manifolds and Einstein rings, the category SmoothMan takes
the place of the substantivalist category here. For the algebraic side, we define the
category EinRings as follows:

• objects: Einstein rings E ,F , · · · , and
• arrows: Einstein ring homomorphisms h : E → F where E and F are Einstein
ringsn, and let RE be the subring of E that is isomorphic to R and RF be the
subring of F that is isomorphic to R, then h|E is a ring isomorphism from RE to
RF .

We denote a representation functor from SmoothMan to EinRings by R. Step (3) and
(4) of the program of Leibniz algebras can be interpreted as the following two expecta-
tions of the behavior of the representation functor R.

According to step (3), an Leibniz algebra should correspond to a Leibniz-equivalent
class of substantivalist world models. Therefore, in terms of SmoothMan and Ein-
Rings, diffeomorphic smooth manifolds should be mapped by the representation functor
R to one and the same Einstein ring. Moreover, as an Leibniz algebra is expected by
Earman to directly characterize what an Leibniz-equivalent class of substantivalist world
models represent, it should characterize the mathematical structure that is shared by sub-
stantivalist world models in one Leibniz-equivalence class. Hence a structure-preserving
map defined between two Leibniz algebras should be expected to preserve less structure
than a structure-preserving map of substantivalist world models does. As a result, for
a morphism from one Leibniz algebra to another, there might not be a corresponding
morphism from the the substantivalist world model that represents the first Leibniz alge-
bra to the substantivalist world model that represents the second. Therefore, in terms of
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SmoothMan and EinRing, we can interpret that the program of Leibniz algebras ex-
pects the representation functor R to be not full. Figure 1 illustrates this interpretation.

M

E

M ′

N

F

N ′

φ

R

R(φ)

R

ψ

R

h

R(ψ)

R

Figure 1:

Let diffeomoprhic smooth manifolds M and M ′ be mapped by the representation functor
R to Einstein ring E , the diffeomoprhism φ : M → M ′ be mapped to R(φ) : E → E .
Another pair of diffeomorphic smooth manifolds N and N ′ are mapped by the repre-
sentation functor R to Einstein ring F , the diffeomorphism ψ : N → N ′ is mapped to
R(ψ) : F → F . Let h : F → E be an arrow in EinRings. Based on the interpretation,
the program of Leibniz algebras expects that there might not always be a morphism from
M to N (or, similarly, a morphism from M ′ to N ′) that is mapped to h by R. That is to
say, the fullness of the functor is not expected to hold.

As Earman believes that the hole argument is an important indicator that the sub-
stantivalist world models have excess structures, the Einstein algebra formalism — a
candidate of a more “relationalist” formalism — is expected to get rid of the excess
structures that lead to the hole argument. Step (4) of the program of Leibniz algebras
is stipulated for this purpose. Recall that, according to the hole argument, the impos-
sibility of determinism is a result of the existence of substantivalist world models that
are identical except within a neighborhood of the spacetime manifold (the hole). These
substantivalist world models have the same smooth manifold, and they can be derived
from one another with a diffeomorphism of the smooth manifold to itself which leaves
all the fields in the substantivalist world model unchanged except within the hole. Call
these diffeomorphisms the hole diffeomorphism16. Since a relationalist formalism is ex-
pected by Earman to not be subject to the hole argument, we can understand that as
expecting no counterpart of hole diffeomorphisms for Einstein algebras to exist. In terms
of SmoothMan and EinRings, we can interpret this expectation to be that the repre-
sentation functor R would fail to be faithful. To illustrate, suppose that, as in Figure 2,
a smooth manifold M is mapped to an Einstein ring F by the representation functor R.
Let φ : M → M be a hole diffeomorphism and idM be the identity arrow of M . Since
the program expects Einstein algebras to be free from the hole argument, the hole diffeo-
morphism φ would not be mapped by R to an isomorphism of F that has the potential

16Recently, Halvorson & Manchak (2024) argue that no hole isomorphism exists if it is required to be
a isometry of relativistic spacetimes. Since this paper focuses on only the smooth manifold structure, we
do not comment on the implications of Halvorson & Manchak (2024)’s result here.

14
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Figure 2:

to give rise to a hole argument on Einstein algebras. Instead, we expect φ to be mapped
to the identity arrow idF of F , which would be the same as R(idM). Therefore, the
representation functor R would be not faithful.

The formalization in this subsection shows that, according to the program of Leibniz
algebras, the representation functor R from SmoothMan to EinRings has to fail to
be full and faithful for the Einstein algebra formalism to be more “relationalist” than
the standard manifold formalism. This criterion can be applied to any other algebraic
formalism by substituting EinRings with the category of models of the algebraic formal-
ism in consideration to investigate if it is more “relationalist” than the standard manifold
formalism. This criterion is in a sense stricter than simply requiring the two categories to
be not dual to each other, as it requires the duality to be spoiled specifically due to the
failure of either full-ness or faithfulness of the representation functor. The requirement of
essential surjectivity in the categorical criterion of theoretical equivalence is therefore not
relevant to the objective of algebraic relationalism, according to the program of Leibniz
algebras. In the next section, I defend this claim independently of the program of Leibniz
algebras. For the rest of this section, we apply the new criterion to SmoothMan and
EinRings.

3.3 Re-cast the Duality

Now we are ready to answer the question this paper started with: is the Einstein algebra
formalism more “relationalist” than the standard manifold formalism? We adopt the
formal criterion that the representation functor R from SmoothMan to EinRings has
to fail to be full and faithful for a positive answer. We define the representation functor
R from SmoothMan to EinRings as follows:

• Given a smooth manifold M , R(M) = C∞(M).
• Given a smooth map φ : M → N from manifold M to manifold N , R(φ) = φ̂ :
C∞(N) → C∞(M) where φ̂(f) = f ◦ φ for all f ∈ C∞(N) is an Einstein ring
homomorphism17.

The justification of this definition is straightforward. A smooth manifold M must be
able to represent the Einstein ring C∞(M). The mapping of arrows also makes intuitive
sense. Then the following theorem is shown to be true:

Theorem 2. The representation functor R : SmoothMan → EinRings is full and
faithful.

17(Rosenstock et al., 2015, Lemma 3.3) shows that, given a smooth map φ : M → N , φ̂ : C∞(N) →
C∞(M) defined as φ̂(f) = f ◦ φ for all f ∈ C∞(N) is an R-algebra homomorphism. It is not hard to
see that φ̂ is also an Einstein ring homomorphism, as every Einstein ring is an R-algebra.
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Proof. To see that the representation functor R is faithful, let M and N be two smooth
manifolds and φ : M → N and ψ : M → N be smooth maps such that φ ̸= ψ.
Then there must be some p ∈ M such that φ(p) ̸= ψ(p). Since N is a Hausdorff
manifold, there is a smooth map f ∈ C∞(N) such that f(φ(p)) ̸= f(ψ(p)). Hence
R(φ)(f) = φ̂(f) ̸= ψ̂(f) = R(ψ)(f), which implies that R(φ) ̸= R(ψ).

To see that the representation functor F is full, letM and N be two smooth manifolds
and θ : C∞(N) → C∞(M) be an Einstein ring homomorphism. By (Nestruev, 2003,
Theorem7.7), there is an atlas that can be defined on |C∞(M)| such that |C∞(M)| is a
smooth manifold and C∞(|C∞(M)|) is isomorphic to C∞(M). Similarly, |C∞(N)| can be
endowed with a smoothness structure such that C∞(|C∞(N)|) is isomorphic to C∞(N).
Furthermore, there is a bijective homeomorphism between θM : M → |C∞(M)| defined
by

θM(p)(f) = f(p)

for all p ∈M and f ∈ C∞(M), given by (Nestruev, 2003, Theorem 7.2). By (Rosenstock
et al., 2015, Theorem 3.5). θM is a diffeomorphism. Similarly, there is a diffeomorphism
θN : N → |C∞(N)|. Define |θ| : |C∞(M)| → |C∞(N)| as follows:

|θ|(γ)(θN(k)) = θ(k)(θ−1
M (γ))

for all γ ∈ |C∞(M)| and k ∈ C∞(N). |θ| is a smooth map by the proof of (Rosenstock
et al., 2015, Lemma 3.4). Therefore, θ−1

N ◦ |θ| ◦ θM : M → N is a smooth map, i.e. an
arrow in SmoothMan. Finally, R(θ−1

N ◦ |θ| ◦ θM) = θ because

R(θ−1
N ◦ |θ| ◦ θM)(g)(p) = g(θ−1

N (|θ|(θM(p)))) = θ(g)(p)

for any g ∈ C∞(N), p ∈M .

Therefore, we conclude that the Einstein algebra formalism is not more “relationalist”
than the standard manifold formalism. Theorem 2 does not involve any additional alge-
braic structure than the Einstein ring structure assumed in Geroch’s original formulation
of Einstein algebras. Hence it resolves the only remaining objection of Chen, which is
that the conventional wisdom was supported by Rosenstock et al. (2015)’s duality theorem
that involves smooth algebras instead of the less stringent Einstein rings. We therefore
re-affirm the metaphysical status of the Einstein algebra formalism that Rosenstock et al.
establish, which is that it is as “relationalist”, and equivalently as “substantivalist”, as
the standard manifold formalism. The conventional wisdom established by Rosenstock
et al. (2015) is still true, though the technical result that supports it takes a different form.

Moreover, the representation functor R is in fact almost the same as one contravariant
functor that Rosenstock et al. use to prove the duality of SmoothMan and SmoothAlg
(p312). Their duality theorem can therefore be re-stated as a corollary of Theorem 2:

Corollary. The image of the representation functor R : SmoothMan → EinRings is
equivalent to SmoothAlg.

Proof. Since smooth algebras are Einstein rings and R-algebra homomorphisms are Ein-
stein ring homomorphisms, Theorem 2 shows that the image of the representation functor
R is a full and faithful sub-category of SmoothAlg, in the sense that the inclusion functor
from R[SmoothMan] to SmoothAlg which maps all objects and arrows to themselves
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is full and faithful. To see the equivalence, we need to show that the inclusion func-
tor from R[SmoothMan] to SmoothAlg is essentially surjective. As pointed out by
(Nestruev, 2003, Theorem 7.7), for any smooth algebra A, there exists a smooth atlas
on its dual space |A| =: M such that A is isomorphic to C∞(M) as smooth algebras.
That is to say, for any object A of SmoothAlg, there must be some object R(M) of
R[SmoothMan] where M is an object of SmoothMan, such that A is isomorphic
to R(M) in SmoothAlg. Therefore, the inclusion functor from R[SmoothMan] to
SmoothAlg is essentially surjective.

The corollary shows that the fundamental insight of Rosenstock et al. (2015)’s dual-
ity theorem is not as irrelevant to the Einstein algebra formalism and its metaphysical
implication, as Chen’s objection might have indicated. There are significant overlaps
between the categorical criterion of equivalence, which Rosenstock et al. work with,
and the stricter criterion this paper adopts to investigate the metaphysical implication
of the Einstein algebra formalism. For one contravariant functor they use to establish
categorical duality between SmoothMan and SmoothAlg is almost the same as the
representation functor R, what Rosenstock et al. show is effectively a part of the picture
that this paper presents.

4 The Irrelevance of Essential Surjectivity

We have given an answer to the question this paper started with. A crucial component
of it is the new formal criterion for an algebraic formalism to be more “relationalist”
than the standard manifold formalism. So far the only justification I have given for this
formal criterion is the formalization of Earman’s program of Leibniz algebras. In this
section, I give another justification with the example of Sikorski algebras and differential
spaces. The example shows that an algebraic formalism that spoils only the essential
surjectivity of the representation functor from SmoothMan to a category of its models
does not move us closer to relationalism. This is because a failure of essential objectivity
has nothing to do with a failure of geometric reconstruction. The irrelevance of essential
surjectivity supports the new formal criterion which requires only faithfulness and full-
ness of the representation functor.

To motivate the example, recall the categorical duality of SmoothMan and SmoothAlg.
We are interested in the following question: if an algebraic formalism breaks the duality
by only spoiling the essential surjectivity of the contravariant functor from Smooth-
Man to SoomthAlg, will that make the algebraic formalism more “relationalist” than
the standard manifold formalism? We therefore relax the smoothness condition of smooth
algebras and consider a less stringently defined algebraic structure, the Sikorski algebra,
defined as follows:

Definition 3 (C∞-closure). A geometric R-algebra A is said to be C∞-closed if for any
finite collection of its elements f1, · · · , fk ∈ A and any g ∈ C∞(Rn) for some n, there
exists an element f ∈ A such that

f(a) = g ◦ (f1(a), · · · , fk(a)), for all a ∈ |A|.

Note that the function f ∈ A here is uniquely determined, since A is geometric. (Nestruev,
2003, p33)
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Definition 4 (Sikorski algebras). We call an R-algebra A a Sikorski algebra if A is
geometric, complete, and C∞-closed.

We note that the Sikorski algebras bear great similarities to C∞-rings in the con-
temporary mathematics literature (for example, see (Joyce, 2012)). The rationale behind
naming this algebraic structure “Sikorski algebras” is that, as Gruszczak et al. (1988) and
Heller (1991) point out, Sikorski (1971) was the first who discussed this kind of algebraic
structure. To see that Sikorski algebras have weaker requirements than smooth algebras
do, we note the following facts:

Lemma 1. Every smooth algebra is a Sikorski algebra. (Nestruev, 2003, Proposition 4.4)

Lemma 2. Not every Sikorski algebra is a smooth algebra.

Proof. The collection of all real-valued continuous functions on R, C0(R), is a Sikorski
algebra but not a smooth algebra.

We define the category SikorskiAlg as consisting of the following:
• objects: Sikorski algebras A,B, · · · , and
• arrows: R-algebra homomorphisms i : A → B where A and B are Sikorski algebras.

Similarly, we define a representation functor R′ from SmoothMan to SikorskiAlg,
based on how Rosenstock et al. (2015) define the contravariant functor from SmoothMan
to SmoothAlg (p312), as follows:

• Given a smooth manifold M , R′(M) = C∞(M).
• Given a smooth map φ : M → N from manifold M to manifold N , R(φ) =
φ̂ : C∞(N) → C∞(M) where φ̂(f) = f ◦ φ for all f ∈ C∞(N) is an R-algebra
homomorphism.

The representation functor R′ also bears a great similarity to the representation functor
R defined in the previous section. Moving from SmoothAlg to SikorskiAlg only spoils
the essential surjectivity, as shown by the following theorem:

Theorem 3. The representation functor R′ from SmoothMan to SikorskiAlg is faith-
ful and full, but not essentially surjective.

Proof. By Lemma 1, a similar reasoning to the proof of Theorem 2 shows that the rep-
resentation functor R′ is faithful and full. Lemma 2 implies that the functor R′ is not
essentially surjective, for the reasons that R-algebra isomorphisms, i.e. isomorphism ar-
rows in SikorskiAlg, preserve smoothness of R-algebras and that all objects in the range
of R′ are smooth algebras.

Theorem 3 shows that Sikorski algebras satisfy the antecedent of the question we are
investigating. In the rest of this section, I show that the Sikorski algebra formalism is not
more “relationalist” than the standard manifold formalism, independent of the argument
based on the program of Leibniz algebras in section 3. To establish this conclusion, we
first note that the categorical duality of SmoothMan and SmoothAlg shows that the
standard manifold formalism and the smooth algebra formalism have the same mathe-
matical structure. Neither of them favors relationalism more than the other formalism
does, for the reason that:

Both encode precisely the same physical facts about the world, in somewhat
different languages. (Rosenstock et al., 2015, p315-316)
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We follow this line of thought and show that Sikorski algebras encode precisely the same
physical facts about the world as a generalized geometric structure from smooth manifolds
— differential spaces (see Sikorski (1971), Heller (1992, 1991), and Gruszczak et al.
(1988)) — by establish a categorical duality. We introduce the following definitions
associated with differential spaces:

Definition 5 (Differential spaces). LetM be a set and D be a collection of R-valued maps
on M . Let τD be the coarsest topology on M such that all functions in D are continuous
and that the following two hold:

1. if f : M → R is a map such that, for every p ∈ M , there is a neighborhood U of p
in the topological space (M, τD) and a map g ∈ D such that f |U = g|U , then f ∈ D.

2. for any n ∈ N and any function ω ∈ C∞(Rn), f1, · · · , fn ∈ D implies ω◦(f1, · · · , fn) ∈
D.

Then we say that D is a differential structure on M and that (M,D) is a differential
space. (Gruszczak et al., 1988, Definition 3.1-3.4)

Definition 6 (D-maps between differential spaces). Let (M,DM) and (N,DN) be dif-
ferential spaces. A map Φ : M → N is called a d-map from (M,DM) to (N,DN) if
h ◦ Φ ∈ DM , for every h ∈ DN .

Definition 7 (D-diffeomorphisms between differential spaces). Let (M,DM) and (N,DN)
be differential spaces. A bijective map Φ : M → N is called a d-diffeomorphism of
(M,DM) and (N,DN) if h ◦Φ ∈ DM and g ◦Φ−1 ∈ DN , for every h ∈ DN and g ∈ DM .
(Gruszczak et al., 1988, Definition 4.1)

According to Gruszczak et al. (1988) and Heller (1991), differential spaces are gener-
alizations of smooth manifolds. An additional condition can be imposed on differential
spaces to turn them into differential manifolds, which are equivalent to smooth mani-
folds defined in the standard way18. Generalizing from SmoothMan, we define a new
category D-Spaces as consisting of the following:

• objects: differential spaces (M,DM), (N,DN), · · · , and
• arrows: d-maps Φ :M → N where (M,DM) and (N,DN) are differential spaces.

Finally, we show that Sikorski algebras and differential spaces have the same mathematical
structure by establishing the following categorical duality:

Theorem 4. SikorskiAlg is dual to D-Spaces.

Proof. Define a contravariant functor G : SikorskiAlg → D-Spaces as follows:
• For each object A, G(A) = (|A|,A).
• For each arrow i : A → B between Sikorski algebras A and B, G(i) : |B| → |A| is
defined as G(i)(p)(x) := i(x)(p), for all p ∈ |B|, x ∈ A.

We show that the functor G is well-defined. First, it is not hard to see that G(A) is a
differential space, since A is a complete and C∞-closed R-algebra. Secondly, we show
that, for each R-algebra homomorphism i : A → B between Sikorski algebras A and
B, G(i) : |B| → |A| defined as above is a d-map. Let x ∈ A, we need show that
x ◦ G(i) : |B| → R is a continuous map. Since a composition of continuous maps is
continuous, it is sufficient to show that G(i) is a continuous map from |B| to |A|. To see

18For a technical explanation of this equivalence, see (Gruszczak et al., 1988, section 4).
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that, note that for every U ⊆ G(i)[|B|] such that U = x−1(UR) for some x ∈ A, UR an
open set in R, i.e. U is open given the subspace topology of τA on G(i)[|B|], we have

[G(i)]−1[U ] = [i(x)]−1[UR],

which is an open set in |B| given τB. This is because that [G(i)]−1[U ] = {p ∈ |B| :
G(i)(p)(x) ∈ U} = {p ∈ |B| : i(x)(p) ∈ UR} and i(x) ∈ B by definition. Therefore G(i)
is continuous. Therefore, G(i) defined as above is a d-map between |B| and |A|. The
contravariant functor G : SikorskiAlg → D-Spaces is well-defined.

Define a contravariant functor H : D-Spaces → SikorskiAlg as follows:
• For each object (M,DM) in D-Spaces, H((M,DM)) = DM .
• For each arrow Φ : M → N , i.e. a d-map between (M,DM) and (N,DN), H(Φ) :
DN → DM is defined by H(Φ)(k) = k ◦ Φ for any k ∈ DN .

To see thatH is a well-defined contravariant functor, first note that for a differential space
(M,DM), there is a one-to-one correspondence between M and |DM |, characterized by
the map ηM :M → |DM | defined as follows:

ηM(p)(f) = f(p)

for all p ∈M , f ∈ DM . Therefore, if (M,DM) is a differential space, then DM is a Siko-
rski algebra, by definition. Next, it is not hard to see that, for each arrow Φ : M → N ,
H(Φ) : DN → DM is defined by H(Φ)(k) = k ◦ Φ for any k ∈ DN is an R-algebra
homomorphism, for it preserves the vector space operations, the product, and the multi-
plicative identity. Therefore, H is a well-defined contravariant functor.

Now we show that GH : D-Spaces → D-Spaces is naturally isomorphic to 1D-Spaces.
We define a family of maps associated withGH, between objects (M,DM) andGH((M,DM)) =
(|DM |, DM) in D-Spaces, as follows:

ηM :M → |DM | s.t. ηM(p)(f) = f(p)

for all p ∈ M , f ∈ DM . That ηM is a d-diffeomorphism follows from the fact that the
two differential spaces have the same differential structure and that it is surjective by
definition. Therefore, GH is naturally isomorphic to 1D-Spaces. One the other hand, we
can see that HG : SikorskiAlg → SikorskiAlg is the same as 1SikorskiAlg by definition
of G and H. Therefore, D-Spaces is dual to SikorskiAlg.

As Sikorski algebras and differential spaces have the same mathematical structure, to
say that Sikorski algebras are more “relationalist” than the standard manifold formalism
is equivalent to saying that differential spaces are more “relationalist” than the standard
manifold formalism. Nevertheless, it doesn’t make sense to say that the differential space
formalism makes a weaker commitment to the existence of a fundamental spatio-temporal
structure than the smooth manifold formalism does. If the smooth manifold formalism is
considered to represent the fundamental spatio-temporal structure, then the differential
space formalism merely disagrees with it about what this fundamental spatio-temporal
structure precisely is. As differential spaces are generalizations of smooth manifolds, from
a substantivalist’s perspective, the differential space formalism simply stipulates a funda-
mental spatio-temporal structure that is different from the fundamental spatio-temporal
structure that the standard manifold formalism stipulates. Differential spaces cannot
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get rid of the excess structures of the standard manifold formalism that are usually as-
sociated with substantivalism. Instead, the excess structures in the standard manifold
formalism are re-defined in the formalism of differential spaces, which can be taken to
represent a substantival reality that is different from the substantival reality that the
standard manifold formalism can represent. In both case, the substantival realities and
the representation apparatus in the formalisms should be denied by relationalists. The
equivalence of Sikorski algebras and differential spaces therefore leads to the conclusion
that the Sikorski algebra formalism are not “relationalist” than the standard manifold
formalism. If anything, the Sikorski algebra formalism, and equivalently the differen-
tial space formalism, just tells a different substantivalist’s story about the fundamental
spatio-temporal structure than the standard manifold formalism does.

To sum up, the example of Sikorski algebras shows that the essential surjectivity of the
representation functor is not relevant to the question of whether an algebraic formalism
is more “relationalist” than the standard manifold formalism, for the reason that, despite
that the representation functor R′ from SmoothMan to SikorskiAlg is not essentially
surjective, Sikorski algebras cannot be reasonably viewed as more “relationalist” because
of the equivalence of them to differential spaces. This example justifies the proposed
formal criterion which states that an algebraic formalism for the theory of space and
time is more “relationalist” than the standard manifold formalism if the appropriately
defined representation functor from SmoothMan to the category of algebraic models
fails to be faithful and full, regardless of whether it is essentially surjective or not.

5 Conclusion

To conclude, this paper started with presenting Rosenstock et al. (2015)’s duality theo-
rem of smooth manifolds and smooth algebras and the conventional wisdom which states
that the Einstein algebra formalism is not more “relationalist” than the standard man-
ifold formalism. Then I summarized and addressed Chen (2024)’s recent objections to
the conventional wisdom. Among the objections, I agreed with Chen that Rosenstock
et al. work with smooth algebras while the conventional wisdom concerns Einstein alge-
bras instead. Nevertheless, after a re-visit of Earman’s classic works on the program of
Leibniz algebras, I proposed a new formal criterion to determine whether an algebraic
formalism is more “relationalist” than the standard manifold formalism or not. Based on
the new formal criterion, I showed that the conventional wisdom is still true, though sup-
ported by a different technical result. Finally, I provided another justification of the new
formal criterion, which also provided additional support on the conclusion that the Ein-
stein algebra formalism is not more “relationalist” than the standard manifold formalism.
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