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Abstract

Determinism is the thesis that the past determines the future, but

e�orts to de�ne it precisely have exposed deep methodological disagree-

ments. Standard possible-worlds formulations of determinism presup-

pose an "agreement" relation between worlds, but this relation can

be understood in multiple ways � none of which is particularly clear.

We critically examine the proliferation of de�nitions of determinism

in the recent literature, arguing that these de�nitions fail to deliver

clear verdicts about actual scienti�c theories. We advocate a return

to a formal approach, in the logical tradition of Carnap, that treats

determinism as a property of scienti�c theories, rather than an elusive

metaphysical doctrine.

We highlight two key distinctions: (1) the di�erence between qual-

itative and "full" determinism, as emphasized in recent discussions of

physics and metaphysics, and (2) the distinction between weak and

strong formal conditions on the uniqueness of world extensions. We

argue that de�ning determinism in terms of metaphysical notions such

as haecceities is unhelpful, whereas rigorous formal criteria � such as

Belot's D1 and D3 � o�er a tractable and scienti�cally relevant ac-

count. By clarifying what it means for a theory to be deterministic,

we set the stage for a fruitful interaction between physics and meta-

physics.

1 Determinism: Capturing the intuition

The thesis of determinism seems easy enough to state:

Determinism: The past determines the future.
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Unfortunately, stated this way, the thesis is uninformative, because the term
�determines� on the right is just a variant of the term we are trying to de�ne.
Can we do better than this?

In the world of post-1970s analytic metaphysics, it seems that all the-
ses may be cashed out in terms of possible worlds. That lingo apparently
provides a sharper formulation of the thesis:

Determinism: For any two possible worlds W,W ′, if W and W ′

agree on the past, then W and W ′ agree on the future.

This possible-worlds de�nition gives a quasi-mathematical gloss to the word
�determines�: there is a well-de�ned function from past segments to possible
worlds. It seems like we have made good progress already in cashing out the
notion of determinism. We have replaced the opaque word �determines� with
what appears to be a statement about existing things and a clear relation
(�agree�) between them.

But there is a problem. The relation �agree� has turned out to be a point
of great contention among philosophers. To illustrate with a simple example:

(Q) LetW be a world with one particle on the left and an identical
particle on the right. Let W ′ be the world in which the two
particles are swapped. Do W and W ′ agree?

Indecision about Q can infect our judgment about whether determinism holds
in concrete examples. For example, we can imagine that W and W ′ are
exactly identical at all times leading up to now. If W and W ′ are judged to
agree at the present time, then determinism holds; if W and W ′ are judged
not to agree at the present time, then determinism fails. It seems that the
fairly clear notion of determinism has become clouded by esoteric questions
about what it means for possible worlds to agree.

One's initial reaction might be that these kinds of examples only show
that the notion of determinism was less clear than we imagined it was. But
what are we to say about the fact that scientists seem con�dent in their
judgments about whether physical theories are deterministic? For example,
there is a genuine di�erence between deterministic and stochastic equations
of motion. Or, perhaps more controversially, but still to the point: it seems
quite clear that there is a di�erence vis-a-vis determinism between quantum
mechanics and the theories that went before it. Scientists appear to be able
make these distinctions reliably without having a theory of when possible
worlds �agree�. What is behind those judgments?
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Our basic claim in this paper is that whether or not a physical theory is
deterministic can be seen by analyzing the mathematical structure of the the-
ory. Talk of possible worlds is helpful only insofar as it sometimes functions
as a substitute for talk of models of a theory; for most purposes, it introduces
more problems than it solves. And we do not need a di�erent metaphysi-
cal framework to replace Lewisian possible worlds, either. Mathematics is
perfectly adequate for this task.

Our arguments runs against the grain of the past three decades of work on
determinism in physics (and metaphysics), which has neared consensus that
there can be no adequate �formal� de�nition of determinism. A theory, it is
said, can only be deterministic or indeterministic under an �interpretation�.
This is mistaken, at least as usually intended, both because it relies on con-
fused ideas about �interpretation� and because a perfectly adequate formal
criterion of determinism is already available�and has been for thirty years.
We will argue that challenges for this criterion that have previously been
discussed do not show that �interpretation� is needed; rather, they highlight
the importance of precisely formulating a theory, as small di�erences in what
we take a theory to be can lead to di�erent judgments about whether that
theory is deterministic.

2 The fate of formal de�nitions

The young Bertrand Russell frequently contrasted the clarity of nineteenth
century mathematics with the opacity of Hegelian metaphysics. He pointed
out that mathematicians had provided sharp de�nitions of the traditional
number systems as well as general concepts such as in�nite sets and contin-
uous functions.

What is in�nity? If any philosopher had been asked for a def-
inition of in�nity, he might have produced some unintelligible
rigmarole, but he would certainly not have been able to give a
de�nition that had any meaning at all. Twenty years ago, roughly
speaking, Dedekind and Cantor asked this question, and, what is
more remarkable, they answered it. They found, that is to say,
a perfectly precise de�nition of an in�nite number or an in�nite
collection of things. (Russell, 1901, p 92)

Russell then proposed that philosophers should model their method on that
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of the nineteenth century mathematicians. Obviously, Russell's vision was
a shaping force in analytic philosophy, beginning with Carnap's attempts
to �explicate� the concepts of the natural sciences (see Leitgeb and Carus,
2020).

In Logical Syntax of Language, Carnap suggests that some deep and
murky metaphysical theses correspond to precise statements about the struc-
ture of scienti�c theories. In particular, with regard to determinism, he says:

The opposition between the determinism of classical physics and
the probability determination of quantum physics concerns a syn-
tactical di�erence in the system of natural laws, that is, of the
P-rules of the physical language. (Carnap, 1937, p 307)

More concretely, Carnap suggests that the metaphysical doctrine:

Every process is univocally determined by its causes

corresponds to a formal property of a scienti�c theory:

For every particular physical sentence φ, there is for any time
coordinate t, which has a smaller value than the time coordinate
which occurs in φ, a class Γ of particular sentences with t as time
coordinate, such that φ is a P-consequence of Γ.

The formal property described here may seem more opaque than the original
metaphysical doctrine. Nonetheless, unlike the original metaphysical doc-
trine, whether a theory is deterministic in the latter sense is something that
could be checked by a mathematician, so long as the relevant theory has been
speci�ed in a mathematically clear fashion.

Even after Carnap's methods fell under attack by Quine, some notable
philosophers continued to think of determinism as a formal property of sci-
enti�c theories. J.J.C. Smart claims that:

A perfectly precise meaning can be given to saying that certain
theories are deterministic or indeterministic (for example that
Newtonian mechanics is deterministic, quantum mechanics inde-
terministic), but our talk about actual events in the world as
being determined or otherwise may be little more than a re�ec-
tion of our faith in prevailing types of physical theory. (Smart,
1961, p 294)
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But change was in the wind, and by the 1970s, one begins to �nd a di�erent
kind of de�nition of determinism. The most in�uential of these �metaphysi-
cal� de�nitions of determinism is from David Lewis:1

A system of laws of nature is Deterministic i� no two divergent
worlds both conform perfectly to the laws of that system. Sec-
ond, a world is Deterministic i� its laws comprise a Deterministic
system. Third, Determinism is the thesis that our world is De-
terministic. (Lewis, 1983, p 360)

Lewis' de�nition was put front and center in philosophy of physics by Earman
(1986), and it has ever-since served as the backdrop for the �hole argument�
in General Relativity (see Butter�eld, 1989; Pooley, 2021). More generally,
Lewis' diverging-worlds conception of determinism informs a wide range of
discussions in analytic philosophy.

What was originally an inclination to do philosophy in a di�erent way
(than the logical positivists) soon developed into theoretical arguments against
formal approaches. For example, Belot (1995a) argues that determinism can-
not possibly be de�ned in anything like the way that Carnap and Smart
proposed, because it is not a formal property of (mathematical) theories:

The �rst point that I would like to make is that determinism
cannot be a formal property of physical theories. (Belot, 1995a,
p 88, emphasis in original)

Belot's position here is part of a trend among analytic metaphysicians and
metaphysically-oriented philosophers of science away from formal de�nitions.
For example, regarding formal de�nitions of equivalence of theories, Sider
claims that, �the purely formal approach is a nonstarter� (2020, p 180), and,
�purely formal accounts fail because they entirely neglect meaning� (2020, p
181). A similar complaint against formal de�nitions of theoretical equivalence
is voiced by Kevin Co�ey:

The challenges posed by the two puzzles are not unique to for-
mal approaches, but I think we should be particularly pessimistic
about the prospects of formal approaches meeting those chal-
lenges. (Co�ey, 2014, p 834)

1Lewis credits Montague (1962) with a similar de�nition, but notes that Montague does
not focus on metaphysical issues. We won't discuss Montague's paper in detail, but we
suggest that his argument against a �syntactic� de�nition of determinism is unconvincing,
and is based on a false dilemma between syntactic and semantic de�nitions.
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And Trevor Teitel argues that formal de�nitions are of little interest for
philosophical investigations:

I will investigate various views one might hold about the non-
mathematical signi�cance of these formal criteria, and argue that
none is tenable. My tentative conclusion is that formal criteria
are of limited non-mathematical interest. (Teitel, 2021, p 4120)

What justi�es this widespread rejection of formal methods? Sider, Co�ey,
and Teitel make di�erent arguments from Belot, and from one another. But
they also put great weight on the importance of interpretation or, as Sider
says, meaning. We will focus on Belot's argument against formal de�nitions
of determinism. When we see why that argument fails, it will be clear why
we would reject other arguments for the same kind of view. And then,
with formal methods rehabilitated, we will turn to a formal analysis of other
arguments in the literature on determinism.

3 Interpretation is a formal matter

Belot's argument for the claim that determinism cannot be a formal property
of theories involves an example. He presents a set of equations � Maxwell's
equations, describing classical electromagnetism, written in a particular way
� that he claims are standardly understood to be part of a deterministic the-
ory, but which may yet also be part of an indeterministic one. The di�erence,
he says, comes down to interpretation.

This completes the argument: determinism cannot be a formal
property of theories, because the same theory may be determinis-
tic or indeterministic, depending on how it is interpreted.(Belot,
1995a, p. 88)

The argument as stated has a suppressed premise: that interpretation is not
a formal matter. But we deny this premise, twice over. First, the claim
that interpretation is not a formal matter takes interpretation to involve a
re-negotiation of the relationship between language and reality. Second, and
relatedly, the claim that interpretation is not a formal matter fails to see that
interpretation of a theory very often calls for a formal precisi�cation of that
theory.
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We take the second claim �rst, because Belot's own argument illustrates
the point. Belot's example concerns two theories. One of these theories
concerns the properties of particles called �blips�, which are represented by
two scalar �elds; the other concerns the properties of electromagnetic �elds,
whose behavior can be described, in a somewhat more complicated way, by
two scalar �elds that happen to satisfy the �same� (syntactic) equations.
Belot argues the �rst of these theories is indeterministic, whereas the second
is deterministic. This is so even though they involve the same equations.

This argument is surprising on its face, since no one, we claim, would
argue that one can infer whether a theory is deterministic by looking at just
fragments of the theory�nor would we say that theories are individuated
by equations that appear among their axioms. Instead, we must look at
the theories as a whole. Belot does not fully articulate these theories in a
formal way. But he describes them with su�cient clarity that one can see
why they are mathematically distinct�and it is precisely those mathematical
di�erences that support his judgments about whether they are deterministic.

Of course, Belot would dispute that these di�erences between these the-
ories are merely formal (or mathematical), because he maintains that inter-
pretation plays some role. What does he mean by �interpretation�? He poses
and answers the question directly.

What is an interpretation of a theory? An interpretation of a
theory is a story that you tell about the theory. . . . An interpre-
tation is a correspondence between bits of models of the theory
and bits of physical situations: between initial value constraints,
variables and di�erential equations on the one hand, and instan-
taneous states, physical entities, properties, relations, etc., and
laws of nature on the other. (Belot, 1995a, p 92)

This idea is widespread in late twentieth century analytic philosophy. But
it should give us pause, because it involves an odd mix of two very di�erent
things. The �rst is the formal theory of interpretation, developed by Tarski et
al. six decades before, which explicates an interpretation of a formal language
as an assignment of set-theoretic extensions to meaningless symbols. Belot's
talk of the �models� of a theory invokes this tradition.

But Belot also motions towards a much woolier, and apparently older,
sense of �interpretation� when he speaks of a correspondence with the world.
In doing so, Belot has re-doubled the notion of interpretation. This brings us
back to our �rst reason to reject Belot's suppressed premise. In its Tarskian
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sense, an interpretation of a theory is a model of that theory. But now
Belot speaks of interpretation as, �a correspondence between bits of models
of a theory and bits of physical situations�. In this case, the interpretations
(models) of a theory are being interpreted. But what does that mean? How
would we produce or exhibit a �correspondence between bits of models of the
theory and bits of physical situations�?

The answer to this question would require a theory of word/world rela-
tions that would take us far beyond the scope of this paper. For our purposes,
it su�ces to observe that Belot does not give us a solution to this problem
either. Indeed, when it comes time for him to describe two theories that dif-
fer (only?) in interpretation, what we �nd is not a �correspondence between
bits of models of the theory and bits of physical situations�, but rather some
words, further elaborating some formal aspects of two theories he wishes us
to understand. The exercise is all carried out on paper. What he does is
layer �interpretation� on �interpretation�, by sketching relationships between
symbols of one sort and symbols of another. And on re�ection, given that he
has written a paper, it is hard to see what his sense of interpretation could
amount to aside from creating yet other models, and attaching bits of the old
models to bits of the new models. So in fact, though he motions at something
di�erent, what he exhibits as interpretation does not give us some new way
of crossing the word-world barrier; it merely connects things that lie on the
word side, the formal side, to other things on that side.

One might well object here: how does any of our linguistic or symbolic
practice have meaning, if all of our �interpretation� consists of layering models
on models and words upon words? Surely, one might say, we do sometimes
interpret in the woolier, and perhaps deeper, sense�and at least some of
our words have meaning. Of course we accept this. But we suggest this
line of thought just leads to a dual perspective on our position, entirely
consistent with what we have said thus far. From this perspective, all of the
formal, mathematical, linguistic, and symbolic structures that we employ, in
ordinary life, in philosophy, and in science, have meaning, at least to some
extent, because of the way they are embedded in our broader cultural and
cognitive processes.

Dewar (2023) puts the point nicely.

We don't begin our analysis of scienti�c theories by taking some
mysterious equations carved on stone tablets and puzzling out
what they might mean: theories are born as bearing all kinds of
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semantic or interpretational relationships to our broader repre-
sentational practice. ... [T]he problem is not how to comprehend
an alien practice, but how to fully understand a practice which
we already � at least to some extent � inhabit. (18)

Again, we will not attempt to give a story of how meaning works. Our point
is that there is no line to draw between �merely� or �purely� formal meth-
ods or structures, between truly �meaningless symbols� or marks on a page,
and any other symbols we might try to employ to make our ideas clear or
communicate them to others. The idea from the formal theory of interpreta-
tion that we are giving meaningless symbols �meaning� by mapping them to
set-theoretic structures is an idealization�as should be obvious, since both

sides of the interpretation map consist of rich but thoroughly formal theories.
Likewise, interpretation in the wild consists of using meaningful symbols to
guide reasoning about other meaningful symbols. It is all just more of the
same.

This point is illustrated by Belot's own argument. Why does he think that
this talk about elements of reality has any bearing on the question of whether
these interpretations are deterministic? The crucial step occurs when, in
describing the theories, he explains when putatively distinct models actually
correspond to the same physical situations (described in di�erent terms).
This amounts to a disambiguation between two possible theories, given by
specifying when models are isomorphic. According to one disambiguation (in
fact, the standard one), electromagnetism has arrows between models with
di�erent vector potentials, and this theory is deterministic. According to
another disambiguation, electromagnetism � or rather, the blip theory � does
not have arrows between these models, and this theory is indeterministic.
But everything here is formal: the interpretations of the theory, as well as the
de�nition of determinism. Belot has not escaped from the circle of formalism
and into a realm of inarticulable concreta; he has merely motioned toward
the power of formal tools to capture conceptual distinctions. And we thank
him for this: he shows clearly that what appears to be a single theory is in
fact two, depending on how one formalizes it. We can call this explication
of formal structure �interpretation� if we want � as Tarski did � but in that
case, interpretation is a formal matter.

Our view of interpretation may be more modest than Belot's, but it also
shows why interpretation might involve formal work. The salient case here is
the formal work of specifying the morphisms between the models � because
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di�erent accounts of the morphisms give di�erent theories, one of which might
be deterministic, while the other is indeterministic. We will presently see
a more subtle example of where careful interpretation of a di�erent kind,
though still formal, can disambiguate between theories whose di�erences are
di�cult to detect through more conversational descriptions.

4 From explication to metaphysical speculation

With that defense � and explanation � of formal methods in mind, we now
return to analyses of determinism downstream of Lewis. There are two direc-
tions in which Lewis' (1983) de�nition of determinism has been developed.
One is the quasi-mathematical approach introduced by Earman but criticized
by Belot. We return to that below. First, we will consider the other direc-
tion of development. On this branch, Lewis' de�nition has been suited out
with various metaphysical distinctions � and especially an elusive distinc-
tion between � `qualitative� and �full� agreement of possible worlds. These
metaphysical adumbrations on Lewis' de�nition have given rise to a signi�-
cant literature which might seem, at �rst, to evince a rich interaction between
physics and metaphysics. But as we will presently argue � bringing formal
methods to bear � these appearances are misleading.

Consider Hawthorne's (2006) proposed distinction between two senses in
which the world might be deterministic.2

Qualitative Determinism: For all times t, there is no possible
world which matches this world in its qualitative description up
to t, and which has the same laws of nature as this world, but
which doesn't match this world in its total qualitative description.
(239)

De Re Determinism: For all times t, there is no possible world
which matches this world in its de re description up to t, and
which has the same laws of nature as this world, but which doesn't
match this world in its total de re description. (239)

Hawthorne's distinction seems to be nearly ubiquitous in the literature.
For example, Teitel (2019) distinguishes laws that are qualitatively determin-
istic from laws that are fully deterministic. Similarly, Pooley (2021) claims

2A similar distinction can be found in (Melia, 1999), though not quite as sharply put.
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that what he calls �substantivalist� General Relativity is deterministic to
a lower degree �Det2�, but not in the most eminent sense �Det1�.3 Dewar
(2016; 2024) proposes a more subtle distinction between de dicto and de re
determinism, which nonetheless aligns closely with these other distinctions.

grade 1 grade 2

Hawthorne qualitative de re
Teitel qualitative full
Pooley Det2 Det1
Dewar de dicto de re

Each of these authors identi�es two grades of determinism � a lower one
with a qualitative �avor, and a higher one with what might be called a
�haecceitistic� �avor. The going assumption seems to be that the lower grade
of determinism is good enough for the everyday business of science; but for
the purposes of true metaphysical understanding, the higher grade is needed.

Clearly, the terminology here has become variegated. For simplicity, we
will use Teitel's �full determinism� to gather together the di�erent senses of
higher grade determinism.4 We will eventually argue that full determinism
simply does not apply to most scienti�c theories, since they do not have
names for all objects. We will also show that when full determinism does
apply, it equivalent to our preferred (formal) de�nition of determinism. Ap-
pearances to the contrary arise due to confusion about (formal) interpretation
and imprecision in the individuation of theories.

For possible worlds W,W ′, let us write W ∼q W ′ if W and W ′ match
in qualitative description, in Hawthorne's sense (i.e. are �qualitatively iden-
tical� in Pooley's sense). Let's write W ∼dr W

′ if W and W ′ match in de re
description, in Hawthorne's sense (i.e. are �intrinsically identical� in Pooley's
sense). While we agree that it is possible to distinguish between grades of
determinism, we will show that such distinctions cannot be based on some
distinction between qualitative and de re equivalence of worlds. In the re-
mainder of this section, we will try to give the distinction between ∼q and

3We see no value to the quali�er �substantivalist� here, since what Pooley has in mind
is apparently just textbook General Relativity. We will return to this point below; for
now, we will drop the quali�er.

4The term de re deterministic has been given a precise meaning in (Manchak, Barrett,
et al., 2025) that is essentially equivalent to Belot's D3, which we discuss below. As will
become clear, understood this way de re determinism is not really about haecceitism at
all.
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∼dr a run for its money � concluding that it only gives intelligible answers
for theories with names for all objects. In Section 5, we propose a distinction
between grades of determinism that does not rely on a distinction between
qualitative and de re equivalence of worlds.

4.1 Descriptions: Qualitative versus De Re

Hawthorne and Teitel explain the distinction between ∼q and ∼dr in terms
of a distinction between types of propositions. Roughly speaking, M ∼q M

′

means that M ⊨ φ i� M ′ ⊨ φ, for all qualitative propositions φ. And
M ∼dr M

′ means that M ⊨ φ i� M ′ ⊨ φ, for all de re propositions φ. Can we
make rigorous sense of a distinction between these two types of propositions?

Hawthorne explains the distinction between two kinds of descriptions as
follows:

The �rst � the qualitative description � says everything that
can be said about the intrinsic character of that history with
one exception: it cannot name individuals or otherwise encode
haecceitistic information about which particular individuals are
caught up in that segment of world history. The second � the de
re description � includes the qualitative description and, in ad-
dition, all haecceitistic, singular information. (Hawthorne, 2006,
p 239)

Granted, such a distinction works �ne in everyday life: in some contexts
where we have a name for an individual, we can give a speci�c description of
what properties that individual has, or we can give a general description of
something that has those properties. This is a distinction between levels of
generality.

And yet, for well known reasons, the distinction is not absolute. For in-
stance, sometimes qualitative descriptions can contain singular information.
As Russell himself taught us, the sentence

(D) The present king of France is bald.

does not contain the name of an individual, but is, in some sense, about a
particular individual. (Or should we say that it could be about a particular
individual?) Of course, D also implies less speci�c propositions, such as
�There is a bald thing.� Conversely, even names may not include all singular
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information, at least in ordinary language:5 �James Weatherall� may refer
to a philosopher of physics, or to his father, or his son, or to a former All-
American football player, or to a retired British Vice-Admiral. In each of
those cases, further descriptive information is needed to disambiguate the
reference of the name.

Perhaps more importantly, whether some description contains singular
information is apparently not a fact about the description itself, but rather
about the thing or things described. For example, �Some nobleman is bald�
could be about no individuals, or about one, or about many. And in any of
these cases, it implies the less speci�c proposition �Somebody is bald�. On
these grounds, we are skeptical about the idea that there is some signi�cant
distinction between descriptions that encode information about individuals,
and descriptions that do not.

But let's try harder. Recall that a description is supposed to be quali-
tative just in case it does not name any particular individual. We will now
consider several proposals for how to make this idea precise. We assume that
propositions are expressed, up to logical equivalence, by sentences. Thus,
we assume that if sentences are logically equivalent, then either they both
name an individual, or neither of them names an individual. If that were
not the case, then �x names an individual� would not be a property of the
underlying proposition, but only of some speci�c syntactic representation of
that proposition, and that would not help in de�ning a notion of qualitative
sameness of worlds.

Proposal 1. A sentence φ names an individual just in case φ contains a
name.

We have already seen arguments against proposals of this sort, but stated
in these terms it fails for even simpler reasons, since it depends on a super�cial
features of a sentence that are not invariant under logical equivalence. Indeed,
φ is logically equivalent to φ ∧ (c = c), so by this proposal, every sentence
names an individual.

Proposal 2. A sentence φ names an individual just in case there is a name
c such that for any sentence φ′, if φ′ is logically equivalent to φ, then φ′

contains c.

5In �rst-order logic, we regiment name usage to require names to refer uniquely. But
that is a choice in how we set up our semantics, and it does not apply in ordinary language.
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This proposal would make it essentially impossible for sentences to name
individuals. Indeed, one could de�ne a predicate θ(x) ↔ (x = c), and then
replace the de re sentence p(c) with the de�nitionally equivalent ∃!x(θ(x) ∧
p(x)).

Proposal 3. Given a background theory T , a predicate θ(x) names some
individual relative to T just in case T ⊢ ∃!xθ(x).

This condition is not strong enough. Even when T ⊢ ∃!xθ(x), there can
be a model M of T such that M ⊨ θ(a), and another model M ′ of T such
that M ′ ⊨ ¬θ(a). So, T ⊢ ∃!xθ(x) does not capture the idea that θ(x) names
an individual.

We have tried, without any success, to give a formal (i.e. mathematical)
account of the distinction between qualitative and de re propositions. Per-
haps our failure is unsurprising, since the distinction between qualitative and
de re descriptions was intended to be a distinction in how those descriptions
relate to the world, i.e., it is meant to be a distinction in what those de-
scriptions are about, whereas we have been talking only about mathematical
objects (e.g. sentences of formal languages, models).

Here is another strategy. Perhaps one could simply assume that there is
a relation N(φ, x) of �naming� that can hold for propositions and concrete
objects.

Proposal 4. A proposition φ is qualitative just in case ¬∃xN(φ, x).

Such a proposal has all the advantages of theft over honest toil. But to
be more serious, we are still hung up on the practical concern of whether the
distinction would actually help us decide whether speci�c scienti�c theories
are deterministic, and saying that there is such a relation N does not tell
us which sentences are qualitative and which are de re. Nor would this
proposal provide any concrete guidance on the question of whether models
are de re or qualitatively equivalent. Metaphysicians would be within their
rights to say �there is such a relation N �, but until they tell us how to
detect that ∃xN(φ, x) for a proposition φ, their proposal is of no interest for
understanding the metaphysical implications of science.

Perhaps, you might think, we are straying too far from common sense.
Surely the following claim, which one might �nd in a science textbook, names
a concrete physical object:
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(E) The perihelion of Mercury advances by approximately 43 arc-
seconds per century more than what is predicted by Newtonian
mechanics.

But for reasons related to our arguments in section 3, we think this rests on a
linguistic confusion. Yes, the sentence involves a name in the colloquial sense.
But the sentence most certainly does not involve �all singular, haecceitistic�
information about the planet closest to the sun. It manages to convey the
intended meaning only because of its integration with linguistic and scienti�c
practice, our history and culture, established conventions, and so on. Put
another way, the term �Mercury� does not do anything, it is people who
do things. Names and sentences and propositions do not name things, it is
people who name them. We may wish to include an abstract intermediary,
such as a proposition, that a person uses to refer to something�and we might
single out certain non-logical vocabulary as especially well-suited for playing
a referential role in our languages. But without the person in the middle,
the proposition does not stand in an intrinsic relation to any concrete thing.

We �nd that we have entered a wild and unfamiliar metaphysical territory,
far outside of our comfort zone. We have no carefully worked out view of
the metaphysics of propositions, and we do not intend to take a stance on
these issues. More power to them who believe that they have a theory of
propositions that will shed further light on the elusive distinction between
qualitative and full equivalence of possible worlds.

What we do intend to take a stance on is that some de�nitions are more
useful than others. For example, what does it mean to say that two sentences
are synonymous? As Quine pointed out, it is perfectly correct, and perfectly
useless, to say that two sentences are synonymous if they express the same
proposition. The problem is that nobody has ever �gured out that two
sentences are synonymous by comparing each of them with a proposition.
In the same way, nobody will ever determine if a proposition φ is de re
by checking ∃xN(φ, x); and nobody will ever �gure out that a scienti�c
theory is deterministic by checking possible worlds for qualitative and de re
equivalence.

4.2 Equivalence relations on models

The attempt to distinguish qualitative from de re descriptions via a distinc-
tion in kinds of sentences did not go so well. Let's approach the problems
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from a di�erent direction. Hawthorne gives us a motivating example to help
distinguish the two senses of determinism.

Consider a symmetrical world where there is a pair of qualita-
tively identical ships, one in each symmetrical half. Suppose the
laws dictated that exactly one of the ships would sink, but left it
undetermined which. Qualitative determinism might still hold of
such a world, since the qualitative description of a world in which
one ship sank need not depart in any way from the qualitative
description of a world in which the other did. (Hawthorne, 2006,
p 243)

This is meant to be a case where there are two models M and M ′ that are
qualitatively equivalent (M ∼q M

′) but not de re equivalent (M ̸∼dr M
′).

Here is an attempt to capture the example more precisely. Let Σ be a
signature with a single predicate symbol p(x) for �x sinks�. Let T be the
Σ-theory that says that there are exactly two things, and that exactly one
of these things has property p. Then a model of this theory consists of a
set with two elements, one of which has property p. Here we can write
a model as a pair ⟨{a, b}, a⟩, where the �rst element is the domain of the
model, and the second element is the singleton extension of p. Surely then
we know the di�erence between qualitative and de re equivalence of models
of T . For example, it seems obvious that M = ⟨{a, b}, a⟩ and M ′ = ⟨{a, b}, b⟩
are qualitatively equivalent (since something is p), but not de re equivalent
(since di�erent things are p in the two cases).

But why not think that the models M and M ′ are de re equivalent?
Consider a possible world with a pair of objects, one of which is p. We can
name the thing that is p in various ways: we could name it a, or we could
name it b. So why not take ⟨{a, b}, a⟩ and ⟨{b, a}, b⟩ to be two di�erent
names for the exact same world? Nor will it help here to say: �but a and b
are not names of things, they are the things themselves�. That is just a bit
of nonsense, for reasons already discussed.

The thought that M and M ′ are not de re equivalent might be based on
the following:

Proposal 5. We say that M ∼q M ′ just in case there is an isomorphism
f : M → M ′. We say that M ∼dr M

′ just in case M = M ′ in the sense of
ZF set theory.
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We ourselves are inclined to think that set-theoretic identity of models
is of no signi�cance, here; we think that isomorphism of models is the only
signi�cant standard of sameness.6 But we do not need to convince you of that
stronger position. It is enough to point out that while isomorphism of models
certainly captures a sense in which those models �agree on all qualitative
propositions�, this is merely a consequence of the fact that isomorphic models
agree on all propositions, qualitative or not. The relevant fact is:

Let φ(x) be a Σ-formula. If f : M → N is a Σ-isomorphism, then
for all a ∈ |M |, M ⊨ φ(a) i� N ⊨ φ(f(a)),

which has the immediate consequence that

Let φ be a Σ-sentence. If f : M → N is a Σ-isomorphism, then
M ⊨ φ i� N ⊨ φ.

In other words, isomorphic Σ-structures agree on all Σ-sentences. If someone
wishes to respond that the Σ-sentences are all qualitative propositions, then
they need to give an account of what the de re propositions are supposed to
be. How should this go? Proposal 5 makes it seem that any set-theoretic
statement aboutM is a de re proposition. But that seems wildly implausible,
because these set-theoretic statements include things like:

There is an a ∈ |M |, and a chain of length 10123 of inclusions:
∅ ∈ · · · ∈ a.

Something seems very wrong with the idea of distinguishing models by their
deep set-theoretic structure. The internal structure of elements of a model
is irrelevant to the way that model is used to represent the world. So, we
conclude, de re equivalence M ∼dr M

′ cannot be set-theoretic identity M =
M ′.

Perhaps what we need, then, is to distinguish two languages: a qualitative
sublanguage Σq and a full language Σdr that has su�ciently many constant
symbols � that is, names. For example, for describing the twin ships, we can
take Σq to consist of the predicate symbol p, while Σdr also contains a name

6Reasons for thinking this in a related context are given by Weatherall, 2018 and
Bradley and Weatherall, 2022; other reasons, related to the arguments in section 3, are
discussed below. Ultimately, the issue is that insisting on set-theoretic identity of models
involves layering interpretation on interpretation in a way that fundamentally confuses
what the theory expresses.
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c for one of the two ships. (In this case, we need only one name c, since the
other ship is then named by λx(x ̸= c) � that is, the set of things not named
c.) For the general case, we will assume that Σdr contains as many names
as there are real numbers, and we will implicitly restrict to consideration of
models of cardinality no greater than the real numbers.

Proposal 6. Let T be a Σdr-theory. For models M,M ′ of T , we write
M ∼dr M

′ just in case there is a Σdr-isomorphism f : M → M ′. We write
M ∼q M

′ just in case there is a Σq-isomorphism g : M → M ′.

This proposal gets the right answer for the example of a pair of identical
objects, where exactly one of the two has property p(x), e.g. x is sinking
at t = 1. The following two models of T are not Σdr-isomorphic, but their
reductions to Σq are isomorphic.

M M ′

p a b
c a a

We take it then that Proposal 6 provides a good de�nition of de re equivalence
for models of theories with su�ciently many names. In this case, we can use
de re equivalence of models to de�ne full determinism:7

Full Determinism (FD): Let T be Σdr-theory. Then T is deter-
ministic just in case for any modelsM,M ′ of T , and for any initial
segments U of M and U ′ of M ′, if U ∼dr U

′ then M ∼dr M
′.

This de�nition gives the right answers for the simple kinds of examples
we have considered. For example, for the theory T that says that one of the
two ships sinks at t = 1, the model M with M ⊨ p(c) is de re inequivalent
to the model M ′ with M ⊨ ¬p(c), even though their initial segments (which
do not include the property p) are de re equivalent.

The question then is whether FD can be generalized to render judgments
for real scienti�c theories, most of which do not provide names for elements
in their models. In the remainder of this section, we will argue that FD does
not generalize. But �rst we will clarify the sense in which a typical physical
theory, such as General Relativity, lacks names for the objects it quanti�es
over. The key fact is the following:

7This de�nition of Full Determinism is just Belot's D1 for a theory in a signature
Σdr with su�ciently many names. In other words, it is Qualitative Determinism for the
name-enriched theory.
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Fact. Let M be a model of T . If every element of |M | is the referent of some
name, then the identity 1M : M → M is the only automorphism of M .

This fact is a trivial consequence of the de�nition of a homomorphism of
Σ-structures (see Hodges, 1993). That de�nition requires that f : M → M
is a homomorphism only if f(cM) = cM , for each constant symbol c ∈ Σ.
Hence, if for each a ∈ |M | there is some c ∈ Σ such that cM = a, then
f(a) = f(cM) = cM = a. Since this is true for all a ∈ |M |, f = 1M .

Imagine now that GR has been formulated syntactically so that a rela-
tivistic spacetime M is a model of GR. Then there are models M that have
non-trivial automorphisms; e.g., Minkowski spacetime has non-trivial auto-
morphisms. It follows then from Fact that GR does not have names for all
the elements of its models. Therefore, Proposal 6 does not de�ne relations
∼dr and ∼q on relativistic spacetimes, and FD does not apply to GR.8

To generalize FD to theories without names for all objects, we would
presumably need to generalize Proposal 6 to de�ne relations ∼dr and ∼q on
models. But we claim this cannot be done. Suppose then that T is a theory
in a qualitative signature Σq. We assume that M ∼q M

′ whenever there is a
Σq-isomorphism f : M → M ′. The question is whether there is some �ner-
grained equivalence relation ∼dr on the models of T . We will presently show
that there is none that meets a basic desideratum.

Consider again our running example: Σq has a single predicate symbol p,
and T says that there are exactly two things, one of which is p. For domain
{a, b}, there is a model M such that M ⊨ p(a), and a model M ′ such that
M ′ ⊨ p(b). There is a Σq-isomorphism f : M → M ′, hence M ∼q M ′.
We could then declare that M and M ′ are de re inequivalent. But can we
continue this de�nition of ∼dr to all other models of T?

Consider another domain {α, β}, and models N,N ′ with N ⊨ p(α) and
N ′ ⊨ p(β). The convention just adopted tells us that N and N ′ should be
de re inequivalent. But what about M and N? It seems that we are free to
choose a convention. So set M ∼dr N and M ′ ∼dr N

′.9 The astute reader
will see that this process can be continued, establishing two de re equivalence

8One could consider enriching GR to include names, but we postpone a discussion of
that point to section 8.

9This convention is tantamount to choosing a �xed isomorphism between the domain
of M and the domain of N , or what's equivalent, to �xing the extension of a constant
symbol c in each model of T . The problem we will encounter below is that it's impossible
to satisfy the constraint that if cM ∈ |N |, then cM = cN .
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classes of models of T . So far so good. But on re�ection, we suspect that
this route will be unattractive to any advocate for FD. The reason that these
two equivalence classes will not be haecceitistically consistent.

De�nition. Let M and N be models of a theory T . We say that M and N
are haecceitistically consistent just in case for any a ∈ |M | ∩ |N |, and for any
formula φ(x), M ⊨ φ(a) i� N ⊨ φ(a).

In other words, haecceitistically inconsistent models share an element a
in common, but disagree on whether a has some property φ(x). This kind
of haecceitistic di�erence is precisely what is thought to happen in the hole
argument, i.e. the models M and N disagree on the properties assigned to
some spacetime point a ∈ |M | ∩ |N |.

Proposition 1. Let ∼dr be any equivalence relation on models of T such

that:

1. Each model M is de re inequivalent with the model M ′ that has the

same domain, but �ips the extension of p.

2. For any models M,N , either M ∼dr N or M ∼dr N
′.

Then there are models M,N of T such that M ∼dr N , but M and N are

haecceitistically inconsistent.

Proof. Let M = {a, b} with M ⊨ p(a), and let M0 = {a, ∗} with M0 ⊨ ¬p(a).
If M ∼dr M0, then we are �nished, so assume that M ∼dr M

′
0. Let M1 =

{∗, b} with M1 ⊨ p(b). If M ∼dr M1, then we are �nished, so assume that
M ∼dr M

′
1. Then M ′

0 ∼dr M
′
1, but M

′
0 ⊨ ¬p(∗) and M ′

1 ⊨ p(∗). That is, M ′
0

and M ′
1 are de re equivalent, but haecceitistically inconsistent.

This result shows that that there is no (haecceitistically consistent) notion
of de re equivalence of models that is �ner-grained than isomorphism. Hence,
Full Determinism is otiose as a criterion for judging whether actual scienti�c
theories are deterministic. We could, of course, try some other way to extend
Full Determinism to theories without names for all objects. For example,
given a theory T , we could supplement the language with names, and then
ask if the name-enriched theory T+ satis�es FD. But no matter what T itself
is like, we should not expect T+ to be deterministic, since we have added
many new properties without dynamical laws governing their evolution. (We
return to this point in section 8.)
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5 Lewis formalized

Distinguishing senses of determinism by distinguishing types of descriptions
or equivalence classes of models did not get us very far. But in fact, we
think something very much in the spirit of the distinction that Hawthorne,
Teitel, and others have aimed at is available, and that an adequate de�nition
of determinism that captures something like the intuition behind Full Deter-
minism, properly understood, is available. To see it, though, requires us to
shift back to the other post-Lewisian thread, the one that was prematurely
cut o� by Belot (1995a) and Belot (1995b). We intend to take this line of
development back up, and to argue that it is a genuine problem-solver for
questions about determinism. In other words, insofar as Lewis was continuing
the Carnapian program of explication, then he was on the right track.

This line of development consists of three positive papers, and two nega-
tive papers. On the positive side, Butter�eld (1987; 1988; 1989) points out
that there is an imprecision in Lewis' talk of �diverging worlds�. Since, for
Lewis, no individual can exist in two worlds, distinct worlds cannot overlap.
Butter�eld then proposes that Lewis needs a notion of a duplication map

g : U → U ′, where U is an initial segment of W , and U ′ is an initial seg-
ment of W ′. With this notion in hand, Butter�eld explains that there are
two precisi�cations of Lewis' notion of determinism, a stronger one �DM2�,
and a weaker one �DM1�. Roughly speaking, DM2 says that if there is a
duplication g : U → U ′ of initial segments of worlds W,W ′, then there is
a duplication f : W → W ′ of these worlds.10 Then Butter�eld goes on to
apply this analysis to the hole argument, and shows that GR satis�es DM2.

This is an amazing outcome. Butter�eld seems to have blocked the hole
argument, vindicating substantivalism and Lewisian counterpart theory, not
to speak of formal de�nitions of determinism. But then along came Gordon
Belot. Belot (1995b) shows that even Butter�eld's stronger condition DM2
is too liberal by giving an example of a clearly indeterministic process that
satis�es it. He then goes on to give two re�ned and strengthened versions of
DM2, but immediately provides counterexamples to them. The upshot seems
clear: do not try to turn Lewis' metaphysical de�nition of determinism into
a Carnapian explication, because formal de�nitions will never capture the

10This discussion occurred in the context of the hole argument, and so the de�nitions
were originally stated in terms of manifolds, tensors, and smooth mappings. But the struc-
ture of Butter�eld's de�nitions are independent of these details. For further development
in those terms, speci�cally for GR, see Manchak, Barrett, et al., 2025.

21



full sense of determinism. At least that seems to have been the lesson that
many philosophers � Belot included � took away from his arguments.

We have already argued against this general posture. But we also think
Belot's arguments fail on their own terms. That is, we think that Belot
himself gave a promising formal de�nition of determinism. We will now
argue that his �counterexample� is nothing of the sort. It does not show
the inadequacy of his precisi�cation of Lewis' diverging-worlds de�nition of
determinism.

Belot's (1995b) �rst de�nition of determinism is essentially a direct tran-
scription of Butter�eld's DM2:

D1: A world W is deterministic if, whenever W ′ is physically
possible with respect to W and t, t′, and f : Wt → Wt′ are such
that f is a duplication, there is some duplication g : W → W ′.

Belot argues that D1 does not capture determinism in its fullest sense, since
there are indeterministic processes that are D1-deterministic. We agree. Con-
sider, again, the Hawthorne's identical ships. This example satis�es D1, but
it still seems to be indeterministic in some sense.

After dismissing D1, Belot considers the following strengthened version:

D2: W is deterministic if, whenever W ′ is physically possible
with respect to W , and t, t′, and f : Wt → W ′

t′ are such that f
is a duplication, there is some duplication g : W → W ′ whose
restriction to Wt is f .

The key di�erence between D1 and D2 is that the latter requires a relation-
ship between the duplication g : W → W ′ and the duplication f : Wt → Wt′ ,
viz. f is the restriction of g to Wt. The fact that D2 is genuinely stronger
than D1 depends on the assumption that �agreement� can be witnessed by
various functions. Indeed, if agreement were a binary relation on worlds (or
world segments), then D1 would imply D2. This might explain why modal
metaphysicians have overlooked D2 (or the even stronger version D3, that
we will soon consider). Modal metaphysicians have tended to think in terms
of binary relations on worlds, whereas D2 asks us to keep track of di�erent
ways that worlds can be matched with each other.

Belot then provides a counterexample to D2, i.e. an example that satis�es
D2, but that seems obviously to be indeterministic. Once again, we agree
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that D2 does not capture the full sense of determinism. Belot then considers
one �nal proposal.11

D3: A world W is deterministic if, whenever W ′ is physically
possible with respect to W , and t, t′,W ′ and f : Wt → W ′

t′ are
such that f is duplication, then there is exactly one duplication
g : W → W ′ which extends f .

Here Belot gives yet another counterexample, and declares the prospects for
a formal de�nition of determinism to be grim.

Some of the details of D3 are inessential, and it can easily be made into a
schematic that applies to just about any scienti�c theory. For example, while
D3 is formulated in terms of possible worlds, we will sometimes talk instead
about models (of a theory). Similarly, D3 takes the determiner to be a time-
slice Wt, but we can take it to be other parts of a world or a model, e.g. an
initial segment of a possible world (see Lewis, 1983; Butter�eld, 1989), or an
initial data surface embedded in a four-dimensional Lorentzian manifold (see
Landsman, 2023). The details may di�er, but all of these cases conform to
the following schematic:

M M ′

U U ′

g

i

f

i′

Here i : U → M and i′ : U ′ → M ′ are the embeddings of initial segments into
the entire history, and f : U → U ′ is an isomorphism of initial segments. D3
then says: determinism holds just in case any isomorphism of initial segments
extends uniquely to an isomorphism of worlds.

In what follows, we will argue that D3 is the best de�nition of determinism
on the market. For now, we will simply point out that D3 holds for General
Relativity.12

11Belot's D3 seems to have been independently rediscovered by Landsman (2023) and
Cudek (2024).

12To be more precise, D3 holds for the category of globally hyperbolic relativistic space-
times, where morphisms are assumed to preserve the metric. (This result follows directly
from the Choquet-Bruhat-Geroch theorem; see the account in (Landsman, 2023).) A more
careful treatment of determinism in GR is given in Manchak, Barrett, et al., 2025. Our
attitude here should be clari�ed by what we say in section 3 about electromagnetism. The
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6 Belot against D3

We think that D3 is an excellent de�nition of when a theory is deterministic.
But that is not the conclusion that its architect, Belot, drew. In fact, Belot's
harsh criticism of D3 made it all but invisible to philosophers for thirty years,
until it reappeared in work by Halvorson and Manchak (2022), Landsman
(2023), and Cudek (2024). In this section, we consider Belot's purported
counterexample to D3, and we argue that it is nothing of the sort.

Belot argues that D3 misclassi�es the following example as deterministic.

In this example, W is a world with spacetime points and Newto-
nian spacetime structure. It initially contains a single α particle.
The laws of nature decree that one year later, at t = 1, the α par-
ticle decays into continuum many β particles; arranged so that
at time t, the β particles form a spherical shell of radius t; with
each β particle moving away from the center of the sphere along
its radius.13 (Belot, 1995b, p 193)

This example certainly does seems indeterministic: given one way in which
the cloud of β particles is expanding, there is another way that it could
have been. But there is an ambiguity in the formulation of the underlying
theory: does it permit rotations of β particles that do not also rotate spatial
points? An a�rmative answer leads to an indeterministic theory, and a
negative answer leads to a deterministic theory. Far from undermining D3,
Belot's example shows that D3 is sensitive to subtle di�erences of theory
formulation.

Belot's argument that the example is D3-deterministic relies on the fol-
lowing claims:

1. As for spacetime points, duplications must preserve metric relations,
hence they are symmetries of Newtonian spacetime (shifts, spatial ro-
tations).

2. As for a material particle stage a, a duplication must preserve the
relation ℓ(a) = p of a being located at spacetime point p.

di�erence between two versions of EM manifests itself in di�erent choices of morphisms
between models; and one of these two choices leads to a better theory (in our opinion, and
in the opinion of most physicists).

13We changed the time scale for ease of exposition.
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3. The only Newtonian symmetry that preserves the worldline of the α
particle is a rotation around the timelike line that extends that parti-
cle's trajectory.

The upshot is clear: a symmetry of the α particle's trajectory can only
be extended in one way to a symmetry of everything in the model (both
spacetime points and material particles). Criterion D3 is satis�ed.

Belot then argues that the example should be conceived of as indetermin-
istic. His argument relies on the following claim:

There is a legitimate counterpart relation g′ (not a duplication)
that moves material particles but not spacetime points. Thus, g′

breaks the relation ℓ(a) = p of a material particle a being located
at spacetime point p.

If we entertain g′ as a legitimate counterpart relation, then that is tantamount
to adding additional symmetries. Now a rotation of St≤0 has more than one
extension to a symmetry of the joint system of spatial points and material
particles: it can either be extended to a rotation of both space and particles,
or it can be extended to a rotation of just space but not particles. Therefore,
the extension of symmetries is not unique, and condition D3 is violated.

For some metaphysicians, the issue at stake here might be the distinction
between a �duplication� g : W → W ′ and a more general counterpart function
g′ : W → W ′. And perhaps Belot's point was not to argue against D3 as
an analysis of determinism, but to argue against an implementation of D3
where the morphisms have to be Lewisian duplications. We do not know,
and we are not convinced that we will understand scienti�c theories better
by going deeper into this issue. What Belot's example reveals, we think, is
that whether or not a theory is deterministic depends crucially on the precise
formulation of the theory, where the precise formulation includes a notion of
isomorphism between models. Di�erent notions of isomorphism correspond
to di�erent theories; and one of these theories might be deterministic while
the other is indeterministic.

6.1 Belot's example, two ways

In what follows, we will precisify and simplify Belot's example, so as to spare
the reader from irrelevant technicalities. But what we show for these sim-
pli�ed theories generalizes straightforwardly to theories based on Newtonian
spacetime, and with uncountably many material particles.
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Newtonian spacetime has the feature that spatial points maintain their
identity over time � and hence it makes sense to talk about whether an
object is changing its position over time. (This in contrast to Galilean space-
time.) Newtonian spacetime also has a rather small group of symmetries:
uniform shifts and rotations around vertical (timelike) lines. These features
of Newtonian spacetime play an important role in the setup of Belot's third
example.

Suppose now that we want to construct an analogue of Newtonian space-
time, but with �nitely many spatial locations and �nitely many times. In
fact, for our purposes it will su�ce to have three locations and two times �
an initial time t = 0 and a �nal time t = 1. We do not need shifts (which
play no role in Belot's example), but we will allow for rotations around the
center location.

There are two ways to set up such a framework. These two ways are
formally equivalent in the case of Newtonian spacetime.

1. Represent spacetime by a family of types St, with t a time parameter,
and postulate a �persistence� relation (the analogue of an a�ne connec-
tion) between the types.14 The persistence relation can be represented
by isomorphisms with compatibility relations. To represent Newtonian
spacetime, we assume a unique isomorphism δt,t′ : St → St′ .

2. Represent space by a type S and time by another type R, so that
spacetime is represented by the product type R× S.

The advantage of the �rst, more complicated, setup is that it generalizes
more easily, e.g. to Galilean spacetime. The advantage of the second setup
is that we do not have to keep track of sorts. Since Belot's example assumes
Newtonian spacetime, we will start with the second approach.

Let Σ be a signature with two sort symbols S for spatial points. We could
then add the axiom that there are three things of sort S, corresponding to
the three particle positions. But it is simpler just to ignore that α particle,
which e�ectively de�nes a constant symbol (a name for its location). Thus
we take as our �rst axiom:

There are two things of sort S.

14Here we use �type� and �sort� synonymously, both in the sense of many-sorted logic
(see Halvorson, 2019). We are using this framework for its �exibility, and without any
commitment to type theory as a foundation of mathematics.
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α

β1 β2

Figure 1: Space with three places and two times, with two β particles at the
later time. Since symmetries are assumed to �x α, the center blocks can be
omitted from the model without changing the conclusions we draw.

We now have a non-trivial decision to make about how to represent the
β particles. It would seem natural to assume that β particles belong to the
ontology of the theory; and hence that we should introduce a new sort symbol
B for them. Thus we add a second axiom:

There are two things of sort B.

and a function symbol ℓ to indicate where each β particle is located at time
t = 1. Let's call this theory Tq.

The theory Tq is actually quite trivial: it's bi-interpretable with the theory
(in empty signature) that says there are exactly two things. A modelM of Tq

consists of two sets SM and BM , each with two elements, and an isomorphism
ℓM : B → S. For any two models M,M ′ of Tq, there are two isomorphisms
h, k : M → M ′. (As Tq has two sort symbols S and B, a homomorphism
h : M → M ′ consists of two maps hS : SM → SM ′

and hB : BM → BM ′
, such

that ℓM
′ ◦ hB = hS ◦ ℓM .) When M ′ = M , the cross-model identity relation

picks out one of the two isomorphisms h, k : M → M ′ as the identity 1M ,
while the other is the �ip π.

Note that Tq does not assign any distinguishing properties to β particles.
While we might be tempted to ask, �couldn't that β particle be located at a
di�erent place than it is?� the language of Tq does not have any expression
�that β particle�. We might also be tempted to count possibilities: given one
pairing of β particles and spatial locations, surely there is a second, distinct
pairing? But the language of Tq does not recognize �pairings� as countable
objects. In fact, since Tq says that there is an isomorphism between B and

27



S, it could be interpreted �relationally� as saying that the identity of spatial
locations is uniquely determined by the β particles that occupy them � and
so it makes no sense to consider moving a β particle to a di�erent spatial
location.

Belot argues that D3 wrongly judges this example to be deterministic.
However, when the example is precisi�ed in this way, i.e. as theory Tq, we
contend that it is deterministic. The initial condition is: space is empty.
(The α particle is irrelevant, as it simply served to restrict symmetries of
space to rotations.) The �nal condition is: there are two β particles, one in
each location. But here ordinary language (supplemented by possible-worlds
talk) misleads us into thinking that there is one initial condition that could
lead to either one of two �nal conditions. In fact, there is no sense, according
to theory Tq, in which there are more �nal conditions than initial conditions.

To be precise, consider two embeddings of initial conditions i : S → M
and i′ : S ′ → M ′. Here S and S ′ are sets with two elements, and M (re-
spectively M ′) adds a second set B (respectively B′) and an isomorphism
ℓ : B → S (respectively ℓ′ : B′ → S ′). In this precisi�cation, the β particles
do not have any �whichness� that the spatial points lack. Hence, any iso-
morphism f : S → S ′ of space is compatible with precisely one isomorphism
ℓ′ ◦ f ◦ ℓ of β particles:

B B′

S S ′

ℓ

f

ℓ′

Therefore, Tq is D3-deterministic.
We are not saying that Tq is the one and only way of understanding Belot's

example. To the contrary, we are saying that Tq is one way of understanding
Belot's example to be a deterministic theory. If one has the intuition � as
Belot did � that there is another sense in which the example is indetermin-
istic, then, we claim, that is because one has a di�erent theory in mind. In
particular, if one considers that �being occupied by a particular β particle�
is a property of spatial points, then Belot's example is D3-indeterministic.

To be precise, let Th be a theory with a single sort symbol S, and with a
name b for one of the two β particles. We consider ⌜x = b⌝ to represent the
property that the spatial point x is occupied by b at t = 1. Thus, a model
M of Th consists of a set S with two elements and a distinguished element
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bM ∈ S, and an isomorphism g : M → M ′ consists of a function from S to
S ′ such that g(bM) = bM

′
. Thus, there is a unique isomorphism between any

two models of Th.
For the theory Th, an initial condition is a set S with two elements,

and a �nal condition is the same set S plus the choice of one of the two
elements bM ∈ S. This choice leads to a reduction of symmetry � and
hence to a breakdown of determinism. Indeed, consider the isomorphism
f = 1S : S → S of initial conditions. Let bM ∈ S, and let bM

′
be the other

element of S. Then there is no isomorphism g : M → M ′ that completes the
following diagram:

M M ′

S S

g

i

f

i′

Therefore, Th is D3-indeterministic.
Let's take stock. The theories Tq and Th seem to describe the same worlds:

at the initial time there are two places and no material particles; and at a
subsequent time, each place is occupied by a β particle. However, there is
a subtle di�erence between the two descriptions: in Th, the β particles have
names. In contrast, Tq does not name the β particles, and so any symmetry
of spacetime points can be lifted to a corresponding symmetry of β particles.

What we just said about names (in the �formal mode�) can be rephrased
as a statement about properties (in the �material mode�). The theory Tq

sees no properties that distinguish spacetime points from each other, and
no properties that distinguish β particles from each other. Thus, for Tq,
the domain of particles and the domain of spacetime points have the same
amount of structure. In contrast, Th has a property ⌜x = β⌝ that breaks the
symmetry between the two spatial points. Hence, a space that was originally
rotationally symmetric enters into a state that is not rotationally symmetric.
This is why Th is indeterministic: symmetry is broken.

Informally described examples can be helpful intuition pumps, but it is
all too easy to introduce ambiguities. In the original example, Belot did not
provide a precise theory of material particles and their relations to spacetime
points. According to one precisi�cation, Tq, material particles are indistin-
guishable, and symmetries of spacetime extend uniquely to symmetries of
material particles. In this case, Belot's example is unambiguously determin-
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istic. According to another precisi�cation, Th, material particles do have dis-
tinguishing properties. In this case, a symmetry of empty space at one time
does not necessarily extend to a symmetry of space plus material contents at
a later time. In this case, Belot's example is unambiguously indeterministic.

We conclude this section on an ironical note: Belot claims that determin-
ism is not a �formal property of uninterpreted theories.� But his informal
example is neither deterministic nor indeterministic until it is formulated in
a precise manner, i.e. by transforming it into a formal theory.

6.2 Failure of uniqueness

Belot's condition D3 requires a unique extension for each isomorphism of
initial conditions. Consequently, this condition can fail in one of two ways:
(i) an isomorphism of initial conditions does not extend to an isomorphism
of models, and (ii) an isomorphism of initial conditions extends in multiple
ways to an isomorphism of models. We have seen how the �rst condition can
fail, and now we will see how the second condition can fail.

Suppose that at the initial time there is an α particle, and it then spawns
twin β particles. (Here the assumption that the β particles are twins is
required to draw the conclusion that the theory is indeterministic.) Crucially,
we do not assume that there are spatial points S in addition to the α and β
particles. In Belot's example, while the α particle only exists at the initial
time, and the β particles only exist at the �nal time, the background space S
exists at all times, and it prevents us from mixing and matching symmetries
of α and β particles.

In our current example, there are no atemporal spatial points S, and so no
compatibility condition between symmetries of α particles and symmetries of
β particles. Hence, D3-determinism fails: the unique (identity) symmetry of
the α particle can be extended to two distinct symmetries of β particles, either
the identity or the �ip. (If your intuition is that this example is deterministic,
then you might be imagining that all these particles are located in space, so
that the initial state does have non-trivial symmetries.)

This example shows that D3 is sensitive to what metaphysicians have
suggested are �merely haecceitistic di�erences�, but without mentioning haec-
ceities, and without having names for objects. The theory we have described
(call it T̂q) permits only one possible world, viz. a world in which there is
one α particle at t = 0, and two β particles at t = 1. It may be tempting
to say that a haecceitistic interpretation of T̂q would consider there to be
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two worlds: an original world W , and a world W ′ in which the two β par-
ticles have been �ipped. But that is not a legitimate interpretation of T̂q,
since ��ipping β particles� does not witness the existence of non-isomorphic
models.

There is a nearby theory that could be said to be haecceitistic. Let
b be the name for one of the two β particles, and suppose that there are
two properties, say p and ¬p. Then this theory T̂h has two non-isomorphic
models: one in which p(b) and one in which ¬p(b). This theory is also D3-
indeterministic.

6.3 The di�erence a spacetime can make

In Belot's example, it seems clear that things could have turned out di�er-
ently than they did, i.e. the roles of β1 and β2 could have been reversed. But
when we asked �what does `di�erently' mean here?�, we had to mention ab-
solute space S, and various ways that a name could be attached to points of
this absolute space. In other words, the argument that Th is indeterministic
depends crucially on the fact that the points of space already exist prior to
the emergence of the β particles, and so they provide a standard by which
we can count the number of possibilities.

These considerations suggest that the intuition that Th is indeterministic
might depend on the assumption of absolute space. Here we show that this
is correct: in the absence of the assumption of absolute space, the theory
with names for β particles is deterministic, while the theory without names
for β particles is indeterministic.

Newtonian spacetime has a lot of structure, and relatively few symme-
tries. This lack of symmetries plays a crucial role in Belot's argument: the
only Newtonian symmetries that preserve that α particle trajectory are ro-
tations. That constraint would not hold in a spacetime that lacks inertial
structure, such as Leibnizian spacetime. The key structural di�erence be-
tween Newtonian and Leibnizian spacetimes is the following (see Earman,
1989; Weatherall, 2021): in Newtonian spacetime N , a symmetry's action on
a past segment {N : t ≤ 0} determines that symmetry's action on all of N .
In Leibnizian spacetime M ∼= R×R3, a symmetry's action on a past segment
does not determine its action on all of M . For example, for t ≤ 0, let σt be
the identity map on R3; and for t > 0, let σt(x) = x+ tv, where v is a �xed
non-zero vector in R3. Then the family {σt : t ∈ R} de�nes a symmetry of
Leibnizian spacetime.
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To mimic the �exibility of Leibnizian spacetime, we can use two sorts S0

and S1 to represent space at the di�erent times. We can again represent the α
particle as a constant symbol of sort S0; but this particle's existence makes no
di�erence to the example, since a constraint on the symmetries of S0 imposes
no constraint on the symmetries of S1. We also must choose again between
representing β particles by a domain of indistinguishable entities, or by a
domain of distinguishable entities. Let Ťq be the theory with an additional
sort symbol B, and a function symbol ℓ : B → S1 which is assumed to be an
isomorphism. The astute reader will see that adding B and an isomorphism
is structurally equivalent to doing nothing at all, so we might as well simply
omit B. Let Ťh be the theory with an additional constant symbol b of sort
S1.

It is easy to see that Ťq is D3-indeterministic. A modelM of Ťq consists of
two sets S0, S1, each of which has two elements. Thus, any pair of bijections
f0 : S0 → S ′

0 and f1 : S1 → S ′
1 determines an isomorphism ⟨f1, f2⟩ : M → M ′.

Since there are two distinct automorphisms of S1, there are, for any model
M of Ťq, two distinct automorphisms of M that restrict to the identity auto-
morphism on initial conditions. Therefore, Ťq is indeterministic, in contrast
to the version of this theory that is set in Newtonian spacetime. Intuitively
the reason that Ťq is indeterministic is because there simply is no connection
between the state at t = 0 and the state at t = 1. Notice that it is completely
irrelevant whether or not we are haecceitists, or how we count the number of
initial and �nal states. The only relevant point is how symmetries of initial
states are connected (or not) to symmetries of �nal states.

It is also easy to see that Ťh is D3-deterministic. Since there is simply no
connection between initial and �nal conditions, the extendability condition
is ful�lled. Furthermore, for any two �nal conditions S1 and S ′

1, there is a
unique isomorphism f1 : S1 → S ′

1, since f1 must map bM to bM
′
. Thus, each

isomorphism between initial conditions extends uniquely to an isomorphism
of �nal conditions, and Ťh is deterministic.

The verdict about which theory is deterministic (Ťq or Ťh) is �ipped in
the passage from Newtonian to Leibnizian spacetime. This result shows that
it would be a mistake to think that the reason that the Newtonian theory,
Th, is indeterministic is because it is a �haecceitistic� theory, with names
for individuals. In terms of β particles, the Leibnizian theory, Ťh, is just as
�haecceitistic� as Th. And in terms of spacetime points, neither Ťh nor Th has
names for them, while both can indirectly name them by saying whether they
are occupied by particular β particles. On re�ection, this is how it should
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be. The judgment of determinism has nothing to do with the atemporal
thesis of haecceitism, and everything to do with the relations that the theory
postulates between objects at di�erent times.

7 Bridging a non-existing gap

Teitel (2019) argues that metaphysicians have an important job in uncovering
what modal-metaphysical commitments might be required to maintain the
consistency of spacetime substantivalism with full determinism. He poses the
challenge as �bridging the gap� between qualitative and full determinism.

We need a doctrine that . . . bridges the crucial gap between GR's
qualitative determinism and its full determinism (thereby resolv-
ing both the original hole argument and my revised hole argu-
ment). (Teitel, 2019, p 379)

Any of those three anti-haecceitistic doctrines su�ces to bridge
the gap between GR's qualitative and full determinism. (Teitel,
2019, pp 359-360)

I deliberately set up the issues surrounding the hole argument by
directly discussing modality and which doctrines imply the right
modal correlations to bridge GR's qualitative and full determin-
ism, rather than following the standard practice in the literature
of theorizing primarily in terms of mathematical solution spaces
and what we use them to represent. (Teitel, 2019, p 388)

We agree that if there were a gap between the sense in which GR is deter-
ministic and some more metaphysically signi�cant kind of determinism, then
it would be worth inquiring into what metaphysical commitments are needed
to bridge this gap. We claim, however, that there is no such gap.15

The hole argument raises many technical issues that are beyond the scope
of this paper. Fortunately, the literature of the past thirty years o�ers numer-
ous toy examples that are supposed to be analogous to GR in being qualita-
tively, but not fully, deterministic. (See Figure 7). We have encountered two

15Of course, this does not mean we do not recognize di�erent senses, or �strengths�, of
determinism. For instance, Belot's D1 and D2 are weaker than our preferred D3, and may
well be viewed as capturing senses of �qualitative determinism�. The crucial point is that
GR is deterministic in a stronger sense than either of these, and so there is no gap for
determinism in GR.
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already: Belot's β particles and Hawthorne's ships. The doubly-symmetric
world described by Melia (1999) provides yet another. We will now show
how Hawthorne and Melia's examples, like Belot's, illustrate the distinction
between D1 and D3.

qualitative determinism

full

determinism

? �

� �

GR

Hawthorne's ships

Belot's β particles Melia's symmetric world

Figure 2: Theories that are supposed to be qualitatively, but not fully, de-
terministic.

As a warmup, consider one of Melia's simpler (but more entertaining)
examples:

We could imagine a collection of bald philosophers, sitting in a
circle. It is a law that one of them will grow a single hair. But, by
the symmetry of the situation, any of the philosophers could be
the lucky one. Again, our intuition is that there are many quali-
tatively isomorphic but distinct possibilities, each representing a
di�erent way in which the situation could evolve. (Melia, 1999,
p 650)

Intuitively this example is qualitatively deterministic, since any two possible
�nal conditions are qualitatively identical. And yet, this example clearly isn't
fully deterministic, since the law does not stipulate which philosopher will
grow a hair. We agree that this example is deterministic in one sense, but
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not another. Only we think that the correct analysis is that this example is
D1 but not-D3.

To see this, suppose that there are initially n > 1 philosophers, and that
pt represents the property of being bald at time t. Let T be the theory with
axioms ∀xp0(x) and ∃!x¬p1(x). Since T entails that p0 holds of all things,
the predicate symbol p0 plays no role in the analysis, and we may drop it. If
we set p = p1 for notational simplicity, then a model M of T is determined
by a set S and a singleton subset pM ⊆ S. If M,M ′ are models of T with
the same initial conditions (i.e. the same domain S), then there is at least
one bijection g : S → S ′ such that g(pM) = pM

′
. Thus, g : M → M ′ is an

isomorphism, and D1 is automatically satis�ed.
We now show that D3 fails. Let M be a model of T whose domain S

has two elements; and let M ′ be the model that has the same domain as
M , but where the extension pM has been switched to the other element of
the domain, i.e. pM ̸= pM

′
. (Note that M and M ′ are isomorphic models.)

Then the identity 1S is an isomorphism between the initial conditions of M
and M ′. However, if 1S were an isomorphism of M to M ′, then it would
follow that pM = pM

′
, contradicting the de�nition of M ′. Therefore, T is

D3-indeterministic.
Melia's bald philosophers example is supposed to be a paradigm case

where qualitative, but not full, determinism holds. But our split intuitions
about this example can be explained by a more clear distinction, viz. that
between D1 and D3. The bald philosophers example does not provide any
support for the legend that there is a deeper, metaphysical sense of deter-
minism that cannot be captured by a formal de�nition.

But Melia has another trick up his sleeve: an example so clever in concep-
tion that one feels sure that the quest for a formal de�nition of determinism
will have to be abandoned.

Consider a world whose initial conditions consist of the following
situation (see Figure 3). The two white particles are duplicates
of each other and the two black particles are duplicates of each
other. The laws in this world dictate that, after a certain �xed
period of time, each black particle will start moving at a �xed
velocity in a straight line towards a white particle, and that the
two black particles will move towards di�erent white particles.
Using names for the objects found in the situation above, after
a �xed amount of time either c will head towards b and d will
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head towards a, or c will head towards a and d will head towards
b. (Melia, 1999, p 661)

Once again, it is clear that the two possible �nal conditions are qualitatively
identical, and hence that this example is qualitatively deterministic. But
surely, one thinks, there is a haecceitistic di�erence between the two �nal
conditions, and so the example is not fully deterministic.

a b

c

d

Figure 3: Melia's symmetric world

We will show, once again, that what this example illustrates is the dis-
tinction between the de�nitions D1 and D3. Here we just have to be a bit
more careful with how we explicate the details of the example.

The most straightforward regimentation of Melia's example has two do-
mains W and B for the particles, and for each t = 0, 1, a relation αt(x, y)
to indicate that at time t, x is adjacent to y. We add the axioms that at
t = 0, no two things are adjacent, and that at t = 1, the adjacency relation
induces a bijection between W and B.16 Since T dictates that α0 is empty,
its presence is structurally irrelevant. Thus we drop α0 and set α = α1. Let's
call the resulting theory T .

A model M of T consists of two sets, each with two elements, and a
bijection αM between them. Here the initial conditions are just the two sets,
whereas the �nal conditions include the bijection αM . It is clear that any
two models M,M ′ of T are isomorphic, and so T automatically satis�es D1.

It will now be easy to see that T does not satisfy D3, and the reason
is that the �nal conditions have less symmetry than the initial conditions.

16We can imagine the white and black particles as sitting on the vertices of a kite, and
we can think of α as a metric, where at t = 0, each white particle is distance

√
5 from each

black particles; and at t = 1, each white particle is distance 0 from one black particle, and
distance 4 from the other.
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More rigorously, in a model M of T , the initial conditions (i.e. the two sets
W and B) are invariant under any symmetry of the form ⟨f0, f1⟩, where
f0 : W → W and f1 : B → B are bijections. In contrast, the �nal conditions
include a bijection αM : W → B, and this bijection is not invariant under
symmetries of the form ⟨f0, f1⟩ where f0 and f1 do not have the same polarity
(i.e. where f0 is the identity and f1 �ips elements or vice versa). Therefore,
there is a symmetry of initial conditions that does not extend to a symmetry
of models, and T is D3-indeterministic.

The upshot: to understand the sense in which Melia's doubly-symmetric
world is indeterministic, we do not need to know anything about haecceitistic
di�erences. It is enough to see that there is a duplication of initial condi-
tions that does not extend to a duplication of worlds. So this example, and
others like it, only emphasizes the virtues of �purely formal� de�nitions of
determinism.

Similar remarks can be made about Hawthorne's ships. As with Belot's
and Melia's examples, his example is D1 but not D3 deterministic � rein-
forcing our claim that this distinction su�ces to capture our intuitions.

To be precise, let T be the theory with a single unary predicate p that
says: there are exactly two things, and one of them is p. Here we take p(x) to
mean that x sinks at t = 1. This theory is as simple as can be imagined. A
model M of T consists of a set with two elements and a singleton extension
for p. For any two models M and M ′ of T , there is a unique isomorphism
f : M → M ′. This shows that T is D1-deterministic.

But T is not D3 deterministic. To see this, let S = S ′ = {a, b}, let
i : S → M be the embedding into a model M such that M ⊨ p(a) [i.e.,
a sinks], and let i′ : S ′ → M ′ be the embedding into a model M ′ such
that M ′ ⊨ p(b) [i.e., b sinks]. Then 1S : S → S ′ is an isomorphism of initial
conditions, but there is no g : M → M ′ that completes the following diagram:

M M ′

S S ′

g

i

1S

i′

Therefore, T is D3-indeterministic.
In summary, the examples by Belot, Melia, and Hawthorne have been

thought to provide evidence for the existence of a gap between qualitative and
full determinism. However, these examples sooner illustrate the distinction
between D1 and D3.
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Belot's β particles Melia's symmetric world

Figure 4: The toy examples in the literature are D3-indeterministic, while
GR is D3-deterministic. Belot's example can be interpreted in two ways, one
deterministic and one indeterministic.

8 D3 versus Full Determinism

We have suggested that D1 captures the concept of qualitative determinism,
and the literature agrees with us on this. Where intuitions might still clash
is whether D3 captures the strongest sense of determinism that it makes
sense to ask about. We claim that it does. We will support this claim by
comparing D3 with FD.

Doing so is tricky, because D3 is applicable to any theory that has a dis-
tinction between initial segments and full models. In contrast, FD assumes
an additional distinction between a de re language Σdr and a qualitative
sub-language Σq. (Actually, the de�nition of FD does not assume such a dis-
tinction; but as we argued above, without such a distinction, there will be no
contrasting notion of qualitative determinism.) We will begin by considering
the special case of theories that already have su�ciently many names. In that
case, we have the nice result that FD, D1, D2, and D3 are all equivalent.
But this result also shows why it is important to look at theories without
names, where FD does not apply, because only those theories illustrate the
distinctions between D1, D2, and D3.

To make things more clear, we remind the reader of a simple point: a
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Σdr-theory T is fully deterministic i� T satis�es D1.

Proposition 2. For theories with su�ciently many names, FD, D1, D2, and

D3 are equivalent.

Proof. As noted above, the de�nition of FD is formulated against a back-
ground assumption that there are two signatures Σq ⊂ Σdr. However, FD is
just D1 for a Σdr-theory, and we are assuming that T is such a theory. It
will su�ce then to show that D1 implies D3. Suppose then that T satis�es
D1, and let f : U → U ′ be an isomorphism. By D1, there is an isomorphism
g : M → M ′. Since all elements of U and U ′ are named, the isomorphism
f : U → U ′ is unique, hence g|U = f . That is, g extends f . Similarly,
since all elements of M and M ′ are named, the isomorphism g : M → M ′ is
unique. Therefore g is the unique extension of f , and T satis�es D3.

But what about the case where we do not have names? One natural
suggestion for extending FD to such theories is simply to add names when
necessary. Given a Σ-theory T , let Σ+ be the expansion of Σ to include
�su�ciently many� names, and let T+ be the extension of T to Σ+. We can
then ask about the relation between T having property D2 or D3 and T+

having property FD (i.e., D1). In some cases, D2 (and D3) for T do imply FD
for the enriched theory. In particular, this happens for theories of enduring
objects � that is, theories whose models' domains coincide with the domains
of their initial segments. D2 for a theory T implies that the name-enriched
theory T+ satis�es FD.

Proposition 3. Suppose that T is a theory of enduring objects. If T satis�es

D2, then T+ satis�es FD.

Proof. Suppose that T satis�es D2. Let M,M ′ be models of T+ with initial
segments U,U ′ such that U ∼dr U ′. That is, there is a Σ+-isomorphism
f : U → U ′. Since T and T+ are theories of enduring objects, |M | = |U |
and |M ′| = |U ′|. It follows that f(cM) = cM

′
, for all names c. Since f is a

Σ-isomorphism, D2 entails that there is a Σ-isomorphism g : M |Σ → M ′|Σ
that extends f . Since g extends f , g(cM) = f(cM) = cM

′
, for all names c.

Therefore, g is a Σ+-isomorphism, and M ∼dr M
′. Therefore, T+ satis�es

FD.

What drives this result is that if objects persists over time, then �xing
the referents of constant symbols in initial segments �xes those referents in
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the entire model. But as we have seen, not all theories have enduring objects.
In general, we �nd that even D3 for a theory T comes apart from FD for
an enriched theory T+. First we now show that T+ satisfying FD does not
imply that T satis�es D3.

Example (toy Leibnizian spacetime). Let T be a theory with two sort sym-
bols S0, S1, and axioms that say that there are exactly two objects of each
sort. The theory T satis�es D2, but not D3, since an automorphism of the
�rst sort S0 extends in more than one way to an automorphism of the second
sort S1. The theory T+ adds two constant symbols of each sort, say a0, b0
and a1, b1. But then for any models M,M ′ of T+, there is an isomorphism
f : M → M ′, and so M ∼dr M

′. Therefore, T+ satis�es FD. □

The converse also fails: that is, a theory T may satisfy D3, but the
enriched theory T+ with su�ciently many names might not satisfy FD.

Example (toy Newtonian spacetime). We now consider Newtonian space-
time as having a di�erent domain St of spatial points for each time, and
isomorphisms δt,t′ : St → St′ that pick out the preferred frame of reference.
For our purposes, it su�ces to consider a simple case with two sorts S0, S1,
and a single function δ : S0 → S1. Let T be the theory that says there
are exactly two elements of type S0, and that δ is a bijection. If M,M ′

are models of T , then an isomorphism g : M → M ′ consists of two bijec-
tions g0 : S0 → S ′

0 and g1 : S1 → S ′
1 that satisfy the compatibility condition

δM
′ ◦g0 = g1◦δM . It follows that any bijection g0 : S0 → S ′

0 extends uniquely
to a bijection g : M → M ′. Therefore, T satis�es D3.

For the name-enriched theory T+, suppose that a0, b0 are constant sym-
bols of sort S0, and that a1, b1 are constant symbols of sort S1. Then there is
one model M of T+ such that M ⊨ δ(a0) = a1, and a non-isomorphic model
M ′ of T+ such that M ′ ⊨ δ(a0) = b1. But the initial segments of M and M ′

are isomorphic. Therefore, T+ does not satisfy FD. □

Note that in the toy Newtonian example, T+ is actually D3-indeterministic
(in addition to not being fully deterministic). Therefore, adding names to a
D3 deterministic theory can result in a D3 indeterministic theory. It might
seem like a strike against D3 that it is not stable under the addition of names
to a theory. But that intuition is based on a false assumption that the role
of names in formal theories is the same as the role of names in ordinary
language. In a formal theory, introducing a new name is tantamount to in-
troducing a new property φ(x) ≡ (x = c). But we should expect that adding
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new properties, without adding dynamical laws that govern the behavior of
those properties, could transform a deterministic theory into an indetermin-
istic theory.

Something similar happens with GR. As usually formulated, GR satis�es
D3 (Halvorson and Manchak, 2022). But adding names to GR results in a
theory that does not satisfy D3, and thus is not fully deterministic � as shown
by the hole argument. Indeed, Weatherall (2018) suggests that one way of
understanding manifold substantivalism, as described by Earman and Norton
(1987), is as a view on which there are additional singular, haecceitistic facts
about spacetime points that can only be described by something like enriched
� or, in Pooley's terms, substantivalist � GR. The hole argument then shows
this theory is indeterministic, even on D1. Of course, the important point is
that this enriched theory is not GR, the theory that we have good reasons to
believe at least approximately describes the structure of space and time in
our universe, but rather GR plus a great deal more structure. Without that
structure, GR is deterministic by D3, and FD does not even apply.

9 Interpretation revisited

Some readers may �nd the analysis at the end of the previous section unsat-
isfactory. One might argue, for instance, that we have simply misunderstood
full determinism. What motivates full determinism is the idea that there are
objects in the world, and a deterministic theory ought to be able to assign
them properties in an unambiguous (deterministic) way. The names just give
us a way of referring to those objects. When we say that FD simply does not
apply to GR, that is not a problem for FD, it is a problem for GR! We need
enriched GR to accurately assess whether the theory determines the proper-
ties of individuals. Without names, we are simply dwelling in the domain of
the qualitative.

We think this posture is wrongheaded. But rather than argue against
it directly, we want to propose a diagnosis of where it originates, drawing
on the arguments from section 3. As we argued there, interpretation is
itself formal. All anyone is doing when they try to interpret theories is
just layering models on models. Crucially, for the present point: Tarskian
semantics involves mapping theories, with or without names, into set theory,
typically understood as a theory with names (or rather, as theory whose
membership properties allow us to individuate sets).
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We suggest that the motivation for FD arises because when you interpret
a theory without names in set theory, without paying careful attention to
how the semantics works, it looks as if the �real� points, the ones the theory
is referring to, have names. This apparently means we can ask about what
�determines� what properties those named things have. But this instinct is
a mistake. It illegitimately mixes two di�erent things: the theory we are
trying to analyze, and the formal tools we use to analyze it. Determinism
for theories is about whether initial segments of models determine the entire
model. The �determination� of what which objects in a model carry which
properties (or names) is about an interpretation map, in the Tarskian sense.
In other words, failures of FD are about us, that is, about how we think about
our formal semantics and how we de�ne interpretation maps, not about our
theories or the world.

We suggest that something similar happens in many discussions of the
hole argument. Philosophers apparently mistake GR for enriched GR when
thinking about substantivalism. Doing this is not only a mistake, it quickly
leads to incoherence. We can see this point most starkly by considering a
special sector of GR, consisting of four-dimensional, vacuum, inextendible,
globally hyperbolic �Heraclitus� spacetimes (Manchak and Barrett, 2023;
Manchak, Barrett, et al., 2025). Spacetimes with that property are such
that every point is uniquely speci�ed by its metrical properties (including
derivatives, i.e., curvature scalars). Call the theory of Heraclitus spacetimes
HGR. HGR has names, in the sense that one can uniquely refer to points.
This theory satis�es FD. (Of course, it also satis�es D3.)

Now consider what happens when we interpret HGR in set theory. We
assign those named points to sets, which also have names. But of course,
nothing in the theory can determine which (named) set we assign to which
named point. No theory can do that, because it happens at the level of
choosing an interpretation map! What this means, though, is that on the
set theory side we now have too many names. That is, if we try to doubly-
interpret this theory, as we suggest the FD advocate would wish to, and run
our analysis of determinism on those doubly-interpreted structures, we will
�nd that they are not deterministic. We claim this is a completely generic
situation that arises from layering interpretation on top of set theory.

And it gets worse! Suppose we somehow solved this problem in the
doubly-interpreted theory, perhaps by adding laws that coordinate between
the two types of names, restoring FD. What then? Now we have a new theory,
with lots of redundant names, that has no expressive resources beyond our
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original theory. (Perhaps the theories are even logically equivalent, depend-
ing on the details.) But then we can interpret that theory, using Tarskian
semantics. The (triply) interpreted theory will now have three types of names
� the two coordinated ones in our theory, plus the names of the sets on the
semantic side. The problem will arise again. And so on ad in�nitum. But
once we see how this works, it is clearly a pseudo-problem, one arising only
because of a confusion about what is part of the theory and what is not,
what the theory should determine and what is merely structure added in
interpretation.

10 Conclusion

In a spirit of methodological tolerance, we are happy to live in a world where
some philosophers look more like mathematicians, and other philosophers
look more like poets. But we �nd it odd that some prominent analytic
philosophers argue against formal approaches, saying things like, �the purely
formal approach is a nonstarter�, or, �determinism cannot be a formal prop-
erty of theories.� The descriptive content of such claims is opaque (what
is a non-formal property?), but their tacit normative content is to recom-
mend against the very methods that distinguished analytic philosophy from
the more speculative, and less science-friendly, approaches of the nineteenth
century. Surely this belongs among the ironies of intellectual history.

We are also motivated by a practical concern about how to facilitate fruit-
ful dialogue between philosophy and the natural sciences. If philosophers
insist on making distinctions that cannot gain any traction in scienti�c prac-
tice, then they will only reinforce disciplinary boundaries that are harmful
to both philosophy and the sciences.

To be clear, we are not arguing for a kind of science-deference that says, �if
scientists don't regularly make that distinction, then neither should philoso-
phers�. We recognize that scientists might have practical reasons to blur over
distinctions of genuine metaphysical signi�cance. One might have thought
that this is the case for qualitative and full determinism, but our investiga-
tion shows there there really is no conceptual joint here. In contrast, there
is a clear distinction between the three formal criteria D1, D2, and D3, and
these criteria give clear answers about whether real-life scienti�c theories are
deterministic. With this kind of division of labor, philosophy and the natural
sciences can work together to �gure out whether we live in a deterministic
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world.
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