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Abstract

Probabilities play an essential role in the prediction and explana-
tion of events and thus feature prominently in well-confirmed scien-
tific theories. However, such probabilities are frequently described
as subjective, epistemic, or both. This prompts a well-known puz-
zle: how could scientific posits that predict and explain human-
independent events essentially involve agents or knowers? I argue
that the puzzle can be resolved by acknowledging that although such
probabilities are non-fundamental, they may still be ontic and objec-
tive. To this end I describe dynamical mechanisms that are respon-
sible for the convergence of probability distributions for chaotic sys-
tems, and apply an account of emergence developed elsewhere. I sug-
gest that this analysis will generalise and claim that, consequently, a
great many of the probabilities in science should be characterised in
the same terms. Along the way I’ll defend a particular definition of
chaos that suits the emergence analysis.

1 Introduction

What is the nature of the probabilities used in weather prediction? Given
that meteorology and associated weather sciences are non-fundamental —
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they do not describe the world at its smallest length scales or highest en-
ergy scales — it’s often thought that such probabilities are essentially epis-
temic or even subjective. I will argue that, notwithstanding their non-
fundamentality, at least some such probabilities are ontic and objective.
That is, they predict and explain the frequencies of weather events indepen-
dently of any given agent’s knowledge state, and they are the result of what
I’ll call ‘objectification mechanisms’ that secure inter-subjective agreement
on their values. My account of objectification mechanisms relates closely to
analyses developed elsewhere in the literature, especially those of Myrvold
(2021) and Strevens (2011).

The paper starts with a discussion of chaos theory and the appeal to
a chaotic model as a case study demonstrating how probabilities emerge
in such contexts. I’ll briefly discuss a quantum model of classical chaos to
show that the initial conditions for chaotic analysis may be set stochasti-
cally as a result of quantum dynamics. If the input distribution is quantum
and the chaotic dynamics lead to the convergence of a range of input dis-
tributions to the attractor distribution, then we have good reason to think
of the final distribution as objective. In general chaotic attractors engen-
der a choice of coarse-grained variables, with respect to which regular and
reliable statistics may be observed. I’ll then consider the extent to which
this can be generalised among weather systems, noting in particular that
the chaotic analysis and the claims of this paper are only relevant to some
medium-term weather predictions.

I then relate my claims to the work of Hoefer (2019) and Sober (2010)
to demonstrate that there are a number of accounts of the metaphysics of
probabilities with which this is compatible and there is no good reason to
presuppose any one or other of these for the project to proceed. In par-
ticular I argue that probabilities should count as chances (or ‘ontic proba-
bilities’) insofar as they best explain and predict the observed frequencies.
And these probabilities do just that.

The discussion then turns to the title claims: first, I demonstrate that
the chaotic dynamics act as an objectification mechanism to take a very
broad range of initial conditions to the same higher-level probability dis-
tribution – thus some weather probabilities are objective. Next I consider
three routes to probabilities’ counting as ontic, with the final route invok-
ing an account of emergence (Franklin and Robertson (2024)). To insist
that all non-fundamental probabilities are epistemic is a relic of an out-of-
date metaphysical presupposition that only the most fundamental posits
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are truly ontic, but that’s a rather infelicitous way to think about the world:
for we would currently not know of anything to include in our ontology if
that were the case. In fact, the probabilities considered here satisfy the crite-
ria used in that account of emergence and should therefore be characterised
as ontic.

I draw a contrast with the claims of Frigg and Hoefer (2019) and Loewer
(2023) who suggest that many of the probabilities in physics are derivable
from probability distributions over the initial conditions. While our analy-
ses overlap, I argue that the emphasis should be placed on emergence and
the required coarse-graining procedures given that just about any distri-
bution over the initial conditions will do. I contend that this obviates any
mysteries associated with the apparently epistemic nature of the distribu-
tion over initial conditions.

Lastly, I conclude with some potential upshots of this analysis: various
legal attempts to extract compensation from historically high-emitting na-
tions and companies for damages resultant upon extreme weather events
rely on comparisons between the probability of such weather events given
current CO2 emissions and a counterfactual scenario in which emissions
were much lower. This strategy implicitly relies on the assumption that
such probabilities are objective and ontic probabilities. In slogan form,
changes to epistemic probabilities cannot change the world. So the argu-
ment here ought to help shore up such cases.

Given the existence of the extensive literature on non-fundamental
probabilities and deterministic chance (see e.g. Glynn (2010) and List
(2018)) what does this paper add? I return to this in §5, but the short an-
swer is that the focus elsewhere has been on legitimising the status of non-
fundamental probabilities by appealing to features probabilities are taken
to have and suggesting that these may be associated with non-fundamental
theories. My goal here is to show how it is that underlying theories can
give rise to the statistics with which probabilities are associated – as such,
this should be complementary to claims in the deterministic chance liter-
ature and should strengthen the arguments there. If one can demonstrate
the processes by which objective statistics emerge then non-fundamental
probabilities should be an easier sell!

The upshot of this paper is a how-possibly explanation: apparently
stochastic/probabilistic systems are all around us, and yet many of our
more fundamental theories are deterministic. There is certainly a signif-
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icant role for deterministic evolution in many physical systems, this ex-
plains why probabilities are often ascribed to our ignorance or related epis-
temic factors; but ignorance doesn’t account for all the roles probabilities
play in explanation and prediction: rather, ontic and objective probabilities
are associated with the regular and reliable statistics (with respect to certain
coarse-grained variables) that emerge as a result of the dynamics of various
physical systems.

2 Probabilities from Chaos

2.1 Defining Chaos

Chaotic systems provide a helpful case study for this paper. In the fol-
lowing I’ll explain how probabilities emerge for such systems, this analysis
relies on three features characteristic of such systems: sensitive dependence
on initial conditions, attractor dynamics, and mixing – together these pro-
vide reasons to doubt that probabilities are epistemic and underwrite the
objectivity of probability distributions. While these features are instanti-
ated by many chaotic systems, it’s worth seeking a more general definition
of chaos, this will help clarify the sense in which chaos is a level-relative
phenomenon and will accord with the emergence analysis provided in §4.

The definition of chaos is hugely contested. Three worries face charac-
terisations of chaos. First, if any real system is continually buffeted by ex-
ternal noise, and its initial conditions are likely to be affected by quantum
mechanics, then do any real-world systems properly fulfill the determin-
ism constraint standardly included in definitions of chaos? Second, is the
characterisation of chaotic systems as unpredictable (commonly found in
the literature, though not in Zuchowski’s table) purely an epistemic mat-
ter? Third, how do we make sense of the dual criteria often employed in
definitions of chaos? As can be seen from table 1 chaotic systems are both
periodic and aperiodic, or both ordered and disordered. I’ll develop each
worry in turn and then suggest an account of chaos which addresses such
worries.

It’s common to include the stipulation that the underlying dynamics
are deterministic as a necessary condition in standard accounts, as em-
phasised in Zuchowski (2017)’s comprehensive analysis. For example, she
notes that May and Oster (1976) start their seminal discussion by contrast-
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Figure 1: From Zuchowski (2017, p. 67).

ing chaos with randomness: while both are unpredictable, chaotic systems’
in-principle derivability from deterministic dynamics means that the un-
predictability may be claimed to be in practice rather than in principle.
Zuchowski goes on to say that aperiodicity is regarded by many as the
defining feature of chaotic processes but this should be understood as akin
to a Bernoulli process, and so it amounts to our system’s being indistin-
guishable from a process taken to be ‘genuinely stochastic’. It’s interesting
that chaos is thus defined as the combination of underlying determinism
with effective stochasticity in contrast to fundamental/irreducible stochas-
ticity. But what hangs on that distinction? Why ought we to insist that
truly chaotic systems could not be irreducibly stochastic? Moreover, we
can never establish that the underlying dynamics are in fact determinis-
tic given the apparent stochasticity of the state of our system. In addition,
extrinsic perturbations and fundamental quantum behaviour both suggest
that determinism may be an artefact of our models and that the world to
which the models refer lack this feature.

One way of justifying the necessity of such criteria is to posit a substan-
tive distinction between ontic and epistemic probabilities and to claim that
chaos is only found in contexts where the probabilities are epistemic, but
it’s this that I wish to deny. Rather, I will argue in this paper that ontic prob-
abilities may be found at many non-fundamental levels of reality and that
one need not discover the nature of the fundamental dynamics in order to
characterise a system as featuring them. In part I think this is important
because chances play a role in our scientific predictions and explanations,
while the question of fundamental determinism is not settled. The same
argument establishes that, given the difficulty of establishing that the fun-
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damental dynamics for any given system are in fact deterministic, and the
observation that many real-world systems are well modelled as chaotic,
we should regard such worldly systems as in fact chaotic irrespective of
the nature of their fundamental dynamics.

Another central feature of many definitions is sensitive dependence on
initial conditions (SDIC). Any point in the phase space described exactly
will, with deterministic dynamics, have a uniquely determined subsequent
path through the space, and thus a unique trajectory; and yet if one takes a
limited ensemble of initial points, close together to one another, they will in
general exponentially diverge and, after a period of time, end up arbitrarily
far apart. This corresponds to any system that has a positive Lyapunov
exponent. Define the initial distance between two systems in the state space
to be δZ(0), then we can say that at time t the distance between two systems
will be δZ(t). |δZ(t)| ≈ eλt|δZ(0)| where λ is the Lyapunov exponent, and
1/λ is the Lyapunov time.

This prompts a puzzlement shared by many authors: if systems are
deterministic then surely chaos is somehow an epistemic matter: it’s to
do with cognitively/computationally limited agents’ predictive power.
Kellert (1993) develops a response to this focussing on the fact that this
predictive failure is in some sense built into the world: more atoms than
there are in our galaxy would be required for certain predictions. But I
don’t think this gets quite to the core of why this isn’t just an epistemic
matter.

I propose rather to characterise chaotic systems by disregarding the
most fundamental/precise description altogether; while this aspect of anal-
ysis is essential to the construction of many model chaotic systems it may
be viewed as an idealisation that does not have a counterpart in the real-
world systems modelled.

Chaotic systems, described after the onset of chaotic behaviour (e.g.
after the Lyapunov time) combine mid-level unpredictability with higher-level
stochastic predictability. That is, a feature shared by at least a great many
chaotic systems is that if one slightly coarse-grains the initial condition –
chooses a starting variable that is not exact, but includes a distribution of
initial conditions (even if this is very constrained), the evolution of that dis-
tribution will be unpredictable: this is the straightforward consequence of
SDIC which Kellert (1993) claims is generic among all chaotic systems. But
at the higher level the right variables will allow stochastic predictability: in
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other words the system exhibits statistical regularities.

This account – the combination of mid-level unpredictability and
higher-level statistical regularity – helps resolve the worries spelled out
above.1 First, we do not need to commit to any characterisation of the sys-
tem at its most fundamental, and thus whether or not it is deterministic
is irrelevant to the question of whether it is chaotic. Second, worries that
chaotic probabilities must be epistemic are partially resolved by observing
that the matter is scale- or level-relative whereby the probabilities may be
ontic even if they do not feature in a more fine-grained description; the con-
nection to emergence enables this analysis, while other discussions leave
out this aspect. Third, the level-based analysis of this definition establishes
how it could be that chaotic systems are both predictable and unpredictable
or periodic and aperiodic, as Zuchowski (2017) explains. Chaotic systems
are those where whatever the more fundamental dynamics, high-level sta-
tistical regularity emerges from mid-level unpredictability.

This is closely related to Smith (1998, p. 13)’s account: “This type
of combination of large-scale order with small scale disorder, of macro-
predictability with the micro-unpredictability due to sensitive dependence,
is one paradigm of what has come to be called ‘chaos’.” Werndl (2009) ob-
jects to Smith’s account by noting putative formal systems that satisfy the
account but aren’t chaotic, but I am not aiming at necessary and sufficient
conditions for chaos. Rather, I hope that this account will be useful in decid-
ing whether wordly systems count as chaotic or not – a significant drawback
of more formal accounts is that they require the fulfilment of specific math-
ematical criteria, where it’s often unknowable whether or not such criteria
are in fact fulfilled by real-world systems. So the fact that my account is
more inclusive than Werndl’s should not bother us; note that my account is
also more inclusive than Smith’s (thus avoiding Werndl’s other objections)
because I merely require stochastic rather than absolute predictability.

2.2 Characteristic Features of Chaotic Systems

If we accept a heuristic definition along these lines, we ought to wonder:
how is it that chaotic systems do achieve this combination of unpredictabil-
ity and statistical regularity? This turns out to be a consequence of their

1The connection to Batterman (2021) and the focus on mid-level variables there should
be apparent.
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dynamics. In particular, the dynamics of chaotic systems generally exhibit
two features: attractors and mixing on the attractor. In combination these
establish that, irrespective of the starting position after some amount of
time, the distribution will evolve into a subregion of the initial phase space
and then spread out over that entire space with an equal measure in each
subregion, thus allowing that with respect to a partition over that space the
system will exhibit statistical regularities. In some more detail:

Attractors correspond to “a region of phase space to which all nearby
trajectories or points of a model eventually tend” (Zuchowski (2017, p. 74)).
This is possible for dissipative systems as their phase space volume is not
conserved; the damped pendulum is a paradigm example of this. A sub-
class of attractors are known as ‘strange’, these are systems that are at-
tracted to a set of phase space points that are called ‘fractal’; Grebogi, Ott,
and Yorke (1987): “there can be an arbitrarily fine-scaled interwoven struc-
ture of regions where orbit trajectories are dense and sparse”.2

Mixing is defined precisely and in detail in Werndl (2009) but for our
purposes we just note the consequence of mixing that after sufficient time
any initial distribution is spread equally over the entirety of the relevant
region of the phase space: “[i]ntuitively speaking, the fact that a system
is mixing means that any bundle of solutions spreads out in phase space
like a drop of ink in a glass of water” Werndl (2009, p. 204). However mix-
ing only holds for measure-preserving dynamical systems, which means
that no dissipative system that evolves under attractor dynamics is mix-
ing. That’s why the combination of the attractor dynamics, which takes the
system to (or arbitrarily close to) the attractor, plus the mixing over that
attractor, work in concert to establish that irrespective of starting point we
have statistical predictability. While Werndl argues that mixing is necessary
and sufficient for chaos, it’s helpful to note that a chaotic system can start
far away from the attractor (where mixing doesn’t hold), evolve chaotically,
and end up with regular statistics. Note also that approximate mixing is in
general sufficient for behaviour to be classed as chaotic.

My preferred definition of chaos thus underwrites the coarse-grained
periodicity: there are regular or predictable features of chaotic systems at
the coarse-grained level as a result of the attractor and (approximate) mix-
ing even if at the more fine-grained level we have unpredictability and
aperiodicity. Both the iterated logistic model and iterated Lorenz model

2Zuchowski notes that strange attractors are just those attractors that, in combination
with other criteria, such as SDIC are sufficient for chaos.
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can be formally shown to have attractors, and the butterfly-shaped discrete
Lorenz model also has a clearly identifiable attractor (Zuchowski (2017,
§3.4.5)).

Given the diversity of approaches in the literature, it seems unlikely
that any one definition will include every model or worldly system that
has been regarded as chaotic, so chaos seems to be a cluster concept. But
there are advantages to my approach, not least that it has worldly (material
mode) applicability whereas a more mathematised conception may only
be theoretically applicable (formal mode). In addition, the above discourse
provides a comprehensible account concerning the emergence of statistical
regularities from chaotic systems.

For example, on the most simplified Lorenz model, if one chooses two
variables corresponding to x < 0 and x > 0 the system will exhibit regular
statistics; see figure 2 which illustrates the system’s regularity for unforced
and forced Lorenz dynamics. The attractor dynamics takes a distribution
over initial conditions to reliable frequencies and thus, as will be argued,
objective probabilities over some coarse-grained variables. More will be
said shortly about the input distribution.

Chaotic systems provide an interesting case study that demonstrates
the (effective) irrelevance of the starting point and the convergence of prob-
ability distributions. What’s crucial is that a vast range of initial distribu-
tions converge upon evolution under the chaotic dynamics. If we choose
the higher-level variables judiciously – the right coarse graining – then we
can be assured that we’ll have reliable higher-level statistics.

As will be discussed in more detail below, emergence centrally in-
volves screening off. So, the later probability distribution must somehow
be screened off from lower-level details. SDIC is an effective mechanism
for this to occur. This is similar to what goes on in the die case discussed by
Strevens (2011): the dynamics are such that even a very small imprecision
in the specification of the starting point is sufficient to lead to a uniform
distribution over the outcome variables – e.g. the faces of a die. Chaotic
systems are important case studies because it’s not the case that extra detail
will allow for improved predictions or explanations of the type of outcome,
though in a limited sense they may allow for in-principle improvements in
token predictability.3 Thus, as will be developed below these cases under-

3Note though that if the computation would require more resources than there are in the
galaxy then it’s not clear that this is even in-principle possible.
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Figure 2: From Slingo and Palmer (2011, p. 4759).
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mine the view that non-fundamental probabilities must be understood as
epistemic.

2.3 Input Distributions

The upshot of analyses of chaotic dynamics is that just about any initial
position evolving under such dynamics will end up on the attractor, and
if one chooses coarse-grained variables appropriately we will end up with
robust statistics with e.g. even chance of finding our system on the right
or left hand side of the Lorenz model. I’ll return below to the question of
whether or not such robust statistics signal the existence of corresponding
probabilities. However, for now, the question is whether we’ve smuggled
in some statistical assumptions in order to end up with probabilities. And
the answer to that question is that of course we have. It is a corollary of
Curie’s principle that deterministic evolution of a single input cannot give
rise to multiple distinct outcomes, and thus cannot support statistical reg-
ularities. However, what I’ll show in this subsection is that this is an un-
realistic model of real-world processes: that even in principle physically
realistic chaotic systems should not be thought of as instantiating the de-
terministic evolution of an arbitrarily well-defined input.

What justifies the focus on chaotic dynamics (in analogy to focus on
approach to equilibrium for statistical mechanical systems) is that a huge
range of initial distributions will converge on the same distribution, where
the degree of convergence exponentially increases with time. That’s be-
cause of the attractor dynamics. What conditions on such inputs are re-
quired in order to lead to the robust statistics? The answer is that they
aren’t fine-tuned in some way or other as to avoid the attractor region of
the phase space. I’ll consider two ways to ensure this holds: external per-
turbations and quantum mechanics, both of which also provide a source
for the input distribution.

External perturbations, as discussed extensively by Strevens (2011) in
the guise of ‘noise’ will interfere with a system and unless these them-
selves are correlated will push almost any system off the overwhelmingly
rare attractor-avoidant trajectories onto those that lead to the attractor and
hence exhibit the robust statistics. The fact that the systems we’re consider-
ing exhibit SDIC means that just about any minor perturbation will be suf-
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ficient to disturb a system in a fine-tuned initial state.4 Of course this is not
absolutely guaranteed and so we can say that with very high probability
a system subject to external perturbations will be such that its distribution
converges to the attractor.

One might still enquire: what’s the nature of the assumption that the
systems do not start out correlated? Or relatedly, might the external pertur-
bations be themselves fine-tuned? Frisch (2023) engages with this question
and suggests that this is an additional condition one can impose on indi-
vidual systems, or if one’s ambitions are grander this can be generalised to
the initial condition of the universe. This is closely related to Price (1997)’s
condition PI3: the Principle of the Independence of Incoming Influences.
There’s an extensive literature on the nature of this as a boundary condi-
tion of the universe, but all that needs to be said for our purposes is that
this does seem to be a principle obeyed by physical systems in the universe
and as such shouldn’t offer grounds for scepticism concerning the project
developed here.

The alternative source of the distribution over initial conditions that’s
relevant for chaotic systems is found in quantum mechanics. As developed
in detail in Franklin (2023) building on modelling developed by Habib,
Shizume, and Zurek (1998) and further analysis in Wallace (2012), clas-
sically chaotic systems are emergent from quantum mechanics via deco-
herence. It’s argued there that the best way to understand this according
to the Everett interpretation is as a sequence of worlds emerging sequen-
tially, with slightly different starting conditions. As all systems are funda-
mentally quantum mechanical and on Habib, Shizume, and Zurek (1998)’s
models quantum mechanical simulations can give rise to classical chaos,
it seems appropriate to think that at least some, if not all, chaotic systems
have their initial conditions determined at least in part by such quantum
processes. It’s important to note that while the analysis can be used to un-
derstand the Everett interpretation, no such assumptions are involved in
the simulation itself and this should thus be relevant to many standard in-
terpretations of quantum mechanics.

If the input distribution is specified by quantum mechanics, then one
might worry that not much progress has been made. The nature of prob-
ability in quantum mechanics is famously vexed, and this issue is most

4Note, however, that the input distribution must be smooth for the convergence results
to apply, and so the noise may not be seen as discrete knocks to the system; thanks to Ben
Feintzeig for pressing me on this point.
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pressing in the Everett interpretation. However, not all problems can be
solved here. And if the upshot of this particular analysis is that the statistics
of chaotic systems are traceable, via the chaotic dynamics, to the probability
distributions of quantum mechanics, which at least have well-defined and
agreed upon robust statistics, then surely progress has been made: though
note that the convergence results establish that the chaotic distribution will
not, in general, match the input distribution.

In sum, both noise and quantum mechanical inputs give us reason not
to posit an exact point as the initial condition for a chaotic system in order
to predict system outcomes: either the initial distribution is inherited from
that of quantum mechanics, or the initial condition is arbitrarily precisely
specified but the distribution is generated as external perturbations knock
the system off its initial trajectory.

2.4 Weather

There’s an interesting and extensive discussion in Zuchowski (2017) in
which she analyses the evidence for thinking that real-world systems are
in fact well described as chaotic. She concludes that there are good reasons
in some contexts, but it’s still somewhat an open question. However, as dis-
cussed above, the worries regarding the applicability of chaotic models are
closely related to questions of fundamental determinism. If my preferred
definition, advocated above, is adopted these worries are at least partially
defused.

How about weather systems? I tendentiously titled this paper with ref-
erence to ‘some weather probabilities’, partly because the analysis of the
statistics of weather and how these change is of pressing contemporary rel-
evance to modelling the effects of climate change. So it’s interesting to note
the work of Tim Palmer (see e.g. Palmer (2019)), who has been instrumental
in the introduction of ensemble forecasting and the consequent improve-
ment of weather prediction models. Palmer argues against the assumption
that the introduction of probabilities to weather prediction is purely epis-
temic, or due to our ignorance.

What seems to be generally accepted (see Buizza (2002) and Shen et
al. (2021)) is that weather models exhibit features of chaos at least in the
medium term, though the more involved answer notes that weather sys-
tems involve aspects of order and chaos in various regions. In the longer
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term they may be thought of as cyclical, and at the time period where
weather becomes climate it’s certainly possible to have more specific pre-
dictability than chaos would allow. On the very short term, weather is also
less chaotic: if it’s raining right now and the sky is full of dark clouds,
I can be very confident that it will still be raining shortly. However, the
chaotic dynamics of weather systems preclude deterministic predictability
to increasing extent as the time exceeds the Lyapunov time (thought to be
approximately 2 weeks for certain weather systems Zhang et al. (2019)),
and leave us relying on the emergent statistics.

Palmer, Döring, and Seregin (2014) further suggest that some turbulent
systems are intrinsically stochastic. While I do not have sufficient space
to explore this literature in detail in this paper, it’s worth noting here be-
cause it suggests that an additional set of weather/climate probabilities are
both ontic and objective. The suggestion there is that even with arbitrar-
ily high computing power there wouldn’t be a way of perfectly predicting
outcomes. “Errors in large-scale variability can be sensitive to errors in
small-scale components of the flow. This argument indicates that minimiz-
ing systematic errors in the representation of large-scale processes requires
minimization of systematic errors in the representation of small-scale pro-
cesses.” (ibid. p 465) The consequence of this is that no matter what one
does at the large scale there will still be uncertainty, and that this is a con-
sequence of the dynamics, however the literature does feature dynamical
arguments for the convergence of distributions that would justify the attri-
bution of objective probabilities to such systems.

The claim here is that in the medium term probabilities involved in
weather prediction could not be improved by better computation or more
accurate measurements (at least within any reasonably achievable con-
straints). Yet answers to the question ‘is it raining in London on Tuesday
9-10am?’ are distributed statistically in the medium term and the probabil-
ity distribution is a consequence of features of the dynamics that make it
robust with respect to a vast range of perturbations to the input conditions
and the system as it evolves.

2.5 Probabilities from Statistics

Once we have established the existence of robust statistics for non-
fundamental systems the question remains whether there are probabilities
in such cases. By robust statistics I mean to refer to the feature exhibited by
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real-world systems whereby there are variables with respect to which there
are, if one samples over a sufficient period of time, a ratio of values that is
approximately constant. It’s on the basis of such observations that proba-
bilities are posited: probabilities explain and predict the observed statistics.
But one might ask whether this is sufficient for the existence of probabili-
ties.

A subjectivist about probability would be happy to grant that they are
to be found in any such systems, but in the interest of a realist metaphysics,
I restrict attention here to ontic probabilities, or chances. Can we find those
wherever there are such statistics? Elliott and Emery (see e.g. Elliott (2021)
and Emery (2015)) have recently written at length to defend the claim that
one can: ontic probabilities provide the best explanation of the existence
of reliable statistics – they predict the outcomes for any sequence of ex-
periments and explain why certain sequences occur with greater or lesser
frequency than others. In short: probabilities play an ineliminable role in
scientific prediction and explanation. Therefore, we have as good a reason
to posit them as any other scientific ontology. Analogous reasons should
lead us to posit probabilities as to posit electrons or black holes: they allow
for predictions and explanations without which we would be scientifically
far worse off.

Two worries remain. First, one might think that probabilities are fun-
damentally different from other such posits because they are essentially
modal. That is, the values of probabilities are, by their very nature, under-
determined by the distribution of categorical facts. In principle, for exam-
ple, a coin could land heads every time, while it had a 50:50 chance of land-
ing heads or tails. The probability of such a sequence would be astronom-
ically small, but that does not usually imply that it’s impossible (consider
that the probability of any individually specified sequence is equal and yet
one sequence must occur!) I think that the response to this worry will de-
pend on background commitments in the metaphysics of modality, and as
such I leave this open. It’s also worth noting that the project developed
in this paper should still be interesting to one who refuses to countenance
any ontic probabilities at all – I demonstrate, at least, how it is that objective
statistical patterns emerge.

The second and related worry concerns the metaphysics of such prob-
abilities. If they’re non-fundamental and thus do not feature in the funda-
mental laws of nature, how ought they to be analysed? This paper aims
to be neutral with respect to this question – propensity, Humean, and fre-
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quentist accounts, insofar as they are viable, are straightforwardly compat-
ible with the positing of chances to explain and predict reliable statistics.
But Sober’s ‘no-theory theory’ is especially well suited to our interests as
he posits probabilities without further analysis (one might think of Sober’s
view as a metaphysically lightweight propensity theory):

In view of the failures of these [Humean, propensity, etc.]
interpretations, my preference is to adopt a no-theory theory
of probability, which asserts that objective probability is not re-
ducible to anything else. Frequencies provide evidence about
the values of probabilities, and probabilities make (probabilis-
tic) predictions about frequencies, but probabilities don’t re-
duce to frequencies

[Sober (2010, p. 149)]

The ‘no-theory theory’ is attractive insofar as it allows that one may be
confident that probabilities are objective without knowledge of what un-
derwrites them; see also Fernandes (2023). But the “not reducible” needn’t
imply that such probabilities cannot be explained as set out above in terms
of the emergence of robust and reliable statistical patterns. Likewise Hoefer
(2019)’s analysis develops a Humean acccount of probability that sources
these in reliable non-fundamental statistics and may provide an alternative
analysis of the probabilities in the chaotic systems discussed previously.

3 Emergent Probabilities Are Objective

Now if such probabilities are countenanced, we may ask whether they are
objective – to paraphrase Albert (2000) – the milk mixing into my coffee
cares not a jot about my epistemic states! Objective probabilities have (at
least) the following features: knowledge of the sequence until time t does
not licence determinate prediction of the continuation of the sequence at
t+1, knowledge of objective probabilities licences inferences about the rel-
ative frequencies, and the relative frequencies constrain the objective prob-
abilities.

But why should we think of probabilities as objective? The label ‘objec-
tive’ in discussions of probability is best contrasted with subjective, while
epistemic is contrasted with ontic, and will be discussed further below.
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Therefore, a helpful guide to whether or not the emergent probabilities dis-
cussed above are objective is the meaningfulness of inter-subjective dis-
agreement about the probability distributions. If all well-informed ob-
servers will assign the same distribution then we have good reason to
suppose that our probabilities are objective. Physical mechanisms which
secure inter-subjective agreement on the probability distribution will be
termed ‘objectification mechanisms’. The most recognisable form of objec-
tification mechanisms underpin games of chance; so dice, roulette wheels,
coin flips, and similar devices are such that a huge range of initial condi-
tions will lead to a uniform distribution over the possible outcomes.5

Myrvold (2021) develops this analysis in detail starting with a device
that, through its deterministic evolution, establishes convergence to the
same distribution over coarse-grained variables, for almost any starting
distribution (with some exceptions that we may regard as fine-tuned). Myr-
vold goes on to consider how the dynamics of statistical mechanical sys-
tems enact an analogous form of objectification.6

One difference between Myrvold’s analysis and that developed here is
that he insists that the probabilities are to be considered ‘epistemic chances’
rather than objective and ontic probabilities. The reason is that he believes
that the initial distribution may be understood as representing our igno-
rance over the precise initial state. By contrast I take inspiration from Is-
mael (n.d.) and Strevens (2011) and insist that the initial distributions stem
from noise and/or quantum probabilities, and as such any reference to cre-
dences may be discarded.

What’s crucial for the claim of objectivity is that for a wide range of ini-
tial distributions we have convergent and, thus, intersubjectively agreed
upon distributions over the coarse-grained final variables. This is ex-
plained by the attractor dynamics. As will be discussed further below, a
focus on objectification mechanisms provides an alternative to the litera-
ture’s attention to initial conditions. A probability distribution over initial
conditions is rather hard to interpret – it’s not at all clear why such a dis-
tribution should have any connection to what is in fact observed. On the

5de Canson (2022) claims that the method of arbitrary functions is not the source of the
objectivity of such probabilities. Insofar as she allows (§5) that objectivity is rather relatable
to coarse-graining functions more generally then we agree. But it’s also worth noting that I
advocate a slightly different sense of objectivity to those she considers: robust statistics are
objective in the sense that observers with a range of different information about the initial
conditions/distributions should agree on the statistics.

6For further discussion of Myrvold’s book see Robertson and Franklin (2024).
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other hand objectification mechanisms deliver reliable and regular statis-
tics. These mechanisms objectify the distributions – more or less however
you start, you end up with the same results.

The claim is that objectivity is achieved via real-world processes that
guarantee the convergence of statistics. Thus it’s not about our ignorance
and it is able to support inter-subjective agreement. Not all systems exhibit
objective probabilities, but insofar as there is an objectification mechanism
that leads to regular statistics we have good reasons to posit objective prob-
abilities. The objectification mechanisms – such as the attractor dynamics
– tell us which are the right abstractions to describe a system, or in other
words, which is the broad class of partitions with respect to which there
will be regular statistics.

4 Emergent Probabilities are Ontic

A further question remains: are these objective probabilities properly
thought of as epistemic? Insofar as the systems described have funda-
mental deterministic dynamics there’s a sense in which one could come
to know enough about the initial conditions such that the later condition
is predictable without recourse to probabilities. But one needs to specify
initial conditions arbitrarily precisely given the exponential divergence of
SDIC systems: the dynamics are non-linear and are not known to have an-
alytic solutions; and the system has quantum inputs and/or noisy pertur-
bations which further undermine any attempt at deterministic prediction.

In this section I will outline three routes to ontic probabilities: first via
quantum mechanics, second via considerations of explanatory power, and
third (in close relation to the second) I will develop in detail my preferred
emergentist response.

First, if the initial conditions for the chaotic evolution are determined
via a quantum dynamical process, and the dynamical evolution is one
which is in-principle derivable from quantum physics, then the proba-
bilities discussed here just are quantum probabilities. Following Wallace
(2020), if one views quantum theory as a framework theory then this argu-
ment is rendered more plausible and so we might accept that the medium-
term weather probabilities discussed here just are quantum probabilities.
I will not rely on this line of argument alone for two reasons. First, many
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are sceptical that quantum probabilities are ontic, this is controversial on
many interpretations of quantum mechanics and especially on Everettian
approaches. Second, in §2.3 I discussed the source of the distribution over
initial conditions in the model – the basis for moving from an exact spec-
ification of a single initial condition to a (narrow) distribution over initial
conditions – and established that even putting quantum mechanics aside
any real-world system will be the subject of continual buffeting by external
factors that we may group under the label ‘noise’. If that’s the case then not
all such probabilities are solely quantum; on the other hand quantum me-
chanics as a theory with very broad scope may still be capable of bringing
all such sources of noise under a wider scope.7 Importantly, these consider-
ations are subject to doubt concerning both quantum physics imperialism
– the view that every relevant system could be brought under the scope
of quantum physics – and the nature of quantum probabilities. Given that
doubt it’s certainly worth developing additional routes to onticness.

The second route is far more general and involves broadly metaphysical
considerations.8 Bird (2018) argues that we should be realist about proper-
ties that are explanatory and the result of selective evolutionary processes,
where the latter criterion establishes their multiple realisability. An anal-
ogous argument can be defended in this context, for the dynamics of the
attractor also selects particular distributions and the probabilities explain
the observed frequencies of types of outcome. In this context, too, we have
multiple realisability since different starting points and distributions will
lead to the same statistics. The relevant contention is that irrespective of
whether there’s some sense in which probabilities discussed here are pre-
dictively dispensable were one to know the exact initial conditions and had
one the capacity to compute the future evolution of such systems, the prob-
abilities should be accepted as real because science and scientific explana-
tion could not do without them.

The third route is closely related but builds on more general ontological
criteria developed elsewhere to argue that these probabilities are ontologi-
cally emergent. The thought is that featuring in successful explanations is
a necessary criterion for inclusion in the scientific realist’s ontology, but to
avoid arbitrary duplication of kinds we should have more restrictive suf-
ficient criteria. This account of emergence builds on the real patterns con-

7Thanks to David Wallace for raising this objection and suggesting pseudo random num-
ber generators as a reason to think that there at least some regular statistics in the world
whose source is not quantum probabilities.

8Thanks to Sam Kimpton-Nye for pushing me on this.
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cept introduced by Dennett (1991) and extended by Franklin and Robertson
(2024), Ladyman and Ross (2007), Ross (2000), and Wallace (2021). Given
that we don’t have a fundamental theory of physics, the inclination of some
metaphysicians to restrict ontological commitments to whatever is posited
by such a theory would leave us with an empty ontology.9

While many are inclined to grant, at least, that there are philosophers,
electrons, and some other things too, non-fundamental probabilities are of-
ten not extended the same courtesy. The probabilities posited by dynam-
ical collapse theories, qua posits of a putatively fundamental theory are
regarded as ontic, but probabilities of emergent theories are dismissed as
epistemic. Some of this suspicion has to do with worries over probabilities
more generally, and I discussed that briefly in §2.5. My target here is those
who are willing to accept that fundamental probabilities, if there are any,
are ontic, and yet are wary of regarding non-fundamental probabilities in
a similar light. My claim is that, just as it’s wrong to think of the inclu-
sion of tigers in our ontology as anthropocentric, even though they might
in some sense be predictively redundant were we to be able to detect and
track their internal movements and cell interactions, it’s likewise a mistake
to think that just because some fictional keen-sighted alien might be able
to do better than some mid-term weather forecast, that the weather prob-
ability is better thought of as epistemic than ontic. To defend this analogy
I’ll outline an account of emergence and show that just the same analy-
sis which legitimates non-fundamental ontology can also legitimate non-
fundamental ontic probability.

According to Franklin and Robertson (2024) an entity is emergent if and
only if it is involved in dependencies that are novel and screen off lower-
level details. Screening off involves the combination of unconditional rele-
vance with conditional irrelevance.

Unconditional relevance: conditional on a particular lower-level descrip-
tion (LLD), the probability of the macro-description A obtaining increases:
P (A|LLD) > P (A). Under certain circumstances10, P (A|LLD) = 1.

Conditional irrelevance: P (A|B&LLD) ≈ P (A|B) = x where 0 ≤
x ≤ 1. Another way of showing that some lower-level feature is irrele-
vant, is by comparing two LLDs which differ with respect to that feature:

9A related point is made in Schaffer (2004).
10If the microdynamics take all the members of the supervenience basis of B to members

of the supervenience basis of A.
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P (A|B&LLD1) = P (A|B&LLD2). Following Wallace (2019) an assump-
tion of ‘Naturalness’ may legitimate ruling out those initial microstates
that would undermine screening off, and thus restore the full equality. In
mathematised sciences, Franklin and Robertson (2024) argue that an entity
is novel if it features in macrodependencies with distinct functional form
from the corresponding microdependencies: consider, for example, the dif-
ference between the equations of quantum and classical physics.

We can spell this out with a simple example: the positions/momenta
of the particles that constitute a bouncy ball at t are unconditionally rel-
evant to the height of the bounce at t + 1. Conditionalising on the
height/spin/macroproperties of the ball at t, the particles’ positions are
conditionally irrelevant. And the macrodynamics have a distinct functional
form. Therefore the lower-level details are screened off and the bouncy ball
is emergent from its more fundamental parts.

To apply this analysis to the current case-study: the lower-level details
– the microstate of the weather system and its underlying evolution – are
unconditionally relevant to weather prediction. That is, were we to know the
full microstate exactly and the laws that govern the system then we may
be able to predict its future state either deterministically or stochastically.
However, conditional upon the dynamics exhibiting an attractor and ap-
proximately instantiating the conditions for mixing, then the lower-level
distribution will be approximately screened off from the statistics for final
outcomes. That’s because the attractor and the mixing together guaran-
tee regular and reliable statistics with respect to the coarse-grained vari-
ables, and predictions cannot be improved by greater precision in the ini-
tial conditions due to the exponential divergence corresponding to SDIC,
and the fact that real-world systems are subject both to noise and to quan-
tum mechanical effects. The coarse-grained variables at the higher level
also employ different kinds and exhibit novel regularities relative to the
underlying description. Therefore the medium-term weather probabilities
are emergent and count as ontic.

The screening off claim is expressed clearly by Werndl (2009, p. 215):
“[h]ence, mixing means that for predicting an arbitrary event at an arbi-
trary level of precision ϵ > 0, any sufficiently past event is approximately
probabilistically irrelevant.”

While the specific claims here are premissed on the details of chaos the-
ory, there’s good reason to think that these results will generalise. In order
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to arrive at the conditional irrelevance what’s required is some kind of con-
vergence of distributions, and this is provided by many of the probabilis-
tic/chancy systems we encounter in everyday life. In general we may refer
to these as objectification mechanisms that are relatively generic: dynami-
cal effects (effectively) screen off the initial conditions from the macrovari-
ables of interest and regular and reliable statistics are observed. These prob-
abilities are objective in the sense that they are subject to inter-personal
agreement and they explain and predict objective statistics. And they are
ontic in the sense that they are emergent – they feature in novel and screen-
ing off dependencies.

One might worry: Is the coarse-graining that plays a role in the above
analysis too epistemic? In instances of emergence much work goes into
identifying the right higher-level variables, though in general a wide range
of higher-level variables may instantiate robust statistics. It’s relative to the
coarse-grained variables that we have screening off of lower-level details.
That’s what objectification gives us: a privileged set of variables, with re-
spect to which we have regular higher-level statistics. So these probabilities
deserve the ‘ontic’ label as much as other emergent kinds. Bacciagaluppi
(2020, pp. 31–32) acknowledges the pragmatic element to the ontic vs. epis-
temic distinction: .“If we can extend or restrict at will which propositions
we assume to be knowable in principle, then any probability can be alter-
natively seen as epistemic or as ontic, and there is no substantive difference
between the two.” While Bacciagaluppi goes on to temper this claim some-
what, I agree that the distinction is to some extent pragmatic. However, I
contend that in cases that fit the account of emergence defended in Franklin
and Robertson (2024) we have an additional reason to accept the ‘ontic’
label that does not depend on a criterion of knowability. To describe all
weather probabilities as epistemic would fail to recognise the commonality
with other instances of emergence.

This exemplifies a paradigmatic feature of emergent systems, high-
lighted in Knox (2016). The statistics exhibited by chaotic systems after a
certain time are only relative to a particular set of coarse-grained variables.
Different variables will lead to different statistics, and many choices of vari-
ables will lead to no robust statistics at all. It’s a dynamical phenomenon –
in this case related to the attractor – that such statistics are to be found rel-
ative to a particular choice of variables. However, this does not undermine
the objectivity claim. It’s a consequence of the structure of such systems
that robust statistics are exhibited, but they aren’t to be found at all levels
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or for all choices of system descriptions. The fact that they can be identified
in some clearly described circumstances is sufficient to claim that they are
really out there.

This implicates another feature in common with emergent ontology
more generally: it’s not meaningful to ask ‘what is there?’ – in this context
‘what is the probability?’ – without specifying a level, where the specifi-
cation of a reference class will in general suffice to pick out a level. This
tells us that entities and probabilities are essentially associated, respec-
tively, with types and frequencies. This provides a further reason to be
sceptical about initial conditions probabilities, as the lack of a sequence or
reference class underdetermines the probability involved.

Overall, as evident from consideration of weather attribution and its
link to climate change, viewing the probabilities of weather systems as both
ontic and objective makes clear that changes to such probabilities is the re-
sult of physical processes, and that such changes are therefore, in principle,
the subject of moral and legal responsibility. By contrast epistemic chances
may be changed by a mere update in information available to an agent.

5 Initial Conditions Accounts

There is of course an extensive literature that discusses the origin of prob-
abilities in statistical physics, and some may find aspects of the above dis-
cussion redundant as a consequence. What is being added to accounts of-
fered by Albert (2000) and Loewer (2023), Frigg and Hoefer (2019), Wallace
(2011), and others of the source of non-fundamental probabilities in those
contexts? In outline this account agrees with much of the literature. The
source of the probabilities does rely on a distribution over initial condi-
tions (though there is perhaps more commonality with Price (1997) and
Frisch (2023)). And there is an especial link to Wallace’s suggestion that
all probabilities are quantum – this project may be a distinct vindication of
that view. However, I follow Strevens and Myrvold in their emphasis: it’s
the convergence results that matter more than the initial conditions.

One of the best known accounts of the source of non-fundamental prob-
abilities is provided by Albert and Loewer. This has been labelled ‘Statisti-
cal Mechanical Imperialism’ (see Weslake (2014)). Barry Loewer describing
joint work with David Albert sets out the ‘Mentaculus’ as starting with
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three elements: 1, spacetime and the ‘dynamical laws’, 2, the past hypoth-
esis around the time of the big bang M(0), 3, the statistical postulate that
“specifies a uniform probability distribution (specified by the standard Li-
ouville measure) over the physically possible microstates that realize M(0)”
Loewer (2023, p. 14)

The ‘Mentaculus’ is an appropriate name for this theory be-
cause the package of the three ingredients above determines a
probability density over the set of physically possible trajecto-
ries of microstates emanating from M(0) ... i.e. a probability map
of the world

I’m happy to endorse Albert and Loewer’s account to the following ex-
tent: some input probability distribution is required, and evolution via the
laws will take us from this input distribution to the distribution over any
events, delivering the non-fundamental probabilities. As discussed above,
the input probability distributions may be sourced in quantum probabili-
ties (ultimately via e.g. the Bunch-Davies vacuum, see Wallace (2023)), or in
noise/interference from external systems, with some non-correlation pos-
tulate (see Frisch (2023)). But accounts that focus on the initial distribution
and assume that it’s sufficient just to advertise evolution via “the dynami-
cal laws” fails to pay sufficient attention to the features of such laws which
deliver the non-fundamental probabilities.

The source of probability cannot be the initial distribution alone, for
every token system will have a different actual starting point, and the exis-
tence of other possible starting points is logically irrelevant to the details of
our system. The positing of single case probabilities does not explain what
we in fact observe. Thus the source of objectivity must rely on the existence
of attractors – the details of the dynamics – and the relation between these
and the probability distributions rely on coarse graining operations that
can describe our system in such a way that it exhibits regular and reliable
statistics with respect to the new coarse grajned variables.

It’s only by considering such objectification in addition to the initial
conditions that Ismael’s challenge can be addressed:

In concrete terms, the principle to be derived to generate
thermodynamic behavior is that there is a high statistical prob-
ability that the microstates of local, approximately adiabati-
cally isolated subsystems of the world are normal, or – to put
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it another way – that abnormal microstates are so exceedingly
rare under natural conditions that we should be shocked to see
them, i.e., that when we sample such systems, we never find
one arising naturally whose microstate is among those very
special ones that produce anti- thermodynamic behavior. . . .
we have a very incomplete understanding of the links that are
supposed to bridge the gap between these global postulates
and the phenomenological regularities embodied in thermody-
namic generalizations. And as before, once it is filled, it would
seem that we could dispense with the global SP [statistical pos-
tulate], since it is the local one that is needed to recover thermo-
dynamic generalizations

[Ismael (n.d., pp. 5–6)]

Similarly, Earman claims: “the Past Hypothesis, even if true, does not
explain why ordinary thermodynamics works as well as it does for the
types of systems of interest to us, and the widespread celebration of this
hypothesis has been counter-productive in obscuring the hard work that
still needs to be done to secure a satisfactory explanation.” Earman (2006,
p. 420)

Ismael’s worry against Albert and Loewer’s account is that, even were
we to assume that our universe started with a typical initial condition –
one that is rendered probable by the uniform distribution over the possible
initial microstates – that assumption is not sufficient to guarantee that most
local systems will be in any way typical or that the observed frequencies
are likely to match those of any of our probabilistic theories. In fact the
Albert/Loewer package of assumptions posits incredibly weak constraints
on the behaviour of any actual subsystem. What we in fact would like is
some reasonable expectation that any given subsystem is typical in order
to have some expectation that the local assignment of probabilities to that
subsystem will match those posited by the relevant theory. The result of all
this is that the initial probabilities accounts are woefully inadequate if one
is after an account of how the statistics we observe emerge from our more
fundamental theories. Although everything I say is in principle compatible
with their account, their view is not sufficient to do the advertised work.

Frigg and Hoefer (2019, p. 189) develop a related account: building on
work by Lavis, they also find the source of statistical mechanical proba-
bilities in distributions over initial conditions: “whether or not a system’s
motion is ergodic depends on the initial condition: some initial conditions
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lie on trajectories that are ergodic, while others don’t. This realization is the
clue to introducing probabilities. Consider an arbitrary subset C ⊆ Γp. We
may postulate that the probability that the initial condition X lies within C

at time t0 is p(C) = µ(C)
µ(Γp)

”. If we take E to be the set of ergodic trajecto-
ries then, if p(E) is high, we are taken to have justified the expectations of
thermodynamics. This is further justified by Frigg and Werndl (2011).

While Frigg and Hoefer make significant progress in explaining the ob-
served statistics by advertising the ergodicity condition (closely related
to the mixing condition discussed above), they too rely on an under-
developed appeal to initial condition probabilities, and it’s at least unclear
that their account is generalisable to probabilities in physics in general, as
their title suggests.

By contrast, Wallace (2015) and Myrvold (2021) do provide something
akin to objectification mechanisms.11 Both focus on how an evolution to-
wards an attractor distribution relies on coarse graining to end up in the
equilibrium state. As such, they have an account that depends on com-
mon features of various kinds of dynamical systems rather than just a con-
straint on the global initial conditions. Their accounts provide examples
that are akin to that discussed above for chaotic systems. Wallace’s grander
claims that all the non-fundamental probabilities are ultimately derived
from those of quantum mechanics may be also substantiated by the pro-
posals here, for it shows that if we start with quantum probabilities, either
globally or locally for an individual systems, the dynamics will lead to the
convergence upon regular and reliable statistics with respect to the right
choice of higher-level variables.

6 Conclusion

Objective statistics are widespread in statistical mechanics, in weather sys-
tems, in games of chance, and in many other fields. I’ve argued that the
probabilities which predict and explain such statistics gain their objectiv-
ity through the coupling of an initial probability distribution with relevant
features of the dynamics – chiefly an attractor and the approximate satisfac-
tion of the mixing conditions, which conduce to a certain choice of higher-
level variables. The initial distribution may be sourced in either external

11Myrvold’s dynamical condition is weak mixing, Wallace’s is a bit more complicated –
see discussion in Robertson (2020) for more detail.
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random noise or quantum/more fundamental probabilities. The resultant
higher-level probabilities satisfy the constraints of an account of emergence
developed elsewhere and as such should be regarded as ontic.

The case of chaos was considered in order to provide an explicit demon-
stration of these arguments but they ought to generalise to probability dis-
tributions over which there is inter-subjective agreement due to dynamical
objectification mechanisms. While much work has gone into considering
the source of statistical mechanical probabilities, relatively less has gone
into the consideration of the emergence of probabilities more generally. I
have argued that there are many sources of such probabilities – and many
distinct objectification mechanisms. Once we have such mechanisms, we
may regard such probabilities as emergent, and, therefore, as ontic and ob-
jective.

One further reason for developing these arguments in the context of
chaos theory is because weather is chaotic and this will therefore have im-
plications for the following issue:

In the last few years climate models have been used not only to project
features of the global climate based on different greenhouse gas emissions
scenarios but also to link such emissions to increased frequency of extreme
weather events. The studies asserting this latter connection are the sub-
ject of numerous news reports and some court cases, where they have been
used to substantiate claims that significant emitters of greenhouse gases
are partially causally responsible for particular floods or droughts(e.g.Li
and Otto (2022), see Winsberg, Oreskes, and Lloyd (2020) for recent philo-
sophical analysis).

Such claims are based on the comparison of two probabilities: the prob-
ability for the extreme weather event to occur given current levels of green-
house gases in the atmosphere, and the probability for the same event
based on a counterfactual model of much lower emissions (historic con-
ditions are often used as a proxy for the latter). The change in probability
is thus interpreted as evidence of a causal link. This prompts a puzzle: the
assumption in the small literature on the nature of probabilities in climate
science is that such probabilities are best understood as personal, subjec-
tive probabilities – known as ‘credences’.12 This follows the IPCC guidance
where probabilities are taken to quantify scientific uncertainty, see Mas-

12Though see Winsberg (2018, Ch.6) for the observation that weather probabilities are
objective by contrast with climate probabilities.
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trandrea et al. (2010). And yet an increase in the credence of an event
does not justify a causal attribution. A scientist’s coming to know more
facts about some target system does not make any difference to what hap-
pens in that target system – mere changes to scientists’ credence concerning
extreme weather events without a corresponding change in the objective
chances of such events do not imply that the frequency of such events has
changed.

The standard philosophical analysis that links causation to probability
claims that cause C causes effect E if C raises the chance of E’s occurrence
(Hitchcock (1997)). However, raising the credence in E’s occurrence is irrel-
evant. Relative change in credences would be of no consequence to causal
attribution. Thus, in order to play the advertised role and enable the kinds
of causal responsibility attributions, we need to recognise the probabilities
as objective chances. This would be to establish that, despite the probabili-
ties for these events’ being the output of climate models, they are ontic and
objective. The hope, therefore, is that the work in this paper allows for the
claims made in weather attribution studies to be substantiated, and should
as a consequence bolster the legal arguments that high emitters are at least
partially causally responsible for extreme weather events.
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