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Abstract

Suppose we observe many emeralds which are all green. This observa-

tion usually provides good evidence that all emeralds are green. However,

the emeralds we have observed are also all grue, which means that they

are either green and already observed or blue and not yet observed. We

usually do not think that our observation provides good evidence that

all emeralds are grue. Why? I argue that if we are in the best case

for inductive reasoning, we have reason to assign low probability to the

hypothesis that all emeralds are grue before seeing any evidence. My ar-

gument appeals to random sampling and the observation-independence of

green, understood as probabilistic independence of whether emeralds are

green and when they are observed.

1 Introduction

Suppose we observe many emeralds which are all green. Our observation pro-

vides good evidence that all emeralds are green. However, the emeralds we have

observed are also all grue: either green and already observed or blue and not
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yet observed (Goodman 1955). We usually do not think that our observation

provides good evidence that all emeralds are grue. Why?

In a Bayesian framework, how much our evidence supports a hypothesis

depends on two factors: The conditional probability of our evidence given the

hypothesis, which is called the likelihood, and the probability of our hypothesis

before observing our evidence, which is called the prior probability. Both the

hypothesis that all emeralds are green (all-green) and the hypothesis that all

emeralds are grue (all-grue) assign the same likelihood to our evidence. Both

hypotheses predict that we would observe exactly what we do in fact observe.

So if there is any difference between all-green and all-grue, it must concern their

prior probability. In their classic textbook on Bayesian reasoning, Urbach and

Howson write:

So theories such as [...] Goodman’s grue-variants must, for some

reason, have lower prior probabilities. (Urbach and Howson 1993,

p. 177)1

However, assigning a low prior probability to all-grue might seem like “simply

some sort of ‘a priori’ prejudice against ‘grue’ hypotheses enshrined in a Bayesian

formalism” (Fitelson 2008, p. 631). It would be great to have a reason why we

should assign a low prior probability to all-grue. My goal is to provide such a

reason.

I begin with some brief reflections on why the New Riddle of Induction

strikes us as paradoxical. The answer, I suggest, is because it seems to arise

even in the best case for inductive reasoning. Then I explain how we can defuse

the paradox. If we are in the best case for inductive reasoning—emeralds are

randomly sampled and whether emeralds are green is independent of when they

are observed—there is an upper bound on the prior probability of all-grue but

1The idea that all-grue does or should have a low prior probability is expressed by Chi-
hara (1981), Horwich (1982), Rosenkrantz (1982), Sober (1994), Norton (2006), Sider (2011),
Sprenger and Hartmann (2019) and many others. Lewis (1983, p. 375) writes that “[t]he
principles of charity will impute a bias toward believing that things are green rather than
grue”. Moss (2018, p. 101) suggests that “you may be a priori justified in believing that the
hypothesis that all emeralds are green is more likely than the hypothesis that all emeralds are
grue”.
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no upper bound on the prior probability of all-green.

I consider the objection that there is a symmetrical ‘gruesome’ argument

for an upper bound on the prior probability of all-green and show that this

argument fails. The difference between green and grue is that when randomly

sampling, green is observation-independent while grue is not, understood as

probabilistic independence of whether emeralds are green and when they are

observed.

2 Paradox Regained

Here is a hypothesis. The New Riddle seems to arise even in the best case for

inductive reasoning. Even if we set aside worries about biased sampling, about

our observations affecting the system we are observing and so on, it seems like

we need a further reason for why we should prefer the all-green hypothesis over

the all-grue hypothesis. And it can be difficult to see what this reason could be.

This hypothesis explains the feeling of paradox. In many cases, for example

when running clinical trials, everyone would likely agree that inductive reasoning

is hard, that we should not be overconfident in our predictions and so on. But

since the New Riddle arises even in the best case for inductive reasoning, it

threatens the very possibility of inductive reasoning. While Goodman originally

formulated the New Riddle to argue against a specific non-probabilistic theory

of confirmation due to Hempel (1943), the problem is much more general and

arises on a Bayesian theory of confirmation as well.2

When responding to the New Riddle, the challenge is to find an asymmetry

between green and grue in the best case for inductive reasoning. The asymme-

try should be epistemic in the sense that it constrains our inductive inferences.3

2Hooker (1968) and Fitelson (2008) discuss the New Riddle from the perspective of
Hempel’s confirmation theory and Titelbaum (2022, pp. 215–221) discusses it from the per-
spective of Carnap’s confirmation theory. As Earman (1992, p. 104) observed thirty years
ago, “[e]nough ink has been spilled over Goodman’s ‘new problem of induction’ to drown an
elephant”. The spillage hasn’t stopped since. Stalker (1994) and Elgin (1997) provide partial
overviews. Neth (ms) provides a very short introduction.

3The framing of the New Riddle in terms of an epistemic asymmetry is suggested by Sober
(1994). Thomson (1966, p. 300) makes a similar point.
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In a Bayesian framework, this means that the asymmetry should constrain our

assignment of prior probabilities. Furthermore, the asymmetry should be lan-

guage independent in the sense that it does not depend on our choice of linguistic

primitives.

Our hypothesis explains why Goodman and others talk about emeralds. It

is natural to assume that the colors of emeralds are independent of our obser-

vation. There are different ways to make this intuitive idea precise. Below, I

propose to articulate it in terms of probabilistic independence.4 The example

also invites us to set aside worries about biased sampling. To be sure, Goodman

never explicitly says that emeralds are randomly sampled and that colors are in-

dependent of observation.5 Rather, these are plausible background assumptions

which explain why we feel the force of the paradox.

To bring this out, suppose that emeralds are not randomly sampled but

presented to you by a shady broker who also happens to sell bets on the color of

the next emerald. In this context, it is not very surprising if we have no reason to

expect the next emerald to be green rather than grue. Or suppose we are digging

for emeralds and know that green emeralds are lighter than blue emeralds and

so tend to be closer to the surface. Again, while it might be difficult to figure

out what we should predict about the color of the next emerald, this does not

seem paradoxical.

In a nutshell, my response to the New Riddle runs as follows. If we carefully

reflect on the background assumptions which characterize the best case for in-

ductive reasoning—random sampling and observation-independent properties—

we can see that these assumptions imply an asymmetry between all-green and

4Observation-independence can also be understood in counterfactual terms (Jackson 1975;
Godfrey-Smith 2002; Warren 2023). While a detailed comparison with this counterfactual
response would need more space, the key advantage of using my probabilistic notion is that it
connects straightforwardly to the prior. Furthermore, the probabilistic notion of observation-
independence is much much closely connected to constraints on priors than the idea that green
is ‘natural’ or ‘purely qualitative’ (Carnap 1947; Quine 1970; Lewis 1983; Sider 2011).

5Although the very first example by Goodman (1946, p. 383) is about drawing marbles
from an urn and observing that they are all ‘S’, which means ‘drawn by VE day and red
or drawn later and non-red’—a setting which makes it natural to assume random sampling.
Hacking (1965, pp. 41–2) also presents (and gets very puzzled by) the New Riddle in the
context of random sampling.
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all-grue. So if we really are in the best case for inductive reasoning, the apparent

symmetry between all-green and all-grue is already broken.

3 The Random Principle

Imagine you are about to observe two emeralds by random sampling. Suddenly,

an angel appears before you and tells you that you will observe one green and

one blue emerald. You are certain that the angel has spoken truly. Do you have

any reason to think you will first observe the green emerald and then the blue

emerald rather than the other way around? It seems not, by our assumption of

random sampling. So you should assign the same probability to both possible

orderings GB and BG. This remains true if you have some other background

information consistent with random sampling. For example, you might believe

that the emeralds are likely green or likely blue. This background information

does not allow you to predict that one of the orderings GB and BG is more

likely. More generally, if you are randomly sampling emeralds, you should assign

the same probability to any particular ordering of green and blue emeralds given

that you will observe a fixed number of green and blue emeralds. This means

that your prior should be exchangeable with respect to green.

Let me introduce some notation. Suppose we are about to observe some

finite number n of emeralds by random sampling. The emeralds are known

to be either green or blue. We can model our observations as a sequence of

random variables X1,X2, ....,Xn, where Xi = 1 if the i-th emerald is green and

Xi = 0 otherwise. (You might complain that I’m stacking the deck in favor of

all-green by describing everything in green rather than grue language. I will

address this worry below.) Intuitively, to say that the sequence X1,X2, ....,Xn

is exchangeable means that order does not matter.

To make the notion of exchangeability precise, define the joint distribution of

the sequence of random variables X1, ....,Xn as pX1,....,Xn(x1, ..., xn) = P(X1 =
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x1 ∩ ... ∩Xn = xn).6 Now we can define exchangeability as follows:

Definition 1. The sequence of random variables X1, ....,Xn is exchangeable iff

the joint distribution pX1,....,Xn(x1, ..., xn) is a symmetric function of its argu-

ments (Pitman 1993, p. 238). This means that if two sequences of values are

permutations of each other, they are equally likely.

Consider the sequence of random variables X1,X2. If this sequence is ex-

changeable, we must have P(X1 = 1,X2 = 0) = P(X1 = 0,X2 = 1). Written

more succinctly: P(10) = P(01). Exchangeability does not constrain what these

probabilities are, only that they must be equal. An example of an exchangeable

joint distribution is P(10) = P(01) = .5. Another example of an exchangeable

joint distribution is P(11) = 1, since P(10) = P(01) = 0. An example of a joint

distribution which is not exchangeable is P(10) = 1.

Why accept exchangeability? Because it follows from the assumption that we

are randomly sampling the emeralds and that green is observation-independent,

which means that when emeralds are observed and whether they are green are

probabilistically independent. So here is my argument:

1. We are randomly sampling.

2. Green is observation-independent.

3. So our priors are exchangeable with respect to green.

The first premise says that we are randomly sampling. This means that

each emerald has the same probability of being observed at any position in our

sequence of observations. I understand random sampling in terms of subjective

probability rather than objective chance (Eagle 2005). In a moment, I introduce

a simple formal model. In this model, we can formalize random sampling as the

6Formally, the random variables X1, ...,Xn are measurable functions Xi ∶ Ω → R with
1 ≤ i ≤ n on some probability space ⟨Ω,Σ,P⟩ where Ω is a non-empty set of states, Σ is a
σ-algebra on Ω and P ∶ Σ→ R is a probability function modeling our agent’s credences. I often
abbreviate P(X = x ∩ Y = y) as P(X = x,Y = y).
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claim that we are equally likely to observe each permutation of the emeralds.7

The second premise says that whether emeralds are green is probabilistically

independent of when we will observe them. Intuitively, the idea is that learning

whether emeralds are green does not give us any information about when we will

observe them. Plausibly, green is observation-independent in this sense if we are

randomly sampling. If someone tells you how many green and blue emeralds

you will observe, you cannot infer anything about the order in which you will

observe the emeralds. Note that the observation-independence of green is only

plausible under the assumption of random sampling. It is not true in general

that whether emeralds are green is probabilistically independent of when they

are observed. For example, you might think that green emeralds are closer to

the surface and so more likely to be observed early.

An example of a property which is not observation-independent is ‘being

observed first’. If you learn that an emerald has this property, you can infer that

it will be observed first even if you are randomly sampling. Is grue observation-

independent? Short answer: No. However, this point deserves more careful

consideration so I will discuss it in detail below.

Given that our prior satisfies both random sampling and the observation-

independence of green, it must be exchangeable with respect to green. The

argument generalizes to any observation-independent property:

The Random Principle: If we are randomly sampling and F is

observation-independent, then our prior is exchangeable with respect

to F .

Here is a simple model to show how the Random Principle can be formalized.

Suppose there are n distinct objects E = {e1, ..., en} and we will exhaustively

sample from this population without replacement.8 Think of states as fixing

7Moreland (1976) also discusses random sampling and the New Riddle but uses a different
notion of random sampling. Godfrey-Smith (2011) discusses random sampling and the New
Riddle in the context of classical statistics. Fitelson and Osherson (2015) and Johannesson
(2023) argue that the New Riddle and related puzzles pose problems for classical statistics.

8We could adopt this model to allow sampling with replacement and cases where we only
partially observe the population. However, I will focus on the model as described here for the
sake of tractability.
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both which objects are observed when and which objects are F . For example,

if E = {e1, e2}, a state could look as follows: first e1 is observed, then e2 is

observed, e1 is F , e2 is not F .

We can formalize this set-up with the following state space. Let F = P(E) be

all the ways to assign an extension to property F . In our intended interpretation,

this corresponds to which emeralds are green. Let O be the set of all sequences

of length n of objects in E without repetition.9 In our intended interpretation,

this corresponds to which order the emeralds are observed in.10 Then, define

our state space Ω = F × O and our algebra Σ = P(Ω). States are pairs ⟨f, o⟩,

where f specifies a particular extension of F and o specifies a particular order

our emeralds will be observed in. We define two random variables O ∶ Ω→ O and

F ∶ Ω→ F , where F is the projection function which returns the first coordinate

of any state ⟨f, o⟩ and O is the projection function which returns the second

coordinate of any state ⟨f, o⟩. Intuitively, F and O tell us what the values of F

and O at each state are.

Random sampling means that each object in E has the same probability of

being observed at any position, so we are equally likely to observe each sequence

of objects:

Definition 2. We are randomly sampling from E iff all values of O are equally

likely.

If F is observation-independent, learning the answer to the question ‘which

objects are F?’ does not give us any new information about the question ‘when

are the objects observed?’ and vice versa:

Definition 3. F is observation-independent iff F is independent of O, written

F á O. This means that for each f in the range of F and o in the range of O,

P(F = f,O = o) = P(F = f)P(O = o) (Pitman 1993, p. 151).

9Formally, O = {⟨eπ(1), ...., eπ(n)⟩ ∶ {e1, ..., en} = E and π is a permutation on {1, ..., n}}.
10As an anonymous referee points out, objects can be observed in many ways. When I

say that e is observed, this is shorthand for ‘e is observed with respect to being F ’, which is
compatible with e being F and e not being F .
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You might think there is a simpler way to define observation-independence.

F is weakly observation-independent iff P(e is F ∣ e is observed in position j) =

P(e is F) for all e ∈ E and 1 ≤ j ≤ n. If F is observation-independent, then

F is also weakly observation-independent. However, it turns out that weak

observation-independence is not enough to guarantee exchangeability. An ex-

ample to show this is in the appendix.

Note that as I understand it, random sampling and observation-independence

are conditions on our prior. They are not worldly facts which we may or may

not believe to obtain. The Random Principle is given by the following theorem,

which I prove in the appendix:

Theorem 1. Consider the sequence of random variables X1, ...,Xn where Xi = 1

iff the i-th object from E we observe is F and Xi = 0 otherwise. If we are

randomly sampling from E and F is observation-independent, then the sequence

X1, ...,Xn is exchangeable.11

Exchangeability is a familiar concept in Bayesian statistics.12 However, sub-

jective Bayesians regard exchangeability as a subjective judgment. In contrast,

I have explained an objective Bayesian perspective on exchangeability, where

we derive exchangeability from random sampling and observation-independence

understood as constraints on priors.

11Pitman (1993, p. 239) proves a similar result but without making observation-
independence explicit. Ericson (1969, p. 197) notes that “[e]xchangeability thus expresses
the prior knowledge that while the units of the finite population are identifiable by their la-
bels (here the integers 1,2, ...,N) there is no information carried by these labels regarding
the associated Xi’s”, where Xi is the “unknown value of some characteristic possessed by
the i-th population element”. Diaconis (1977) proves that any finite exchangeable sequence
can be viewed as arising from random sampling without replacement, which supports a close
connection between exchangeability and random sampling.

12The notion of exchangeability was introduced by de Finetti (1937) and independently by
Johnson (1924). Similar conditions play an important role in Carnap’s inductive logic (Carnap
1950). Good (1969, p. 21) points out that “you would not accept the permutability postulate
[exchangeability] unless you already had the notion of physical probability and statistical
independence at the back of your mind”.
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4 All-Grue Is (Very) Improbable

Exchangeability implies an asymmetry between the prior probability of all-green

and all-grue. The prior probability of all-green is not constrained. In contrast,

there is an upper bound on the prior probability of all-grue. As the total number

of emeralds we will observe increases, this upper bound becomes vanishingly low.

Suppose we are about to observe n emeralds by random sampling. All-grue

says that for some particular k < n, the first k emeralds we will observe are green

and the remaining emeralds are blue. So all-grue says that we will observe one

particular ordering of green and blue emeralds: first all the green ones and then

all the blue ones. But there are many other orderings of these green and blue

emeralds. To be precise, there are (n
k
) such orderings.13 Exchangeability says

that all of these possible orderings of our green and blue emeralds must have the

same prior probability. This means that the maximum prior probability of all-

grue is 1/(n
k
). Moreover, this upper bound is only attained if we are certain that

we will observe exactly k green emeralds. Any uncertainty about the number

of green emeralds we will observe decreases the prior probability of all-grue.

Here is a quick way to see the asymmetry. Suppose you satisfy exchangeabil-

ity. It is consistent with that to be certain, in the sense of assigning probability

one, to all emeralds being green. But it is not consistent with that to be certain

that all emeralds are grue. Suppose we will observe two emeralds so we have a

sequence of two observations X1,X2. An emerald is grue if it is either observed

first and green or observed second and blue. It is consistent with exchangeabil-

ity to have P(11) = 1 so you can assign probability one to all-green. But all-grue

says that X1 = 1 and X2 = 0. Exchangeability requires that P(10) = P(01), so

the probability of all-grue cannot exceed .5.

As we increase the number of observed emeralds, the upper bound on the

prior probability of all-grue quickly becomes very low. Suppose, for example,

13(n
k
) = n!

k!(n−k)!
, pronounced ‘n choose k’, is the number of ways to select k objects from

n objects. In our example, there are n different positions and k green emeralds which could
occupy them.
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that all-grue says that the first five emeralds will be green and the remaining

emeralds will be blue. If we will observe ten emeralds, the upper bound on the

prior probability of all-grue is 1/(10
5
) = 1/252. If we observe twenty emeralds, the

upper bound is 1/(20
5
) = 1/15504. If we observe fifty emeralds, the upper bound

is 1/(50
5
) = 1/2118760. So if we expect to observe more than a small number of

emeralds, exchangeability forces us to assign a vanishingly low prior probability

to all-grue.

Here is another example. Suppose you are about to observe four emeralds.

You know that all frequencies of green and blue emeralds are possible: it might

be that all emeralds are green, all emeralds are blue, one emerald is green and

the rest is blue and so on. One natural way to assign prior probabilities is to

consider all five possible ‘color frequencies’ to be equally likely (Bayes 1763;

Carnap 1950). Now consider the all-grue hypothesis which says that the first

two emeralds are green and the remaining two emeralds are blue. All-grue says

that there are two green emeralds and two blue emeralds arranged in one specific

ordering. By our indifference assumption, the probability of two green emeralds

and two blue emeralds is 1
5
. And exchangeability requires that all six ways of

arranging two green and two blue emeralds are equally likely. Therefore, the

prior probability of all-grue is
1
5

6
= 1

30
while the prior probability of all-green

is 1
5
. I am not committed to this being the uniquely right way to assign prior

probabilities. Nonetheless, it shows how once we have exchangeability, it is very

easy to end up assigning a lower prior probability to all-grue than to all-green.14

Exchangeability explains our intuitive sense that it would be an enormous

coincidence if all emeralds were grue while it would not be an enormous coinci-

dence if all emeralds were green. All-grue requires the order of our observations

and the color of the emeralds we are observing to be correlated in an extremely

14Under exchangeability, we can exactly characterize the conditions under which
P(all-green) > P(all-grue) where all-grue says that the first k < n emeralds are green and the
rest blue. Assume we will observe n green or blue emeralds modeled by an exchangeable se-
quence X1, ...,Xn. Let N be the random variable counting the total number of green emeralds
observed so P(all-green) = P(N = n) and P(all-grue) = P(N = k) 1

(
n
k
)

. P(all-green) > P(all-grue)

iff P(N = n) > P(N = k) 1

(
n
k
)

. Since (n
k
) tends to be large, P(all-green) > P(all-grue) unless you

assign much higher credence to P(N = k) than to P(N = n).

11



specific way.15 When randomly sampling, this is very unlikely to happen. So

we have a principled reason for assigning a low prior probability to all-grue.

I have explained how exchangeability imposes a strong bias against all-grue.

And as we have seen above, exchangeability can be derived from plausible con-

straints on priors: random sampling and the observation-independence of green.

So we have a compelling Bayesian response to the New Riddle.

5 The Symmetry Objection

I have argued that random sampling implies green exchangeability : exchange-

ability with respect to green and blue. But perhaps that is just because I have

described the whole set-up in green rather than grue terms. Suppose we assume

grue exchangeability instead, which is exchangeability with respect to grue and

bleen. Grue exchangeability yields an apparently symmetrical argument for an

upper bound on the prior probability of all-green.

To address this worry, I first make the idea of grue exchangeability precise.

Then, I argue that grue exchangeability does not follow from random sampling.

My argument for green exchangeability does not work for grue exchangeability

because grue is not observation-independent when randomly sampling. I close

by reflecting on what it means to respond to the New Riddle and argue that

while certain skeptical challenges remain, the New Riddle is less paradoxical

than it appears.

5.1 Gruesome Exchangeability

I have described our observations as sequence of random variables X1, ...,Xn,

where Xi = 1 if the i-th emerald we observe is green and Xi = 0 if the i-th

15White (2005, p. 19) writes: “On the all-grue hypothesis we have two properties, greenness
and having been observed, which are co-instantiated by the same subclass of emeralds. This
is a striking fact which seems to call for an explanation. We should not expect apparently
causally independent properties to be correlated in this way in a large number of instances.”
In a similar vein, Chihara (1981, pp. 434–5) writes that “given the sheer number of emeralds
discovered thus far [...], it is implausible that the green ones would turn out to coincide exactly
with the emeralds observed prior to t0”.
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emerald we observe is blue. But we could also describe our observations as

sequence of random variables Y1, ...., Yn, where Yi = 1 if the i-th emerald we

observe is grue and Yi = 0 if i-th emerald we observe is bleen. An emerald is

grue if, for some particular k < n, the emerald is observed among the first k

emeralds and green or it is not observed among the first k emeralds and blue.

An emerald is bleen if it is observed among the first k emeralds and blue or it is

not observed among the first k emeralds and green. Why not say that Y1, ...., Yn

is exchangeable? If so, your priors are exchangeable with respect to grue.16

Suppose we accept grue exchangeability. Now we can argue that the prior

probability of all-green is low. All-green says that there are some grue and some

bleen emeralds which will be observed in one specific ordering: first all the grue

ones and then all the bleen ones. But there are many other orderings in which

these grue and bleen emeralds could be observed. By grue exchangeability, all

of these orderings are equally likely. Therefore, there is an upper bound on the

prior probability of all-green. In contrast, there are no constraints on the prior

probability of all-grue.

Do we have any reason to prefer my argument for the improbability of all-

grue over this apparently symmetrical argument for the improbability of all-

green? To be clear, there is nothing in the axioms of probability which compels

us to accept green exchangeability rather than grue exchangeability—or indeed

any kind of exchangeability. However, grue exchangeability does not follow from

random sampling.

Let us look at a simple example. We will observe two emeralds known to

be either green or blue. An emerald is grue if it is either observed first and

green or observed second and blue. An emerald is bleen if it is either observed

first and blue or observed second and green. Grue exchangeability implies that

the probability that the first emerald is grue and the second emerald is bleen

equals the probability that the first emerald is bleen and the second emerald

is grue. In more familiar terms, the probability that both emeralds are green

16Kutschera (1978), Earman (1992) and Skyrms (1994) also discuss grue exchangeability
but are skeptical about whether gruesome priors can be rationally criticized.
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equals the probability that both emeralds are blue. So grue exchangeability

forces us to assign the same probability to both emeralds being green and both

emeralds being blue. But this constraint does not follow from random sampling.

Therefore, we should not accept grue exchangeability.

For example, suppose you are randomly sampling two emeralds which are

likely blue. The emeralds being likely blue is perfectly consistent with random

sampling. In this case, the probability that both emeralds are blue is higher than

the probability that both emeralds are green. In other words, the probability

that the first emerald is bleen and the second emerald is grue is higher than the

probability that the first emerald is grue and the second emerald is bleen, so

grue exchangeability fails.

Here is the reasoning spelled out in more detail. Suppose you are randomly

sampling two emeralds a and b. You think the emeralds are more likely blue

than green so, for example, P(BB) = .6 and P(GG) = .4.17 This assignment of

probabilities is consistent with random sampling. If we describe this example in

terms of our original random variables X1 and X2, exchangeability is satisfied.

However, if we describe it in terms of our gruesome random variables Y1 and Y2,

exchangeability fails. This can be seen in figure 1 below. The sequence Y1, Y2 is

not exchangeable since P(Y1 = 1, Y2 = 0) = .4 while P(Y1 = 0, Y2 = 1) = .6. What

makes this example work is that you assign more probability to the emeralds

being blue than to them being green. Such a bias is not essential. As I show in

the appendix, there are cases where exchangeability fails for grue-like properties

even though emeralds are equally likely to be green and blue.

Event Probability Values of X1,X2 Values of Y1, Y2,
GG .4 11 10
BB .6 00 01

Figure 1: Gruesome random variables do not preserve exchangeability.

The upshot: grue exchangeability does not follow from random sampling.

While we can translate our whole set-up from familiar green terms to Goodma-

17In terms of F which records which emeralds are green and O, GG is the event F =
{a, b} ∩ (O = ⟨a, b⟩ ∪ O = ⟨b, a⟩) and BB is the event F = ∅ ∩ (O = ⟨a, b⟩ ∪ O = ⟨b, a⟩).
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nian grue terms, this translation does not preserve exchangeability.

5.2 Breaking the Symmetry

At this point, you might be puzzled. Where does my argument for green ex-

changeability go wrong for grue exchangeability? What breaks the symmetry

between green and grue is that when randomly sampling, green is observation-

independent while grue is not.

Before I continue, let me set aside a possible misunderstanding. You might

think that grue is observation-dependent because it is explicitly defined in terms

of observation. In contrast, green is not explicitly defined in terms of observa-

tion. But Goodman (1955, p. 79) points that this asymmetry depends on our

choice of linguistic primitives. If we take grue and bleen as primitive, we can

define green in terms of observation: an emerald is green if it is grue and already

observed or blue and not yet observed. For this reason, you might think that

observation-independence cannot break the symmetry between green and grue.

When I say that grue is observation-dependent, I do not mean that grue is ex-

plicitly defined in terms of observation. Rather, I mean that whether objects are

grue is not always probabilistically independent of when they are observed. For

this probabilistic notion of observation-independence, it is irrelevant whether we

start with green or grue primitives. This means that the property ‘either grue

and already observed or bleen and not yet observed’ is observation-independent

in my sense.

Let me explain why grue is observation-dependent in my sense. Suppose

you are about to observe two emeralds by random sampling. An angel appears

before you and tells you that you will observe one grue and one bleen emeralds,

where an emerald is grue if observed first and green or observed second and blue

and analogously for bleen. Might you have any reason to regard one ordering

of the grue and bleen emeralds as more likely? For example, might you have

reason to think that you will first observe the grue emerald and then the bleen

emerald rather than the other way around? Initially, you might think that the
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answer is ‘no’. How could you use the information the angel has given you to

predict anything about the ordering of grue and bleen emeralds?

But appearances are mistaken. You might have reason to think that one

ordering of the grue and bleen emeralds is more likely. Suppose you think

the emeralds are likely blue. Therefore, you think that the grue emerald is

likely observed second. This is because the grue emerald is green if observed

first and blue if observed second and you think that the emerald is likely blue.

Analogously, you think that the bleen emerald is likely observed first.

We can use the numerical example above to make this point. You randomly

sample two emeralds a and b. As before, you think the emeralds are likely blue

so P(BB) = .6 and P(GG) = .4. Now suppose you learn that emerald a is grue.

This event occurs if either a is observed first and green or a is observed second

and blue.18 Conditional on the information that a is grue, a is more likely to be

observed second.19 Analogously, conditional on the information that a is bleen,

a is more likely to be observed first. So in this case, grue and bleen are not even

weakly observation-independent. In contrast, green and blue are not observation

dependent in the same way. For example, conditional on the information that

a is green, a is equally likely to be observed first or second.20 As I show in

the appendix, there are more complicated examples where grue-like properties

are weakly observation independent but still not observation independent in my

sense.

The upshot: whether emeralds are grue or bleen is not, in general, proba-

bilistically independent of when they are observed. If an angel tells us what

colors of emeralds we will observe and we are randomly sampling, we cannot

predict anything about ordering. But if an angel tells us what schmolors of

18In terms of F andO, the event that a is grue is (F = {a, b}∩O = ⟨a, b⟩)∪(F = ∅∩O = ⟨b, a⟩).
19By the definition of ‘a is grue’ and conditional probability, P(O = ⟨b, a⟩ ∣ a is grue) =

P(F=∅∩O=⟨b,a⟩)
P((F={a,b}∩O=⟨a,b⟩)∪(F=∅∩O=⟨b,a⟩)) . By finite additivity and observation-independence, this is

P(F=∅)P(O=⟨b,a⟩)
P(F={a,b})P(O=⟨a,b⟩)+P(F=∅)P(O=⟨b,a⟩) . By random sampling P(O = ⟨a, b⟩) = P(O = ⟨b, a⟩) = 0.5

and by assumption P(F = {a, b}) = .4 and P(F = ∅) = .6 so this is 0.6×0.5
0.4×0.5+0.6×0.5

= 0.6.
20By the definition of conditional probability, random sampling and observation-

independence, P(O = ⟨b, a⟩ ∣ a is green) = P(O=⟨b,a⟩∩F={a,b})
P(F={a,b}) = P(O=⟨b,a⟩)P(F={a,b})

P(F={a,b}) = 0.5×0.5
0.5

=
0.5 = P(O = ⟨b, a⟩).
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emeralds we will observe, we might be able to predict something about their

ordering even if we are randomly sampling.

5.3 Paradox Lost?

There are ways for the grue skeptic to resist my argument. They can reject

random sampling. However, this comes at a cost. As I noted earlier, random

sampling seems the best case scenario for inductive inference. So if the grue

skeptic rejects random sampling, they can no longer claim that the New Riddle

arises even in the best case for inductive reasoning. More generally, rejecting

random sampling commits the grue skeptic to think that there is some corre-

lation between the label of an object and when we will observe it which seems

implausible in many circumstances. Furthermore, my definition of random sam-

pling is neutral between green and grue and only talks about objects and which

order they are observed in. So it seems unmotivated for the grue skeptic to

reject random sampling.

The grue skeptic could also hold that when randomly sampling, green is

observation-dependent and grue is observation-independent. This also comes at

a cost. Even if you have never heard of grue, you surely think that the colors

of emeralds give you no information about when you will observe them when

randomly sampling. Under the assumption of random sampling, it seems very

implausible to think that we can predict when emeralds are observed on the

basis of whether they are green or blue. Believing that you can make such

predictions almost seems like believing in magic: an inexplicable correlation

between whether emeralds are green and when they are observed. It is not

very puzzling that we end up with strange consequences from such a strange

starting point. We might not be able to force the grue skeptic to accept the

observation-independence of green, but if their position requires us to abandon

such a plausible belief, we should not feel threatened by this kind of skeptical

challenge. This is particularly plausible if, like Goodman, our project is to find
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general principles which make sense of our inductive practice.21

More broadly, the observation-independence of grue does not follow merely

from adopting grue linguistic primitives but is an additional substantive com-

mitment. To be a grue speaker does not suffice for being a grue reasoner. So

there is a substantive disagreement between us and the grue skeptic which is

not settled by which language we speak or which linguistic primitives we adopt:

the question which properties are observation-independent.

The upshot: while there are ways for the grue skeptic to resist my argument,

they come with substantial costs. The grue skeptic seems committed to inde-

pendently implausible views. Moreover, these views are substantive and not

merely the result of adopting different linguistic primitives. So the New Riddle

is less puzzling than it initially appears. The New Riddle remains a problem for

attempts to define confirmation in syntactical terms, but such theories should

be rejected anyways. If you adopt a Bayesian perspective and some plausible

substantive assumptions, you need not fear the New Riddle.

While there is room for disagreement about whether my story ‘solves’ the

New Riddle, I think it addresses what is most puzzling about the problem. One

might feel puzzled on what grounds we could assign different prior probability

to all-green and all-grue. There is a possible world where all emeralds are green

and a possible world where all emeralds are grue. What makes the paradox

posed by the New Riddle so compelling is not the mere fact that grue-friendly

priors are consistent but rather that we seem to have no language-independent

reason for discriminating between these possible worlds even in the best case

for inductive reasoning. The observation-independence of green provides such a

reason and is independently plausible.

This sheds light on the broader problem raised by Goodman. The New Rid-

dle raises the question how inductive reasoning works. Intuitively, we think of

21This is a more general point. The disquietude we feel when confronted with skeptical
challenges does not stem merely from the fact that the skeptic is consistent and we cannot
convince them but that the skeptical argument starts from premises we seem unable to reject.
A philosophical response to skepticism must show us how we can reject these premises after
all (Stroud 1984).
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inductive reasoning as a matter of extrapolating observed patterns. Goodman

shows that this intuitive picture cannot be right because “regularities are where

you find them, and you can find them anywhere” (Goodman 1955, p. 82). This

can leave us puzzled about what we do when we engage in inductive reasoning.

We need reasons for distinguishing among different patterns found in our ob-

servations. On the view I have offered here, some of these reasons can be found

in substantive views about which properties are observation-independent.

If we are evaluating a proposed solution to the New Riddle, the question

is not whether the assumptions we make are themselves immune to all skepti-

cal challenges. In particular, it is fair game to use substantive assumptions to

break the symmetry between green and grue.22 Rather, the challenge is to find

a language-independent asymmetry between green and grue which is indepen-

dently plausible and show how this asymmetry constrains our inductive reason-

ing. As I have explained, the probabilistic notion of observation-independence

gets this job done.

Open questions remain. What grounds our belief that some properties are

observation-independent while others are not? While this is a deep question, I

do not have much to say about it here. Perhaps a more complete account of

our inductive reasoning will shed light on why we accept some independence

assumptions rather than others. But it might also be a mistake to seek objec-

tive grounds for our independence assumptions. Perhaps believing that certain

properties are observation-independent is just how we roll. My goal was to show

how we can draw on such independence assumptions to explain why the prior

probability of all-grue is low.

I do not think that such arguments address all the problems in the vicinity of

22The view that we can draw on substantive assumptions to address the New Riddle while
not answering all skeptical challenges that can be raised with respect to these assumptions
themselves is widely endorsed. Proponents include Goodman (1955), Thomson (1966), Hesse
(1969), Jackson (1975), Lewis (1983), Rheinwald (1993), Godfrey-Smith (2002), Sider (2011),
Warren (2023), and Zinke (forthcoming). Jackson (1975, p. 131) writes that “[t]his may well
raise fundamental problems at the level of justification, in the context of the ‘old problem of
induction,’ but this has not been our concern here.” Furthermore, as emphasized by Scheffler
(1958) and Stroud (2011, pp. 29–31), the New Riddle poses a problem for describing how we
form expectations about the unobserved even if we set aside questions of justification.
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the New Riddle. At its most general, the New Riddle is a problem of underde-

termination: different theories predict the same evidence. In a Bayesian setting,

which theory is supported best depends on your priors.23 I do not claim that ex-

changeability and similar independence assumptions completely solve this prob-

lem. Inductive reasoning is hard and there are no general-purpose recipes to

be had. The best we can hope for is to constrain our inductive inferences in

particular situations.

6 Conclusion

To respond to the New Riddle, we must find an asymmetry between green and

grue and explain how this asymmetry constrains our inductive reasoning. In a

Bayesian framework, this means explaining how the asymmetry constrains our

assignment of prior probabilities. The asymmetry should be language indepen-

dent in the sense of not depending on our choice of linguistic primitives.

My proposal is that green is observation-independent while grue is not,

spelled out as probabilistic independence of whether emeralds are green and

when they are observed. I have explained how this constrains our priors via

the Random Principle. The asymmetry is language independent. So the New

Riddle is less paradoxical than it appears. We have gained a better understand-

ing of how to resist the grue skeptic and a more general lesson: independence

assumptions are central to our inductive reasoning. This helps to explain how

inductive reasoning is a way to gain knowledge of an objective world which is

the way it is independently of our observations.

23Earman (1992, ch. 6) discusses the problem of the priors. There are general principles
for determining prior probabilities such as the principle of indifference or the idea that we
should assign higher priors to simpler hypotheses. But these principles are often affected by
language dependence and so won’t help us to solve the New Riddle without additional reasons
for why some languages are better than others (Seidenfeld 1986; Sterkenburg 2016; Piantadosi
2018; Neth 2023). Titelbaum (2010) argues that such problems generalize to any account of
confirmation.
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Appendix: Proving the Random Principle

Theorem 1. Consider the sequence of random variables X1, ...,Xn where Xi = 1

iff the i-th object from E we observe is F and Xi = 0 otherwise. If we are

randomly sampling from E and F is observation-independent, then the sequence

X1, ...,Xn is exchangeable.

Proof. We want to show P(X1 = x1, ...,Xn = xn) = P(X1 = xπ(1), ...,Xn = xπ(n))

for any permutation π on {1, ..., n}. Pick an arbitrary permutation π. We first

show that for any f in the range of F with P(F = f) > 0, P(X1 = x1, ...,Xn =

xn ∣ F = f) = P(X1 = xπ(1), ...,Xn = xπ(n) ∣ F = f). The theorem follows by the

law of total probability since the possible values of F form a partition.24

Pick an arbitrary value f of F with P(F = f) > 0. Recall that f is a subset of

E , namely the set of objects which are F . Now let us analyze P(X1 = x1, ...,Xn =

xn ∣ F = f). The binary sequence x = ⟨x1, ..., xn⟩ of values of X1, ...,Xn contains

k ones and n − k zeros with k ≤ n. This means that k of the objects are F and

they are observed in one of the right orderings to produce x.

In terms of our random variables F and O, we can write the event X1 =

x1, ...,Xn = xn as follows. First, k objects are F , so F = f for some f with ∣f ∣ = k.

If ∣f ∣ /= k, then P(X1 = x1, ...,Xn = xn ∣ F = f) = 0 = P(X1 = xπ(1), ...,Xn = xπ(n) ∣

F = f) and we are done. So assume ∣f ∣ = k.

Second, the objects are observed in one of the right orderings to produce x.

Suppose E = {e1, ..., en}. We write the value of O as a sequence e = ⟨e1, ..., en⟩.

Say that such a sequence e agrees with x relative to F = f iff for all 1 ≤ i ≤ n,

xi = 1 iff the i-th object in e is an element of f and xi = 0 otherwise. The

number of sequences which agree with x is k!(n − k)! since we can permute

the objects which are F among themselves and the objects which are not F

among themselves without changing the pattern of F s and not-F s. (Note that

by conditionalizing on F = f we are holding fixed which objects are F .) Write

24As a reminder, the law of total probability says that for any partition E of our state space
Ω and any event A, P(A) = ∑E∈E,p(E)>0 P(A ∣ E)P(E). We show that P(A ∣ E) = P(B ∣ E) for
all E ∈ E with P(E) > 0. It follows that P(A) = P(B)
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these permutations as σ1, ...., σm where m = k!(n − k)!. For any permutation

σ, write σ[e] to abbreviate ⟨eσ(1), ...., eσ(n)⟩. So we have, by the definition of

random variables X1, ...,Xn,

P(X1 = x1, ...,Xn = xn ∣ F = f) = P(
m

⋃
i=1

O = σi[e] ∣ F = f) (1)

for permutations σ1, ..., σm chosen as above. By the definition of conditional

probability and P(F = f) > 0,

P(
m

⋃
i=1

O = σi[e] ∣ F = f) = P((⋃mi=1O = σi[e]) ∩ F = f)
P(F = f) .

By distributivity and finite additivity, since the events O = σ1[e], ...,O = σm[e]

are disjoint,

P((
m

⋃
i=1

O = σi[e]) ∩ F = f) =
m

∑
i=1

P(O = σi[e] ∩ F = f). (2)

By observation-independence F and O are independent, so

m

∑
i=1

P(O = σi[e] ∩ F = f) =
m

∑
i=1

P(O = σi[e])P(F = f). (3)

Now we apply the permutation π we picked in the beginning to all sequences

of objects σ1[e], ..., σm[e]. By random sampling, for any permutation π and

sequence e in the range of O, P(O = e) = P(O = π[e]), so

m

∑
i=1

P(O = σi[e])P(F = f) =
m

∑
i=1

P(O = π[σi[e]])P(F = f). (4)

Note that π[σ[e]] = ⟨eπ(σ(1)), ..., eπ(σ(n))⟩. Reasoning like in our previous steps,

m

∑
i=1

P(O = π[σi[e]])P(F = f) = P((
m

⋃
i=1

O = π[σi[e]]) ∩ F = f). (5)
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From (2), (3), (4) and (5) we have

P((
m

⋃
i=1

O = σi[e]) ∩ F = f) = P((
m

⋃
i=1

O = π[σi[e]]) ∩ F = f). (6)

By the definition of conditional probability and P(F = f) > 0, (6) entails

P(
m

⋃
i=1

O = σi[e] ∣ F = f) = P(
m

⋃
i=1

O = π[σi[e]] ∣ F = f). (7)

We defined σ1[e], ..., σm[e] to be all the sequences which agree with x. So

these sequences all have the same pattern of F s and not-F s. Then we applied

permutation π uniformly to all of these sequences. The resulting sequences

π[σ1[e]], ...., π[σm[e]] also all have the same pattern of F s and not-F s but

possibly disagree with x. But since we use the same permutation on both sides

and hold fixed with objects are F , the sequences π[σ1[e]], ...., π[σm[e]] are

exactly those which agree with π[x] = ⟨xπ(1), ..., xπ(n)⟩, so

P(
m

⋃
i=1

O = π[σ1[e]] ∣ F = f) = P(X1 = xπ(1), ...,Xn = xπ(n) ∣ F = f). (8)

From (1), (7) and (8), we have

P(X1 = x1, ...,Xn = xn ∣ F = f) = P(X1 = xπ(1), ...,Xn = xπ(n) ∣ F = f).

Since π was an arbitrary permutation, this completes the proof.

Here is an example to show that weak observation-independence and random

sampling do not imply exchangeability. Let E = {a, b, c, d}. You are certain that

a and b are green and that c and d are blue. Assume you are randomly sampling

without replacement so P(GGBB) = P(GBBG) = P(GBGB) = P(BBGG) =

P(BGGB) = P(BGBG) = 1
6
. Say that x is F iff x is either observed first and

green or x is observed later and blue. Consider the sequence of random variables

Y1, Y2, Y3, Y4 where for 1 ≤ i ≤ 4, Yi = 1 iff the i-th observed object is F and Yi = 0

otherwise. We can describe our events in terms of these random variables as
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shown in figure 2.

Event Values of Y1, Y2, Y3, Y4
GGBB 1011
GBBG 1110
GBGB 1101
BBGG 0100
BGGB 0001
BGBG 0010

Figure 2: Redescribing events.

The sequence of random variables Y1, Y2, Y3, Y4 has the joint distribution

P(1011) = P(1110) = P(1101) = P(0100) = P(0001) = P(0010) = 1
6
. The sequence

is not exchangeable as P(0001) > 0 but P(1000) = 0.

But F is weakly observation-independent, which means that P(x is F ∣

x is observed in position i) = P(x is F ) for all x ∈ E and 1 ≤ i ≤ 4. This is

because Y1, Y2, Y3, Y4 all have the same distribution.25 This can be seen from

the table above since all sequences of values are equally likely, so P(Y1 = 1) =

P(Y2 = 1) = P(Y3 = 1) = P(Y4 = 1) = 1
2
. So the information that an object is ob-

served in a certain position is independent of whether the object is F . However,

my stronger notion of observation-independence is not satisfied. For example,

if you learn that there is exactly one F , you know that it will not be observed

first.
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