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1 Introduction

The theoretical developments that led to supersymmetry – first global and then
local – over a period of about six years (1970/71-1976) emerged from a conflu-
ence of physical insights and mathematical methods drawn from diverse, and
sometimes independent, research directions. Despite these varied origins, a com-
mon thread united them all: the pursuit of a unity in physics, grounded in the
central role of symmetry, where “symmetry” is understood in terms of group
theory, representation theory, algebra, and differential geometry.1

As is well known, the algebraic approach to physical symmetries – by al-
lowing the unification of various types of symmetries by means of combining
their corresponding transformation groups into larger groups – has provided
the technical framework for the quest toward a unified theory of elementary
particles and their interactions. From this perspective, the key question guiding
the development of supersymmetry and supergravity was whether this strategy
of enlarging the symmetry could achieve a complete unification: that is, a uni-
fied theory with symmetries relating not only particles with different internal
quantum numbers (connected to charges of various types), as in the case of the
Standard Model and Grand Unified Theories, but also particles of different spin
(a property related to spacetime symmetry) – namely, bosons and fermions.2

In other words, the ultimate goal was to seek a deeper connection between
spacetime (external space) symmetries and inner space symmetries by enlarging
the algebra in order to get a new symmetry that could change the statistics
(Bose-Einstein vs Fermi-Dirac) of particles – the generalized symmetry that
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1As Wess (2000, 67) nicely put it, “Everybody has his own concept of symmetry, also
physicists, and you never know if we communicate about the same thing. Fortunately, math-
ematics with its strong capability to abstract has abstracted the concept of symmetries to the
concept of groups. When referring to symmetry I mean it in the framework of group theory,
representation theory, algebra and differential geometry”.

2As Freedman (1978, 535) phrased it, “If supersymmetry or supergravity is the answer,
then what is the question? There is a serious reply to this existential query, namely: is there a
symmetry principle powerful enough to raise hope for complete unification of the elementary
particles and their interactions?”
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would be called, in 1974, “supersymmetry”. As was emphasized at the time, a
more general symmetry relating bosons and fermions could also provide a way to
address some fundamental questions about the divide between these two kinds
of particles and the distinct roles each one plays in nature.3

Up to the 70s, previous attempts at combining spacetime (external space)
symmetries and inner space symmetries had failed, giving rise to a series of no-go
theorems, culminating in the 1967 Coleman-Mandula theorem about all possible
symmetries of the S Matrix. For a local, relativistic quantum field theory in four-
dimensional spacetime and on the basis of a given number of assumptions, this
powerful theorem proved the impossibility of combining spacetime symmetries
(Poincaré group) and internal symmetries (compact Lie groups) in any but a
trivial way: in their authors’ wording, it showed that the “symmetry group of
the S Matrix is necessarily locally isomorphic to the direct product of an internal
symmetry group and the Poincaré group” (Coleman and Mandula, 1967, 159).

In fact, the theorem was so precise that it suggested a unique way of avoid-
ing its restrictions:4 it turned out that the only possibility of combining (non-
trivially) external and internal symmetries was by generalizing the concept of
symmetry, i.e. enlarging the algebra associated to the symmetry, thus relax-
ing one of the theorem’s assumptions. In more detail, the idea for arriving at
a symmetry between bosons and fermions was “to generalize the notion of a
Lie algebra to include algebraic systems whose defining relations involve an-
ticommutators as well as commutators” (Wess and Bagger, 1992, 4). These
“super-algebras”, already known in mathematics as graded Lie algebras, repre-
sented extensions of ordinary Lie algebras in which a distinction was introduced
between even elements (bosonic), obeying commutation relations, and odd el-
ements (fermionic), obeying anticommutation relations among themselves and
commutation relations with the even elements (e.g., Ferrara 1987, 3).

Graded Lie algebras were not a new notion. They had been known since the
mid-50s, first in the context of the theory of deformation of algebraic structures
(starting with Nijenhuis 1955), and later, in relation to mathematical questions
of the second quantization, in the study of analogs of Lie algebras, differing
from usual Lie algebras by properties of the commutator (Berezin and Katz,

3See for example the following recollection by Volkov (2000, p. 56): “I would like to
emphasize that questions that were also related to supersymmetry interested me already
at the earliest stage of my activity. How do particles with different spin differ from one
another? Why are there bosons, why are there fermions? Questions that were also related
to supersymmetry interested me [... ] At the same time, the ideology of gauge field started
to penetrate actively into physics and I returned to the old questions. It amazed me that all
these particles, the Goldstone particles and the gauge fields, were bosons, but the fermions
somehow were not involved at all. Here, a kind of inequality appeared: why were some
particles - bosons - selected, but others - fermions - not included in this group?”. Another
example is the following reflection by Varadarajan (2010, 2): “Supersymmetry was invented
by the physicists to provide a unified way of understanding the behavior of the two basic
constituents of the physical world, the fermions and the bosons.

4The fact that there is a unique symmetry circumventing the no-go theorem of Coleman
and Mandula was shown by Haag, Lopuszahski and Sohnius (1975), proving that the super-
symmetry algebra is the only graded Lie algebra of symmetries of the S-matrix consistent
with relativistic quantum field theory.
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1970).5 The mathematical background for supersymmetry – a new kind of
algebraic structure, formulated in terms of commutators and anticommutators
– was thus already in place. However, the road to establishing a four-dimensional
supersymmetric quantum field theory, first as global symmetry, then also as a
local symmetry (supergravity), was anything but straightforward. The following
two sections are devoted to illustrate the entanglement of ideas, methods and
motivations informing the entire process: “from symmetry to supersymmetry”
in Section 2,6 “from supersymmetry to supergravity” in Section 3.

2 From symmetry to supersymmetry

According to the key figures in the developments leading to supersymmetry,
the theory was “discovered” independently three times: two times in the former
Soviet Union (in Moscow and Kharkov, respectively), the third time in the West.
In the early 70s, that is well before the end of the Iron Curtain, communication
between the two blocks was not always easy. However, it appears there was no
real interaction also between the two soviet groups – Y. A. Golfand and E. P.
Likhtman in Moscow, and D. V. Volkov, V. P. Akulov, and V. A. Soroka in
Kharkov.7

Although the overarching goal was unity in physics, the three pioneering lines
of inquiry emerged from distinct motivations and starting points. To illustrate
these developments, let us begin by outlining the main achievements that led to
supersymmetry by listing the key authors and papers from 1971 to 1974.8 The
details will then be examined in 2.1-2.2.

• Soviet Union: Construction of supersymmetric field theories and studies
of some of their properties.

Physicists: Y. A. Golfand, E. P. Likhtman, D, V. Volkov, V. P. Akulov, V.
A. Soroka.

• Moscow:

Golfand and Likhtman, 1971 (“Extension of the Algebra of Poincaré Group
Generators and Violation of P Invariance”)

• Kharkov:

5A detailed review of graded Lie algebras in mathematics and physics until mid-70s is
provided in Corwin, Ne’eman, and Sternber (1975).

6“From Symmetry to Supersymmetry” is the title of a 1999 lecture delivered by Julius
Wess, reprinted in Kane and Shifman (2000).

7See how Zumino remembers these early developments (2006, 199): “It is remarkable that
Volkov and his collaborators didn’t know about the work of Golfand and Likhtman, since all
of them were writing papers in Russian in Soviet journals. Julius and I were totally unaware
of the earlier work.”

8Of course more papers appeared in the field than those listed here: the choice has been
limited to those generally considered to be milestones in the progress towards supersymmetry
in those years.
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Volkov and Akulov. 1972 (“Possible Universal Neutrino Interaction”);
1973 (“Is the Neutrino a Goldstone particle?”)

• West: From two-dimensional supergauges in the dual models of early
string theory to four-dimensional supersymmetry.

Physicists: (1) P. Ramond, A. Neveu, J. Schwarz, J.-L. Gervais, B. Sakita;
(2) J. Wess, B. Zumino.

• Two-dimensional supergauges in dual models:

Ramond, 1971 (“Dual Theory for Free Fermions”)

Neveu and Schwarz, 1971 (“Factorizable dual model of pions”)

Gervais and Sakita, 1971 (“Field Theory Interpretation Of Supergauges
In Dual Models”)

• Four-dimensional supersymmetry:

Wess and Zumino, 1974a (“Supergauge Transformations in Four Dimen-
sions”)

2.1 Soviet Union

• Moscow. The 1971 paper by Yuri Golfand and his graduate student Evgeny
Likhtman at the Lebedev Physics Institute in Moscow is commonly acknowl-
edged to be the first contribution where a four-dimensional supersymmetric
field theory was obtained. In fact, Golfand had been working on extending the
algebra of the Poincaré group since the late 1960s (Likhtman 2000, 35). As
Golfand and Likhtman recollect, “Somewhat earlier one of the author (Yu. A.
G.) considered spinorial extensions of Poincaré group wishing to come across
new no-go theorems” (Golfand and Likhtman (2000, 54). Thus, a motivation
for these previous studies by Golfand was to deal with no-go theorems such as
the Coleman-Mandula one.

After studying several kinds of extensions of the algebra by adding spinorial
generators, the purpose of the paper was “to find such a realization of the [en-
larged] algebra ... in which the Hamiltonian operator describes the interaction
of quantized fields” (Golfand and Likhtman 1971, 323). They used Dirac spinors
and found, in their realization, that the algebra seemed to be non invariant un-
der space reflections. This was seen as a way to account for parity violation in
the weak interactions – whence the paper’s title, “Extension of the Algebra of
Poincaré Group Generators and Violation of P Invariance”.9

9According to Marinov (2000, 166), for example, “It is known that Golfand discussed
the new symmetry with his colleagues in the late 1960’s, trying to solve the puzzle of weak
interactions, before the electroweak theory did the job.”
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After this first result – in their own words, “a model for the interaction
of quantized fields with parity non conservation, invariant against the alge-
bra” (1971, 326) – Golfand and Likhtman still worked on various aspects of
supersymmetry. Likthman, in particular, continued to work at new versions
of interactions of the supermultiplets, and, according to his recollections, he
was “the first to observe that the number of the fermion and boson degrees of
freedom coincided in every supermultiplet, while the infinite energy of vacuum
oscillations is cancelled” (Likhtman, 2000, 37).

• Kharkov. The second, independent discovery of supersymmetry is due to Dim-
itri Volkov and his graduate student Vladimir Akulov at the Kharkov Institute
for Physics and Technology. In their 1972 work,10 by using the 1970 results
of Beretzin and Katz on Lie groups with commuting and anti-commuting pa-
rameters, they constructed an extension of the Poincaré group which included
fermionic supercharges with anticommuting parameters and the internal sym-
metry group, thus bypassing the Coleman-Mandula no-go theorem.

The starting point for their work was the question of whether Goldstone
particles with spin one half might exist, in order to explain the apparent mass-
lessness of the neutrino by interpreting it as a Goldstone fermionic particle. As
Volkov recollects (2000, 58), this idea was inspired by work of Heisenberg in the
second half of the 1960s, where, in the framework of a general program for a uni-
fied field theory of elementary particles, he conjectured that the neutrino could
be a Goldstone particle emerging as a result of spontaneous symmetry breaking.
In Volkov’s words, “This idea of Heisenberg was revolutionary, because he was
the first to formulate the thought that there might exist Goldstone particles in
nature with spin one-half” (ibid.).

Heisenberg’s theory was not correct but the idea motivated Volkov to con-
sider how Goldstone fermionic particles might appear in the theory, realising
that this required “an extension of the Lorenz group and an extension of the
Poincaré group so that new operators would be present, which would corre-
spond to a quantum number of the neutrino” (ibid.).11 On this basis, Volkov
and Akulov proceeded to formulate a Lagrangian for the interaction of the neu-
trino (as the Goldstone fermion) with itself and with other particles, based on
a nonlinear realization of the extended Poincaré algebra.12

10The paper was sent both to the Russian JETP Letters, with the title “Possible Universal
Neutrino Interaction”, and to Physics Letters (where it appeared in 1973), with the title “Is
the Neutrino a Goldstone particle?”

11Corwin, Ne’eman, and Sternberg (1975, 588) note that the hypothesis that the neu-
trino’s masslessness might indicate that it is a Goldstone particle was suggested earlier also
by Ne’eman and had failed because of the statistics issue.

12The idea of interpreting neutrinos as Goldstone particles of a spontaneously broken (su-
per)symmetry was then abandoned because of phenomenological difficulties. According to
Marinov (2000, 167), this was one reason why the work of Volkov and Akulov went relatively
unnoticed when it came out, to be revived only after the result of Wess and Zumino.

5



2.2 West

• Two-dimensional supergauge symmetry in dual models. In parallel to
the findings in Moscow and Kharkov, a completely distinct line of development
leading to supersymmetry emerged in the West.

This process originated in the context of the “founding era” of string theory,
starting with the discovery by Gabriele Veneziano of his famous “dual” scat-
tering amplitude for four mesons:13 that is, the so-called dual theory of strong
interactions (1968-1973), an intense theoretical activity aimed at extending the
Veneziano amplitude toward more realistic models – from the first two models
for the scattering of N scalar particles (the generalised Veneziano model, known
as the Dual Resonance Model (DRM), and the Shapiro-Virasoro model (SVM))
to all the subsequent endeavours to enlarge, complete and refine the dual the-
ory, including its interpretation in terms of a quantum-relativistic string and
the addition of fermions.14

(a) The Ramond (R) model. It was precisely in connection with the fermion issue
within this broader effort of model building and generalization that the West-
ern path to supersymmetry took off. The starting point was the construction
of the first dual model including fermions by Pierre Ramond (Ramond, 1971).
In his seminal paper, Ramond proposed a wave equation for free fermions in
the framework of the operator-formalism approach to dual theory.15 As em-
phasized by Ramond, his equation was a generalization of Dirac’s equation to
the Veneziano model, according to “a correspondence principle” by which basic
notions of point particles (such as the momentum operator and Dirac’s gamma
matrices) were extended in order to be related to dual models (e.g., Ramond
2012, 29.4). Moreover, as a consequence of his construction, Ramond obtained a
“curious algebra, which had both commutators and anticommutators” (Ramond
2000, 5): in fact, a generalization of the so-called Virasoro algebra to a Lie al-
gebra with both odd and even elements – a superalgebra, in later terminology.16

(b) The Neveu-Schwarz (NS) model. Soon after Ramond’s result, André Neveu
and John Schwarz presented a new dual model for pions by enlarging the Fock
space of the dual resonance model (DRM) with the addition of anticommut-

13“Dual”, because the amplitude also obeyed the duality principle known as Dolen-Horn-
Schmid duality (DHS duality) or dual bootstrap, besides the basic principles of the S-matrix
theory, such as unitarity, analyticity and crossing symmetry.

14A detailed reconstruction of these developments can be found in Cappelli, Castellani,
Colomo and Di Vecchia (2012).

15According to this approach, studying the spectrum of the states amounted to rewrite
the N-point amplitudes as quantum-mechanical expectation values of creation-annihilation
operators of the harmonic oscillator (see for example Cappelli et al. 2012, Chapter 10).

16In constructing the spectrum of the physical states, the problem was to decouple unphys-
ical negative-norm states (called “ghosts”, at the time) related to the time-like components of
the oscillators. This was done, in analogy with the “Fermi condition” in QED following from
gauge invariance, by imposing “gauge” constraints on the physical states. Virasoro showed
that the consistency of this approach resulted from the structure of an infinite-dimensional
Lie algebra (for details, see for example Di Vecchia (2012), Chap. 11).
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ing creation and annihilation operators (Neveu and Schwarz, 1971). They also
obtained to extend the Virasoro algebra with a set of anticommuting genera-
tors – half odd integer labelled, in their case (while integer labelled in the R
model). Shortly thereafter, Neveu, Schwarz and Thorn (1971) reformulated the
dual pion model in another Fock space, which had the advantage of containing
fewer spurious states, thus allowing the spectrum of physical particle states to
be studied more easily. Finally, a few days later Thorn (1971) presented a dual
model for pions and fermions, obtaining for the mesons the same spectrum as
the NS model, and for the fermions the spectrum of the Ramond’s propagator.
Thus, the two dual models (R and NS) could be identified as the fermionic and
bosonic sectors of a single model, later known as the Ramond-Neveu-Schwarz
(RNS) model.

(c) Supergauges in dual models. The next step towards supersymmetry was
the reformulation of the RNS model in terms of the world-sheet approach to
dual string theory by Jean-Loup Gervais and Bunji Sakita (1971).17 As Ger-
vais (2000, 19) recollects, “in 1970-71 we started to develop the world-sheet
interpretation of the spinning string (unknown at that early time) ... We recog-
nized that the Neveu-Schwarz-Ramond (NSR) models included world-sheet two-
dimensional Dirac spinor fields, in addition to the world-sheet scalar fields.” In
particular, guided by idea that the conformal invariance of the free world-sheet
action was at the origin of the elimination of negative norm states (ghosts), they
succeeded in interpreting the additional operators used as the subsidiary gauge
conditions on the physical states of the generalized dual models – the set of
anticommuting generators extending the Virasoro algebra (the “supergauges”
of the NSR models, in their terminology) – as generators of infinitesimal trans-
formations of the fields leaving the action invariant, that is the generators of a
new symmetry, the super conformal invariance of the world-sheet. In Gervais’s
words, “We showed that the supergauges of the NSR models corresponded to
the fact that the two-dimensional world-sheet Lagrangian was invariant under
transformations with anticommuting parameters which mixed the scalar and
spinor fields. This gave the first example of a supersymmetric local Lagrangian
(albeit, two-dimensional)” (ibid., 22).

• Four-dimensional supersymmetry. As said, the supergauge symmetry
found by Gervais and Sakita was only two-dimensional (among other limita-
tions). Generalizing from this dual model supergauge symmetry, Julius Wess
and Bruno Zumino, at the time collaborating at CERN,18 succeeded in ob-
taining – as a “natural” extension – an analogous transformation group in
four-dimensional spacetime in a 1973 seminal paper (published in 1974). It

17The idea that the dual model oscillators represented a relativistic string allowed to refor-
mulate it as a field theory in a two-dimensional space: the coordinate of the string moving in
spacetime could also be considered a field that takes values on the world-sheet of the string
(the surface swept out by the string moving in spacetime).

18Apparently, as Sakita recollects (2000, 31), it was a seminar given by Sakita at the CERN
in 1973, and a subsequent conversation with Zumino during his visit there, that had led Wess
and Zumino to start their work on supersymmetric field theory.
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is worth recalling how their paper began, summarizing prior results and setting
the agenda for their own work:

Supergauge transformations have been studied until now in dual mod-

els, especially in their formulation as two-dimensional field theories. They

transform scalar (in general tensor) fields into spinors and boson fields into

fermion fields. This is possible because the parameters of the supergauge

transformation are themselves totally anticommuting spinors. The com-

mutator of two infinitesimal supergauge transformations is a conformal

transformation in two dimensions. Invariance under supergauge trans-

formations is closely connected to the absence of ghost states in the two

dimensional field theory.

It is natural to ask whether one can define supergauge transformations in

four dimensional space-time. In this paper we show that this is indeed

possible [...]. (Wess and Zumino, 1974a, 39)

Indeed, in this first paper Wess and Zumino achieved to establish supergauge
transformations in four dimensions, study the algebra generated by them and
give a number of representations of them as transformations on fields. In a sec-
ond paper appearing a few months later (Wess and Zumino, 1974b), they pro-
ceeded to construct a Lagrangian model that was invariant under supergauge
transformations in the one-loop approximation, discuss the renormalization pro-
cedure and show that the relations among masses and couplings were preserved
by renormalization. Finally, with a third closely following paper (Wess and
Zumino, 1974c), they addressed the issue of whether quantum electrodynamics
could be extended, by adding suitable fields, to a renormalizable supergauge
invariant theory. They succeeded to show that this was indeed possible, by
constructing a field theory which was both supergauge invariant and invariant
under ordinary gauge transformations.

Since the results anticipating supersymmetry which had been obtained in the
Soviet Union were still not known in the West, it was with these three papers
that supersymmetry was really brought to the attention of the international
community of theoretical particle physicists.19.

Note that, in these papers, Wess and Zumino still used the term ‘super-
gauge’ instead of ‘supersymmetry’, as is also evident from the papers’ titles. In
fact, the four-dimensional supersymmetry introduced in their work was not a
gauge symmetry, although suggested by the supergauge symmetry of the dual
models.20 But, as emphasized by Zumino, since its existence was suggested by
the dual models, “the name supergauge symmetry in four dimensions seemed
a natural choice”. However, he continued, “it seems now reasonable to avoid

19This can be checked also in a graph to be found in comment by Shifman on the chronology
and numerology of research in supersymmetry, reporting the number of papers on supersym-
metry published between 1971 and 1982. For what regards the first part of the graph, the
beginnings of the accelerated growth in 1973 is very visible (Shifman 2000, 43). The graph is
also reprinted in Shifman (2025, 12)

20It was rather a classification symmetry for the spectrum of the states, such as the familiar
SU(N) symmetries, but acting in spacetime.
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the word gauge and adopt the expression Fermi-Bose supersymmetry, or simply
supersymmetry, suggested recently by Salam and Strathdee” (Zumino, 1974,
254). Apparently, as confirmed also by these words of Zumino, the term ‘super-
symmetry’ was used for the first time in the 1974 paper “Super-symmetry and
non-Abelian gauges” by Salam and Strathdee.21

3 From supersymmetry to supergravity

After the 1973/74 papers by Wess and Zumino, the theory of supersymmetry
progressed very rapidly in various directions (renormalizability and ‘miraculous’
cancellation of divergences, the superfield/superspace formalism, the construc-
tion of supersymmetric Yang-Mills theories, mechanisms for the spontaneous
breaking of supersymmetry, ...).22

Here, we focus exclusively on a few key developments in local supersymmetry
that led to the establishment of supergravity: from the pioneering works of
Volkov and Soroka (1973-1974) in the Soviet Union, to the two seminal papers
for supergravity – Freedman, van Nieuwenhuizen and Ferrara (1976), and Deser
and Zumino (1976), respectively.

• Towards supergravity. After considering globally supersymmetric field theory
in four dimensions, it was natural to extend the theory by searching for local
realizations of supersymmetry. Aside from the natural inclination to generalize,
which is inherent in the scientific process, there were two main (interconnected)
motivations at play: the transfer to the case of supersymmetry of the ‘gauge ide-
ology’ of quantum field theory (gauge principle, spontaneous symmetry breaking
and Higgs mechanism) and the suggestion that local supersymmetry could lead
to a generalized (possibly finite) theory of gravity.23

Hints in this direction were already present in the concluding programmatic
remarks of the 1972 paper by Volkov and Akulov (cf. 2.2): “Similarly, the
gravitational interaction may be included by means of introducing the gauge
fields for the Poincaré group. Note that if the gauge field for the fermionic
transformation is also introduced, then as a result of the Higgs effect the massive
gauge field with spin three-halves appears [the graviton’s superpartner] and the
considered Goldstone particle with spin one-half [the Goldstino] disappears”.
This program was then effectively carried on by Volkov and another of his
students, Vyacheslav Soroka, in two subsequent papers devoted to the Higgs

21In the foreword to the first edition of their collective volume The Supersymmetric World,
Kane and Shifman remark that the terminology oscillated between super-gauge and super-
symmetry (Kane and Shifman, 2000, ix). In the second edition of the volume, Shifman also
mentions a curious priority dispute raised by Zumino concerning the introduction of the term
‘supersymmetry’ (see Shifman, 2025, 5).

22There are numerous volumes that provide excellent coverage of these developments: for
example, Fayet and Ferrara (1977), Ferrara (1987), Kane and Shifman (2000; 2025), Duplij,
Siegel, Bagger (2004), Shifman (2000).

23A suggestion based on the fact that field theories with local supersymmetry generalized
Einstein’s general relativity and that in supersymmetric field theories the loop contributions
of fermions and bosons tend to cancel each other.

9



mechanism for Goldstone particles with spin 1/2, later known as the “super-
Higgs effect” (Volkov and Soroka, 1973; 1974).

Shortly after the introduction of the Wess-Zumino model, the research of
Volkov and his collaborators gained recognition in the West, significantly influ-
encing subsequent developments toward supergravity.24 In particular, with a
paper on gauge fields on superspace (Volkov, Akulov and Soroka, 1975) they
also contributed to develop the so-called superspace approach to supergravity,
initiated by Arnowitt, Nath and Zumino (1975) on the grounds of seminal work
on the introduction and use of the concept of superfield by Salam and Strathdee
(1974a,b).25

• 1976: The ‘discovery’ of supergravity. Two nearly simultaneous papers ap-
peared in 1976 – one by Daniel Freedman, Peter van Nieuwenhuizen, and Sergio
Ferrara, and another by Stanley Deser and Bruno Zumino – are widely rec-
ognized as marking the birth of supergravity: that is, the construction of the
first theory of supergravity as a gauge theory of local supersymmetry. While
the same theory was constructed by the requirement that a new gauge field,
carrying spin 3/2 (gravitino), could be coupled to Einstein gravity with a lo-
cally supersymmetric interaction, the two papers remarkably differed in their
approach.26 Freedman, van Nieuwenhuizen and Ferrara used a second order
formalism for gravitation and computer calculations for checking the vanishing
of complicated terms in deriving the invariance of the action; Deser and Zu-
mino used a simplified first order formulation of the theory, implying a torsion
contribution to the geometry.27

4 Conclusion: the “Dirac mode of quest”

It is widely held that the developments leading to supersymmetry in the early
1970s were a “purely intellectual achievement, driven by the logic of theoretical
development rather than by the pressure of existing data”, to quote Gordon
Kane and Mikhail Shifman in the foreword to their remarkable 2000 collective
volume on the beginnings of the theory. According to them, this makes the
history of supersymmetry “exceptional”, setting it apart from “all other major
conceptual developments in physics and science ... occurred because scientists
were trying to understand or study some established aspect of nature, or to

24Zumino (1974, 258), for example, referred to the 1973 work of Volkov and Soroka in the
following terms:“Volkov and Soroka have developed a description of curved superspace which
combines gravitational theory with the interaction of particles of spin 3/2, 1 and 1/2. Can a
theory of this kind, because of the compensation of divergences due to supersymmetry, provide
a renormalizable description of gravitational interactions?”.

25In these seminal works the notion of superfield (a field defined on an enlarged space,
called “superspace”) was introduced and the supersymmetry transformations were interpreted
as operations on superfields. This allowed to develop a geometric approach to supergravity,
based on a group-theoretic approach via curvatures (e.g., Freedman, 1978, 536).

26Deser (2018) provides an interesting, first-hand comparison of the modalities, timing and
approaches of the two papers.

27This formulation was closely related to the description of supergravity in superspace (see
Deser and Zumino, 1976, 335.)
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solve some puzzle arising from data.”
Here, Kane and Shifman (among many others) appear to conflate the notion

that a scientific development can be driven by theoretical considerations rather
than empirical pressure with the idea that it is “purely intellectual”. But sci-
entific practice encompasses both theoretical and experimental work, and these
two facets do not always advance in tandem.

Certainly, this perspective on the intellectual character of supersymmetry is
influenced by the persistent lack of empirical confirmation – no superparticles
have been detected thus far. However, even in that regard, supersymmetry is
not an outlier in the history of science: just think of the case of the Higgs boson
(theoretically introduced in 1964, experimentally ‘observed’ in 2012).

How to trust a theory in absence of empirical confirmation is a key issue,
much debated in current philosophy of science (see, for example, Dardashti,
Dawid and Thébault, 2019). Yet, this is a different question from whether a
theoretical advance is scientific or merely an intellectual exercise. As outlined
in the preceding sections, the developments of supersymmetry and supergravity
are just as ‘scientific’ as a great deal of theoretical physics. Their history is not
an “exception”: it provides a clear example of how scientific progress can arise
through the concurrent processes of generalization, analogy, and conjecture,
supported by a tight interplay of mathematically driven creativity and physical
constraints and motivations.

Reflecting on the directions of particle physics, Yoichiro Nambu (1985, 105)
distinguished two competing “modes of quest” – the “Yukawa mode” and the
“Dirac mode” – in the efforts of theorists:

The Yukawa mode is the pragmatical one of trying to divine what under-
lies physical phenomena by attentively observing them, using available
theoretical concepts and tools at hand.

The other mode, the Dirac mode, is to invent, so to speak, a new math-

ematical concept or framework first, and then try to find its relevance in

the real world [...]

Among examples of the Dirac mode, “unique to physics among the natural
sciences”, he included magnetic monopoles, non-Abelian gauge theory and su-
persymmetry. And he concluded:

On rare occasions, these two modes can become one and the same, as in

the cases of the Einstein gravity and the Dirac equation.
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