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Trading Evidence: The Role of Models in Interfield Unification 

Daniel A. Weiskopf 

 

Abstract: Scientific fields frequently need to exchange data to advance their own inquiries. Data 

unification is the process of stabilizing these forms of interfield data exchange. I present an 

account of the epistemic structure of data unification, drawing on case studies from model-based 

cognitive neuroscience (MBCN). MBCN is distinctive because it shows that modeling practices 

play an essential role in mediating these data exchanges. Models often serve as interfield 

evidential integrators, and models built for this purpose have their own representational and 

inferential functions. This form of data unification should be seen as autonomous from other 

forms, particularly explanatory unification. 

 

1. Forms of unification 

Accounts of scientific unification differ in what they take the target of unification to be. 

Historically, unification has centered on abstract representations such as theories, models, and 

explanations more generally. This trend can be seen in classic work on intertheoretic reduction, 

explanatory unification, and mechanistic explanation, all of which are concerned largely with 

explicating the senses in which these epistemic products can themselves be unified, or play a 

central role in unifying fields.1 Such unification takes many forms, including showing that one 

field’s theories can be subsumed under another, that models from one field can be transferred to 

 
1 Here I will treat the social units of scientific organization as fields rather than disciplines, in 

roughly Darden’s sense (Darden 2005; Darden and Maull 1977). 
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another, or that information from multiple lines of inquiry can contribute to building multilevel 

models that span the domains of several related fields.  

Contemporary work on unification, however, has drawn attention to other ways that 

scientific communities can productively merge their activities. Fields frequently exchange not 

just theories and models but also instruments, tools, experimental systems, computational or 

analytic techniques, and so on. These are not products of inquiry, but methods and materials 

developed to support inquiry. Trading and adapting these materials promotes a distinctive kind of 

field unification, since the use of shared techniques and methods need not lead to unified theories 

and models. It is possible, indeed commonplace, to adopt a set of statistical methods without 

using them to support the same kinds of theories, or to repurpose instruments invented for one 

kind of inquiry to serve another. Methods, tools, and instruments are flexible with respect to the 

goals they can serve. 

In addition to having their own explanations and methods, fields generate their own 

characteristic types of data. Data occupy a position between these two more widely explored 

forms of scientific unification insofar as they are generated by experimental systems and 

instruments, processed using particular analytic methods, and ultimately serve to support 

theories, models, and explanations. Just as explanations and methods may migrate across fields, 

so too can data. We therefore have a threefold way of classifying scientific unification in terms 

of explanations, methods, and data.2 Understanding data unification is particularly important 

within massively interfield projects such as the cognitive sciences. Here the typical data are 

highly varied and may include grammaticality judgments and corpus statistics, response times 

 
2 I owe the distinctions among methodological, data, and explanatory integration to O’Malley 

and Soyer’s (2012) excellent and detailed discussion. 
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and error rates, eye movement tracks and pupil dilation measurements, looking times, stimulus 

similarity ratings, verbal protocols, spike train recordings from single-cell electrophysiology, 

event-related potentials, single photon emission CT and functional MRI images, and so on. 

Investigators often want to use data and observations collected within one field to investigate 

questions posed by another. White matter tractography maps from neuroimaging may inform 

theorizing in cognitive psychology; cross-cultural ethnographic observations may inform 

developmental theorizing; receptor anatomy and psychophysical response times may inform 

speculations about neural evolution.  

It is often unclear, however, how to use data from outside of one field to help settle 

questions within it. For that matter, it may not be obvious whether these data even can be used in 

this way. The evidential value of data—the hypotheses they may support and questions they may 

address—is not written on their face. Theorists of interfield unification and integration have 

recently begun to describe the structure of these data exchanges, giving rise to a number of 

accounts of how data from one field are turned into evidence for another (Leonelli 2016, 141–75; 

O’Malley 2013; O’Malley and Soyer 2012). Here I contribute to this project by arguing that 

models play a central role in enabling interfield data exchanges. Specifically, model-building 

practices can serve as sites for passing data across fields and thereby coordinating fields’ 

epistemic activities.  

I first introduce a conception of data as varying in their evidential value depending on the 

context of their use (Section 2). With this conception in hand, the process of model-based 

coordination becomes one of turning data from one field into something having evidential value 

for another. This shift in epistemic value is illustrated by looking at a set of cases at the nexus of 

experimental psychology and neuroscience, specifically in the emerging interfield practices of 
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model-based cognitive neuroscience (Section 3). Analyzing these cases will highlight the 

complex representational and inferential structure of the models involved in evidential 

coordination (Section 4). This form of interfield data unification can be understood as a kind of 

practical rather than theoretical unification (Section 5). Finally, data unification can be 

productively distinguished from neighboring notions of explanatory unification (Section 6). 

 

2. Sharing data and making evidence 

To begin we will need a more precise conception of what data are. A prominent account 

owing to Woodward (1989, 394) holds that “data are what registers on a measurement or 

recording device in a form which is accessible to the human perceptual system, and to public 

inspection,” as well as the “records or reports” of such events (Woodward 2010, 792). On this 

view, data are marks, records, or traces of causal processes. The epistemology of data therefore 

centers whether they are reliable in this role, looking to the experimental setups, instruments, and 

intervention techniques that have produced them to winnow out possible sources of distortion, 

confounds, noise, bias, and artefacts. The assessment of new measurement techniques in 

neuroscience, for example, has often focused on assessing the methods by which data are 

generated (Bechtel Forthcoming) with the aim of permitting reliable discrimination among 

competing claims about the phenomena (Woodward 2000). Data on this picture are tightly linked 

with the specific and sometimes ill-understood causal setups that generate them. The more secure 

these connections, the more confidently we can take data to be informative about some aspect of 

the world. 
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Leonelli (2016, 77) has proposed a relational conception of data on which they are “any 

product of research activities, ranging from artifacts such as photographs to symbols such as 

letters or numbers, that is collected, stored, and disseminated in order to be used as evidence for 

knowledge claims.” She does not discard questions about the origins of data—in fact, keeping 

track of such historical facts is essential to creating data histories, which play a key role in 

determining the weight we should give data in different kinds of inquiry.3 The relational 

conception, however, emphasizes two central traits of data that are go beyond backwards-looking 

assessment. First, they are portable or detachable from their circumstances of production. Data 

are by their nature things that can circulate within and across research communities. In 

circulating, they become available to be taken up for many purposes that can differ from those of 

their creators: they have the “ability to fit a variety of lines of inquiry” (80). Second, data depend 

for their usefulness on their reception or circumstances of application “because one cannot 

predict all the possible claims that data might be used as evidence for in the future; and also 

because one cannot predict whether data will actually be used as evidence for specific claims 

until it happens” (84). As Leonelli’s characterization implies, data are not automatically 

evidence. Something’s status as data depends on its potential to serve as evidence relative to an 

inquiry. Data become evidence for a field when there are reliable ways to use them to support, 

reject, constrain, or extend claims made within that field. The work of evidential exchange lies in 

this activity, particularly when the data are generated using tools and methods that come from 

separate fields. 

 
3 As she notes, evidential value is “judged by scientists through an evaluation of the ways in 

which data have been collected and disseminated, including the instruments and materials 

employed to that effect” (2013, 3). These evaluations are part of what allows data to convey their 

potential evidential value in contexts outside of the ones where they were generated. On the 

granular differences between Leonelli’s conception and Woodward’s, see her 2016, 84-8. 
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The relational conception shifts our attention from the circumstances of data production 

to those of reception. It asks us to assess data in terms of the potential breadth of their relevance. 

Within the relational conception it is not always obvious whether some item is data or not, that 

is, whether it has potential evidential value. Countless things can be reliably measured, but those 

measurements may turn out to be worthless. Nor it is obvious how a putative piece of data’s 

evidential value can be exploited by using it to systematically do epistemic work. The problem 

faced in interfield inquiry is not always (or even primarily) in collecting new data but in 

establishing these two kinds of relevance relations and thereby showing how claims within a 

field can be potentially confirmed or undermined by data imported from outside of it.  

The most promising aspects of these two conceptions of data have been synthesized by 

Bokulich and Parker (2021) in their “pragmatic-representational” view. They take data to be 

“records of the results of a process of inquiry that involves interacting with the world” (6) that 

are assessed according to how adequate they are for specific purposes.4 Adequacy-for-purpose is 

a multivalent property that depends on whether the data are actually usable for achieving 

particular situational ends, or whether they would be usable given the right set of informational, 

cognitive, or technological resources (11). A data set can therefore be evaluated differently by 

two investigators depending on how they value qualities such as accuracy or high resolution, or 

which sets of inferences they are intending to use it to make. Crucially, data can be dynamically 

repurposed, that is, used to answer an entirely new set of questions given the right sort of 

processing (19-20). Repurposing can involve using a data set to draw conclusions about an 

 
4 Bokulich and Parker further argue that insofar as data can be taken to be about some aspect of 

the world that is involved in their production, they can be construed as representations. They add 

that while the representational value of data is constrained by the circumstances of their 

production, they need not represent only those aspects. See also Leonelli (2019, 17–19). 
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entirely different target than the one it originally concerned: in their example, researchers used 

Mars rover navigational data to measure regional gravitational changes and ultimately to 

estimate the density of the Martian crust at different locations. This sort of chained repurposing 

illustrates the mobile quality of data that is also central to Leonelli’s relational account.  

Discovering ways to repurpose data in order to answer new questions across fields is one 

way of making that data evidentially relevant. Here I will adopt the pragmatic-representational 

conception as a way of understanding interfield data unification in the cognitive sciences. The 

case studies below draw on and develop Leonelli’s (2016, 91) insight that, very often, 

“[m]odeling is the process by which data are assigned evidential value.” 

 

3. Studies in model-based cognitive neuroscience 

Model-based cognitive neuroscience (MBCN), according to its leading proponents and 

practitioners, comprises “several entirely new statistical modeling approaches developed through 

collaborations between mathematical psychologists and cognitive neuroscientists, collectively 

forming a new field” (Turner et al. 2017, 66) These approaches, mainly developed within the 

past 15 years, have been accompanied by the appearance of major textbooks, special journal 

issues, and edited volumes.  

Putting aside for now the question of whether MBCN itself truly constitutes a new or 

emergently stabilizing field, I will treat it pro tem as a heterogeneous set of tools, analytic 

methods, experimental systems, and data sources that demonstrate all three forms of unification 
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sketched above.5 From mathematical psychology it takes formal models of cognition such as the 

diffusion drift model (to be discussed shortly). From experimental psychology come protocols, 

methods, and intervention techniques for eliciting data about how human participants perform in 

various tasks that are hypothetically linked to the constructs described in these formal models. 

From cognitive neuroscience come technologies and experimental systems for measuring kinds 

of neural activity during the performance of these tasks. Finally, from statistics come a range of 

analytic methods and computational tools that are essential for using mathematical models and 

data sets to answer particular kinds of research questions. 

MBCN represents, then, a highly active zone of epistemic trade.6 This activity is best 

appreciated by observing its practical implementations. The most lively domains of investigation 

in MBCN center on psychological capacities and phenomena for which there are existing 

mathematical models that have been built, trained, and tested in a range of behavioral 

experiments. These include models of reinforcement learning, categorization, and decision and 

choice. Here we will focus on studies of choice that draw on accumulator models of various 

types, best exemplified by (but not exclusive to) the diffusion decision model, sometimes also 

called the diffusion drift model (DDM).  

First developed in a landmark paper by Roger Ratcliff (1978), the DDM in its elementary 

form is a model of two-alternative forced choice. Participants are shown a set of materials and 

given a prompt that requires making a binary decision such as “Are the dots in this image 

predominantly moving upwards or downwards?” or “Are these two images matched in their 

 
5 MBCN not been extensively theorized by philosophers, but for some illuminating previous 

discussions see Irvine (2016) and Povich (2019). 
6 See Section 4 for more on this notion and its relation to Peter Galison’s conception of trading 

zones. 
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overall brightness or not?” The model represents such choices as resulting from a continuous 

(i.e., nondiscrete) process of evidence accumulation. Participants begin decision making at a 

starting point, which may be either neutral or biased towards one of the options. They are then 

presented with a changing stream of evidence that nudges them towards one option or the other. 

The process continues until the accumulated evidence reaches a decision threshold; crossing the 

threshold constitutes the act of choice and triggers a behavioral response.  

The model in a streamlined form thus has four parameters interpretable as separate 

cognitive aspects of the decision process (Alexandrowicz 2020): (1) the location of the starting 

point between the two choice options; (2) the location of the decision boundaries for the options, 

which stand for how much evidence needs to be acquired to trigger a decision; (3) the drift rate 

that determines how much the choice point moves on average for each new piece of evidence 

acquired; and (4) the non-decision time, which collects all of the other sensory and motor factors 

that are extrinsic to the choice process itself. These parameters are usually assumed to vary on a 

trial-by-trial basis within participants. Setting these four parameters enables the DDM to be used 

to jointly predict participants’ error rates and response times, as well as speed/accuracy tradeoffs 

and interactions with properties of the task.  

Since its inception, the DDM has been applied across a wide range of conditions and 

experimental materials, including tasks such as recognition memory, perceptual decision, lexical 

and semantic decision, implicature detection, and consumer product choice (Forstmann et al. 

2016; Ratcliff et al. 2016). It has been applied in aging, sleep-deprived, and psychiatric and 

neuroatypical populations (persons with aphasia, dyslexia, mood disorders, etc.) as well as to 

studies of individual differences (Ratcliff and Childers 2015).  
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Despite its popularity and successes, the model also faces challenges. One in particular, 

which Ratcliff (1978) calls the problem of model freedom, is endemic to cognitive models that 

draw on behavioral data. Such data are frequently not rich enough to constrain parameter values, 

meaning that many different parameter settings are compatible with similar behavioral 

predictions. Insufficient data also means that there will be limits on the precision of the model’s 

predictions. If model parameters are intended to correspond to cognitive constructs, insufficient 

data also limits the usefulness of behaviorally-fitted models for describing the causal sources of 

those behaviors. Finally, limited data can make model selection challenging in cases where 

models with different structure make nearly identical behavioral predictions. 

MBCN offers techniques to overcome these challenges. Neural data can provide greater 

constraints on parameter settings, more accurate neural and behavioral predictions, more precise 

understandings of the cognitive processes that the model represents, and potentially greater 

resources for selecting among cognitive models. In what follows I outline some ways the toolkit 

of MBCN techniques contributes to answering these questions.7 

 

3.1. Parameter estimation 

One challenge in cognitive modeling is parameter estimation, which aims not only to 

produce the closest fit to how participants perform, but also to recover the best approximations to 

the values of the model parameters that generate that fit (so-called “ground truth”). Getting more 

accurate estimates of the roles of various constructs in cognition is a primary goal of this form of 

 
7 For background on many of the techniques discussed here, particularly joint modeling in 

MBCN, see de Hollander et al. (2016), Turner et al. (2019) and Turner et al. (2013). For a review 

of hierarchical modeling in a cognitive context, see Shiffrin et al. (2008). 



11 

 

modeling, although approximately true parameter values may also make the model useful for 

other purposes, such as generating better predictions. Suppose one wants to answer a 

diagnostically important question such as whether longer response times in a specific population 

such as older adults is due to greater response caution or slowed motor execution. The literature 

on parameter estimation in the context of DDM has focused on questions such as how reliable 

empirical parameter estimates are (Lerche and Voss 2017), how model parameters should be 

understood and visualized (Alexandrowicz 2020), and what mathematical methods are optimal 

for estimating parameters (Alexandrowicz and Gula 2020; Arnold et al. 2015; Grasman et al. 

2009). But models such as the DDM can address these questions only on the assumption that 

their tuned parameters track ground truths.  

MBCN aims to overcome the parameter estimation problem by using neural data to 

improve accuracy. One technique for doing this is the joint modeling approach presented by 

Turner et al. (2016). Joint models are a type of Bayesian hierarchical model in which various 

submodels are linked to one another via hyperparameters. Formally, hyperparameters function to 

set the value of other model parameters. Within joint modeling, they are usually interpreted as 

encoding a hypothesis about the statistical connections among the parameters of the submodels. 

The particular form of the hyperparameters determines the kind and magnitude of this 

relationship. For this reason, hyperparameter choices are said to constitute linking propositions.8 

So, for example, in the model to be discussed below, changes in BOLD values can be 

 
8 In MBCN, linking propositions are usually meant in Teller’s (1984, 1235) sense of the term: “a 

claim that a particular mapping occurs, or a particular mapping principle applies, between 

perceptual and physiological states.” As I have reconstructed things here, it is more accurate to 

think of these propositions as mapping not types of states, but forms of data. Linking 

propositions are assumptions about how data sources are related to one another in the context of 

a model. 
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systematically related to both changes in drift rate and to EEG values, and therefore encode 

different potential ways of linking these quantities. 

Turner et al.’s studies collected participants’ response time data from a set of choice tasks 

meant to estimate each individual’s temporal discount rate. Individuals carried out the tasks in 

one of several conditions: purely behavioral, behavioral with EEG recording only, with fMRI 

only, or with both EEG and fMRI. These data sets were then used to construct three submodels 

that feed into their final joint model. The cognitive submodel was a form of the Linear Ballistic 

Accumulator trained on the response time and error rate data.9 The LBA is another sequential 

sampler model like the DDM. While there are differences between LBA and DDM, they share a 

drift rate parameter that governs the cognitive process of evidence accumulation and so are for 

present purposes comparable. 

The other two submodels included data from the two neurophysiological measures. A key 

issue in joint modeling is whether to include complete or reduced sets of neural recordings. 

Because previous work had established dorsomedial frontal cortex (dmFC) as significant for 

decision tasks, the EEG submodel was simplified to include only recordings from four electrodes 

located over dmFC. The fMRI model similarly included only BOLD activity measured from the 

same region. Specifically, the imaging data took the form of the single-trial β weights derived 

from fitting the generalized linear model to the fMRI scans. The two neural submodels (EEG and 

 
9 Turner et al. call this a “behavioral” model, but since its parameters track cognitive constructs it 

should more appropriately be considered a cognitive model like the DDM. Accordingly, despite 

the potential for some confusion, I have renamed it here to emphasize the difference between 

thinking of the LBA as a model of behavioral data vs. thinking of it as a model of a cognitive 

system. 
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fMRI) thus contain considerably slimmed-down data models governed by just five parameters, 

where these selections were hypothesized to be relevant to the task based on prior knowledge. 

The complete model enables us to pose questions about how two types of neural data 

relate to each other and to the cognitive parameters underlying behavior. The function of the 

joint model is to allow tuning of all of the submodels’ parameter weights simultaneously while 

respecting the constraints imposed on them by the hyperparameters. Since joint models are 

Bayesian hierarchical models, they impose probabilistic structure across the entire parameter 

space. The two hyperparameters (the mean vector  and the variance-covariance matrix ) along 

with the priors over them determine the multivariate normal distribution from which the first-

order parameters are drawn.  

The main empirical results center on the comparison of the cognitive model with the bi- 

and trivariate joint models that incorporate neural data sources. These models were fitted 

independently and then compared with respect to the distribution of their estimates of the true 

drift rate parameter values. For the two bivariate models (EEG and fMRI), the variance of the 

cognitive model parameter estimates was significantly reduced, and the smallest overall variance 

in parameter estimates was achieved in the trivariate model. This indicates that adding new data 

sources can improve estimates of model parameters as well as generalization performance on 

new data. Of the three joint models, the trivariate model achieved the most accurate predictions 

when used to generate behavioral data for participants whose data was withheld during training. 

So the improved parameter estimates also come with an advantage in predictive performance.  

These conclusions comport with an earlier study by Turner et al. (2015) in which they 

constructed a similar joint model using only behavioral and fMRI data, and in which the 

cognitive submodel was the DDM rather than the LBA. For the fitted bivariate joint model, the 
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posterior predictive distributions for the DDM drift rate and starting point parameters had 

smaller variance than for the cognitive model uncoupled from any neural data. The bivariate 

model’s behavioral predictions also had less variance and it performed better in cross-validation 

tests that compared its predictions with that of the regular DDM. Both of these improvements are 

traceable to the model’s ability to constrain cognitive model parameters by neural source data. In 

this case the neural data reduction methods were hypothesis-free: rather than focusing on a 

prechosen set of ROIs, the whole brain fMRI data was transformed using a series of spatial 

principal and independent component analyses that settled on 34 independent components as 

having the most robust and significant activations over all of the trials. This shows that joint 

model fitting can produce improved parameter estimates even without specific information about 

relevant regional neural activity. 

 

3.2. Data analysis 

A second use of cognitive models is not to refine our understanding of hypothetical 

cognitive constructs but to analyze neural data. This approach is associated with the research 

tradition of model-based fMRI (Gläscher and O’Doherty 2010; Love 2020). The aim of this 

work is broadly exploratory: to find plausible neural correlates for known cognitive constructs 

defined within the model; or, put in slightly stronger terms, to make tentative assignments of 

cognitive function to brain regions or networks. This problem of functional assignment is one 

that drives much of cognitive neuroscience. The method is to take a cognitive model initially 

fitted to a set of behavioral data and then search for correlations between the model’s latent 

variables and the neural data. To the degree that the model’s variables are psychologically 
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interpretable, this method may shed light on the functions of particular regions or on the kinds of 

processes that neural measurements reliably signal (see Turner et al. 2019, 60). 

As an example, consider Mulder et al.’s (2012) study of neural signals of decision bias. 

Participants performed a two-alternative random-dot motion detection task inside an MRI 

scanner. Before each trial they were given cues (in the form of arrows) that either indicated the 

likely direction of dot motion, or indicated a higher value (operationalized as monetary payoff) 

for a direction. The primary psychological question was whether these biasing cues would be 

effective and if so where in the decision process they have their effect. The DDM was fitted to 

the response time and accuracy data for each participant in the two bias conditions and the 

starting point and drift rate parameters of the trained model were compared. The main finding 

was that for manipulations of both kinds of biasing cues there was a significant increase in 

starting point, but no significant change in drift rate. This suggests that biasing cues change the 

state of initial decision making but do not affect how rapidly evidence is processed afterwards.  

The second phase of the study investigated where in the brain starting point bias might be 

encoded and processed. This involved a two-stage analysis of the scans from individual 

participants’ trials. The first analysis of the neural data used a general linear model (GLM) with 

13 regressors corresponding to the different types of cues, stimuli, and feedback the participants 

received. From the resulting maps, contrast images representing the difference between the bias 

and neutral conditions were created. The second analysis, which is the crucial one for our 

purposes, regressed these contrast images in a GLM that used the starting point bias term from 

the fitted DDM as a covariate. The overall goal of this processing sequence was to progressively 

home in on regional BOLD responses that correlated with individual-level differences in bias as 

revealed by the DDM.  
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These final analyses returned a number of regions where an increase in starting point 

correlates with an increase in regional BOLD signal. For the cue that indicates likely direction of 

motion a set of regions passed this threshold, including right superior frontal gyrus, right middle 

frontal gyrus, left inferior frontal gyrus, left intraparietal sulcus, medial frontal gyrus, and 

anterior cingulate gyrus. With some adjustments to the signal threshold, similar regions appeared 

in the analysis of manipulations targeting the value of a particular direction. The overlap in five 

frontoparietal regions that showed up in both of these analyses was taken as evidence that they 

are part of “a common mechanism of bias in choice behavior” (Mulder et al. 2012, 2341), 

although the ascription of mechanism here is a bit too strong given that the evidence is only 

correlational.10 More conservatively, we can conclude that the studies plus the accompanying 

analysis reveal a cluster of regions that covary with a hypothesized process in early decision-

making. Data analysis of this sort is exploratory, not confirmatory. These regions are ones that 

can serve as targets for interventions and manipulations that may bolster the initial functional 

claims.  

 

4. Models as interfield evidential integrators 

While these sketches cannot convey the full range of methods employed in MBCN, they 

illustrate how model-building practices can integrate behavioral and neuroscientific data. 

Integration begins within a context of inquiry that requires deciding how data from these sources 

can be brought together to answer a particular set of questions. Interfield investigations advance 

 
10 This is also noted by Povich (2019, 11), who claims that MBCN “provides evidence about 

what [neural region] implements the cognitive model components” but not how a region 

implements a function; that is, it can describe structure-function correspondences but is silent on 

the mechanistic implementation of those relationships. 
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by finding the right model-building toolkit to construct linking relations between data in various 

fields. And, following the pragmatic-representational conception of data, these relations are in 

turn what make the data evidentially relevant to the questions in play.11 

In our first case, the questions at issue concern parameter weights, which are encodings 

of the relative causal strength of the cognitive constructs at work in simple decision tasks. Joint 

models incorporating multiple subcomponents are the pivotal mediating structures that allow 

data to be brought to bear on these questions across fields. Within these models, the evidential 

relevance of neural data to psychological questions is formally expressed through the 

hyperparameters of the joint model, and this relevance is partially confirmed by the fact that the 

fitted joint model outperforms the purely behavioral model in terms of estimated parameter 

accuracy. 

The second case illustrates the same epistemic phenomenon realized by a different route. 

Here, behavioral data are used to fit a cognitive model that in turn enables us to query a neural 

data set to explore hypotheses about neural function. There is not a single joint model to which 

the neural and behavioral submodels both contribute, hence assumptions about evidential 

relationships cannot be localized to a particular model parameter. Instead we have a modeling 

pipeline—a sequence of interlocking models that feed into each other—whose structure 

implicitly encodes linking assumptions. Relations between stages of the pipeline and how data is 

 
11 Throughout this paper I employ the language of “creating” evidence. This is most consistent 

with subjectivist views according to which data acquire the status of evidence because we have 

reasons to take them as confirmationally relevant to some hypothesis. Objectivist views of 

evidence, by contrast, would interpret this as a situation in which certain pre-existing evidential 

relations obtain which we only now have reasons to acknowledge. For objectivists, it is the 

relations, not our acknowledging them, that makes this data evidence. While I have adopted 

subjectivist language, the account given here is ultimately meant to be neutral between these 

conceptions. 
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passed along them can encode these assumptions in many ways. For example, assumptions about 

the correspondences between cognitive constructs and brain activation are implicit in the fact 

that parameters from a behaviorally-fitted DDM are used as covariates in a sequence of GLMs 

that progressively sift the neural data for promising leads. Passing these values on from one 

model to another (possibly with additional intermediary processing) implies linkages among 

them. 

In all of these cases we have a common factor, namely a cognitive model such as the 

DDM which can be used to link behavioral and neural data and thereby to establish evidential 

relations. Call this common factor an embedded model. Embedded models are situated within a 

larger structure which can take either the form of a single overarching model (Section 3.1) or a 

set of separate models connected via a processing pipeline (Section 3.2). Call the total structure 

that the embedded model is part of the embedding model. A model becomes embedded either by 

being a submodel of the embedding model, or by being part of the modeling pipeline constituted 

by the embedding model. Being embedded is therefore a form of mereological containment 

relation. The epistemic work of building an embedding model lies in choosing the appropriate 

data sets, a suitable model structure, and well-founded linking relations, as well as experimental, 

analytic, and computational procedures. Embedding models are tools for uncovering particular 

sets of facts, but the kind of embedding model built to answer questions about parameter fine-

tuning differs from one designed to perform data analysis or assist with the task of selecting 

among competing models.  
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Figure 1. Hierarchical model illustrating one form of model embedding. Hyperparameters are 

pictured at center, and arrows represent relations by which subparameters are set by the 

hyperparameters. 

 

 

Figure 2. Modeling pipeline illustrating another form of model embedding. Arrows represent 

either model transformations or ways of passing parameters from one model to another. 

 

There is no recipe or algorithm for determining how to embed a model in a way that 

makes it adequate for a given purpose, although there are precedents and heuristics that provide 
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guidance. Each new embedding invokes a grab bag of shared tricks, tactics, and tools that can be 

adjusted and assembled to suit the particular case. The resulting embedding model is a highly 

specific contraption whose structure is attuned to the materials that went into its construction. 

The embedded model—the DDM itself—is an invariant and computationally indispensable 

ingredient in all of these activities, but it is crucial to note that the inferential work of data 

unification is distributed across the whole apparatus of the embedding structure.  

To see this, note that in the hierarchical model (Figure 1), the influences of the two other 

data sources (EEG and fMRI) are essential to arriving at better distributions of parameter 

estimates than could be achieved with the DDM taken on its own. It is only the total embedding 

structure consisting of both data sources, the embedded DDM, and the hyperparameters, that 

drives these inferences. In our representative modeling pipeline (Figure 2), the DDM feeds 

parameters to a general linear model that is the product of its own series of transformations, and 

it is this terminal model that delivers information about what neural data might be of 

psychological interest. The embedded DDM only serves as a key source of input values. In both 

cases it is not the embedded model taken on its own, but only the total embedding model that 

makes it possible to answer questions within one field by using data from another. Showing how 

data can be used for the purposes of inquiry is precisely what it is to show the relevance of that 

data, and thus to establish its evidential value. 

These cases also illustrate that embedding models have a hybrid representational 

structure. They combine an embedded cognitive model with several associated data models 

originating in different experimental systems (EEG, fMRI, reaction times, and error rates). The 

component data models represent statistically processed measurements of biophysical and 

behavioral quantities. Cognitive models, on the other hand, represent causally significant 
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elements of cognitive systems. The fact that cognitive models represent what they do allows 

them to drive many of the inferences made using embedding models. The whole model 

(including its explicit and implicit linking propositions) represents the complex of relations 

among these represented quantities and elements. In the second case study, for example, it is 

assumed that the starting point bias term represents a particular cognitive quantity. The discovery 

that this term covaries with measured activity in an fMRI data model underwrites exploratory 

hypotheses about the functions of the brain regions represented by that activity.  

These structures are, therefore, neither purely models of data, nor models of causal 

structure. Because of their hybrid representational nature, embedding models can serve as 

inferential engines for integrating data sources produced within diverse experimental systems. 

This point is particularly worth noting since much of the debate over the nature of models in 

cognitive neuroscience has centered on how to interpret their mapping to real-world systems. A 

prominent suggestion due to Kaplan and Craver (2011) is that explanatory models must satisfy 

the models-to-mechanisms mapping (3M) constraint, which requires that the variables and 

dependencies within the model correspond to, respectively, components and causal relations in 

the real-world target system. The 3M constraint is designed to distinguish models that are 

explanatory from those that are phenomenal. The latter capture the shape of potential explanatory 

targets, but do not themselves explain them. Versions of the constraint have been explored with 

respect to dynamical, topological, and network models, among others. 

These debates, while significant, still keep the focus on explanation, which is only one 

epistemic task among many. The present analysis of MBCN shows, however, that the purposes 

of modeling often demand stitching together field-specific submodels that have different 

representational functions. Analyzing the kinds of models at work in these cases requires going 
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beyond oppositions such as phenomenal versus explanatory. The role of these models is not to 

give a formal description of a pattern that serves as target of explanation, nor to capture the 

causal mechanisms that generate and explain such patterns, even if subcomponents of the overall 

embedding model may do these things. The function of the embedding model taken as a whole is 

to construct and explore relations among behavioral and neural data sources and the parameters 

of cognitive models. Performing this integrative task may, of course, facilitate other epistemic 

and practical ends (see Section 6), but it is nevertheless a distinct precondition for them. 

It is useful to approach the practice of data unification by way of Galison’s metaphor of 

trading zones. Trading zones are, in their original anthropological sense, often literal places 

where goods and materials are productively exchanged despite having radically different values 

and meanings for both parties. This is what gives trade its power: it can go on without a neutral 

currency or even a shared understanding of the act of trading itself (Galison 1997, 803). In a 

scientific context, trading zones arise where subcultures of a discipline (or distinct fields) share 

boundaries yet differ in their methods, concepts, objects of study, and values. Galison’s most 

well-documented examples involve the communities of experimentalists, theorists, and 

instrumentalists in postwar microphysics. The materials exchanged can be instruments, 

theoretical terms and concepts, computational procedures, and, importantly for our purposes, 

recordings and other materializations of data. These items are meaningful within each 

community, but their interpretation is suspended at the point of exchange, enabling them to 

operate and signify in divergent ways for each participant. Thus it is that “distinct groups, with 

their different approaches to instruments and their characteristic forms of argumentation, can 

nonetheless coordinate their approaches around specific practices” (806).  
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Data unification within MBCN shares many of the properties of epistemic exchanges in 

Galisonian trading zones. First is their provisional character: data unification is concerned with 

finding ways to make particular data sets evidentially relevant to specific research questions 

arising within contexts of inquiry. Once a way has been found to establish these local relevance 

relations, the fields can again go their separate ways. Data unification establishes a host of 

relatively short-duration connections between or among fields. These exchanges enable 

participants in each field to carry out their own investigations and further their own goals. 

Provisional interactions do not assume that their participants have common or convergent 

interests. A psychologist and neuroscientist coordinating their activities may each hope to 

advance their own field-specific inquiries without concern for whether the others are similarly 

benefited, or whether they contribute to any common enterprise. Finally, fields may recurrently 

coordinate with each other on particular questions that arise within each one separately, 

participating in any number of exchanges without these resulting in any kind of stable 

overarching group organization. In this way, coordination between fields can be permanently ad 

hoc, in the sense that there may be no alternative to the practice of building models anew for 

each specific coordination task. 

The asymmetry of data unification means that the benefits of new evidence do not always 

accrue identically to all participating fields. Neural evidence can refine the accuracy and 

predictive power of cognitive models, and this in turn allows us to answer questions typically 

posed in applied and theoretical psychology, but this does not necessarily loop back to inform 

neuroscientific theory. Similarly, the ability to analyze neural data using cognitive model 

parameters benefits neuroscientific theorizing and guides future experimentation, but it has no 

direct and immediate relevance to psychological modeling. Episodes of interfield coordination 
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are often guided by such field-centric concerns. In this sense, unification is not a matter of fields 

merging or interpenetrating, but of finding a stable region within which necessary epistemic 

exchanges can be made as needed. When the tools for making such exchanges are more or less 

ready at hand, fields have achieved a degree of data unification.12  

 

5. The practical character of data unification 

This overview of how embedding models are constructed highlights the fact that data 

unification proceeds in parallel with methodological and explanatory unification while 

nevertheless being importantly distinct from them. MBCN, and data unification more broadly, 

are best understood as instances of what Grantham (2004) calls practical unification. In his 

taxonomy, practical connections among fields include heuristic dependence, confirmational 

dependence, and methodological integration. Learning how to trade data with potential evidential 

value is a precondition for establishing confirmational relations as well as for heuristic purposes 

such as exploratory analysis. We might view data exchange as a type of interfield connection that 

is logically prior to others on the list, or perhaps as a type that cross-cuts them. However 

conceived, it belongs squarely to the practical domain. As Grantham notes concerning analogous 

cases from other fields, “the question of how (or whether) to use stratigraphic data in phylogeny 

reconstruction is not a problem about how the explanations or theories of paleontology and 

 
12 In this light, it is unsurprising that textbooks like Turner et al. (2019) are filled with chapters 

describing and illustrating these techniques. I also note that their title refers specifically to joint 

modeling of data, a point which highlights the way that they themselves view the overarching 

goal of their project. 
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neontology are related. Rather, it is a problem of resolving potential conflicts between the 

distinctive data generated by two fields” (148). 

The account developed here is a complement to related work on the practical dimensions 

of data integration. Consider Leonelli’s threefold distinction among interlevel integration, cross-

species integration, and translational integration in plant biology (2016, 141–75). She 

characterizes these forms of integration as “involving the assembling and interrelation of data 

documenting different levels of organization within the same species… the comparison and co-

construction of data on different species… [and] the use of data from a wide variety of sources to 

devise new forms of intervention on organisms” (143). Interlevel integration is especially 

pertinent here insofar as it focuses on understanding the same system, e.g., the mouse-ear cress 

Arabidopsis thaliana, from many different “levels” at once, ranging from molecular interactions 

and cellular metabolic pathways through macroscale phenomena such as the development of root 

systems and flower morphology. Given that MBCN, too, is concerned with combining data 

drawn from many different perspectives, it is worth considering her account in greater detail. 

Leonelli focuses on the often-overlooked epistemic role played by curatorial practices in 

crafting databases and repositories, and the embodied and propositional forms of knowledge that 

underlie the creation of these resources. She offers three examples that illustrate how this form of 

database construction works. These can be classified in terms of whether they constitute data 

production, data interpretation, or data mobilization.  

The first two aspects of interlevel integration center on procedures for gathering, sorting, 

labeling, and disseminating data—that is, they are forms of mobilization. They concern the 

social, institutional, and epistemic structures that support the construction and maintenance of 

lasting resources such as databases. First, curation involves the development of metadata codes 
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that mark epistemically significant features of each piece of data logged. Metadata can include 

facts about what experimental procedures were involved in the data’s production, where and by 

whom it was produced, and what computational procedures were used to analyze it. From these 

codes, researchers can determine the fit and reliability of a dataset with respect to their own 

projects. Second, curation involves creating keywords that enable data to be searched and sorted 

by researchers from a wide range of backgrounds. This requires consultation with members of 

many fields to understand how they conceptualize the objects and processes under investigation. 

The data revolution in science is characterized in large part by the proliferation of these 

curatorial projects. There are, for example, several databases that collect and make publicly 

available a vast trove of neural imaging data: the Cognitive Atlas, OpenNeuro, BrainMap, 

NeuroSynth, and Dev-Atlas, among others. 

Sullivan (2017) discusses several of these initiatives, but concludes that they are not (or 

were not at the time of writing) adequate for the purpose of providing well-grounded taxonomies 

of psychological constructs and neural functions. The reasons for this deficiency lie in how the 

datasets are curated and coded. As she observes, “[t]he labels designating psychological 

functions that current databases contain do not reflect intra and interdisciplinary consensus as to 

how to generally define or how to produce, detect and measure the phenomena designated by 

those labels” (134). If this assessment is correct, psychology and neuroscience lag behind the 

biosciences in developing the institutional, economic, and social infrastructure, as well as the 

disciplinary incentives, that are necessary for data-centric science to make progress. 

However, the account developed here does not focus on the creation and curation of these 

data repositories. Constructing embedding models is most akin to Leonelli’s final example of 

data integration. She notes that databases often come with their own software platforms that 
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allow users not just to search and retrieve data, but to merge it: “to combine and visualize 

genomic, transcriptomic, and metabolic data as a single body of information” (2016, 147). These 

are fundamentally interpretive activities. The studies described in Section 3 presuppose that data 

produced in varying circumstances have already been brought together, by whatever routes. The 

problem is how to make them evidentially relevant. 

Unlike databases and repositories, the particular datasets used in these studies are not 

(usually) treated as persisting epistemic artifacts. Nor, more significantly, do the embedding 

models that unify them persist beyond the circumstances of their use. The models constructed 

within MBCN are inherently ad hoc, transitory things. They are built for a specific purpose to 

answer a set of locally posed interfield questions and they serve as instruments towards this 

larger set of goals, rather than being valuable epistemic products in their own right. Joint models, 

for example, are assembled for data sets with specific characteristics (e.g., how many neural data 

sources are included, how those sources are processed or reduced, etc.) and need to be 

redesigned and retrained when these change. Often a substantially different model is the result. 

The use of an embedding model to construct one set of relations between fields does not 

necessarily transfer to other contexts, and the model itself is typically set aside once its particular 

analytic work is done. 

Despite the fact that its materials are fleeting, interfield data integration constitutes a 

stable practice. What persists is a kind of know-how: the ability of participants from several 

fields to make each other’s data relevant to their own inquiries. This ability draws on a standing 

body of techniques and tools for building models that reliably bring specific data types to bear on 

specific research questions. Data integration, then, can go on even in the absence of databases 

and other archives. It depends on practitioners having the epistemic dispositions to reliably 
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connect information from one field with that from another, as needed. Reliable connectability is 

underpinned by the existence of data modeling techniques and the knowledge of how to deploy 

them. Evidential relevance relations themselves can persist so long as the know-how for bringing 

data to bear in new circumstances does. Establishing a trading zone between two fields involves 

developing precisely this sort of mutual intelligibility grounded in practices of modeling and 

interpretation. 

 

6. The autonomy of data unification 

The evidence-making epistemic function of models should be distinguished from others 

that have been floated in discussions of interfield integration and unification. Embedded 

modeling is, in particular, not a method of explanatory unification. As noted above, these models 

are not generally explanatory ones. They neither represent targets of explanation nor possible 

explanations of them. Embedded modeling can be directed at many purposes. These include 

explanation itself, of course, but also prediction, data exploration, parametric fine-tuning, model 

selection, and discovery of possible interventions, none of which reduce to explanation. All of 

this is consistent with their primary role as inferential engines for data unification.  

This picture of unification stands in contrast with a view advanced by Nathan (2017). He 

argues that “of the various interconnections postulated by interfield theories, a single one—

explanatory relevance—lies at the core of unifications” (176) and therefore the role of “all other 

[interfield] relations” is “grounded in, motivated by, and ultimately reducible to their 

contribution to the explanatory relevance of fields” (177). On this view, methodological and data 

unification would be subservient to explanatory unification. This proposal requires us to ignore 
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the plurality of autonomous goals involved in scientific research, however. We should 

particularly distinguish between the proximal and distal goals of building interfield models. The 

immediate research questions that motivate these constructions are, I’ve argued, not invariably 

explanatory ones. That is compatible with the fact that establishing that certain kinds of data can 

be used as evidence may suggest further experiments, constrain the space of live hypotheses, and 

ultimately lead to (dis)confirmation of explanatory claims. In this very general and long-term 

sense, the results of these studies may turn out to have explanatory relevance.  

Nathan claims that most or all other kinds of integration “can be understood as part of an 

explanatory endeavor, as long as the notion of explanation is conceived broadly enough” (2017, 

177). He does not elaborate on what this broad notion of explanation might look like, however, 

or how other forms of integration might fall under it. To take one example, sharpening models’ 

parameter values may be important in designing more targeted psychiatric intervention. Knowing 

which cognitive parameters are implicated in a disorder can offer important clues for its 

treatment. Such translational applications are not themselves explanation-oriented.13 My 

proposal is that these diverse forms of unification have their own point and epistemic texture, 

and are therefore best thought of as intimately related but ultimately autonomous. The claim of 

explanatory relevance itself is something that cannot be assumed but only demonstrated through 

further investigation. Moreover, focusing on potential distal applications pulls our attention away 

from the other more, immediate concerns that shape evidential exchanges. The examples 

 
13 On this point, see Leonelli’s (2016, 152–58) discussion of translational integration, where she 

notes that biological research aimed at improving social conditions can and does proceed without 

shedding light on interlevel and cross-species integration; that is, translation and other forms of 

understanding can be pursued separately. 
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canvassed here bring out the distinct epistemic structure of data unification and its differences 

from explanatory and methodological forms of unification. 

This perspective on MBCN can usefully be compared with one advanced by Povich. He 

argues that “[b]y providing mutual constraint from different scientific fields on the mechanisms 

that underlie and are responsible for cognitive processes, MBCN represents multifield 

mechanistic integration” (2019, 9). He elaborates that “MBCN realizes (or at least approximates) 

the mechanistic ideal of explanation by helping to identify potential realizers for the components 

of cognitive models that are themselves mechanistic explanations of some cognitive capacity” 

(9). While MBCN does not itself specify mechanisms, it shrinks the possibility space of what 

structures might realize them. This idea of mutual constraint comes out in the repeated emphasis 

by MBCN practitioners on using many different data types as evidence for hypotheses in both 

cognitive psychology and neuroscience. Povich expounds on these constraints by noting that 

MBCN can provide “suggestive evidence about what in the brain realizes” a particular feature of 

cognition such as decision threshold or recognition strength (10). The study in Section 3.2 

exemplified this pattern. Such correlational evidence may serve as a constraint on theorizing 

about how that capacity is realized mechanistically. 

Since mechanisms are paradigmatic explanatory entities, this sounds like an argument 

that MBCN is a form of explanatory unification after all. However, if we bear in mind the 

distinction between proximal and distal goals of inquiry, Povich’s claims are compatible with the 

ones made here. The distal goal of some researchers in these interfield projects might be to 

describe the mechanisms that implement various elements of cognitive models. Part of achieving 

this will require establishing mutual constraints between these models and their neural realization 

base. But establishing these constraints rests in turn on the ability to bring distinct forms of data 
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to bear on the same space of hypotheses, and this is a primary function of model-building in 

MBCN. The process of data unification is autonomous in the following sense: first, that it has a 

separate purpose from explanatory unification; second, that it has a distinct epistemic structure 

from explanatory unification; and third, that it can be carried out not just prior to but also without 

any long-term commitment to explanatory unification.  

 

7. Conclusions 

Given the shift in recent decades to ever more data-centric scientific practices, it is 

widely recognized that we need to understand how forms of data generated in distinct fields can 

be brought to bear on one another. But the problem of unification long precedes this shift. 

Overcoming it has been the constant struggle of the cognitive sciences since their inception—as, 

for example, the tortuous history of psycholinguistics will testify.  

The account of data unification presented here highlights the fact that these modes of 

epistemic trade often turn on model-building practices. Data journeys and other modes of data 

unification have been characterized elsewhere in great detail. The focus in this discussion has 

instead been on the ways that models play key roles in creating evidence. Coordinating scientific 

activity across fields requires knowing how to craft embedding models that can successfully do 

the inferential work needed to establish the relevance of data to new kinds of questions, and 

thereby turn it into evidence. A virtue of MBCN is that it provides exemplary cases of how 

attempts at making data evidentially relevant might succeed. At the same time, these integration 

projects are not invariably successful (O’Malley 2013). Further research will have to clarify the 

potential failure modes of these practices, the scenarios in which data unification fails, and 

whether certain kinds of data simply cannot be integrated with each other at all. 
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