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Abstract

The Aharonov-Bohm (AB) effect, wherein an electron acquires a
phase shift in a field-free region due to electromagnetic potentials,
poses a profound challenge to the ontology of quantum mechanics and
gauge theories. This paper demonstrates that gauge-invariant expla-
nations, which attribute the phase to measurable quantities, rely on
nonlocal and discontinuous mechanism and fail to account for its con-
tinuous accumulation along the electron’s path—a process evident in
the generalized AB effect, where a time-varying magnetic flux induces
a phase that builds gradually over time, as predicted by quantum me-
chanics. Through a new analysis spanning quantum mechanics and
quantum electrodynamics, I argue that the electromagnetic potentials
A, fixed in the Lorenz gauge, emerge as the fundamental physical re-
ality, offering a local, relativistically consistent account of the phase’s
generation. This exclusion of gauge-invariant paradigms reverberates
across gauge theories: it redefines the Higgs mechanism, favoring dy-
namic potentials over static invariants, and extends to general rela-
tivity, where gravitational potentials g,, may anchor spacetime’s sub-
stantival reality via a gravitational AB effect. By unraveling the AB
phase’s continuous generation—locally mediated by potentials—this
study not only addresses a long-standing conundrum but also bridges
electromagnetic, gravitational, and Yang-Mills frameworks, offering a
unified potential-centric perspective with novel implications for physics
and philosophy.

The eternal mystery of the world is its comprehensibility.
—Albert Einstein, Physics and Reality, 1936
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1 Introduction

The Aharonov-Bohm (AB) effect is one of the most intriguing phenomena
in quantum mechanics, challenging our classical intuitions about the nature
of physical interactions. Conceived by Werner Ehrenberg and Raymond E.
Siday in 1949 and fully articulated by Yakir Aharonov and David Bohm in
1959, it demonstrates that an electron, traversing a region free of electric
and magnetic fields, yet permeated by electromagnetic potentials, acquires a
phase shift observable through interference upon recombination of bifurcated
beams. At the heart of this phenomenon lies a vexing question: how does
a gauge-invariant phase shift emerge during the electron’s journey through
a field-free region, and what does this imply about the nature of reality in
quantum mechanics? This enduring puzzle, defying full explanation within
traditional frameworks (Earman, 2024; Wallace, 2024), anchors this study’s
exploration of quantum ontology and gauge theories.

Gauge-invariant accounts, rooted in classical intuition, assert that only
measurable quantities like field strengths hold physical reality, dismissing
potentials as mathematical artifacts. Yet, these perspectives stumble on the
phase’s genesis: how does a gauge-invariant shift arise in a field-free transit?
This paper argues that the AB effect demands a reconceptualization, posit-
ing electromagnetic potentials as ontologically primary, a view bolstered
by the generalized AB effect’s dynamic phase accumulation. Through a
rigorous critique spanning quantum mechanics (QM), quantum electrody-
namics (QED), and gauge theories, it challenges the adequacy of gauge-
invariant paradigms, advocating a potential-centric ontology fixed in the
Lorenz gauge.

The exploration unfolds across nine sections, weaving empirical evi-
dence, theoretical rigor, and philosophical reflection to resolve the AB ef-
fect’s enigma and extend its lessons across physics. Section 2 lays the
groundwork by detailing the standard and generalized AB effects, revealing
the phase’s continuous accrual as a cornerstone of quantum reality. Section 3
dissects gauge-invariant explanations—spanning field-based, Madelung hy-
drodynamic, and topological loop ontologies—exposing their nonlocal and
discontinuous flaws. Section 4 delivers a decisive blow, leveraging the gen-
eralized AB effect to exclude these accounts, supported by experimental
proposals to test the phase’s dynamic genesis. Section 5 probes quantum
electrodynamics’ reinforcement of this critique, affirming potentials’ primacy
over quantized invariants. Section 6 establishes electromagnetic potentials
A, in the Lorenz gauge as the true reality, detailing its significance (6.1),
the need for a privileged gauge (6.2-6.3), and a speculative extension to
massive photons via the Proca equation (6.4). Section 7 explores the onto-
logical status of potentials, casting them as the electromagnetic state (7.1),
defining the photon wave function (7.2), and tracing classical potentials’
quantum origins (7.3). Section 8 casts this potential-centric ontology across



gauge theories: reinterpreting the Berry phase’s origins (8.1), challenging
non-Abelian Yang-Mills frameworks (8.2), critiquing the Higgs mechanism’s
invariant reformulations (8.3), and proposing a gravitational AB effect to
affirm spacetime’s substantival essence in general relativity (8.4). Section
9 synthesizes these results, outlining future experimental, theoretical, and
philosophical paths to cement the AB effect as a fulcrum for reshaping our
understanding of physical reality.

2 The AB Effect and Its Generalized Form

The AB effect, once a theoretical curiosity, has been experimentally val-
idated (Tonomura et al, 1986) and mathematically refined over decades
(Ballesteros and Weder, 2009). This section outlines the standard magnetic
AB effect (Section 2.1), its generalized form with time-varying flux (Sec-
tion 2.2), and the electric AB effect with time-varying scalar potential (Sec-
tion 2.3), laying the empirical and theoretical groundwork for subsequent
critiques of gauge-invariant explanations and the advocacy of a potential-
centric ontology. Central to these phenomena is the continuous accumulation
of phase over time, a feature that challenges traditional field-centric views
and unifies the magnetic and electric AB effects under a dynamic potential
framework.

2.1 The Magnetic AB Effect

Consider a canonical experiment: a coherent electron beam is emitted, split
into two paths encircling an infinitely long solenoid, and recombined to form
an interference pattern. A steady current within the solenoid generates a
magnetic field B = V x A, confined to its interior, ensuring the exterior
region traversed by the electron beams is devoid of magnetic fields (B = 0).
Yet, the vector potential A persists outside because the magnetic flux ® =
$B-ds = ¢ A dr through any loop enclosing the solenoid is nonzero. This
subsection derives the phase shift for this static scenario, establishing the
foundational result characteristic of the standard magnetic AB effect.

The Schrédinger equation for an electron in this setup (with A =c=1)
is:

i%zf = —%(v —ieA)?) + eAg, (1)

where e and m are the electron’s charge and mass, A is the magnetic vec-
tor potential, and Ay is the electric scalar potential, set to zero (Ag = 0)
outside the solenoid. This equation exhibits gauge invariance under the
transformations:

Ay = A=A = A, > = ey, (2)



where A, = (—Ap, A) and A(x) is a smooth gauge function. In a simply
connected region, choosing:

M) = [ Aulal)do, (3)

transforms A, to zero, yielding ¢ = eMpy, where 1y satisfies the free
Schrodinger equation. Consequently, the phase accumulated along a path L
due to the potential is:

A¢ = e/LAde”. (4)

In the standard magnetic AB effect with a constant flux ®, the phase
difference between the two paths L; and Lo, forming a closed loop C' =
L1 — Ly around the solenoid, is:

pap=e€ | A-dr—e A-dr:e%A'dr:eq) (5)
Ly Lo c

by Stokes’ theorem. This phase shift, observable as a shift in the interference
pattern, arises despite the electron experiencing no local magnetic forces,
highlighting the potential’s physical significance in the static case. The
result ¢4 = e® is the hallmark of the standard magnetic AB effect, where
the flux’s constancy ensures a straightforward, time-invariant contribution to
the quantum phase, setting the stage for the dynamic generalization explored
in the subsequent subsection.

2.2 Generalized Magnetic AB Effect with Time-Varying Flux

When the magnetic flux ®(¢) varies with time, the AB effect evolves into a
dynamic phenomenon, requiring a detailed analysis of the electron’s motion
under a time-dependent magnetic vector potential. Unlike the static case,
the phase shift reflects the temporal profile of ®(¢), necessitating considera-
tion of the electron’s trajectory and the induced electric field. Here, I derive
the phase shift, building on the gauge-invariant framework of Section 2.1,
and show that it is proportional to the time-averaged enclosed magnetic flux
over the transit duration, as detailed in Gao (2025a).

Consider the AB setup: a coherent electron beam is emitted at ¢t = 0,
split into two paths encircling an infinitely long solenoid, and recombined
at t = T. The solenoid carries a time-varying magnetic flux ®(t), with the
magnetic field B = V x A confined within, maintaining B = 0 outside. In
a gauge where Ag(r,t) = 0, the vector potential outside is:

A(r,t) = (I)(t)é, (6)

- 2r




where 7 is the radial distance and 6 is the azimuthal unit vector, ensuring
$o A - dr = ®(t) for a closed loop C. The total phase shift is:

pap=c¢e | A(r,t)-dr—e A(r,t)-dr:e% A(r,t)-dr. (7)
L1 Lo C

For circu}ar paths of radius R, the displacement along each path is dr =

w;(t)Rdt@, where w;(t) (for i« = 1,2) is the angular velocity of each beam.

Thus the phase shift becomes:

T
oan=c [ 5 r(t) + altler, ®)

where T' is the transit time, and wq(t) and wy(t) are the angular velocities
for the counterclockwise and clockwise paths, respectively, with fOT [wr () +
wa(t)]dt = 27 for a complete encirclement.

The time-varying ®(t) induces an electric field E = —%, calculated as:
1 do(t) 4
E=—_
2rR dt 9, )

which exerts a tangential force Fy = eFy = —#R%, accelerating one beam

and decelerating the other. The equation of motion for each beam’s angular
velocity is:

dwi
R = F 10
mR™ _ F, (10)
yielding:
dwp e d® dwp e d2 (11)
dt — 2mmR2dt’ dt  2mmR? dt’
Integrating from ¢ = 0 to ¢, with initial velocities w;(0) and w2 (0):
e
t) = ——|P(t) — P 12
ar(t) = 1(0) ~ oS (1) ~ B(0)) (12)
e
wa(t) = wa(0) + m[q’(t) — ©(0)]. (13)
The combined angular velocity simplifies to:
w1(t) + wa(t) = wi(0) + we(0), (14)

as the induced field’s effects cancel, and fOT[wl(O) + w2 (0)]dt = 27 leads to
w1(0) + wa(0) = 2Z. Substituting into Equation :

e T e T T T
bas :%/0 B(0)n(0) + wr(O)dt = - e - ;/0 B (t)dt.



This confirms the phase shift as the time average of e®(t), reducing to
dap = e® when ®(t) = .
The generalized AB effect reveals a hybrid nature: the region outside the

solenoid is not strictly field-free due to the induced electric field E = —%—‘? =

—ﬁ%&t)é, which is finite during flux variations. However, for a very short
transition duration (e.g., At < T'), E’s influence on the phase, which is
proportional to the duration, is negligible. Furthermore, the field’s effects
cancel in the phase difference: opposite accelerations on the two beams en-
sure pap = % fOT e®(t) dt reflects only the time-averaged flux, not trajectory
perturbations. This ensures that the generalized AB effect remains a clean
probe of the vector potential A’s influence, even in the presence of transient

induced fields.

2.3 Electric AB Effect with Time-Varying Scalar Potential

Complementing its magnetic counterpart, the electric AB effect showcases
the quantum influence of the scalar potential Ay in regions where E =
—V Ay — 0A /0t = 0, encompassing both static and time-varying scenarios.
The time-varying case mirrors the dynamic framework of the generalized
magnetic AB effect (Section 2.2), emphasizing the continuous accumulation
of phase over time.

Consider a setup where a coherent electron beam splits into two paths
at t = 0, traverses field-free regions (e.g., within Faraday cages), and re-
combines at t = T'. Along path Lo, a time-varying scalar potential Ag(t) is
applied, while path L; maintains Ay = 0, with dynamic shielding ensuring
E = 0 and B = 0 along both paths via A adjustments, as in Section 2.1.
The phase shift along a path L is:

T
Ap = e/ A, dat = —e/ A dt, (16)
L 0

yielding a phase difference:

T T Lo
bap = Ady — Ay — —e/ Ao(t) dt = e/ (/ E(r.1)- dr> i, (17)
0 0 Ly
where E(r,t) is the electric field between the two paths L; and Lo, and
/ LLI *E(r,t) - dr is the gauge-invariant line integral of the electric field, repre-
senting the potential difference between the two paths at instant ¢, similar
to the magnetic flux ®(¢) = § B(¢) - ds in the magnetic AB effect.

This phase accumulates continuously over [0, 7], mirroring the temporal
buildup in the generalized magnetic AB effect driven by ®(¢). Moreover, this
continuous phase accumulation offers an advantage over the magnetic AB
effect. While a time-varying ®(¢) induces E = —0A /0t, perturbing trajec-
tories, the electric AB effect maintains E = 0 along the paths via shielding,



despite Ay (t)’s variation inducing fields elsewhere. This eliminates trajec-
tory shifts, making the phase’s gradual accrual a pure manifestation of Ay(t),
offering a cleaner probe of potential-driven dynamics. In the following, how-
ever, I will mainly analyze the magnetic AB effect, since its standard form
has been confirmed by experiments and also widely discussed in literature.
For convenience, I will just say the AB effect or the generalized AB effect in
brief.

3 Explanations in Terms of Gauge-Invariant Quan-
tities

Having explored the nuances of the generalized AB effect, with its time-
varying flux unveiling a continuous accrual of phase, we stand at a juncture
of understanding. How does the phase shift emerge as the electron navigates
the field-free region encircling the solenoid? This intriguing phenomenon
challenges our intuitions about causality and reality, demanding an account
that bridges the empirical and the theoretical. We turn now to explaining the
AB effect through the lens of gauge-invariant quantities, seeking to anchor
these quantum curiosities in the measurable and the invariant, a pursuit
that promises both physical clarity and philosophical resonance, yet one we
shall soon find fraught with its own tensions.

3.1 Why Gauge-Invariant Explanations Appear Preferable

Gauge-invariant explanations, which anchor the AB phase shift in measur-
able quantities like the magnetic flux @, the fields E and B, or the velocity v,
rather than the gauge-dependent potentials A, = (—Ag, A), have long been
favored in both physics and philosophy. This preference stems from their
alignment with classical intuitions, empirical accessibility, and the founda-
tional principles of gauge theories, as well as their philosophical appeal in
terms of ontological parsimony. Before critiquing their adequacy, it is essen-
tial to understand why these explanations appear preferable, as they reflect
deeply ingrained physical and philosophical commitments.

In the physical realm, gauge-invariant explanations resonate with a deep-
seated commitment to empirical accessibility. Classical physics has taught
us to trust in the tangible—field strengths E and B, woven into the Lorentz
force F = e¢(E + v x B), dictate the motion of charges without reference to
the shadowy potentials. In the AB effect, where E = 0 and B = 0 along
the electron’s path, the phase shift ¢p4p = e® finds its anchor in the flux
P = fo A -dr, a quantity we can grasp through the magnetic field within the
solenoid. Experiments, such as those of Tonomura and colleagues in 1986,
affirm this shift, lending credence to ® as a measurable reality, a beacon of
observability where A remains elusive. This empirical grounding aligns with



a broader principle: gauge invariance, a symmetry that ensures our theories
stand firm regardless of the arbitrary gauge function A(x). By resting on
®, these explanations sidestep the ambiguity of A, which shifts with every
gauge choice, offering instead a stable, invariant foundation that mirrors the
elegance of Maxwell’s equations and quantum electrodynamics.

Philosophically, the preference for gauge-invariant explanations deepens
into questions of being and knowing. Ockham’s razor, that venerable guide,
urges us toward parsimony, and here it finds satisfaction. The potentials
A, mutable under gauge transformations, seem redundant—multiple forms
yielding the same E and B, yet lacking direct witness in our instruments.
Why grant them ontological weight when ®, tied to the solenoid’s mea-
surable field, suffices? This lean ontology aligns with empirical realism, a
stance that demands our theories reflect the observable. ® and v stand in
the light of measurement, while A lingers in shadow, a tool of calculation
rather than a pillar of reality. To the realist, this is a virtue: explanations
should rest on what we can see and touch, not on constructs that shift
with every mathematical whim. And in this, there is a broader coherence:
gauge-invariant explanations echo the classical ontology of fields, preserving
continuity with a tradition that has shaped our understanding of nature,
resisting the inflation of reality with unobservable potentials.

Thus, gauge-invariant explanations beckon with a dual promise: in physics,
they offer empirical grounding and theoretical symmetry; in philosophy, they
deliver parsimony, realism, and a harmony with classical intuitions. How-
ever, as subsequent subsections reveal, these accounts falter under scrutiny.
The nonlocal and discontinuous threads of these accounts, their failure to
capture the phase’s gradual unfolding, invite us to question their suffi-
ciency—a question that will lead us, ultimately, to the potentials themselves
as the deeper truth.

3.2 Gauge-Invariant Quantities in Quantum Mechanics

In order to assess the gauge-invariant explanations of the AB effect, we need
to first identify the basic gauge-invariant quantities for the electron. In quan-
tum mechanics, the Schrodinger equation governs the electron’s dynamics,
and its gauge invariance under transformations A, — A; = A, —0,A and
¥ — ) = e M) suggests that physical predictions should depend only on
quantities unaffected by the choice of gauge function A. Here, I demonstrate
that the basic gauge-invariant quantities for the electron are the probability
density p = |[¢|? and the velocity v = %(VS —eA), where 1) = Re' is the
polar form of the wave function, with R and S real-valued functions/T]

!Besides these two gauge-invariant quantities, there is also a gauge-invariant energy
—(0¢S +eAp). Since it is irrelevant to the explanations of the (magnetic) AB effect, I will
not discuss it below (see, however, Gao (2025b)).
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Consider the transformation of the wave function: if ¢y = Re*, then
Y = e~ieMh = Rei(S—¢A) The probability density transforms as:

p=10 )2 = e 2 = e Py = pf? = p, (18)

since [e7"| = 1. Thus, p = [¢|? is manifestly gauge-invariant, reflecting
the physical requirement that the probability distribution of the electron’s
position remains independent of gauge choice. This invariance is local, as p
is defined pointwise in space and time, making it a candidate for describing
the AB effect without reference to the gauge-dependent potential A.

Next, let’s examine the velocity, which arises from the probability current
in the continuity equation. The current density is given by:

§= 5 WV —ieA) —¢(V +ieA)yT]. (19)

Substituting 1 = Re*, we compute:
(V —ieA)) = (VRe™ —ieARe™) = (eVR 4 iRe®VS —ieARe™), (20)

and its complex conjugate:

(V 4 ieA)p* = (e VR — iRe VS + ieARe™ ™). (21)

The current becomes:
j R’ S A 22
j= (V5 - eA), (22)

since the imaginary terms cancel. Defining the velocity as v = %, with
p = R?, we obtain:
1
= —(VS —eA). 23
V= (VS cA) (23)

Under a gauge transformation, A -+ A’ = A —VAand S — 5" =S — €A,
SO:
VS =V(S —eA) =VS —eVA, (24)

and thus:
/ 1 / / 1 1
v =—(VS —eA’)= —[(VS —eVA) —e(A —VA)| = —(VS —eA) =v.
m m m
(25)
The velocity v is therefore gauge-invariant, as the transformation of VS
cancels that of A. Like p, v is a local quantity, defined at each spacetime
point, and together they fully characterize the electron’s dynamical state in
a gauge-independent manner.
These quantities—p and v—are two basic gauge-invariant descriptors of
the quantum state, analogous to classical observables like density and ve-

locity in hydrodynamics. In the context of the AB effect, gauge-invariant

11



explanations rely on them to attribute the phase shift ¢ 4p = e® to measur-
able properties, such as the flux ® influencing v at interference. However,
as subsequent subsections reveal, their inability to account for the phase’s
continuous accumulation—due to their insensitivity to A’s local influence
before overlap—exposes the limitations of this approach, setting the stage
for the critique in Section 3.3 and beyond.

3.3 Dynamics Before and After Overlapping

Consider the standard AB setup: two electron beams encircle a solenoid
with constant magnetic flux ®, recombining to interfere. Before overlap,
each beam travels in a simply connected, field-free region (B = 0), where
a gauge choice A = 0 is possible. In this gauge, the Schrodinger equation
reduces to the free form, and the solutions 1; and 1 for each beam match
those of a free electron, implying p and v are independent of ®. This holds
because, in each path, the gauge transformation adjusts the phase locally,
leaving gauge-invariant properties unchanged.

However, after the beams overlap, forming a closed loop C' around the
solenoid, A = 0 cannot be chosen globally due to the nonzero flux ® =
$o A - dr. The interference pattern shifts by:

d)AB:ejl{A-dr:e(I), (26)
C

and the velocity satisfies

m

jiv-drzjél(VS—eA)-dr:—eé (27)

reflecting ®’s influence. Consequently, v and p (via the continuity equation
Op + V- (pv) = 0) abruptly depend on ® at overlap, despite being ®-
independent beforehand. This transition is instantaneous and discontinuous,
suggesting a sudden nonlocal influence from the solenoid’s magnetic field or
current.

3.4 Critique of Gauge-Invariant Explanations

The gauge-invariant approach to the AB effect, which privileges measur-
able quantities such as the magnetic flux ® or the velocity field v over the
gauge-dependent vector potential A, encounters a series of philosophical and
physical objections that collectively undermine its explanatory legitimacy.
This perspective, rooted in a classical sensibility that assigns ontological pri-
macy to field strengths or their proxies, seeks to preserve a reality defined by
what is directly observable, eschewing the apparent arbitrariness of poten-
tials. Yet, when subjected to critical scrutiny, this stance reveals profound
shortcomings that clash with the dynamic nature of quantum phenomena as

12



revealed by the AB effect. The following paragraphs delineate these objec-
tions, exposing the nonlocality, discontinuity, and incompleteness inherent
in gauge-invariant explanations, and thereby necessitating a reevaluation of
the physical ontology they purport to uphold.

One primary objection lies in the nonlocality implicit in attributing the
AB phase shift to ®, a global property confined within the solenoid. This
approach posits that the phase ¢ 4p emerges instantaneously at the point
of interference, reflecting an action at a distance on the electron despite
its confinement to a field-free region—a proposition that strains the causal
architecture of special relativity, which insists that physical effects propa-
gate no faster than the speed of light. Such an unmediated action across
space suggests a reality where distant entities can affect one another with-
out a local intermediary, a notion that sits uneasily with the principle of
locality. This nonlocality not only violates relativistic constraints but also
introduces a metaphysical perplexity: how can a physical state, ostensibly
grounded in observable quantities, depend on a distant configuration with-
out a discernible causal link? The gauge-invariant insistence on ® as the
sole arbiter of the phase shift thus falters, failing to reconcile the effect’s
spatial dynamics with a coherent account of physical causation.

A further objection arises from the discontinuity exhibited by gauge-
invariant quantities such as p = [¢|? and v = L (VS — eA) in their tem-
poral evolution. Prior to the beams’ overlap, these quantities reflect the
undisturbed state of a free electron, showing no trace of ®’s influence, as
established in Section 3.3; yet, at the moment of interference, they abruptly
adjust to incorporate the flux, satisfying relations like fcv -dr = —e®.
This sudden shift stands in stark contrast to the expectation in quantum
mechanics that physical states evolve smoothly unless perturbed by local
interactions—a principle of continuity that underpins the theory’s predic-
tive coherence. Philosophically, this discontinuity poses a challenge to the
gauge-invariant ontology: if reality is to be captured by measurable prop-
erties alone, why do these properties undergo an inexplicable leap, devoid
of a gradual process to bridge the pre- and post-overlapping states? The
absence of a dynamic mechanism renders the explanation ontologically brit-
tle, unable to account for the temporal becoming that quantum phenomena
demand.

Perhaps the most damning objection is the incompleteness of gauge-
invariant quantities in elucidating the phase’s origin during the electron’s
transit. Before interference, p and v remain indifferent to ®, offering no
insight into how the phase accumulates as the electron navigates its path;
only at overlap does the shift ¢4p manifest, yet the process by which it
arises remains opaque within this framework. In contrast, quantum me-
chanics attributes the phase pap =€ fo A - dr to the vector potential A, a
dependence that traces its continuous generation across the trajectory—an
account the gauge-invariant perspective cannot replicate without invoking
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A itself. This limitation exposes an epistemological shortfall: by restrict-
ing physical reality to what is gauge-invariant, the approach overlooks the
underlying dynamics that quantum theory reveals, rendering it incapable
of fully explaining the AB effect’s causal structure. The insistence on ¢ or
v as sufficient descriptors thus betrays a failure to engage with the effect’s
temporal and spatial unfolding, necessitating a turn toward the potentials’
explanatory power.

To sum up, these objections—nonlocality, discontinuity, and incomplete-
ness—collectively dismantle the gauge-invariant explanation of the AB ef-
fect, revealing its inability to provide a philosophically robust account of
the phase shift’s generation. Far from preserving a coherent ontology, this
approach sacrifices the locality, continuity, and completeness demanded by
quantum mechanics, compelling a reconsideration of the vector potential’s
role as more than a mathematical convenience. This critique sets the stage
for a potential-centric ontology, pursued in subsequent sections, that better
aligns with the AB effect’s empirical and theoretical reality.

3.5 Madelung Hydrodynamics as a Paradigm

The critique of gauge-invariant explanations in Section 3.4 exposed their
inherent flaws in addressing the AB effect. These approaches, which elevate
measurable quantities like the magnetic flux ® over the vector potential A,
struggle to provide a dynamic explanation of the phase’s genesis, highlight-
ing a systemic limitation in gauge-invariant paradigms. A typical example of
such an approach is the Madelung hydrodynamic formulation, which serves
as a paradigmatic case inheriting the same trio of problems identified above.

Proposed by Erwin Madelung in 1927, this framework offers a gauge-
invariant reinterpretation of quantum mechanics, recasting the Schrodinger
equation in terms of fluid-like quantities—probability density p and velocity
v—independent of electromagnetic potentials. At first sight, this approach
appears primed to explain the AB effect locally and continuously, avoiding
the gauge dependence of A. However, a closer examination reveals profound
limitations: the Madelung equations, supplemented by a nonlocal quantiza-
tion condition, fail to provide a coherent, physically meaningful account of
the AB phase shift. This section derives the Madelung framework, exposes
its inequivalence to the Schrodinger equation, and critiques its inability to
explain the AB effect without invoking nonlocality and discontinuity (for a
more detailed analysis see Gao, 2025¢).

3.5.1 Derivation of the Madelung Equations

Starting from the Schrédinger equation (Equation in Section 2), let ¢ =
Re™ | where R = v/p and S is the phase. Substituting into Equation and
separating real and imaginary parts (assuming ¢ # 0) yields two coupled
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equations:

dp
—+V. =0 28
V() =0, (28)
where v = L (VS — eA) is the velocity field, and
ov
Mgy = e(E4+vxB)—m(v-V)v—-VU, (29)
where U = —%% is the quantum potential, E = —V Ay — 0A/0t, and

B =V x A. Equation is the continuity equation, ensuring probability
conservation, while Equation resembles a hydrodynamic momentum
equation, with U introducing quantum effects.

These Madelung equations involve only gauge-invariant quantities (p, v,
E, B), suggesting a potential-free description of the AB effect. Yet, their
equivalence to the Schrédinger equation hinges on subtle constraints.

3.5.2 Inequivalence to the Schrodinger Equation

Reconstructing the Schrodinger equation from Equations and re-
quires v = VS/m (for A = 0) and integration of Equation to recover S.
However, this fails globally: S, as the wave function’s phase, is multi-valued
in multiply connected spaces (e.g., S = [0 for angular momentum states,
where 0 is azimuthal angle and [ is an integer). Thus, v cannot always be
the gradient of a single-valued S. Without additional constraints, 1) = Re*
may be multi-valued, violating the Schrodinger equation’s requirement of
single-valuedness.

To align the Madelung equations with quantum mechanics, a quantiza-
tion condition is imposed:

mj{v'dr:%rn—e@, (30)
C

where C is a closed loop, n is an integer, and ® = fc A - dr is the enclosed
magnetic flux. With v = %(VS —eA), this ensures 1’s single-valuedness by
fixing AS = S(6+27)—S(0) = 2rn. While this restores formal equivalence,
it introduces a nonlocal constraint, as v along C depends on ® inside the

solenoid.

3.5.3 Nonlocality of the Quantization Condition

The condition in Equation is global, not local: it integrates v over a
closed path, linking it to ® in a distant region without a mediating field.
This resembles the Coulomb gauge’s nonlocal potential dependence (Wal-
lace, 2024), undermining claims of a local explanation. Physically, it lacks a
clear mechanism—unlike the Schrodinger equation, where A locally drives
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the phase, the quantization condition imposes a mathematical fix without
intrinsic justification (Wallstrom, 1994). Even proponents like Takabayasi
(1952) acknowledged its ad hoc nature, highlighting its explanatory deficit.

3.5.4 Failure to Explain the AB Effect

Applying Madelung hydrodynamics to the magnetic AB effect reveals its
shortcomings. Before the beams overlap, the field-free region (E = B =
0) reduces Equations and to free-particle forms, yielding p and
v independent of ®. The quantization condition (Equation (30])) cannot
apply, as no closed loop exists. At overlap, it abruptly holds, shifting v
and p discontinuously to reflect ®. This mirrors the gauge-invariant critique
in Section 3.4: the phase shift emerges instantaneously, not continuously,
implying nonlocal action from the solenoid.

Why this sudden influence? The Madelung framework offers no physical
process—the condition is a mathematical artifact, not a dynamical expla-
nation. Unlike the Schrodinger equation’s potential-driven phase accumula-
tion, Madelung hydrodynamics leaves the AB effect’s genesis opaque, relying
on an unmotivated global constraint.

To sum up, Madelung hydrodynamics, despite its gauge-invariant allure,
fails as a paradigm for the AB effect. Its quantization condition introduces
nonlocality and discontinuity, echoing the universal flaws of gauge-invariant
approaches, while its inability to dynamically account for the phase shift
underscores its incompleteness. This analysis reinforces the need for electro-
magnetic potentials, explored in later sections, to provide a local, continuous
explanation.

3.6 Healey’s Loop Ontology and Its Objections

The persistent failure of gauge-invariant explanations to account for the con-
tinuous accumulation of the AB phase, as critiqued in Sections 3.3 through
3.5, motivates exploration of alternative frameworks that might salvage a
gauge-invariant ontology. Healey’s loop ontology, articulated by Healey
(2007), proposes one such approach by positing that the physical reality of
the AB effect resides in the holonomies—phase factors e o Adr__pssociated
with closed loops in spacetime. This topological perspective seeks to elimi-
nate dependence on the gauge-dependent vector potential A, grounding the
phase shift ¢p4p = e® in a property invariant under gauge transformations
A, — A, — 0,A. By assigning ontological primacy to these loop-based
quantities, Healey aligns with the philosophical commitment to observable,
gauge-invariant entities as the bearers of physical significance. While this
perspective might appear to circumvent the conceptual difficulties plaguing
the Madelung hydrodynamics, a rigorous analysis reveals that Healey’s loop
ontology succumbs to analogous deficiencies, failing to provide a dynamically

16



coherent explanation of the AB effect’s phase generation.

3.6.1 Dynamical Inadequacy of the Loop Ontology

First, Healey’s loop ontology lacks a dynamical law to elucidate how the
AB phase accumulates along the electron’s trajectory. By tying reality to
holonomies defined over closed loops, the framework implies that the phase
shift ¢ 45 emerges only upon the beams’ recombination at interference, with
no mechanism specified for its gradual accrual during transit through the
field-free region. Before overlap, the separate paths L; and Ls do not form
a closed loop C = Ly — Lo, rendering the holonomy undefined and the po-
tential’s influence (A) ostensibly inert in this ontology. This absence of a
temporal process mirrors the discontinuity critiqued in prior gauge-invariant
accounts (Section 3.3), clashing with the smooth dynamics demanded by the
Schrodinger equation. Philosophically, this omission raises a profound ques-
tion: how can an ontology claim explanatory power if it fails to illuminate
the becoming of the very phenomenon it seeks to describe? The lack of a
dynamical account renders the loop ontology a static abstraction, insuffi-
cient for capturing the AB effect’s physical reality as a process unfolding in
spacetime.

3.6.2 Structural Redundancy in the Loop Framework

Second, the loop ontology introduces structural redundancy that compro-
mises its claim to ontological primacy. Assigning phase factors to loops
presupposes a consistent underlying structure: for a large loop enclosing
the solenoid, the holonomy glefo Adr — gie® gt equal the product of
holonomies over smaller sub-loops, a coherence that implicitly relies on the
potential A or its field B = V x A. In simply connected regions out-
side the solenoid, where B = 0, the holonomies could be trivially unity if
A were gauged away, yet the nonzero flux ® necessitates A # 0 globally
(Section 2.1). This dependence suggests that the loop values are not fun-
damental but derivative, encoding the same information as A in a more
convoluted form (Wallace, 2014). Rather than supplanting the potential,
Healey’s framework rephrases its effects topologically, inflating ontological
complexity without resolving the causal question of phase generation. This
redundancy echoes the Madelung approach’s reliance on a quantization con-
dition (Section 3.5.3), weakening its status as a standalone explanation.

3.6.3 Nonlocal Interdependence and Causal Concerns

Third, the loop ontology entails a non-separable interdependence that in-
troduces a subtle yet pervasive nonlocality, undermining its compatibility
with relativistic causality. Consider two simply connected regions X and
Y outside the solenoid, whose union X U Y encloses the flux and becomes

17



multiply connected. Specifying holonomies for all loops within X and Y
individually—where B = 0 and local gauge choices might nullify A—does
not determine the holonomy for a loop in X UY encircling ®, which de-
pends on the distant flux without a local mediator (Wallace, 2014). This
non-separability implies that the solenoid’s configuration instantaneously
influences the phase across disjoint regions, echoing the nonlocal action cri-
tiqued in Section 3.4.

In conclusion, Healey’s framework of loop ontology, despite its topolog-
ical elegance, shares the Madelung approach’s nonlocal and discontinuous
traits, failing to resolve the AB effect’s dynamical origin while adding onto-
logical complexity. This re-affirms the need for a potential-centric perspec-
tive, pursued in subsequent sections, to address the AB effect’s reality with
the depth and locality it demands.

4 A No-Go Result for Gauge-Invariant Explana-
tions

The AB effect poses a profound challenge to our understanding of quan-
tum mechanics, particularly in how we interpret the physical significance
of electromagnetic potentials versus gauge-invariant quantities. Proponents
of gauge-invariant explanations contend that the AB phase shift arises in-
stantaneously at the point of interference, a position critiqued in Section
3 for its reliance on nonlocal and discontinuous mechanisms. This section
advances a more decisive argument grounded in the generalized AB effect
and supported by proposed experiments. The generalized AB effect demon-
strates that the phase accumulates continuously as the electron moves along
its path, rather than emerging instantaneously at interference—a finding
consistent with quantum mechanics’ predictions. Since gauge-invariant ex-
planations presuppose an instantaneous phase shift, they are not merely
inadequate but excluded by this evidence, compelling a reevaluation of the
ontology underlying quantum phenomena.

4.1 An Incompatibility Proof

This section constructs a formal no-go theorem, proving that explanations
relying solely on gauge-invariant quantities—such as the magnetic flux ® or
derived fields—are untenable. The proof hinges on a contradiction between
two propositions: (1) gauge-invariant accounts necessitate an instantaneous
phase shift at interference, and (2) the generalized AB effect demonstrates
continuous phase accumulation along the electron’s path. The arguments
supporting these propositions have been presented earlier—specifically, in
Sections 3.3 and 2.2, respectively—and are restated here for clarity and rigor.
I substantiate each proposition, derive their contradiction, and address po-
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tential objections to cement the exclusion of gauge-invariant paradigms.

Proposition 1: Gauge-Invariant Explanations Require Instanta-
neous Phase Shift at Interference

Gauge-invariant explanations assert that the AB phase shift ¢4p arises
solely from measurable, gauge-independent quantities, such as the magnetic
flux & = fc B - ds, and manifests only when the electron beams recombine
at interference. The argument was given in Section 3.3, and I restate it
formally here.

Consider the standard AB setup: a coherent electron beam splits at
t = 0 into two paths, L; and Ls, encircling a solenoid with constant flux
®, recombining at ¢ = T. Before overlap, each beam travels in a simply
connected, field-free region (B = 0) outside the solenoid. In such a region,
a gauge choice A = 0 is permissible, as the magnetic field’s vanishing curl
(V x A =0) allows the vector potential to be gauged away via:

A'=A-VA, Alr)= /r A(r')-dr, (31)

where rg is a reference point, and V x A = 0 ensures A is well-defined in the
simply connected domain of each path. In this gauge, with Ay = 0 outside,
the Schrodinger equation reduces to the free-particle form:
oy 1
“or T om
since A = 0. The solutions 1 and o for each beam match those of a
free electron (e.g., plane waves tb; = ¢/K*=%%)) devoid of any phase depen-
dence on @, as B = 0 locally and ® is confined to the solenoid’s interior,
inaccessible to the beams.
At interference (¢ = T'), the beams overlap, forming a closed loop C' =
L1 — Lo around the solenoid, a multiply connected region where A = 0
cannot be globally maintained due to:

V24, (32)

%A-drz@%@. (33)
C
The interference pattern shifts by:
¢AB—€?{A~dr—e<I), (34)
C

reflecting ®’s influence. As argued in Section 3.3, gauge-invariant accounts
interpret this as an instantaneous effect: before overlap, ¥ and vy evolve
as free particles (p = [1|? and v = %S, with no ®-dependence), and only
at t =T does ®—a nonlocal, measurable quantity—impose the phase shift.
This requires the phase to emerge discontinuously at interference, as no local
mechanism (e.g., B) alters the beams’ evolution beforehand, and ®’s effect

is tied to the final recombination event.
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Proposition 2: Generalized AB Effect Demonstrates Continuous
Phase Accumulation

In the standard magnetic AB effect, a constant flux ® produces a phase
shift pap = e® (Section 2.1), which gauge-invariant accounts attribute to
an immediate effect of ® at interference. The generalized AB effect, where
the flux ®(t) varies with time, contradicts this instantaneous picture by
showing the phase accumulates continuously as the electron traverses its
path. This argument was developed in Section 2.2, and we restate it with
formal detail here.

Consider the setup: an electron beam splits at ¢ = 0, follows paths L
and Lo around a solenoid with time-dependent flux ®(¢), and recombines at
t=T. In a gauge with Ay =0,

A(r,t) = (I)(t)é, (35)

- 27r

ensuring j;CA -dr = ®(t). For circular paths of radius R, with dr =
Ruw;i(t)8dt and wi(t) + wa(t) = 2% (as derived in Section 2.2), the phase
difference is:

1 (T
quB:e( A-dr—/ A-dr)z/ ed(t) dt. (36)
Lo Ly T Jo
To test this, define:

d for0<t<T/2
a(r) = | ro=t=T (37)
0 forT/2<t<T,
yielding:
1 (772 ed
bAB T /0 ed dt 5 (38)

This phase, observable at interference, depends on ®(t)’s profile over 0 <
t < T, not just &(7") = 0.

Contradiction and No-Go Theorem

The contradiction is now clear. Proposition 1 demands that ¢ 4p emerges
instantaneously at ¢t = T', determined by ®(7'):

pap =e®(T) =0, (39)

since ®(T") = 0. Proposition 2, validated by Equation , yields:

bap = ? #0, (40)
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reflecting the continuous integration of ®(¢). These cannot coexist: if the
phase were instantaneous, it would vanish when ®(7') = 0, yet the general-
ized AB effect’s non-zero result proves it accumulates over the path. For-
mally, define the gauge-invariant hypothesis Hgy: “The phase shift ¢ 45 is a
function of ® at interference, p4p = f(®(T)), with no prior accumulation.”
The generalized AB effect falsifies Hey, as ¢ap = = fOT ed(t)dt # f(P(T)),
establishing the no-go theorem: gauge-invariant explanations are impossible
for the AB effect.

4.2 Objections and Rebuttals

Two objections might challenge this proof, but both fail under scrutiny.
First, proponents like Healey (2007) argue that ¢pap = e §, A -dr is a gauge-
invariant holonomy, a loop property manifesting at interference without re-
quiring continuous accumulation. In the static case, this holds (¢pap = e®),
but for ®(¢), the holonomy:

eie§C Adr _ ei% fOT ed(t) clt7 (41)
varies with the time integral, not ®(7"). The phase’s dependence on ®(t)’s
history—e.g., % versus —cannot be a static loop property evaluated at
t = T. The objection thus misapplies a static concept to a time-varying
context, failing to account for the accumulation evidenced by Equation .

Next, one might posit that ®(¢) nonlocally influences 1; and 1o before
overlap, bypassing the A = 0 gauge. However, in a simply connected re-
gion (B = 0), the gauge transformation (Equation eliminates A, and no
local field couples ® to the beams. Moreover, nonlocality violates special rel-
ativity’s causality (effects propagate at most at ¢), and quantum mechanics
offers no such mechanism—®’s effect requires the closed loop at interference,
yet its timing contradicts the continuous buildup. This objection thus in-
troduces an ad hoc, unphysical assumption, refuted by the gauge invariance
of the Schrodinger equation.

In conclusion, the no-go theorem stands: gauge-invariant explanations,
which predict an instantaneous phase shift at interference, are incompati-
ble with the generalized AB effect’s continuous phase accumulation. This
contradiction excludes such accounts, compelling a shift to electromagnetic
potentials as the fundamental reality, a foundation explored in Section 6.

4.3 Experimental Proposals

In order to empirically validate the exclusion of gauge-invariant explana-
tions and affirm the primacy of electromagnetic potentials, we propose two
experimental designs leveraging modern interferometric precision. These ex-
periments test the phase shift’s dependence on the time-varying magnetic
flux ®(¢)’s history, contrasting it with the gauge-invariant expectation tied
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to ®(T') at interference. Below, we detail each setup, derive expected out-
comes, address experimental challenges, providing a concrete path to resolve
this ontological dispute.

Experiment 1: Time-Varying Flux with Mid-Transit Shut-Off

This experiment directly probes the generalized AB effect by manipulating
®(t) during the electron’s transit, testing whether the phase reflects the
flux’s temporal profile or its value at interference.

Setup: A coherent electron beam, emitted from a source at ¢t = 0, is
split by a biprism into two paths, L1 and Lo, encircling an infinitely long
solenoid of radius Rs (e.g., Rs = 1pum), recombining at a detector after
transit time 7' (e.g., T ~ 10~ s, based on electron velocities ~ 107 m/s over
a ~ 0.1 m path). The solenoid, shielded to confine B internally, generates a
flux ®(t) controlled by a precise current source. Initially, ®(¢) = ®q (e.g.,
®y = 107 Wh) from ¢t = 0 to t = T/2, then switches to ®(t) = 0 from
t =T/2 to T, with a transition duration At ~ 107s.

Theoretical Predictions: Quantum mechanics predicts the phase shift

via Equation (38)):

1 T/2 6‘190
= = dydt = — 42
®AB T/o e® 5 (42)

since ®(t) = 0 for 7/2 < ¢ < T'. This reflects the flux’s influence over the
first half of the transit, accumulated continuously via A. Gauge-invariant
explanations, assuming the phase depends on ®(7") at interference (t = T),
predict:

Gap = ed(T) =0, (43)

as ®(T) = 0. The interference pattern’s fringe shift, proportional to ¢4z,
will distinguish these outcomes: a shift of %)\ (where A is the electron
wavelength) versus no shift.

Experimental Considerations: The solenoid’s current must switch
from Iy = uo?r(}fz to 0 at ¢ = T/2, synchronized with the electron’s tran-
sit. Timing precision (£10719s) is critical, achievable with pulsed current
sources and fast-switching transistors. Electron coherence requires a low-
temperature environment and minimal path-length differences, standard in
electron interferometry (Tonomura et al., 1986). The transition induces a
transient E = —%—‘?, but Section 2.2 shows its effect cancels in ¢ 45, ensuring
the phase depends only on ®(¢)’s integral.

Experiment 2: Relativistic Propagation of Phase Shift with Flux
Shut-Off

This experiment exploits the finite propagation speed of the influence of the
current or flux inside the solenoid on the electron to test whether the phase
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shift reflects this retarded influence, further challenging gauge-invariant non-
locality.

Setup: Similar to Experiment 1, an electron beam splits at ¢t = 0,
encircles a solenoid, and recombines at t = T (e.g., T = 1078s) at a distance
d = 0.3m from the solenoid. The solenoid maintains ®(t) = ®o until ¢ =
T — 4, where § = d/c ~ 10775, then switches to ®(t) = 0 via a current
shut-off at ¢t =T — 0.

Theoretical Predictions: If the flux inside the solenoid influences the
electron at finite propagation speed of light (e.g via A in the Lorenz gauge),
obeying special relativity, then the effect of its shut-off at ¢t = T — ¢ will
not reach the electron beams before ¢ = T, as the distance d ensures a
light-travel delay. Thus the AB phase shift will be

1 T
dAB = T/o e®(t) dt = ey, (44)

as in the standard AB effect. In fact, when considering the relativistic
retardation effect, the generalized AB phase shift should be

1 T
ban = 7 /0 cd(t — R/c) dt, (45)

where R is the radius of the electron’s circular paths. In contrast, gauge-
invariant accounts, assuming instantaneous dependence on ®(7) = 0 at
interference, predict:

pap = e®(T) = 0. (46)

The fringe shift (e%)\ vs. 0) tests whether ®(¢)’s retarded propagation, not
®(T), determines ¢ap.

Experimental Considerations: Synchronization between the shut-off
(at t =T — 107?s) and electron emission must be precise (£1071"s). The
shut-off’s finite speed (At ~ 107!?s) introduces a small error in Equation
, reducible to ~ %(I)o ~ 1072®, negligible for detection.

Both experiments leverage ®(t¢)’s controllability to probe the phase’s
genesis. Experiment 1 tests temporal accumulation within a compact setup,
ideal for laboratory precision, while Experiment 2 probes relativistic causal-
ity, requiring higher timing precision but offering deeper ontological insight.
Success in either—showing ¢pap # e®(T)—would empirically falsify gauge-
invariant instantaneity. Challenges like coherence and timing are surmount-
able with current technology, positioning these proposals as practical tests
of the AB effect’s foundational implications.

4.4 Conclusion

To summarize, the generalized AB effect, buttressed by its experimental im-
plications, lays bare the inadequacy of gauge-invariant explanations with
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unassailable clarity. The evidence that the phase accumulates continu-
ously as the electron traverses its path, rather than emerging instanta-
neously at interference—a phenomenon quantum mechanics consistently
predicts—excludes gauge-invariant interpretations, which hinge on an un-
tenable instantaneity. Quantities like ®, p, and v, bound to static or abrupt
manifestations, cannot account for this dynamic process, which finds its root
in A’s local influence (Section 2.2). This exclusion compels a philosophical
shift, directing us to reconsider electromagnetic potentials as ontologically
fundamental—a path pursued in Section 6.

5 Is Quantum Electrodynamics Relevant?

The analysis thus far has rested on a quantum mechanical (QM) descrip-
tion of the AB effect, treating the electron as a quantum particle interact-
ing with classical electromagnetic potentials. This approach, while fruit-
ful, prompts a critical question: does a fully quantized treatment in quan-
tum electrodynamics (QED)—where both the electron and electromagnetic
field are quantum entities—alter the conclusion that gauge-invariant expla-
nations are inadequate? QED, as the quantum field theory unifying QM
and special relativity, offers a more complete framework for electromagnetic
interactions, potentially reframing the AB effect’s ontology. This section
argues that QED reinforces, rather than undermines, the critique of gauge-
invariant explanations established in Sections 3—4, demonstrating that the
phase shift’s continuous accumulation remains tied to potentials, not gauge-
invariant quantities, even in a quantized context.

5.1 Correspondence Between QM and QED

A foundational observation underpins this inquiry: QM serves as a robust
approximation to QED in regimes relevant to the AB effect. The corre-
spondence principle ensures that QM’s predictions—e.g., the phase shift
pAB =€ fc A -dr in the magnetic AB effect—closely align with QED’s, with
quantum corrections typically small. For instance, vacuum polarization due
to the solenoid’s magnetic field introduces an exponentially suppressed effect
beyond the electron’s Compton wavelength (A ~ 2.43 x 10712 m), negli-
gible in typical AB setups where distances exceed this scale (Serebryanyi,
1985; Gornicki, 1990). In QM, gauge-invariant quantities like p = ||* and
v = L1(VS — eA) fail to account for the phase’s continuous emergence
(Sections 3-4); their QED counterparts—e.g., expectation values of charge
density or current—inherit this limitation, as their dynamics remain tied
to the classical A’s influence, minimally perturbed by quantization. Thus,
QED’s corrections do not introduce new gauge-invariant mechanisms suffi-
cient to explain the AB phase, preserving QM’s insight that potentials drive
the effect.
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5.2 Gauge Invariance in a QED Framework

Could QED offer a gauge-invariant explanation unavailable in QM, perhaps
via quantized field interactions? Marletto and Vedral (2020) propose that
the AB phase arises locally from the interaction energy between a charged
particle and a current source, mediated by photon exchange—a quantity
often considered gauge-invariant. They argue that this energy shift, mea-
surable even for non-closed paths, obviates the need for potentials. However,
this claim falters under scrutiny. Hayashi (2023) demonstrates that, in QED,
the interaction energy is gauge-dependent, varying with the choice of gauge
(e.g., Coulomb vs. axial gauge) due to the photon propagator’s form. For a
non-closed path, the phase shift A¢p = e | ; Apdrt remains gauge-variant, as
Wakamatsu (2024) confirms using a path-integral approach with an effective
Lagrangian. Saldanha (2024), correcting an earlier error (Saldanha, 2021),
reaffirms this: only for closed loops does the phase become gauge-invariant,
as gap = € fCA -dr. Thus, QED does not yield a local, gauge-invariant
phase for the electron’s transit, reinforcing that A’s role persists, consistent
with the continuous accumulation observed in the generalized AB effect
(Section 2.2).

5.3 Vaidman’s Alternative Proposal

Vaidman (2012) offers a distinct perspective, suggesting that the AB phase
emerges from local interactions between the electron’s field and the solenoid’s
current, eschewing potentials. He posits that the electron exerts an electric
force on the solenoid’s charges, inducing a phase shift in their joint wave
function. Yet, Pearle and Rizzi (2017) show this to be equivalent to the
standard QM account: the net phase, including the electron’s standard shift
(¢aB), Vaidman’s contribution, and an opposing interaction term, sums to
®AB, leaving the potential-based explanation intact (see also Aharonov and
Bohm, 1961). Aharonov et al. (2016) further point out that Vaidman’s ac-
count does not apply in sourceless AB scenarios (e.g., magnetic flux without
current), where no interacting charges exist to mediate the effect. In QED,
where fields are operator-valued, the photon field’s potential A, remains
essential to the Hamiltonian, coupling to the electron’s charge regardless of
source dynamics. Vaidman’s proposal, while intriguing, does not supplant
A’s primacy, aligning with QED’s reinforcement of QM’s potential-driven
ontology.

5.4 Implications for Gauge-Invariant Explanations

The continuity between QM and QED, coupled with the failure of QED-
specific gauge-invariant proposals, solidifies the critique of Sections 3—4. In
QED, the AB phase—whether ¢pap = e® or its generalized form ¢ap =
% fOT e®(t) dt—arises from the electron’s interaction with the quantized A,,,
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not from field strengths (E, B) or derived invariants alone. Gauge-invariant
quantities in QED (e.g., (F,, F'*")) describe observable outcomes but do not
dynamically generate the phase during transit, mirroring QM’s limitation
(Section 3). The generalized AB effect’s evidence of continuous accumu-
lation, upheld in QED’s path-integral formalism, excludes instantaneous
gauge-invariant mechanisms, as the photon-mediated potential remains the
operative agent. Even if QED introduces additional invariants (e.g., photon
correlation functions), their contributions are too small to account for ¢ 4p’s
magnitude, leaving A’s role irreducible.

5.5 Conclusion

QED does not alter the conclusion that gauge-invariant explanations of
the AB effect are inadequate; rather, it deepens it. The correspondence
with QM ensures that the phase’s continuous accumulation persists, while
QED’s quantized framework—despite proposals like Marletto and Vedral’s
or Vaidman’s—reaffirms the necessity of potentials over field-derived invari-
ants. The AB effect, in both QM and QED, reveals a reality where A,
governs the electron’s phase evolution, excluding gauge-invariant accounts
that demand instantaneity at interference. This convergence invites a philo-
sophical reassessment of potentials’ ontological status, pursued in Section 6,
as fundamental to quantum theory’s explanatory structure.

6 Reality of potentials in the Lorenz gauge

The critique in the preceding sections has exposed the profound shortcom-
ings of gauge-invariant explanations for the AB effect, highlighting their de-
pendence on nonlocal and discontinuous mechanisms that contravene special
relativity and the local essence of quantum interactions. This failure compels
us to reconsider the role of electromagnetic potentials, long relegated to the
status of mathematical conveniences due to their gauge dependence. In this
section, I argue that the continuous accumulation of the AB phase—a cen-
tral finding of this analysis—demands that electromagnetic potentials pos-
sess physical significance as direct representations of the underlying physical
state, a role that fields and gauge-invariant quantities cannot fulfill. Fur-
thermore, I argue that this significance is most coherently embodied in a
single, preferred gauge—the Lorenz gauge—owing to its unique alignment
with locality, Lorentz covariance, and causality (see Mulder, 2021 for a sim-
ilar proposal).

6.1 The Physical Significance of Electromagnetic Potentials

The cornerstone of this paper’s analysis is the revelation that the AB phase
accumulates continuously as the electron traverses its path, a process that
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gauge-invariant explanations cannot adequately describe. This insight, drawn
from Sections 3 through 5, fundamentally implies that electromagnetic po-

tentials must be physically real, as fields like E and B, and other gauge-

invariant quantities such as p = [¢)|? and v = L(VS — eA), fail to capture

this dynamic evolution.

Consider the evidence: Section 3 established that gauge-invariant approaches—
relying on the magnetic field B or phase holonomies—attribute the AB phase
shift to an instantaneous emergence at the point of interference. This re-
quires a nonlocal action from the solenoid’s magnetic flux, despite the elec-
tron’s confinement to a field-free region, contradicting special relativity’s
causal limits. Such explanations cannot account for a phase that builds pro-
gressively, as they tie the effect to the field’s state at a single moment rather
than the electron’s journey.

Section 4’s exploration of the generalized AB effect deepens this critique.
When the magnetic flux varies with time, the phase shift is proportional to
the flux’s time average over the electron’s travel duration, not merely its
value at interference. This continuous accumulation is starkly evident in
the proposed experiment: if the solenoid current is turned off before the
beams overlap, a gauge-invariant account predicts no shift (since B = 0 at
that instant), yet quantum mechanics predicts a persistent effect tied to the
potential’s prior influence. The fields E and B—zero or negligible outside
the solenoid throughout much of the electron’s path—offer no mechanism
for this gradual phase build-up. Similarly, gauge-invariant quantities like
p and v remain unchanged by the flux before interference, only shifting
discontinuously upon overlap, as dictated by nonlocal conditions like § v -
dr = 2mn —e®. This discontinuity clashes with the smooth, path-dependent
phase evolution observed, underscoring their inadequacy.

By contrast, the electromagnetic potentials A, = (—Ap, A) naturally
account for this continuous process. In the Schrédinger equation,

z’%zf = —%(V —ieA)? + eAg, (47)
the potentials couple directly to the wave function, inducing a phase A¢ =
ef 1, Apdxt that accumulates along the electron’s trajectory. In the magnetic
AB effect, the vector potential A outside the solenoid, though yielding B =
V x A =0, drives a phase difference

¢AB:€j{A‘dI' (48)

proportional to the enclosed flux, observable via interference. This phase
emerges not from the fields, which vanish locally, but from the potential’s
persistent presence, integrated over the path. The generalized case (Section
2.2) reinforces this: a time-dependent flux ®(¢) yields

1 T
oan =7 | vty (19)
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reflecting the potential’s evolving influence over time, not an abrupt field
effect. Only A, can mediate this continuous interaction, as it tracks the
electron’s state across its entire journey, unlike fields or gauge-invariant
quantities confined to static or instantaneous descriptions.

This continuous phase accumulation thus necessitates that A, represents
something physically real that affects the phase evolution of the electron,
which determines the interference outcome. Fields like B describe forces,
absent here, while p and v keep unchanged by the flux until overlap. The
potential, however, actively shapes the phase of the wave function of the
electron, even in field-free regions. Section 3’s Madelung analysis confirms
this limitation: without invoking A, the nonlocal quantization condition
fails to explain the phase’s origin, leaving a gap that only the potential
fills. Section 5’s QED treatment further supports this, as gauge-invariant
quantities (e.g., interaction energy) cannot eliminate A,’s role for non-closed
paths, affirming its necessity across frameworks.

If A, were merely a mathematical tool, its influence would be reducible
to fields or derivable from gauge-invariant terms alone—yet the AB effect
defies this reduction. The phase’s continuous build-up in a field-free region,
which depends on the potential’s line integral, suggests A, encodes a phys-
ical reality beyond E and B. In classical mechanics, potentials lack such
status, as motion depends solely on forces; in quantum mechanics, however,
the Schrodinger equation elevates A, to a fundamental driver of the elec-
tron’s state, irreducible to field effects. The AB effect’s ontology—where
the electron’s interference reflects a history of potential interactions—thus
demands that electromagnetic potentials be physically real.

6.2 The Necessity of One True Gauge

Accepting that electromagnetic potentials are real confronts us with their
gauge dependence: under A, — A, — 0,A, paired with ¢ — e~ieMp, ob-
servables remain invariant, suggesting arbitrariness. Yet, if A, is physically
real, its representation must be determinate, implying the existence of one
“true gauge” where it uniquely reflects this reality (Maudlin, 1998). The
continuous phase accumulation reinforces this need: a process so intimately
tied to A,’s local values cannot be left ambiguous across multiple gauges
without undermining its physical basis.

Gauge invariance ensures empirical equivalence, but ontological clarity
requires a single, consistent form for A,. If every gauge were equally real,
the potential at a point z—e.g., A(z) versus A(x) — VA(xz)—would yield
distinct descriptions of the same physical state, yet produce identical out-
comes, creating an indeterminacy incompatible with a fundamental entity.
In the AB effect, choosing A = 0 in one path and a nonzero A in another
is locally feasible, but globally reconciling these requires a transformation
reflecting the flux—a task demanding a unified gauge. Multiple real gauges
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would either multiply realities excessively or necessitate nonlocal coordi-
nation, reintroducing the flaws of gauge-invariant accounts. A true gauge
resolves this by fixing A,’s form, ensuring its values correspond to the elec-
tron’s continuous phase evolution without ambiguity.

A potential objection arises here: no observation could reveal the one
true gauge (Maudlin, 1998). This critique suggests that the empirical un-
derdetermination of A, undermines the claim of a single true gauge, as all
observable quantities—e.g., the AB phase shift ¢4p = ¢ § A - dr—remain
invariant under gauge transformations, leaving no experimental means to
distinguish one gauge from another. While this poses a legitimate challenge
to direct verification, it does not invalidate the ontological necessity of a
true gauge. The objection conflates empirical accessibility with physical re-
ality: the fact that we cannot measure A, directly does not imply it lacks
a determinate form. In quantum mechanics, an unknown quantum state is
similarly unobservable in its full detail, yet we assign it ontological status
based on its explanatory role. Likewise, A,’s role in driving the continuous
phase accumulation justifies its reality, even if its specific gauge-fixed values
elude observation.

Moreover, the epistemological limitation is not unique to this proposal.
Scientific theories often posit entities beyond direct empirical grasp—e.g.,
quarks—relying on their consistency with observable phenomena and the-
oretical coherence. The true gauge’s identification rests on such grounds:
the Lorenz gauge as the true gauge (see next subsection) is favored not
by empirical discrimination but by its alignment with special relativity and
locality, principles that constrain the state of reality. The AB effect’s con-
tinuous phase, dependent on A,’s path integral, demands a gauge that re-
spects these constraints, not an arbitrary choice. While observation can-
not pinpoint A,’s form, the requirement of a consistent, causal description
of reality—free of the nonlocality or discontinuity plaguing gauge-invariant
accounts—necessitates a single gauge, undeterred by our inability to probe
it directly. Thus, the epistemological objection, while highlighting a practi-
cal limit, does not negate the conceptual need for one true gauge to anchor
the potentials’ physical significance.

6.3 The Lorenz Gauge as the True Gauge

Having established the necessity of a single true gauge in which electromag-
netic potentials A, represent the state of reality, we must now identify which
gauge fulfills this role. I argue that the Lorenz gauge, defined by 9, A" = 0,
emerges as the true gauge—uniquely satisfying locality, Lorentz covariance,
causality, and ontological completeness. This section dissects these virtues,
cementing the Lorenz gauge as the determinate, relativistically consistent
ontology for the AB effect.

29



6.3.1 Locality and Causal Propagation

The Lorenz gauge’s primacy rests on its local, causal dynamics, inherently
compatible with special relativity. Maxwell’s equations under 9, A" = 0
yield the wave equation,

OA® = JH, (50)

where [0 = 0,,0" is the Lorentz-invariant d’Alembertian, guarantees that
changes in A, (r,t) propagate at the speed of light, reflecting retarded in-
fluences from sources J* within the past light cone. This locality is pivotal:
the generalized AB effect (Section 2.2) shows the phase accruing continu-
ously along the electron’s path, driven by A,,’s gradual action, not an abrupt
effect of ® at interference. Only in the Lorenz gauge does A,’s evolution
respect the causal structure of spacetime, ensuring that the phase accumu-
lates via retarded interactions localized along the electron’s trajectory. By
contrast, the Coulomb gauge (V- A = 0) defines Ag = — % d®r’, im-
plying instantaneous dependence on distant charges, violating relativistic
causality.

6.3.2 Lorentz Covariance

Lorentz covariance further elevates the Lorenz gauge as a physical neces-
sity. As a four-vector, A, transforms consistently across inertial frames,
with 9,A" = 0 invariant, ensuring the AB phase’s frame-independent pre-
dictions. For instance, shutting off the solenoid current before interference
(Section 4.3) yields a persistent pap = e® due to retarded potentials—an
effect the Lorenz gauge naturally encodes, while gauge-invariant accounts
erroneously predict null shifts when B = 0 at overlap. The Coulomb gauge,
with its non-covariant Ag, disrupts this relativistic unity, failing to align the
effect’s spacetime dynamics with special relativity. Only the Lorenz gauge
guarantees a consistent, universal description, a hallmark of a true physical
ontology.

6.3.3 Determinacy and Uniqueness

The Lorenz gauge resolves gauge ambiguity, fixing A, uniquely. The general
solution to Equation is

A(z) = / Gla —2) (@) d'a + AP (a), (51)

hom

where G(z—2’) is the retarded Green’s function and A} satisfies DA} =
0. Imposing 9, A* = 0 and boundary conditions (e.g., A* — 0 at infinity)
constrains A} : gauge shifts 9,A must obey OA = 0, typically reducing to
a constant, which is dynamically inert. In the AB effect, the solenoid’s J*

specifies a unique A, (e.g., A = (D(%:ﬂ/c)é), determining the phase without
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residual freedom. This determinacy ensures A,, as a unambiguous descriptor
of reality, a prerequisite for its physical significance.

6.3.4 Ontological Sufficiency

Finally, the Lorenz gauge is ontologically sufficient; potentials in the Lorenz
gauge can generate all gauge-invariant descriptions, rendering the inclu-
sion of gauge-invariant quantities besides them in the ontology redundant.
Given A, and the wave function 1, all observables follow: p = |[¢|?, v =
L(VS —eA), and E, B via F,, = 9,4, — 9,A,, showing that they are
mere manifestations of the underlying state defined by A, and ¥. The AB
phase ¢pap = e fCA - dr emerges directly, rendering entities like ® redun-
dant. The Lorenz gauge, by fixing A, in a physically consistent form, thus
provides a complete and economical description, eliminating the need for
supplementary gauge-invariant constructs.

To sum up, the Lorenz gauge stands as the true gauge—not a convention,
but the unique embodiment of A,’s reality. Its locality, covariance, deter-
minacy, and sufficiency align with the AB effect’s demands, as Sections 4-5
affirm, offering a testable, coherent framework. This choice resolves the
gauge problem decisively, paving the way for probing A,’s deeper nature in
Section 6.4, and solidifying its primacy in quantum interactions.

6.4 Nonzero Photon Mass and the Proca Equation

The argument thus far assumes a massless photon, consistent with standard
electromagnetism and QED, where the Lorenz gauge fixes A, for a gauge-
invariant theory with E and B as physical fields. However, an intriguing
possibility arises if the photon possesses a nonzero mass: the Lorenz gauge
then aligns with the Lorenz condition for the Proca equation, the simplest
framework for a massive photon, potentially enhancing the physical reality

of the so-called “gauge” potentials.

In standard QED, the photon is massless, and the action S = f(—%FWFW+

JrA,) d*x permits gauge transformations Ay — Ay — Oy, leaving A, in-
determinate. The Proca theory introduces a mass term with the action:

1 1
S = / (—4FWFW - §m2AﬂA“ - J"AM> d*z (52)
Varying this with respect to A, yields the field equation:
O F" +m?AY = J¥ (53)
Taking the divergence, since 0,0, F'*" = 0 due to antisymmetry, we obtain:

m29,A” =0 (54)
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For m # 0, this enforces:
0,A” =0 (55)

which is the Lorenz gauge condition, now a necessity rather than a choice.
Then, the Proca equation becomes:

OA* —m?AF = g (56)

a massive Klein-Gordon equation, where A, propagates as a physical field
with three degrees of freedom (two transverse and one longitudinal), rather
than the two polarizations of a massless photon. With boundary conditions
(e.g., A, — 0 at infinity), this fixes the potentials A, uniquely. This deter-
minacy aligns with the AB effect’s demand for a local, causal A, (Section
6.2), eliminating the need to select a gauge manually.

For the AB effect, this shift has profound implications: the vector po-
tential A outside the solenoid, driving the phase ¢ap = e § A - dr, becomes
a tangible field, not a gauge artifact. The mass term ties A, directly to its
sources (J#), eliminating the ambiguity of gauge choice, as 9, A* = 0 is now
a dynamic constraint rather than a freedom-reducing condition. The con-
tinuous phase accumulation observed in the generalized AB effect (Section
2) persists, with A’s evolution governed by Equation , its range limited
by m7, I but still locally influencing the electron in the field-free region.

This nonzero mass enhances the potentials’ reality in two key ways.
First, the loss of gauge invariance elevates A, from a mathematical inter-
mediary to a physical entity with measurable properties, akin to a massive
particle’s field. In the AB context, the phase shift remains observable, but
A’s contribution is no longer reducible to B alone; the longitudinal compo-
nent, absent in the massless case, adds a physical degree of freedom directly
tied to A,. Second, the Proca framework aligns with the Lorenz gauge’s
virtues—Ilocality and retarded propagation—while removing the need to jus-
tify a “true gauge” against gauge freedom, as the mass inherently fixes A,,.
Experimental limits on photon mass are stringent (m., < 10718eV/ ¢?). Yet,
if a tiny mass exists—perhaps from beyond-standard-model physics—the
potentials’ enhanced reality in the Lorenz condition for the Proca equation
strengthens their ontological primacy, offering a speculative yet coherent
extension of this paper’s argument.

6.5 Conclusion

To sum up, the continuous accumulation of the AB phase necessitates that
electromagnetic potentials possess physical significance, a role fulfilled uniquely
by the Lorenz gauge through its alignment with locality, Lorentz covariance,
and causality. The potentials A, represent the electromagnetic state of the
system, driving the electron’s phase evolution in a manner irreducible to
fields or gauge-invariant quantities, as evidenced across QM and QED (Sec-
tions 5 and 6). The Lorenz gauge’s determinacy resolves gauge ambiguity,
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while a nonzero photon mass, via the Proca equation, could further con-
cretize A,’s reality by eliminating gauge freedom entirely. This analysis
thus establishes electromagnetic potentials in the Lorenz gauge as the fun-
damental reality underlying the AB effect, challenging the primacy of gauge
invariance and offering a coherent ontology for quantum interactions.

7 The Ontological Status of Potentials in the Lorenz
Gauge

Having established A, in the Lorenz gauge embodies the physical reality
that drives the AB effect’s phase evolution, we confront a deeper question:
what state of being do these potentials represent? If A, fixed by 9, A" =0,
is not a mere intermediary but the very essence of the electromagnetic influ-
ence, its ontological status demands scrutiny. Here, I propose that A, in the
Lorenz gauge manifests the electromagnetic state of reality—a dynamic con-
figuration shaping quantum interactions—and explore its potential identity
as the classical precursor to a photon wave function in the position repre-
sentation, explicitly tied to A, itself. This inquiry bridges the AB effect’s
empirical demands with a philosophical reimagining of quantum ontology,
probing the nature of light’s being.

7.1 Potentials as the Electromagnetic State

The AB effect illuminates A,’s primacy: the phase pap = ¢ fC A -dr emerges
not from local field strengths (E, B) but from the potentials’ continuous
presence along the electron’s path, a process Sections 2-5 affirm as local
and dynamic. In the Lorenz gauge, A, satisfies LJA* = J#, propagating as a
retarded field from sources J*, its four-vector form encoding the electromag-
netic environment’s influence. I posit that A, represents the electromagnetic
state—a physical reality distinct from derived fields, capturing the poten-
tiality of interaction rather than its realized forces. In the generalized AB
effect (Section 2.2), the phase ¢ap = e §, A(r,t) - dr reflects A,’s temporal
evolution, a history of influence irreducible to instantaneous ®. Philosoph-
ically, this elevates A, beyond a mathematical scaffold: it is the state of
being through which the quantum world communes with electromagnetism,
fixed uniquely by the Lorenz gauge’s causal clarity (Section 6.3).

7.2 The Photon Wave Function

Interpreting A, as the electromagnetic state, fixed in the Lorenz gauge,
prompts an exploration of its quantum nature through a position-space pho-
ton wave function. Unlike non-relativistic quantum mechanics, where wave
functions directly yield position probabilities, photons—due to their mass-
less, relativistic, and non-localizable nature—require a generalized approach.
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Here, I define 1,(r,t) = <0|Au(r,t)|¢> as the definitive representation of
a single photon’s state in space, prove its completeness and uniqueness,
demonstrate its role in explaining quantum phenomena like the double-slit
experiment, and establish its superiority over alternatives like the Riemann-

Silberstein (RS) wave function, culminating in its foundational status within
QED.

7.2.1 Definition of the Photon Wave Function

To rigorously define the photon wave function, we begin with the quan-
tized electromagnetic field in quantum field theory (QFT), where the four-
potential operator fl“(r,t) serves as the cornerstone of photon dynamics.
In the Heisenberg picture, and adopting natural units (¢ = h = 1), this
operator is expressed as:

2

. A3k ,
_ i(k-r—wit)
A (r,t) = / o mzmeﬂ (k, Na(k, Ne k
+ el (k,A)al (k,A)eiermert)] (57)
where w, = k| (b = ¢ = 1), €u(k, \) are transverse polarization vectors

(A = 1,2) satisfying k*¢, = 0, and a(k, \), a'(k,\) are annihilation and
creation operators. Longitudinal and scalar modes (A = 0, 3) are excluded
via the Lorenz gauge condition.

The single-photon state is constructed in the Fock space as:

2
) = / @6 )l (9)0), (58)
A=1

where f) (k) is a complex amplitude function specifying the photon’s momen-
tum and polarization distribution, subject to the normalization condition:

wiv) = [ P I0” =1 (59)

ensuring a single-particle state. This |¢)) encapsulates the photon’s quantum
state in momentum space, with f)(k) fully determining its properties. Now
a position-space photon wave function can be defined as

Bl <

bulnt) = Ol 0l = 27 £ uL

2w

en(k, N)e' TRt (60)

This ), (r,t) is a four-vector function encoding the photon’s momentum
and polarization distribution in position space, akin to a classical potential.
It satisfies [JA, = 0 and 0" A, = 0, mirroring a free photon’s dynamics.
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Unlike non-relativistic wave functions, |1, (r,t)|> isn’t a probability den-
sity—photons lack a position operator due to their massless nature—but
Yu(r,t) generates fields for QED observables, making it a generalized wave

function tailored to the photon’s relativistic and gauge-dependent essence.

7.2.2 Proof of Completeness and Uniqueness

To establish v, (r, t) as the definitive photon wave function, we must demon-
strate its completeness—its capacity to encapsulate all physical information
of the single-photon state |1) in position space—and its uniqueness—its sta-
tus as the singularly appropriate representation within QED’s framework.
Let us proceed with rigor, building from first principles and addressing po-
tential challenges.

Completeness begins with recognizing that [¢)) = [d3k >, f )\(k)d:r\ (k)|0)
fully specifies the photon’s quantum state in momentum space, with f)(k)
encoding its momentum distribution and polarization content across two
transverse modes (A = 1,2), normalized via [ @3k, |fr(k)[* = 1. Second,
the transition to position space via 1, (r,t) = <O|Au(r,t)\1j)> preserves this

entirety. 1, (r,t) retains all of f)(k) and eff‘)(k), mapped into spacetime and
suggesting no information is lost.

To verify, consider the physical content 1, (r, t) delivers. The electromag-
netic fields follow: E(r,t) = —VAg(r,t) — &;A(r,t), B(r,t) = V x A(r,t).
For #,(r,t) = (¢,1y), in Lorenz gauge (8“14# = 0), typically 19 = 0 for
transverse photons, so:

(O|E(r,t)|1) = —9pb(r,t), (0[B(r,t)[)) = V x ¥(x, ). (61)

For potential effects like the AB effect, 1, (r,t) directly provides A,(r,t)’s
quantum analog, with ¢ap derived from its classical counterpart. Could
additional information—say, higher-order correlations—be missing? Multi-
point correlators (e.g., (1|A,(r,t)A,(r',)|0)) involve multi-photon states,
irrelevant for a single photon, where [¢)’s Fock-space definition ensures all
properties are encoded in fy(k), fully transferred to ¢, (r,t). Thus, com-
pleteness holds: ), (r,t) exhausts the single-photon state’s spatial descrip-
tion.

Uniqueness demands that 1, (r,t) be the sole appropriate position-space
representation. Its basis in /Al#(r, t)—QED’s fundamental field operator—is
the linchpin. Alternative operators might be proposed—e.g., the field-
strength tensor Fuy(r, t) = 8ufll,(r, t) — &,flu(r, t). Compute:

<0‘FMV(I‘7 t)‘w> = 8u¢u(ra t) - anﬂ(rv t)v (62)
a derivative of 9, (r,t), not an independent wave function. Any FW—based

formulation (e.g., F = E 4+ iB) is thus subordinate, lacking A,(r,t)’s pri-
macy in potential-driven effects. Could another operator, say a scalar field,
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serve? Photons have vector nature (spin-1), and QED’s structure ties them
to flu(r, t), with no scalar or tensor alternative matching gauge and polariza-
tion constraints. Gauge transformations (Au — Au + 0uXs Y = Yu 4 0uX)
alter ¢, (r,t)’s form, but QED’s gauge-invariant observables (e.g., ¢ap) re-
main unchanged, and Lorenz gauge fixes a consistent representation without
loss of generality—other gauges (e.g., Coulomb) are equivalent via transfor-
mation, not distinct.

Objections might arise: does 1, (r, t)’s non-localizability (no |1, (r,t)|? as
probability) undermine completeness? For massive particles, position opera-
tors exist, but photons’ massless nature and helicity preclude this—Newton-
Wigner fails, producing unphysical states. v, (r,t) adapts by defining fields
and potentials, sufficient for QED’s statistical predictions, aligning with the
photon’s relativistic essence rather than a flaw. Could multiple wave func-
tions coexist? Any alternative must replicate [¢))’s information and QED’s
observables; since 1, (r, t) does so via A“(r, t), additional forms (e.g., ad hoc
scalars) are redundant or inconsistent. Thus, uniqueness holds: 1),(r,t) is
the canonical, singular bridge from momentum to position space in QED.

7.2.3 Explaining the Double-Slit Experiment as an Example

To concretely illustrate the physical significance of the photon wave function
Pu(r,t) = (0|flu(r, t)|1), we analyze the canonical double-slit experiment.
This example demonstrates how the quantum electromagnetic potential A,
encoded in v, (r,t), governs interference phenomena.

Consider a single photon incident on a double-slit apparatus. The quan-
tum state [¢) is a superposition of two paths:

1
V2

where [1¢);) corresponds to the photon passing through slit . The photon
wave function becomes:

|4) (I1) + [¢2)) (63)

1
V2

with @bff) (r,t) = <O|flu(r,t)|¢l-> describing the potential field configuration
for path 7.

Assuming slits at positions ry and rs, the wave functions propagate as
spherical waves:

bulr,t) = —= (6D 0.0 + 4P (1)) (64)

ci(klr—r;|—wt)

@ (r,t) o

p €u(k), (65)

|r — 1|
where €,(k) is the polarization vector. The total wave function at the screen

is: ) )
eszl eszg

'l/]lt(r,t) X Tle'u =+ TQG'L“ (66)
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where L; = |r — r;|. For L1 &~ Ly = L, the path difference AL = L1 — Ly
introduces a phase difference:

(67)

kAL
5 .

esz
Wy, Teu cos <

The detection probability can be calculated using the following gauge-
invariant prescription (Glauber, 1963; Mandel and Wolf, 1995)E|

P(I‘, t) X <1/}’E7 (I‘, t) ’ EJF(I'? t)’¢>7 (68)

where E¥ = —9,A* — V/la[ are the positive/negative frequency components
of the electric field operator. Substituting A* with Y, we compute:

E B o [0 + [Vl (69)

For the superposed wave function, this yields:
kAL
P(r)  cos® (2 ) ; (70)

reproducing the observed interference fringes. Critically, this result emerges
from the superposition of potentials (¢,), not the fields E or B.

To sum up, the double-slit experiment demonstrates that interference
patterns arise from the superposition of electromagnetic potentials A, (1,,).
This reaffirms the thesis that potentials in the Lorenz gauge are ontologically
fundamental, while gauge invariance reflects descriptive redundancy, not
physical equivalence.

7.2.4 Comparison with Alternatives

To grasp the full measure of v, (r,t)’s significance, we must turn our gaze
to the landscape of alternatives that have sought to represent the photon’s
state in space, each offering a glimpse of insight yet falling short of the
comprehensive vision embodied in our formulation.

2 A rigorous analysis may show that no standard probability density p(r,t) and current
Jj(r, t)—satisfying positivity, normalization to unity ([ pd®x = 1), continuity (dip+V-j =
0), and Lorentz covariance—can exist for a single photon (Newton and Wigner, 1949;
Bialynicki-Birula, 1996; Sebens, 2019). Suppose such a p = (¢|p|¢) exists, with fﬁd3x =
N (number operator). Covariance suggests j* = (cp,j) o< k* F(k-x), but integrating yields
energy P° = E/c, not 1, and locality of p conflicts with the non-local N due to light-cone
correlations of massless fields (e.g., (A*(z)A" (y)) ~ 1/(z —y)?). Thus, photons’ massless,
spin-1 nature and gauge invariance preclude a local, normalizable probability density and
conserved current, making standard definitions impossible. However, a Lorentz-covariant
probability rule is still needed for predictions for the experimental setups where the speeds
of the detectors in the laboratory frame are relativistic. This is an important challenge
for theorists.
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Consider first the momentum-space state [¢), articulated as an inte-
gral over creation operators weighted by fy(k) and rooted in the pristine
clarity of quantum field theory’s Fock space. Its completeness in momen-
tum space is undeniable, offering a direct conduit to QED’s computational
machinery, whether for scattering processes or multi-photon states, and its
normalization flows naturally from the photon’s particle nature. Yet this
purity comes at a cost: it remains silent on the photon’s spatial presence,
unable to manifest A,(r,t), E(r,t), or B(r,t) without the intervention of
an operator like Au(r, t). For phenomena tethered to position—interference
patterns or potential-driven phase shifts—this silence is a void that v, (r,?)
fills, serving as the necessary bridge from the abstract expanse of momentum
to the tangible theater of space, rendering it not a rival but a complementary
necessity, elevated by its spatial articulation.

Next, consider the Riemann-Silberstein wave function, a construct that
elegantly melds the electric and magnetic fields into a single complex entity,
expressed as (1)|E(r,t) + iB(r,t)|0), which in momentum space unfolds as
an integral over wave vectors, weighted by polarization and field amplitudes,
and in our terms emerges directly from 1),,(r,t) as —0p(r,t) + iV X ¢ (r, 1)
when the scalar potential vanishes. Its allure lies in its gauge invariance—a
quality that frees it from the shackles of arbitrary gauge choices—and its in-
tuitive resonance with classical optics, where its magnitude squared approx-
imates energy density. Yet this elegance is marred by a profound limitation:
it lacks Lorentz covariance, for under a relativistic boost, the electric and
magnetic components transform in a manner that disrupts its form (e.g., the
z-component shifts as y(E, —vBy) +iv(B; +vEy)), rendering it inadequate
for a fully relativistic theory. More critically, it falters in regions where fields
vanish but potentials persist, as in the AB effect, where F collapses to zero
despite the photon’s interaction with A,, a domain where 1, (r,t) thrives
by embracing the four-potential’s primacy. Confined to massless photons, it
lacks the adaptability of 1, (r, ), which can extend to hypothetical massive
scenarios, positioning our wave function as the more foundational descriptor.

Turning to the Landau-Peierls wave function, we encounter a historical
attempt to cast the photon in a semi-classical mold, defined as a three-vector
integral over momentum with a modified normalization factor, 1/1/2wy, aim-
ing to align its magnitude squared with a probability density akin to massive
particles. Its intent—to bridge quantum and classical intuitions—carries
a certain nostalgic charm, reflecting early efforts to grapple with the pho-
ton’s elusive nature. Yet this ambition stumbles: the normalization disrupts
Lorentz invariance, the lack of grounding in QFT’s operator formalism leaves
it adrift from modern rigor, and its pursuit of localization clashes with the
photon’s intrinsic delocalization, yielding inconsistent probabilities. Against
this, ¢, (r,t) stands as a beacon of consistency, rooted in Au(r7 t), preserv-
ing relativistic symmetry, and eschewing false promises of position density,
instead channeling its spatial insights through QED’s robust framework,
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subsuming the Landau-Peierls field aspects with greater fidelity.

The Newton-Wigner approach offers yet another lens, one forged for
massive particles, seeking to define position eigenstates whose wave functions
promise a direct probability interpretation. For electrons or protons, this
vision succeeds, anchoring their states in a spatial certainty that resonates
with intuition. But for photons, massless and bound to light’s velocity,
this dream unravels: the absence of a rest frame and the fixed helicity of
+1 defy localization, with boosts mixing helicities and introducing spurious
longitudinal modes, rendering the approach untenable. 1, (r,t) sidesteps
this quagmire, embracing the photon’s relativistic essence as a delocalized
entity, its four-vector form aligning with QFT’s truths rather than forcing
an ill-fitting classical mold, thus emerging as the truer representation for
light’s quantum nature.

Finally, we contemplate alternative gauge choices, such as the Coulomb
gauge, where Ap=0and V- A = 0, reducing t,(r,t) to a spatial vector
transverse by design. This choice simplifies certain analyses, stripping away
the scalar potential and spotlighting the photon’s transverse degrees of free-
dom with a clarity that can aid computation. Yet this simplicity is no depar-
ture from 1,(r,t)’s essence; it is merely a transformation—a rephrasing of
the same underlying state through a gauge shift like AL = Au—l—f)ux—lacking
the generality of the Lorenz gauge’s four-vector scope, which retains flex-
ibility for broader contexts. 1,(r,t) in its Lorenz form thus holds the
higher ground, its covariance and adaptability eclipsing the narrower focus
of Coulomb’s spatial lens, with no loss of physical content.

In this reflective traversal, 1,(r,t) emerges not merely as a contender
but as the philosophical and physical linchpin, its direct tie to A,(r,t) un-
locking potential-driven effects, its QFT foundation via flu(r,t) ensuring
rigor, its Lorentz covariance aligning with relativity’s demands, its adapt-
ability extending beyond massless constraints, and its capacity to engender
all field-based alternatives cementing its primacy. Where others falter—be
it in covariance, scope, or fidelity to the photon’s nature—,(r,t) stands
resolute, the definitive spatial voice of the photon’s quantum being.

7.2.5 Conclusion

Pu(r,t) = <0]121M(r,t)|¢)> is arguably the definitive position-space photon
wave function, uniquely suited for the AB effect’s ontology and all single-
photon phenomena. Its completeness—capturing [¢)’s full state in z-space—and
uniqueness—rooted in flu(r,t) with no independent rivals—establish it as
the fundamental representation. It underpins QED’s explanation of phe-
nomena like the double-slit experiment, AB effect, and polarization via its
state and field amplitudes, surpassing alternatives despite its own gauge
dependence and lack of direct probability density, reflecting the photon’s
nature. Within QED, 1),,(r,t) is the real and complete spatial descriptor of
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a single photon, with no need for other formulations.

7.3 Quantum Origin of Classical Potentials

The classical electromagnetic four-potential 4, = (—Ap, A) governs macro-
scopic fields via F),, = 0,4, — 0, A, yet its quantum origin in QED reveals
a deeper reality tied to the photon wave function v, and the structure of
many-photon states. This subsection elucidates how A, emerges from the
quantized field flu, bridging quantum and classical domains through co-
herent states while contrasting their behavior with entangled states. This
analysis reinforces the critique of gauge-invariant paradigms (Sections 3-4)
by demonstrating that A,’s classical form is a statistical outcome of quan-
tum dynamics, not a static invariant, aligning with the AB effect’s demand
for potential-driven phase accrual (Section 2).

Classically, A, is real, combining positive and negative frequencies. For
a plane wave (4p = 0):

A(I‘,t) _ Aoei(k-rfwt) + Aaeii(k‘xiww, (71)

ensuring;:

A(r,t) = A*(r, 1), (72)

with fields E = —9; A and B = V x A scaling with intensity |Ao|?, indicative
of many photons.

The classical A, emerges in QED via many-photon coherent states,
which mimic macroscopic fields. For a coherent state |«), where ay(k)|a) =
ay(k)|a) and ay(k) = VN fy(k) with mean photon number N:

A d*k 1 i(k-x—wgt
el = 3 | G el ieudic petiexn
+ aj(k)e;(k,A)e Xt (73)
simplifying to:
(a|Au(r,t)|o) = VN[u(r, t) + ¢ (r, 1)]. (74)

As N — oo, this matches A, VN scales amplitude to classical strength, and
1, adds negative frequencies, ensuring reality. Coherent states’ phase coher-
ence—unlike Fock states’ zero expectation—bridges quantum v, to classical
Ay, reinforcing A,’s origin as a statistical average over many photons, not
a gauge-invariant flux.

Entangled many-photon states, however, resist this classical limit. For a
two-photon entangled state, e.g.:
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) [al, (kn)al, (ko) + al, (ks)al, (k)] [0), (75)

1
V2

the expectation is:

(U|A,(r, )W) =0, (76)

due to mode mismatch: /l,(f) and fl,(f) connect to states with differing
photon numbers or momenta, lacking the phase alignment of coherent states.
Entangled states, rich in quantum correlations (e.g., nonlocality), do not
produce a classical A, highlighting that classicality requires coherence, not
merely photon number.

Thus, A,’s quantum origin lies in Au’s expectation over coherent many-
photon states built from 1), scaled by V/N to macroscopic reality. This
process—dynamic and potential-driven—parallels the AB effect’s phase ac-
cumulation via A, (Section 2), not static invariants like F},,, or ®, supporting
QED’s reinforcement of a potential-centric ontology over gauge-invariant al-
ternatives critiqued in Section 4.

8 Implications for Gauge Theories

The foregoing analysis has elevated electromagnetic potentials A, in the
Lorenz gauge from mere auxiliaries to the fundamental bearers of reality,
their continuous mediation of the AB phase (Sections 2-5) and ontological
primacy (Section 6) dismantling the sufficiency of gauge-invariant constructs
like ® or F),,. Fixed by 0,A" = 0, A, emerges as the dynamic essence of
electromagnetic interactions—a potential-centric ontology that transcends
the classical bias toward field strengths and redefines the photon’s being as
Pu(r,t) o< Au(r,t) (Section 6.4). This shift reverberates beyond the AB
effect’s confines, casting a critical light on gauge theories writ large. In this
section, we probe these ripples: first, reinterpreting the Berry phase’s gene-
sis through potential-like mediators (Section 8.1); then, questioning gauge-
invariant accounts in non-Abelian frameworks like Yang-Mills (Section 8.2);
next, critiquing static formulations of the Higgs mechanism (Section 8.3);
and finally, proposing a gravitational AB effect to affirm spacetime’s sub-
stantival reality in general relativity (Section 8.4). Together, these inquiries
suggest that potentials, not their invariants, may unify the causal and on-
tological fabric of modern physics.

8.1 The Origin of the Berry Phase

The previous analysis establishes the continuous accumulation of the AB
phase via electromagnetic potentials A, in the Lorenz gauge (Sections 2-
6), bear intriguing implications for understanding the Berry phase—a ge-
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ometric phase acquired by a quantum system under adiabatic evolution
along a closed path in parameter space (Berry, 1984). Like the AB phase
$AB = € § A - dr, the Berry phase v = i §,(¥(R)|Vr¥(R)) - dR is gauge-
invariant, emerging from a cyclic process and observable in interference
or topological phenomena. However, the critique of gauge-invariant ex-
planations (Sections 3-4)—their nonlocality, discontinuity, and inability to
trace the AB phase’s dynamic genesis—prompts a parallel inquiry into the
Berry phase’s accumulation. Conventionally treated as a geometric effect
tied to the curvature of an abstract connection A(R) = i(¢)(R)|Vry(R)),
the Berry phase’s process of generation may similarly depend on a gauge-
dependent entity whose local influence, akin to A,, drives its continuous
buildup.

This perspective challenges the standard view that the Berry phase’s
gauge invariance fully encapsulates its physical reality. Just as the AB
effect’s phase requires the vector potential A over the static flux ® (Section
6.1), the Berry phase’s reliance on A(R) suggests that its accumulation
might reflect a physical state—potentially a potential-like mediator—rather
than a purely emergent geometric property. In systems where the Berry
phase arises from electromagnetic interactions (e.g., via A in a magnetic
field), this analogy is direct, and the advocacy for the Lorenz gauge (Section
6.3) could imply a preferred gauge for A(R) in relativistic contexts, such as
QED. The rejection of nonlocal mechanisms (Section 3.3) further questions
interpretations that attribute the Berry phase solely to global parameter-
space topology, potentially overlooking the local dynamics of Hamiltonian
evolution mediated by such potentials.

Future directions could explore this connection empirically and theo-
retically. Experiments analogous to those in Section 4.3—tracking phase
accrual in time-varying parameter spaces (e.g., dynamic magnetic fields or
synthetic gauge fields in condensed matter)—might test whether the Berry
phase accumulates continuously via a gauge-dependent entity, mirroring the
generalized AB effect (Section 2.2). Theoretically, extending the potential-
centric ontology to non-Abelian Berry phases in Yang-Mills theories (Section
8.2) could unify these phenomena under a common framework, where gauge-
fixed potentials underpin observable shifts. Philosophically, this aligns with
the critique of gauge-invariant ontologies (Section 4), suggesting that the
Berry phase’s invariance might obscure a deeper reality tied to physical me-
diators, enriching its interpretation beyond geometry and resonating with
the AB effect’s transformative implications for quantum theory.

8.2 Non-Abelian Gauge Theories

The critique of gauge-invariant explanations for the AB effect, as unfolded
in Sections 3 through 5, and the subsequent affirmation of electromagnetic
potentials A, in the Lorenz gauge as the fundamental mediators of quantum
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interactions (Section 6), extend beyond the Abelian U (1) framework of elec-
tromagnetism to resonate with non-Abelian gauge theories, such as those of
the Yang-Mills type underlying the Standard Model (Berghofer et al, 2023).
In the AB effect, the continuous accumulation of the phase shift, driven
by A,, rather than static invariants like ®, necessitated a rejection of gauge-
invariant accounts marred by nonlocality, discontinuity, and incompleteness.
Non-Abelian gauge theories, characterized by richer symmetry groups (e.g.,
SU(2) for weak interactions, SU(3) for strong interactions), similarly involve
gauge potentials A7, (where a indexes the group generators) that transform
under local gauge symmetries, raising parallel questions about their physical
reality versus derived field strengths F7,. This section examines whether
the lessons from the AB effect—favoring a potential-centric ontology—apply
to these theories, exploring potential analogs of the AB effect and their im-
plications for gauge invariance.

8.2.1 Non-Abelian Gauge Structure and Potentials

In non-Abelian gauge theories, the vector potential A, = AJT (with T
the Lie algebra generators) transforms under local gauge transformations
g(z) € G as A, — gA,9" — ég@ug_l, where G is a non-Abelian group
like SU(N). The field strength F,, = 0,4, — 0, A, — ie[A,, A,] is gauge-
covariant but not invariant, reflecting the non-commutative nature of the
group, unlike the Abelian F,, = 0,4, — 0,A,. Gauge-invariant quanti-
ties, such as Tr(F,,F"), are often prioritized in conventional accounts,
paralleling the AB effect’s focus on ®. However, the AB critique (Sec-
tion 3.3) suggests that such invariants may fail to capture the dynamic
generation of physical effects if they overlook the potentials’ role. In non-
Abelian theories, phenomena like confinement in quantum chromodynamics
(QCD) or electroweak symmetry breaking hint at potentials’ influence be-
yond field strengths, prompting inquiry into whether a non-Abelian AB-like
effect could reveal Aj;’s primacy, akin to A, in the Abelian case.

8.2.2 Non-Abelian Analogs of the AB Effect

Could a non-Abelian AB effect, where a charged particle’s phase depends
on A, in a field-free region, parallel the Abelian case? In SU(NV) theories, a
Wilson loop W¢g = Tr [73 exp (ie f() Altdm“)] (where P denotes path order-
ing) is gauge-invariant and generalizes the Abelian phase factor e’ $o Addr,
Theoretical proposals suggest such an effect: a particle in a representation of
SU(N) traversing a region with vanishing 7, but nonzero Aj (e.g., around
a chromomagnetic flux tube) could acquire a phase proportional to the loop
integral, observable via interference. Unlike the Abelian AB effect, the non-
commutative structure complicates the phase’s locality, as Af}’s components
interact nonlinearly. Yet, Section 2.2’s generalized AB effect, with its time-
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varying flux, suggests a dynamic phase accumulation could apply, raising
the question: do gauge-invariant accounts (e.g., relying solely on W¢) suffer
from nonlocality akin to the Abelian case, where ®’s distant influence lacks
a local mediator (Section 3.3)7

8.2.3 Nonlocality and Discontinuity Concerns

A gauge-invariant explanation of a non-Abelian AB effect, focusing on We,
might mirror the AB critique’s nonlocality objection. The Wilson loop inte-
grates A}, globally along C, implying the phase depends instantaneously on
the flux configuration, potentially distant from the particle’s path, without a
clear local mechanism—akin to the solenoid’s nonlocal action in Section 3.3.
In a dynamic scenario, akin to ®(t) in Section 2.2, the phase’s evolution could
depend on .AZ (t)’s spacetime profile, exacerbating this nonlocality unless re-
tarded propagation constrains it, a complexity absent in static Abelian cases.
Similarly, discontinuity arises: if the phase emerges only at interference, as
in gauge-invariant AB accounts (Section 3.3), the lack of a continuous gen-
eration process—unlike the potential-driven ¢pap = % fOT e®(t)dt—clashes
with quantum mechanics’ smooth dynamics, suggesting non-Abelian gauge-
invariant explanations may inherit the same temporal abruptness critiqued
earlier.

8.2.4 Incompleteness and Potential-Centric Alternatives

The incompleteness objection (Section 3.3) also applies: a gauge-invariant
focus on We or Fjj, may fail to elucidate how the phase accumulates, omit-
ting Aj;’s dynamic role, much as ® overlooks A’s contribution in the AB
effect. In non-Abelian theories, phenomena like gluon confinement or elec-
troweak mass generation involve Af’s interactions, suggesting potentials
drive physical effects beyond invariants. A potential-centric ontology, as
in Section 6, could posit Aj, in a fixed gauge as the fundamental entity,

with a non-Abelian AB effect’s phase reflecting continuous accumulation
via ¢, Al dzt.

8.2.5 Broader Gauge Theory Implications

The AB effect’s elevation of potentials A, over gauge-invariant quantities
like @ (Sections 6.1-6.4) reverberates through the edifice of non-Abelian
gauge theories, unsettling the foundational reliance on invariants such as
Wilson loops (W¢) or field strengths (F,). Just as the continuous phase
accumulation in the generalized AB effect (Section 2.2) exposed the nonlo-
cality and discontinuity of invariant-centric accounts (Sections 3-4), a poten-
tial non-Abelian AB analog—where phase shifts arise from Aj; in field-free
regions—suggests that gauge-invariant explanations may falter across Yang-
Mills frameworks, risking the same trio of flaws: nonlocality from distant
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flux dependence, discontinuity in abrupt phase emergence, and incomplete-
ness in tracing dynamical genesis (Section 8.2.3-8.2.4). This critique heralds
a broader implication: potentials, fixed in a determinate gauge, may consti-
tute the true ontological core of gauge interactions, from electromagnetism
to the Standard Model’s SU(3) x SU(2) x U(1).

This shift posits a unified potential-centric ontology, transcending the
Abelian-Non-Abelian divide. In QCD, where confinement hints at A};’s pri-
macy beyond Fp,, or in electroweak theory, where Aj drives mass via the
Higgs (Section 8.3), the AB effect’s lesson—that reality lies in the poten-
tials’ local mediation—finds echoes. Gauge invariance, long a sacrosanct
principle, emerges as a veil: its observables (W¢, Tr(F,,F*)) achieve em-
pirical fidelity yet obscure the causal tapestry woven by Aj, much as ®
masked A’s role (Section 6.1). Philosophically, this challenges the Stan-
dard Model’s invariant-centric scaffold: if Aj in a fixed gauge—akin to the
Lorenz gauge’s 9, A" = 0—underpins observable phenomena, gauge freedom
may be a mathematical redundancy, not a physical truth, urging a reality
determinate in form over an indeterminate multiplicity.

The implications compel action. Experimentally, a non-Abelian AB ef-
fect with time-varying fluxes (e.g., chromomagnetic analogs to Section 4’s
proposals) could test .AZ’S dynamical role, probing whether phase shifts mir-
ror the AB’s continuous accrual, potentially unveiling confinement’s potential-
driven roots. Theoretically, extending the Lorenz gauge’s virtues—locality,
covariance, determinacy (Section 6.3)—to non-Abelian contexts might refine
Yang-Mills dynamics, aligning them with a causal, potential-based frame-
work. Philosophically, this invites a profound rethinking: are gauge theories’
invariants mere shadows of a deeper reality, their elegance a distraction from
the potentials’ primacy? The AB effect, thus, becomes a beacon—its rejec-
tion of static invariants illuminating a path toward a unified ontology where
Aj, not Fj,, threads the needle of quantum interactions across nature’s

>
gauge tapestry.

8.3 The Higgs Mechanism

The establishment of A, in the Lorenz gauge as the fundamental reality of
the AB effect (Section 6) challenges the hegemony of gauge-invariant ex-
planations across quantum physics. This critique, rooted in the rejection
of nonlocal and discontinuous mechanisms (Sections 3-5), extends beyond
the Abelian domain to resonate with non-Abelian gauge theories, where
the primacy of potentials Aj, over invariants like W¢ hints at a unified
ontology threading Yang-Mills frameworks (Section 8.2). If Aj, underpins
phenomena from confinement to electroweak interactions, the Higgs mech-
anism—where gauge bosons acquire mass within the same SU(2) x U(1)
structure—emerges as a critical test case. Might its gauge-invariant refor-
mulations, like those critiqued in the AB effect and non-Abelian contexts,
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similarly veil a potential-driven reality? This section introduces the mecha-
nism’s standard and alternative accounts, then assesses their philosophical
coherence against the AB effect’s lessons, probing whether the potential-
centric shift redefines mass generation as it does phase evolution.

8.3.1 Overview of the Higgs Mechanism and its Gauge-Invariant
Reformulation

The Higgs mechanism elucidates gauge boson mass generation in the Stan-
dard Model via spontaneous symmetry breaking, driven by the dynamic
coupling of a scalar field to gauge potentials (Brading et al, 2023). This
overview outlines the standard formulation, reliant on gauge fixing, and
contrasts it with Struyve’s (2011) gauge-invariant reformulation, employing
equations to clarify both approaches.

In the standard formulation, gauge bosons—initially massless due to
local gauge symmetry—acquire mass through coupling to a scalar Higgs
field, whose potential triggers symmetry breaking. Consider a U(1) gauge
theory, a simplified proxy for the electroweak SU(2) x U(1) framework, with
a complex scalar field ¢ = %(¢1 +i¢s), coupled to a gauge field A, inhabits

a potential V(¢). The Lagrangian density is:

1
L= (Dug) (D"¢) = V(¢) = L FuF™, (77)
where D¢ = (0, +ieA,) ¢, Fl = 0y Ay — 0, Ay, and:

2

V(e) = AoP - %
with A > 0 and v as the vacuum expectation value (VEV). At high energies,
symmetry prevails with (¢) = 0; below a critical threshold, the field settles
into a degenerate vacuum, e.g., |¢| = v/v/2, spontaneously breaking the U (1)
or SU(2) x U(1) gauge symmetry. In the unitary gauge, ¢ = %(v + h(z)),

)%, (78)

the kinetic term yields:

1 1 1
‘(DMQS)‘Q = 5(811]7’)2 + 5622}2AMA'LL + evA“@uh + 56214“14#}1/27 (79)

producing a mass term fe?v?A4, A" (ma = ev). Extended to SU(2) x U(1),
this generates masses for W+ and Z bosons via local, dynamic coupling to
¢’s VEV, akin to the AB effect’s potential-driven phase (Section 6).
Struyve (2011) offers a contrasting vision, reformulating the Abelian
Higgs model in gauge-invariant terms to eschew symmetry breaking (see
also Wallace, 2024). He reparametrizes the Higgs field as ¢ = pe??, where p

is the magnitude and # the phase, and defines a new field
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1
B,LL == A,LL + 28“97 (80)

which remains invariant under gauge transformations AL = A, - %aux,
0 = 0 + x. The Lagrangian density then becomes a manifestly invariant
form:

1
L= (8up)? + 2p*B,B" — V(p) — 1 BB, (81)

where V(p) = A\(p? — %)2, and B, = 0,B, — 0,B,. When p stabilizes at
v/V/2, it yields a massive B,, (mass %GZUQBHB“) and a Higgs field p, with no
reference to broken symmetry. Unlike the standard account, where ¢ evolves
dynamically, Struyve’s picture is static: B, carries mass inherently, with 0’s
phase absorbed globally. Struyve casts this as a clarification—symmetry
breaking as representational artifact, not ontological shift—yet its static,
global framing raises questions akin to the AB effect’s gauge-invariant cri-
tiques.

Both formulations predict massive bosons, yet their ontologies diverge.
The standard mechanism’s reliance on A, mirrors the AB effect’s local phase
accrual, while Struyve’s B,, suggests a holistic snapshot, inviting scrutiny of
its dynamical adequacy in Section 8.3.2.

8.3.2 Problems of the Gauge-Invariant Reformulation

Struyve’s (2011) gauge-invariant reformulation of the Higgs mechanism, by
reparametrizing the Higgs field ¢ = pe?? and defining a new field B, =
A+ %8u9, seeks to eliminate the need for explicit gauge symmetry break-
ing. While this approach achieves empirical equivalence—yielding massive
gauge bosons without invoking a broken symmetry—it introduces profound
conceptual challenges that mirror the nonlocal, discontinuous, and incom-
plete nature of gauge-invariant explanations in the AB effect (Section 3.3).
Central to these issues is the multi-valued nature of the phase 6, a topo-
logical property that exacerbates the reformulation’s flaws, particularly in
dynamic scenarios. Below, I critique Struyve’s approach, highlighting how
its reliance on #’s global integration undermines its physical coherence.

Nonlocality and the Multi-Valued Phase 6

The first objection centers on the nonlocality inherent in B, = A, + %Qﬁ,
which integrates the phase 6(z) across spacetime. In multiply connected
spaces—such as those with nontrivial topology around a symmetry-breaking
vacuum—the phase 6 is not single-valued but multi-valued, akin to the phase
S in the AB effect’s wavefunction 1) = Re® (Section 3.5.2). For instance,
traversing a closed loop C' around a topological defect (e.g., a vortex in
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the Higgs field), # may change by 27n (where n € Z), reflecting the field’s
winding number. This multi-valuedness necessitates a global integration to
define 0,0, as §(x) cannot be consistently specified locally without reference
to the entire spacetime configuration.

This global dependence introduces nonlocality, paralleling the AB effect’s
critique where the phase shift ¢4 = e® depends on the distant magnetic
flux @ (Section 3.3). In static configurations, Struyve assumes boundary
conditions fix 0, mitigating this issue. However, in dynamic scenarios—akin
to the generalized AB effect with time-varying flux ®(¢) (Section 2.2)—
(x,t)’s temporal evolution could vary across spacetime, implying B, (z,t)
depends instantaneously on 6’s global profile without a local mediator. Such
unmediated action violates special relativity’s causal structure, as B,,’s value
at a point would reflect distant changes in 6, lacking retarded propagation.
The multi-valued nature of 6 exacerbates this nonlocality: its topological
constraints (e.g., winding numbers) enforce global consistency, rendering
B,, inherently nonlocal, much as ®’s distant influence undermines gauge-
invariant AB accounts.

Discontinuity in Mass Generation

A second objection concerns the discontinuity in Struyve’s reformulation,
which parallels the abrupt phase shift in gauge-invariant AB explanations
(Section 3.3). In the standard Higgs mechanism, mass generation is a con-
tinuous process: the Higgs field ¢ evolves dynamically from a symmetric
vacuum ({@) = 0) to a broken state (|¢| = v/+/2), with perturbations around
this vacuum yielding massive gauge fields over time. By contrast, Struyve’s
approach posits a static ground state (p = v/v/2, B, = 0) from which mas-
sive fields emerge fully formed, with no intermediate dynamics to bridge pre-
and post-mass-acquisition states.

This discontinuity arises from the transformation B, = A, + %8“9, which
collapses gauge freedom instantaneously. The multi-valued phase # amplifies
this issue: in multiply connected spaces, 0’s winding around topological de-
fects implies B,,’s values jump discontinuously across branch cuts, lacking a
smooth evolution. This mirrors the AB effect, where gauge-invariant quanti-
ties like velocity v = %(VS —eA) shift abruptly at interference, ignoring the
phase’s continuous accumulation via A (Section 3.3). In quantum field the-
ory, physical states evolve smoothly unless perturbed locally, yet Struyve’s
static depiction—where mass terms (e.g., %GQ’UZBMB“) appear without tem-
poral becoming—clashes with this expectation. The multi-valued 6 under-
scores this flaw: its topological constraints preclude a continuous local pro-
cess, rendering mass generation an inexplicable leap, akin to the AB phase’s
sudden emergence.
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Incompleteness and the Omission of §’s Dynamical Role

Perhaps the most significant objection is the incompleteness of Struyve’s
reformulation, which fails to elucidate the dynamical origin of mass gen-
eration, paralleling the AB effect’s critique (Section 3.3). In the standard
formulation, mass arises from the Higgs field’s coupling to gauge poten-
tials via the covariant derivative D,¢ = (0, + ieA,)¢, with the potential
V(o) = M|o|? — %)2 driving symmetry breaking. The phase 6 plays a cru-
cial dynamical role, mediating the transition from massless to massive states
through its interaction with A,. Struyve’s approach, by absorbing 6 into
B, reduces this interaction to static terms (e.g., %GQUZBuB“), omitting 6’s
contribution to the mechanism’s causal narrative.

The multi-valued nature of 8 highlights this incompleteness. In multiply
connected spaces, 0’s winding around defects encodes essential topological
information, influencing the Higgs field’s dynamics and the resulting gauge
boson masses. By eliminating 6, Struyve’s reformulation sacrifices this dy-
namical insight, much as gauge-invariant AB accounts overlook A’s role in
phase accumulation (Section 3.3). The absence of #’s evolution—akin to
A’s exclusion in the AB effect—renders the explanation incomplete, unable
to trace how the Higgs vacuum expectation value translates into mass over
spacetime. This parallels the AB effect’s failure to explain phase genesis,
where ® or v cannot capture the continuous process driven by A.

Philosophical and Physical Implications

While Struyve’s approach avoids the conceptual ambiguity of symmetry
breaking—casting it as a representational artifact—it inherits the same trio
of flaws plaguing gauge-invariant AB treatments. The multi-valued phase
f, with its topological constraints, amplifies these issues, exposing the re-
formulation’s nonlocality, discontinuity, and incompleteness. Unlike the AB
effect, where experimental tests (Section 4) probe continuous phase accu-
mulation, the Higgs mechanism’s classical formulation lacks direct dynam-
ical analogs, complicating empirical validation. However, the philosophical
implications align: gauge-invariant explanations, by prioritizing observable
quantities over gauge-dependent potentials, risk sacrificing the local, contin-
uous, and complete accounts demanded by quantum field theory’s ontology.
The multi-valued 6 underscores this critique, suggesting that a potential-
centric perspective—as advocated in Section 6 for the AB effect—may also
hold relevance for the Higgs mechanism, prompting further exploration of
gauge-dependent variables’ role in mass generation across gauge theories.

8.3.3 Analogy Between the AB Effect and the Higgs Mechanism

As argued above, the critiques of gauge-invariant explanations in the AB
effect can be generalized to the Higgs mechanism, revealing a profound
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structural analogy between the two phenomena. This section formalizes
the correspondence, demonstrating how gauge-invariant quantities in both
cases—velocity v (AB effect) and B,, (Higgs mechanism)—inherit similar
conceptual flaws.

Structural Correspondence

The gauge-invariant quantities central to both effects are constructed by
combining gauge-dependent entities:

e AB Effect: The velocity field
1
=—(VS—eA 82
v=__(V5-cA), (52)
where S is the wavefunction phase and A is the vector potential.
e Higgs Mechanism: The gauge-invariant field
1
B,=A,+ -0,0, (83)
e
where 6 is the phase of the Higgs field ¢ = pe'?.

Both v and B, are gauge-invariant by design but depend nonlocally on
topological or global features:

AB Effect ‘ Higgs Mechanism

Nonlocal dependence on flux ® = § A - dr | Nonlocal dependence on 6(x) via 9,60 integration
Discontinuous phase shift at interference | Discontinuous transition to B, = 0
Velocity v ignores A’s local role B,, obscures ¢’s dynamical role

Table 1: Parallel flaws in gauge-invariant explanations.

Shared Conceptual Flaws
1. Nonlocality

e AB Effect: The phase shift ¢ 45 = e® depends on the global magnetic
flux ®, despite the electron’s confinement to field-free regions.

e Higgs Mechanism: B,, depends on the Higgs phase §(x), which must be
integrated over spacetime to enforce consistency, introducing nonlocal
dependencies.

2. Discontinuity
e AB Effect: The phase shift ¢ 4p manifests abruptly at interference,

disregarding its continuous accumulation via A along the path.
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e Higgs Mechanism: The transition to B, = 0 (broken phase) is treated
as instantaneous, obscuring the smooth evolution of ¢ from symmetric
to broken states.

3. Incompleteness

e AB Effect: v and ® cannot explain the process of phase accumulation,
which requires the local action of A.

e Higgs Mechanism: B, reduces mass generation to a static term %621123 WBY,

omitting the dynamical Higgs-gauge interaction (9, + ieA, ).

The analogy exposes a universal limitation: gauge-invariant quantities
like v and B, achieve empirical adequacy but fail to capture ontological
completeness. Just as the AB phase shift cannot be understood without A,
the Higgs mechanism cannot be fully explained without the Higgs phase 6.
This reinforces the paper’s core thesis: gauge-dependent entities (potentials
or their analogs) are indispensable for local, causal explanations, even when
gauge-invariant alternatives exist.

8.3.4 Challenges of the Unitary Gauge in Defect Configurations

The standard account of the Higgs mechanism, as outlined in Section 8.3.1,
relies on spontaneous symmetry breaking with gauge-dependent potentials
(e.g., A, in a U(1) model) coupled to the Higgs field ¢ = pe’®. In defect
configurations, such as Nielsen-Olesen vortices, the phase § becomes multi-
valued, with a winding number n € 7Z driving topological stability (e.g.,
fc Oufdx? = 2mn). The unitary gauge fixes § = 0 via a transformation
b= =p Ay — AL =A,+ %@49, ostensibly simplifying mass generation
(e.g., %621}214;14/”). However, this choice raises concerns in defect configura-
tions: by eliminating 6, it obscures the phase’s dynamical role, embedding n
in singularities of AL, which complicates interpretation and potentially un-
dermines the standard account’s advantages over Struyve’s gauge-invariant
reformulation (Section 8.3.2). This section critiques the unitary gauge’s lim-
itations, integrating Wallace’s objections (Wallace 2024) to underscore its
inadequacy.

Obscuring the Phase’s Dynamical Role

In a vortex, the Higgs field ¢ = p(r)e™™ (where 6 is the azimuthal angle)
couples to A, yielding a flux ® = 2”7" The unitary gauge transforms this
to ¢ = p(r), AL = A, + %é, setting # = 0. The phase’s role vanishes,
and the winding number n is encoded implicitly in AL’S configuration. This
obscures the causal narrative: #’s topological winding, which physically dic-
tates the defect’s structure, is no longer a dynamical field but a boundary

condition absorbed into A;L. This parallels Struyve’s reformulation, where 6
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is subsumed into B, = A, + %(%9, though the unitary gauge retains gauge
dependence rather than invariance.

Singularities and Interpretive Complexity

The unitary gauge shifts 6’s multi-valuedness into AL, which becomes sin-
gular at the defect core (r = 0). For a vortex, ¢' = p(r) — 0 as r — 0,
and Aj ~ [ diverges, with the flux §, A} dat = 2 yeflecting n via
VxA’ = B,z. While mathematically consistent, this singularity complicates
physical interpretation. In quantum field theory, singularities signal regu-
larization, but the unitary gauge forces AL to bear the topological burden
alone. Wallace’s degeneracy reason amplifies this: at p = 0, 6 is undefined,
and AL cannot be recovered from D,¢ = 9,0 + ieA,¢ = 0, as the covari-
ant derivative vanishes, rendering the gauge ill-defined in the vortex core
(Wallace 2024).

Potential Discontinuity Across Branch Cuts

Fixing # = 0 assumes a smooth gauge transformation, but 6’s multi-valuedness
(e.g., AO = 27n over a loop) implies e~
cuts. For a vortex, A;js singularity at » = 0 might not evolve smoothly from
a pre-defect state, as the transformation fails to account for 6’s topological
jumps. This risks a discontinuity akin to Struyve’s static mass emergence
(Section 8.3.2), though the standard account’s field equations ensure conti-
nuity outside the core. Wallace’s incompleteness reason adds that unitary
gauge discards topological data (e.g., n) on non-trivial manifolds, conflating
distinct states (Wallace 2024), a flaw stark in defects. The unitary gauge’s
static imposition of # = 0 thus obscures the dynamical process, weakening
its continuity claim.

is discontinuous across branch

Impact on Potential-Centric Ontology

The paper’s potential-centric ontology (Section 6) emphasizes gauge-dependent
potentials (e.g., A,) as physically real. The unitary gauge aligns with this by
fixing A;L as determinate, but eliminating 6 sidelines the Higgs phase’s topo-
logical role, potentially undermining completeness. In the AB effect, both
A and the phase S are retained (Section 6), offering a fuller picture than
the unitary gauge’s reduction of ¢ to p. A complete ontology should include
0’s dynamics, especially in defects where winding is physically significant.

Conclusion

To sum up, the unitary gauge poses challenges in defect configurations:
fixing 8 = 0 obscures the phase’s role, shifts n into A;’s singularities, and
risks discontinuity across branch cuts. While it avoids Struyve’s nonlocality
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and retains dynamical continuity, it sacrifices completeness, complicating
defect interpretation. Fortunately, the standard account isn’t wedded to
the unitary gauge; it’s only a calculational choice. As I will argue below,
the Lorenz gauge, retaining 6’s dynamics, aligns better with the standard
account’s strengths and the potential-centric ontology.

8.3.5 The True Gauge for the Higgs Mechanism

The critique of gauge-invariant reformulations, such as Struyve’s static B, =
A, + %0“0 (Section 8.3.2), revealed their shortcomings—mnonlocality, dis-
continuity, and incompleteness—particularly in defect configurations like
Nielsen-Olesen vortices. These flaws mirror the gauge-invariant accounts
of the AB effect, which fail to capture the continuous phase accumulation
driven by electromagnetic potentials A, (Sections 3.4, 4.1). In contrast, the
standard account of the Higgs mechanism, leveraging gauge-dependent po-
tentials (e.g., A, in U(1), extended to Aj, and B, in SU(2) x U(1)), posits
mass generation as a dynamical process: massless gauge bosons acquire mass
through continuous interaction with the Higgs field across spacetime. To re-
flect this single physical reality, a determinate gauge fixing is necessary, akin
to the Lorenz gauge’s role in the AB effect (Section 6.3). Here, I argue that
the Lorenz gauge (9, A* = 0 or 0, A" = 0) is the “true gauge” for the Higgs
mechanism, surpassing alternatives such as the unitary gauge in dynamical
fidelity, universal applicability across Abelian and non-Abelian theories, and
alignment with special relativity and the potential-centric ontology (Section
6).

Dynamical Fidelity and Locality

The Higgs mechanism’s essence lies in its dynamism: the Higgs field ¢

evolves from a symmetric vacuum ({¢) = 0) to a broken state (|¢p| =
v/+/2), reorganizing degrees of freedom to yield massive gauge bosons. In
the standard electroweak theory, the covariant derivative D,¢ = (0, +

ig Al T + ig'B,)$ couples ¢ to gauge potentials, with mass terms (e.g.,
% 921121/1/,1r HW=H) emerging as ¢ settles into its vacuum expectation value v.
This process demands a gauge that captures its continuous, local evolution,
paralleling the AB effect’s phase accumulation via A, in the Lorenz gauge
(Section 6.3). Gauge-invariant reformulations like Struyve’s, by contrast,
reduce this to static terms (e.g., %62023“3‘“), introducing nonlocality and
discontinuity akin to flux-based AB accounts (Section 4.1). The Lorenz
gauge, enforcing 9, A" = 0, ensures locality: the field equations

0049) +1eA"0,0) +ie@ 4,06~ 236 (16— 5 ) =0, ()
O F" = —ie [¢"(0"¢) — p(0"¢")] — 2¢%|¢] A", (85)
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yield a massive A* (OA* + e2v2A* = 0) in no-defect cases, absorbing the
Higgs phase 6 continuously. In defects (¢ = p(r)e™?), A, adjusts (e.g.,
Ag ~ 2, Ag = 0) without singularities beyond the core, preserving 6’s dy-
namical role and ensuring relativistic causality. This continuity aligns with
the AB effect’s resolution, where A, mediates phase shifts locally (Section

6.3), avoiding the nonlocality of flux-based accounts.

Universal Applicability Across Abelian and Non-Abelian Theories

The Lorenz gauge’s strength extends to non-Abelian contexts, such as SU(2) x
U(1), where 9, A" = 0 and 0, B* = 0 fix gauge freedom, dynamically gener-
ating W* and Z masses (e.g., my = % gv). Unlike the unitary gauge, which
sidelines 6 and struggles in defects (Section 8.3.4), or Struyve’s nonlocal B,,,
the Lorenz gauge maintains Lorentz invariance and dynamical coherence
across both Abelian and non-Abelian frameworks. Its universality mirrors
the Lorenz gauge’s role in quantum electrodynamics (QED), where it uni-
fies dynamics across contexts (Section 6.3), offering a natural fit for field
theory’s symmetry requirements.

Alignment with Potential-Centric Ontology

The potential-centric ontology (Section 6) posits gauge potentials as physi-
cally real, demanding a privileged gauge to reflect one reality, not a multi-
plicity of equivalent descriptions. The Lorenz gauge’s determinacy, enforced
by boundary conditions (e.g., A¥ — 0 at infinity), parallels its role in the
AB effect, where 0,A" = 0 and JA* = J# yield a unique A,, (Section 6.3.3).
In the Higgs mechanism, it manifests mass as a reorganization of degrees of
freedom, aligning with the AB effect’s lesson: gauge-dependent potentials
drive physical effects, not static invariants. While the non-Abelian structure
of SU(2) x U(1) complicates direct analogy—lacking a simple wave equation
like Maxwell’s—the Lorenz gauge’s role in reflecting mass generation as a
process supports its status as the true gauge.

Comparison with Alternatives

Alternative gauges fall short. The unitary gauge (f = 0) simplifies no-defect
masses but obscures 6’s role in defects, risking discontinuity (Section 8.3.4).
The polar gauge retains excess modes, the Coulomb gauge limits temporal
reality, Struyve’s B, rejects gauge dependence, and the R¢ gauge dilutes
determinacy. Only the Lorenz gauge embodies dynamical unity, capturing
mass generation across no-defect and defect configurations. In no-defect
cases, it matches the unitary gauge’s outcomes with temporal continuity; in
defects, it preserves #’s dynamics, avoiding the unitary gauge’s flaws and
Struyve’s nonlocality.
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Addressing Potential Issues

The Lorenz gauge, while robust, faces minor challenges:

¢ Residual Freedom: Transformations A, — A, +0,x (with Oy = 0)
leave A* non-unique, requiring boundary conditions for determinacy.
This is practical, not fundamental, akin to QED (Section 6.3.3).

¢ Quantization: Ghosts enforce 9, A" = 0, adding complexity but not
undermining dynamics, as in QED.

e Defects: Dynamic Ag in evolving defects (e.g., cosmic strings) com-
plicates solutions, though locality holds.

e Non-Abelian Complexity: For SU(2) x U(1), 0,A* = 0 increases
complexity, but masses emerge correctly.

These issues are manageable: residual freedom is fixed practically, quan-
tization is standard, and defects remain consistent, unlike the unitary gauge’s
flaws or Struyve’s nonlocality.

Conclusion

The Lorenz gauge is arguably the “true gauge” for the Higgs mechanism,
capturing its dynamical reorganization across spacetime. Its locality, con-
tinuity, and completeness—mirroring the AB effect’s resolution (Section
6)—outperform alternatives across Abelian and non-Abelian theories. As
a determinate, potential-centric representation, it reflects the single physi-
cal reality of mass generation, aligning with the paper’s ontology. Though
less common than the unitary or R¢ gauges in practice, its theoretical mer-
its affirm its foundational role. Experimental validation, via precision tests
of electroweak processes, could probe the potentials’ dynamical role, rein-
forcing the Lorenz gauge’s primacy and extending the AB effect’s lesson:
gauge symmetry is a redundancy, and a potential-centric ontology demands
a privileged gauge to represent physical reality.

This argument flows seamlessly from the critique of gauge-invariant re-
formulations (Section 8.3.2) and the unitary gauge’s limitations (Section
8.3.4), reinforcing the paper’s broader thesis: gauge-dependent potentials
are indispensable for local, causal explanations across gauge theories, with
the Lorenz gauge as their truest reflection.

8.3.6 The Physical Meaning of Gauge Symmetry Breaking

Claims that gauge symmetry breaking in the Higgs mechanism is merely a
mathematical artifact—lacking physical content—stem from gauge-invariant
reformulations like Struyve’s (Section 8.3.2), which recast mass generation
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without explicit breaking, defining B, = A, + %3;19 to yield masses stati-
cally (e.g., %eQUQBHB“). While viable in no-defect configurations, these ap-
proaches falter in defects, introducing nonlocality and discontinuity (Section
8.3.2), akin to the gauge-invariant accounts of the AB effect (Section 3.3).
In contrast, the standard account posits symmetry breaking as a dynamical
process, reorganizing degrees of freedom locally and continuously. Building
on the Lorenz gauge’s role as the true gauge (Section 8.3.5), I argue that
symmetry breaking is physically meaningful—not a representational redun-
dancy—with profound implications for mass generation’s ontology, aligning
with the paper’s potential-centric perspective (Section 6).

Gauge-Invariant Flaws and the Need for Dynamics

If mass generation were purely a gauge-dependent artifact, gauge-invariant
formulations should describe it without conceptual difficulties. However,
Struyve’s approach, while empirically equivalent in no-defect cases (e.g.,
m = ev/v/2 where 6 is single-valued), sacrifices locality and dynamical
explanation. In defects (e.g., ¢ = p(r)e™), B,’s global dependence on
multi-valued 6 introduces nonlocality—B,, reflects distant winding with-
out local mediation—and discontinuity across branch cuts (Section 8.3.2).
These flaws mirror the AB effect’s gauge-invariant accounts, where velocity
v = %(VS — eA) or flux ¢ fail to capture continuous phase accumula-
tion (Section 3.3). Similarly, Struyve’s static Lagrangian (e.g., %EQUQBHB“)
obscures the dynamical process, treating mass emergence as an abrupt, non-
local effect rather than a smooth, causal transition. This parallels the AB ef-
fect’s critique: gauge-invariant quantities prioritize empirical adequacy over
ontological completeness, necessitating a gauge-dependent framework to re-
flect physical reality.

Symmetry Breaking as Physical Reorganization

In the standard account, gauge symmetry breaking reorganizes degrees of
freedom: massless gauge bosons gain longitudinal modes via the Higgs field’s
vacuum expectation value (VEV). Before breaking, the system comprises
massless bosons and a complex scalar Higgs field ¢. After breaking, the
VEV ((¢) = v/V/2) restructures the theory: would-be Goldstone bosons are
absorbed by gauge bosons, granting them mass and longitudinal polariza-
tion, while the remaining scalar becomes the physical Higgs boson. This
transformation is not a mere rewriting but a physical process, altering the
number and type of propagating degrees of freedom. The field equations
and drive this locally in the Lorenz gauge (0,A" = 0), reflecting
mass acquisition as a continuous evolution. In no-defect cases, A* evolves
with ¢ to yield JA* + e?v2A* = 0; in defects, it preserves 6’s role (e.g.,

Ap ~ ). This dynamical coherence contrasts with Struyve’s static B,
er H
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which abstracts away the process, and the unitary gauge (# = 0), which
simplifies no-defect masses but obscures defects (Section 8.3.4).

Rejecting the Artifact View

Claims that symmetry breaking is a gauge artifact rely on reformulations
like Struyve’s, asserting that gauge invariance eliminates its physical sig-
nificance. Yet, their nonlocality in defects and dynamical incompleteness
even in trivial cases undermine this view. The standard account’s gauge-
dependent process—culminating in the Lorenz gauge—grounds mass gener-
ation in a physical transition, not a mathematical trick. The Lorenz gauge’s
dynamical A* and ¢ reflect symmetry breaking’s physicality, reorganizing
degrees of freedom locally, while Struyve’s B,, sacrifices this for invariance.
The AB effect’s parallel (Section 8.3.3) reinforces this: gauge-dependent A
drives physical effects, not invariant proxies like ® or v. Similarly, in the
Higgs mechanism, gauge-dependent potentials (e.g., Ay, Af,) and the Higgs
phase 6 are essential for a complete ontology, aligning with observable masses

(e.g., mw = 1gv).

Potential-Centric Validation

The potential-centric ontology (Section 6) posits gauge potentials as real,
demanding a privileged gauge to reflect one physical reality. The Lorenz
gauge’s dynamical A* and transient # embody this, reflecting symmetry
breaking as a local, continuous process. In contrast, Struyve’s B,, abstracts
it away, paralleling the AB effect’s flux-based accounts. The necessity of
gauge fixing—enforced by boundary conditions (e.g., A* — 0 at infin-
ity)—mirrors the AB effect’s resolution, where 0, A" = 0 yields a unique A,
(Section 6.3.3). This determinacy extends to SU(2)xU(1), where 0, A% =0
ensures masses emerge correctly, reinforcing symmetry breaking’s physical-
ity across Abelian and non-Abelian contexts.

Conclusion

Gauge symmetry breaking in the Higgs mechanism is physically meaning-
ful—a local, continuous reorganization of the vacuum—mnot a mere formal-
ism. Gauge-invariant reformulations like Struyve’s falter, especially in de-
fects, introducing nonlocality and discontinuity, while the standard account,
best expressed in the Lorenz gauge, captures this reality. Far from an ar-
tifact, symmetry breaking is a cornerstone of mass generation, validated
by the potential-centric lens. It ensures mass emerges through dynamical
interaction, not abrupt, nonlocal effects, aligning with observable phenom-
ena and reinforcing the necessity of gauge-dependent potentials across gauge
theories.
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8.4 General Relativity and Gravitational Potentials

The resolution of the AB effect—establishing electromagnetic potentials A,
in the Lorenz gauge as the mediators of continuous phase shifts (Sections
2-6)—challenges the primacy of gauge-invariant explanations, exposing their
nonlocal and discontinuous flaws (Sections 3-5). This potential-centric on-
tology, where A,’s reality supplants static invariants like ® (Section 6),
invites a parallel inquiry into general relativity (GR), where the metric ten-
sor g, assumes a role analogous to potentials. Just as F,, = 0,4, — 0, A,
derives from A, with gauge freedom, the Riemann curvature tensor R’,,
emerges from g,,,’s second derivatives, subject to diffeomorphism invariance
(9w — ¢*9guw). The AB effect’s insistence on a determinate gauge sug-
gests that GR’s metric might similarly require fixing to embody spacetime’s
physical reality, prompting a philosophical reexamination of Einstein’s hole
argument and its implications for substantivalism versus relationalism.

8.4.1 The Hole Argument and the Quest for Spacetime’s Reality

Finstein’s hole argument confronts us with a profound puzzle: within a
matter-free “hole”, diffeomorphic metrics g, and gu., = ¢*g, yield iden-
tical physical outcomes (T}, G = 871}, ), suggesting that g,,’s specific
form lacks determinate significance, much like A,’s gauge ambiguity in elec-
tromagnetism (Norton et al, 2023). Relationalism seizes upon this, assert-
ing that only diffeomorphism-invariant quantities—curvature scalars and the
like—bear physical reality, relegating g,,, to a mere representational scaffold
devoid of intrinsic substance. Spacetime, in this view, dissolves into a web
of relations, its points stripped of independent existence. Yet, the AB ef-
fect’s critique of invariants like ® casts doubt on this stance (Section 3.3).
If gauge-invariant accounts fail to capture the dynamic genesis of quantum
phenomena, might GR’s invariants similarly veil g,,’s role? Classical GR
demands gauge fixing—such as the harmonic gauge (9,(/—gg"") = 0)—to
solve the Einstein equations, transforming G, = 81}, into Ug,, = S,
and yielding unique solutions like Schwarzschild or Friedmann metrics. This
practical necessity, akin to the Lorenz gauge’s fixing of A, (Section 6.3),
hints at a substantivalist alternative: a determinate g,,, may embody space-
time’s geometry, not merely reflect relational invariants.

The parallel with the AB effect deepens here. Just as A,’s continuous
phase influence necessitated a rejection of static ®-based accounts, GR’s
reliance on gauge fixing suggests that g,,’s form is not ontologically in-
different. Boundary conditions (e.g., asymptotic flatness) often eliminate
residual diffeomorphisms (CJ&# = 0), reducing ten components to six phys-
ical degrees of freedom, mirroring the Lorenz gauge’s determinacy. Rela-
tionalism assumes unfixed diffeomorphisms preserve equivalence, but this
practical requirement undermines such underdetermination, gesturing to-
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ward a reality where spacetime’s configuration holds substantive weight.
The hole argument’s challenge—whether spacetime points possess intrin-
sic properties—thus invites reconsideration: if g,,’s gauge-fixed form drives
physical outcomes, as A,, does in the AB effect, substantivalism emerges as
a compelling counterpoint to relationalism’s austere relational web.

8.4.2 Gravitational AB Effects and the Substantivalist Turn

This substantivalist intuition finds strong support in gravitational analogs of
the AB effect, where phase shifts arise from g, variations in curvature-free
regions, echoing the AB effect’s field-free dynamics (Section 6.1). Neutron
interferometry, for instance, detects shifts tied to ggp (time dilation), while
off-diagonal terms (go;, ¢i;) might be probed via rotational or gravimagnetic
effects. All ten components of g, contribute to the phase, suggesting a
potential-like role irreducible to curvature invariants. Relationalism falters
here: phase shifts in flat regions defy explanation by curvature alone, much
as @ failed to account for the AB effect’s continuous accrual (Section 3.3).
A generalized gravitational AB effect, driven by a time-varying g,. (e.g.,
oscillating masses or gravitational waves), could sharpen this critique. For
a closed spacetime loop C, the gauge-invariant phase is:

by = " f o (2, e, (86)
h Jo

where h,, = gu — Ny is a small perturbation, 7,, = diag(—1,1,1,1) is
the Minkowski metric, and v = dz*/dr. This accumulates over C, de-
tectable via atom interferometry or LIGO, would reflect g,,,’s temporal evo-
lution—mnot its instantaneous state—paralleling the generalized AB effect’s
$AB = F fOT e®(t)dt (Section 2.2). This dynamic influence, unmoored from
invariants, demands g, ’s reality as a physical state, fixed by a gauge like
harmonic.

Such evidence would resolve the hole argument’s puzzle decisively. Rela-
tionalism’s claim—that diffeomorphic metrics are physically equivalent—cru-
mbles if g,,’s unique, history-dependent form governs observable shifts, re-
jecting static equivalence for a determinate geometry. Substantivalism gains
traction: spacetime’s points, marked by a gauge-fixed g,,,, acquire substance
not through curvature but through their potential-like mediation of quan-
tum behavior, akin to A,’s role in the AB effect (Section 6.1). Classi-
cal GR’s gauge-fixing necessity—reducing freedom to match physical de-
grees—lends theoretical weight, while quantum gravity (e.g., loop quantum
gravity) might universalize this determinacy, eliminating residuals entirely.
A universal phase across spacetimes (flat or multiply connected) would seal
the case: diffeomorphic freedom would otherwise vary the shift, contradict-
ing the AB effect’s gauge-fixed consistency (Section 6.3). Thus, gravitational
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AB effects, especially generalized forms, anchor g, ’s reality in observables,
affirming spacetime as a substantive entity over a relational abstraction.

8.4.3 Ontological Implications and Philosophical Horizons

This substantivalist turn carries profound implications for GR and gauge
theories writ large. A gauge-fixed g, driving gravitational AB effects dis-
solves the hole argument’s indeterminacy, establishing spacetime as a deter-
minate reality shaped by dynamic interactions, not a passive backdrop of
invariant relations. This aligns GR with the AB effect’s ontology (Section 6),
where potentials—not their derivatives—govern phenomena, bridging elec-
tromagnetic and gravitational frameworks under a unified potential-centric
view. Unlike U(1)’s simplicity, GR’s broader diffeomorphism freedom poses
challenges, yet classical solutions’ reliance on gauges like harmonic suggests
a practical substantivalism, with quantum gravity potentially offering a uni-
versal “true gauge”. The philosophical shift is stark: relationalism’s austere
dismissal of spacetime’s substance yields to a richer ontology where geometry
actively shapes physics, echoing the AB effect’s rejection of ® for A.

Future probes—experimental and theoretical-—could cement this vision.
Atom interferometry with dynamic sources or LIGO’s sensitivity to g;; shifts
might confirm generalized AB effects, testing g,,,’s temporal role, while the-
oretical models could refine gauge fixing’s implications, perhaps via quan-
tum gravity’s discrete structures. Philosophically, this invites reflection on
gauge fixing’s nature: does it unveil a deeper reality, or merely pragmatism?
The substantivalist stance challenges relationalism’s dominance, urging a
rethinking of spacetime’s essence, with parallels to non-Abelian theories
(Section 8.2) questioning invariant-centric ontologies. The AB effect thus
becomes a philosophical fulcrum, leveraging gravitational analogs to rede-
fine GR’s foundations.

8.4.4 Massive Gravity: A Proca-like Path to Gravitational De-
terminacy

The gravitational AB effect, as posited in Section 8.4.2, suggests that the
metric g, may imprint physical reality, akin to A, in the electromagnetic
AB effect (Section 2). Yet, GR’s diffeomorphism invariance cloaks g, in
gauge freedom, rendering its form ambiguous despite its measurable effects.
Here, I explore massive gravity as a framework that parallels the Proca the-
ory (Section 6.5), eliminating gauge freedoms and fixing g,,,, as a determinate
entity, resonant with our substantival ontology.

In massless GR, the Einstein-Hilbert action S = [ %MI%IR\/Tg d*z yields
a graviton with two polarizations, its dynamics governed by gauge invariance
under hy, — hyy + 0,8 + 0,€,. Massive gravity, exemplified by the Fierz-
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Pauli theory, introduces a mass term akin to Proca’s for the photon:
Lo L 9 v 2
£ = iMPIR + §m (huyh'u —h ) (87)

where h,, = g — M, and 7, is a fixed background metric. The resulting
field equations is

(O—m2)hyy—00” By — 0y, 0° b pyy 41, (0P 07 pr —OR) +m* (hyy— 1y h) = —167GT ).
(88)

The mass term enforces 0"h,, = 0,h, with h = %Z;—?T[f (or h = 0 in vac-

uum), fixing five polarizations—gauge freedom vanishes, g,,, is determinate,

optionally refined by boundaries (e.g., asymptotic flatness).

Just as Proca’s mass term eliminates gauge freedom for the photon, yield-
ing a determinate A, measurable via the AB effect, massive gravity’s mass
term eliminates gauge freedom for the graviton, fixing g, relative to 7,,.
In this framework, g,,, becomes a substantive field, its components uniquely
determined by sources and boundary conditions, free from the gauge’s op-
tional constraints. For the gravitational AB effect, this suggests a phase shift
rooted in a singular g,,,, unmarred by gauge ambiguity, enhancing its phys-
ical reality as posited in Section 8.4.2. Althouth experimental bounds con-
strain this vision: the graviton’s mass is limited to m, < 6.76 x 10723 eV /c?
(Bernus et al., 2019), the parallel to Proca offers a path where gravitation,
like electromagnetism, stands as a determinate cornerstone of reality.

Inspired by massive gravity, I propose 0"h,, = d,h plus boundary con-
ditions as the true gauge for massless GR, mirroring the Lorenz condition’s
unity in QED and Proca (Section 6.5). In massless GR, we adopt this true
gauge on the field equations:

Ohy — 80 Ry — 8,0 Bppy + 0 (0P hpo — Oh) = —167GT)y.  (89)

This reduces to six degrees of freedom, but boundaries—e.g., asymptotic
flatness (hy, — 0)—trim to two physical polarizations, as in Schwarzschild:

—1
ds® = — (1 - 2GM> dt* + (1 — 2GM) dr? + r2d0?. (90)

r r

Compared to the harmonic gauge, this gauge aligns directly with mas-
sive gravity’s natural condition. In other words, this gauge ensures con-
sistency—mass enforces it in massive GR, boundaries adapt it in massless
GR—offering a Proca-like unity absent in harmonic, which doesn’t emerge in
massive GR. Moreover, its origin in massive GR’s dynamics—akin to Proca’s
0, A" =0 (Section 6.5)—lends it a physical basis, not a mere choice.
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8.5 Beauty in the Unseen

Within the framework of a potential-centric ontology, the gauge poten-
tials in the true gauge emerge as entities of profound ontological signifi-
cance—endowed with a reality as tangible as any physical field, yet perpet-
ually shielded from direct observation by the dictates of gauge invariance.
This principle, a cornerstone of modern physics, imposes a rigorous symme-
try that renders the potentials unmeasurable, their influence discernible only
through the gauge-invariant properties such as the phase shifts they induce
in the AB effect. Herein lies a philosophical tension: the potentials gov-
ern the dynamics of physical phenomena with a local and continuous pres-
ence, yet their essence remains cloaked, accessible only indirectly through
the observable consequences of their existence. This interplay between the
real and the unobservable evokes a deeper reflection on the nature of be-
ing—suggesting that the fabric of reality is woven not solely from what can
be grasped by empirical scrutiny, but also from entities that, like the unseen
currents beneath a river’s surface, exert a formative power beyond the reach
of direct observation. In this balance, there emerges a subtle beauty: a
recognition that the unseen, though elusive, holds an indispensable place in
the architecture of the physical world, challenging us to reconcile the limits
of observation with the expanse of what truly is.

9 Conclusions and Future Directions

This exploration of the Aharonov-Bohm (AB) effect has sought to resolve
a longstanding enigma at the nexus of quantum mechanics and gauge the-
ories: the mechanism by which a gauge-invariant phase shift emerges as an
electron traverses a field-free region. Through an integrated empirical, theo-
retical, and philosophical analysis, I have demonstrated that gauge-invariant
explanations—relying on quantities like magnetic flux ® or velocity v—are
untenable. Critiqued in Sections 3 and 4 for their nonlocal and discontinuous
underpinnings, these accounts collapse under the evidence of the generalized
AB effect (Section 4), which reveals a phase ¢pap = % fOT e®(t)dt accruing
continuously along the electron’s path—a process quantum mechanics pre-
dicts and quantum electrodynamics (QED) upholds (Sections 2, 5). This
continuous accumulation excludes instantaneous mechanisms, establishing
electromagnetic potentials A, fixed in the Lorenz gauge, as the fundamen-
tal reality driving the effect (Section 6). Far from a peripheral curiosity, the
AB effect emerges as a linchpin for redefining quantum ontology, with ramifi-
cations spanning gauge theories from electromagnetism to general relativity
(GR) and beyond (Section 8).

The rejection of gauge-invariant paradigms marks a profound ontological
shift. By tracing the phase’s dynamic, path-dependent genesis—rooted in
A,’s local influence rather than abrupt field effects—this study dismantles
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the classical bias toward observable invariants as sole bearers of physical
significance. The Lorenz gauge’s Lorentz covariance and causal propaga-
tion provide a coherent framework, resolving the AB effect’s tensions while
extending to a speculative massive photon scenario via the Proca equation
(Section 6). This potential-centric ontology reverberates across gauge the-
ories: in non-Abelian frameworks, it challenges reliance on Wilson loops,
foreshadowing potential AB analogs (Section 8.2); in the Higgs mechanism,
it critiques static gauge-invariant accounts, advocating dynamic potential
roles (Section 8.3); and in GR, a generalized gravitational AB effect could
affirm g,,’s substantivalist reality, rejecting relationalism’s hole argument
(Section 8.4). The AB effect thus transcends its initial puzzle, illuminat-
ing a unified truth: potentials, not their derivatives, underpin quantum and
gravitational interactions, reshaping our grasp of physical reality.

Looking forward, several directions emerge to deepen and extend these
conclusions, bridging philosophical inquiry with empirical and theoretical
advancement. Experimentally, validating the generalized AB effect is paramount.
Section 2’s proposed tests—measuring phase shifts with time-varying ®(t)
or solenoid shut-offs—leverage modern interferometry’s precision to confirm
continuous accumulation, decisively excluding gauge-invariant remnants. Ex-
tending these to non-Abelian and gravitational contexts (e.g., chromomag-
netic flux tubes or dynamic g,,) could test potential primacy across gauge
theories, with facilities like LIGO offering gravitational probes (Section 8.4).
Theoretically, refining QED models of photon-mediated phase accrual via
path-integral methods could clarify A,’s quantized role (Section 5), while
exploring massive photon scenarios might unveil beyond-standard-model sig-
natures (Section 6.5). In GR, modeling generalized AB effects could pinpoint
a true gauge for g,,, potentially via quantum gravity frameworks like loop
quantum gravity (Section 8.4), bridging classical and quantum ontologies.

Philosophically, the ontological status of potentials in the Lorenz gauge—or
the critical question of what physical state these potentials represent—demands
further scrutiny. The substantivalist turn in GR challenges relationalism’s
dominance, urging a rethinking of spacetime’s essence, while non-Abelian
extensions question the Standard Model’s invariant-centric ontology. These
inquiries demand interdisciplinary efforts: experimentalists to test phase
dynamics, theorists to model potential-driven effects, and philosophers to
probe ontological shifts. Collectively, these pursuits position the AB ef-
fect as a cornerstone for a potential-centric realism, transcending its initial
enigma to redefine quantum mechanics and gauge theories, with transfor-
mative potential for physics and philosophy.
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