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Abstract: Modal Empiricism in philosophy of science proposes to understand the 
possibility  of  modal  knowledge  from experience  by  replacing  talk  of  possible 
worlds  with  talk  of  possible  situations,  which are  coarse-grained,  bounded and 
relative to background conditions. This allows for an induction towards objective 
necessity, assuming that actual situations are representative of possible ones. The 
main limitation of this epistemology is that it does not account for probabilistic  
knowledge.  In  this  paper,  we  propose  to  extend  Modal  Empiricism  to  the 
probabilistic  case,  thus  providing  an  inductivist  epistemology  for  probabilistic 
knowledge. The key idea is that extreme probabilities, close to 1 and 0, serve as 
proxies for testing mild probabilities, using a principle of model combination.
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1 Introduction

Our past experiences seem to give us a great deal of modal knowledge: knowledge about what 
is objectively possible or not in this world, in various circumstances. We heavily rely on such 
knowledge in order to plan future actions. Yet the way this knowledge is acquired is prima facie  
puzzling: after all, all of our past experiences are located in the actual world, so how could we 
know anything about what happens in other possible worlds?

Ruyant  (2021,  ch. 3–5)  has  proposed  a  modal  epistemology,  called  Modal  Empiricism 
(ME)1, that aims at addressing this question without attempting to reduce or eliminate objective 

1ME as a position in philosophy of science must be distinguished from modal empiricism in metaphysics,  
which opposes modal rationalism (see Fischer and Leon 2017).  There are affinities between the two 
approaches, notably the idea that modal knowledge can be acquired by induction on experience, as well 
as a particular focus on de re possibilities (possibilities for an object or situation rather than possibilities 
in general) (see Roca-Royes 2023). However, the two are different. ME in philosophy of science is a  
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modalities, as empiricism traditionally does. The view is roughly the following: (1) we should 
think of objective possibilities in situated terms, that is, not in terms of possible worlds, but in 
terms of possible situations, conceived of as alternative ways local, coarse-grained situations 
could be in some relevant respects, “all else being equal”, and (2) if we do so, then necessity  
claims, in the form of claims about what holds for all possible situations of a given type, can be 
justified by simple enumerative induction, which is an “empiricist-friendly” form of induction. 
All that is required is to assume that instantiated possible situations are representative of merely 
possible ones.

Although  concerned  with  modalities,  ME  does  not  say  much  about  the  status  of 
probabilities, and on the way of justifying probability claims or the accuracy of probabilistic 
models. This is problematic, because the fact that many scientific models are probabilistic is one 
of the reasons to assume that there are objective possibilities in the world in the first place. 
Suárez (2020) has described the typical assumptions of statistical models in science, and the 
ensuing Complex Nexus of Chance (CNC), and our aim in this paper is to bring CNC to bear on 
ME, thus extending ME to the probabilistic case, and hence providing a coherent empiricist 
epistemology for objective probabilities. In section 2, we review the main features of ME. In  
section  3,  we  discuss  various  interpretations  of  probability,  including  the  CNC  and  its 
compatibility with the spirit of ME. In section 4, we explain how ME can be extended to the  
probabilistic case.

2 Modal Empiricism

Experimental Contexts and Accuracy (ch. 3.2)

Let us start by reviewing the main features of ME.
In an empiricist spirit, ME is grounded in an account of model application, conceived of as 

the kind of representational activities where a model is used in order to make inferences about 
what  is  possible or  not  for  a  concrete actual  situation that  is  accessed empirically.  This  is,  
supposedly, the kind of context capable of confirming or invalidating the empirical adequacy of 
the model, depending on whether the conclusions of the inferences that it affords turn out to be 
compatible or not with the observations made.

Following ME, a context of application defines what the applied model is about. A context 
is associated with a concrete physical system or situation under a given description (what is 
usually referred to as a target in the literature on scientific representation). It is understood in 
terms of a finite partition of logical possibility space for this situation: an exhaustive set of 
mutually exclusive coarse-grained a priori possibilities, one and exactly one of which will be 
realised,  holding  fixed  the  identifying  characteristics  of  the  situation  of  interest  in  all 
possibilities  (including  some  environmental  features).2 The  situation,  its  identifying 

position  about  the  significance  of  scientific  theories.  It  takes  place  in  the  context  of  the  debate  on  
scientific  realism,  where  it  constitutes  a  middle  way between non-modal  empiricism and full  blown 
scientific realism, and it is concerned with natural or nomological possibilities, not with metaphysical 
possibilities. The label has been used in this sense by Giere (in Churchland and Hooker 1985, ch. 4) and  
by Ladyman and Ross (2007).
2This analysis in terms of partition of possibility space is similar to accounts of “aboutness” that have  
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characteristics and the partition of possibility space considered (the coarse-graining) depend on 
the interests of model users. So, for example, if an agent uses a mechanical model in order to  
infer whether the ball she is about to drop will go up, down or stay at the same height, the 
context comprises exactly three mutually exclusive coarse-grained possibilities (up, down or 
same height) that cover the logical space of possibilities for the situation (dropping this ball), 
holding fixed the gravitational force, which ball is used, the absence of wind, etc.

Note  that  a  context  of  application  can  be  theory-laden.  What  matters  is  only  that  the 
possibilities delineated would make an empirical difference. In an experimental context where 
data is gathered in order to confirm or discard a hypothesis, the context could be the set of  
conceivable  data  models  that  could  be  obtained  from  the  experiment,  holding  fixed  the 
experimental setup (this is actually how Suppes (1969) conceived of models of the experiment).  
These data models would typically be described in the language of a theory, not in terms of 
instrument displays or the like. This reference to theoretical properties could seem to run against 
the  spirit  of  empiricism,  but  according  to  Ruyant  (2021,  3.4.2),  all  that  matters  is  that  
experimental  norms  allow us  to  associate  them with  the  interventions  and  observations  of 
experimenters.

The general idea put forth by ME is that an applied model informs the user about which,  
among the logical possibilities delineated by the context, are  really possible, in an objective 
sense of possible, thus reflecting the natural constraints that affect the identified situation. A 
model, if it is informative, will exclude some contextual possibilities, perhaps only leaving out a 
single one of them: in our illustration, a model of free fall would exclude every outcome but the 
one where  the  ball  falls  down,  which is  what  must  happen in  virtue  of  natural  constraints 
according to the model. An applied model is accurate, in a purely extensional sense, if what it 
excludes does not actually occur (the ball does not go up nor stay at the same height): the modal  
inferences that it affords are compatible with our observations of the situation3.

(Ruyant  2021)  briefly  mentions  the  fact  that  applied  models  more  typically  attribute 
probability weights to contextual possibilities instead of simply excluding or allowing them, the 
latter being a limiting case of the former, and that the notion of accuracy should be refined in  
consequence. However, the way to do so is not elaborated. One of the aim of the next sections 
will precisely be to do so.

Theoretical Models and Adequacy (ch. 3.3 and 4.2)

Theoretical models are not designed to be applicable only in a single context. A model of free  
fall,  for  instance,  can account  for  a  large range of  situations where objects  are  dropped or 
thrown in  various  conditions,  with  various  degrees  of  precision  (various  coarse-grainings). 
According to ME, the inferential content of such an abstract model should be analysed as a 
function  from  context  to  content.  The  idea  is  that  given  any  situation  with  identifying 
characteristics,  and given any partition of possibility space for this situation, the theoretical  
model  can provide an objective weighing of the possibilities  considered (assuming that  the 

been proposed in philosophy of language, drawing from Lewis (1988): see Yablo (2014); Hawke 
(2018); Berto (2022)

3This notion of accuracy is weaker than the one usually entertained in formal epistemology (e.g. Pettigrew 
2017). It roughly corresponds to the applied model not being falsified by observations.
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model is relevant for this kind of situation and partitioning of course).
This view fits well at least with the models of physics that are built on a state-space, or a  

history space as in Lagrangian mechanics. The identifying characteristics of the situation at 
hand  determine  values  for  model  parameters:  the  strength  of  external  potentials,  initial 
conditions, etc.  The partition of possibility space considered determines a partition of state-
space (or history space). From this, a weighing can be inferred by projecting the model onto this 
partition. In the case of a deterministic model describing a trajectory in state-space, for instance, 
a cell of the partition can be considered possible only if the trajectory of the system intersects 
this cell, or it can be given a probability weight proportional to the time spent by the trajectory 
in the cell.  So,  technically speaking,  the content  of  such models is  indeed a function from 
context (parameter values and a partition of state-space) to contextual content (weighing of the  
cells of the partition).

Assuming this, the main question that ME attempts to answer is: when and how can we say 
that a theoretical model is empirically adequate?

It is important to remember that in the context of empiricism, empirical adequacy is an 
ideal notion (including in van Fraassen (1980)’s constructive empiricism). It does not express 
the fact that a theory or model is well confirmed by our observations so far, but rather that it 
would be confirmed by any observations we could possibly make.4 Empirical adequacy plays 
for empiricists the role that truth plays for realists: it is not identified with, but  inferred from 
empirical success, in the minimal sense that empirical success gives us good reasons to believe  
that a theory is empirically adequate, and identified with an ideal aim for science to pursue.

We have already explained when an applied model is extensionnally accurate in context: 
when what  it  excludes  does  not  actually  happen.  According to  ME,  a  theoretical  model  is 
empirically adequate if it would be accurate in  all possible contexts. This is a modal notion: 
adequate just means necessarily accurate, in an objective sense of necessity. Hence the “modal” 
in “modal empiricism”. The possible contexts considered include not only any perspective one 
could adopt on actual situations of the relevant kind (e.g. any conceivable partition of possibility 
space for objects that are actually dropped, up to a degree of precision for which the model is 
still valid), but also on counterfactual situations, which are alternative ways actual situations 
could be or could have evolved. So, for a model of free fall to be adequate, not only must it be  
the case that all dropped objects actually fall towards the ground, but also, it must be the case  
that they could not have gone up, and also that ceteris paribus, all objects would fall towards the 
ground if they were dropped, even if they were not, all this in virtue of natural constraints,  
holding fixed the broad environment of these situations. In other words, actual situations must 
fulfil the model’s conditions of accuracy as a matter of natural necessity.5

This notion of adequacy is empirical because it only concerns characteristics of the world 

4Van Fraassen has a particular  interpretation of this  modal  that  avoids any commitment to objective  
modalities,  but  this  is  still  an  appropriate  way  of  characterising  his  view (see  Monton  and  van 
Fraassen 2003).

5This idea is based on an account of possibilities that is not exactly the possible worlds semantics. It  
conceives  of  possible  situations  as  centred  on  (or  accessible  from)  actual  situations  with  rigid 
identifying characteristics, so that the necessity operator  □s is indexed to a situation of reference. 
Empirical adequacy is roughly a necessity claim of the form (∀s)(□s As) (Ruyant 2021 ch. 4.2.6, 5.2). 
But the details do not matter for our purpose.
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that can be discriminated empirically, but the strict extensionality of traditional empiricism is 
not retained (explaining the motivations for this view is beyond the scope of this article: see 
Ruyant (2021, ch. 4.2, 5.2)).

Modal Epistemology (ch. 5)

Once this modal notion of empirical adequacy is in place, the central question is: how can we 
infer that a theoretical model is empirically adequate from its empirical success? ME’s answer 
is: by enumerative induction on contexts and situations of the same kind.

Enumerative  induction  is  an  inference  by  which  a  characteristic  found in  a  sample  of  
individuals deemed representative of a larger set is projected upon all individuals of this larger 
set. Assume that the realised situations we experiment upon are a representative sample of the 
larger set of all possible situations of the same kind (heavy objects being dropped or thrown).  
These are the actual  situations of the same kind upon which we do  not experiment (object 
dropped when we do not look), but also the alternative ways they could be, and the alternative  
ways situations on which we do experiment could be or could have evolved (what would have 
happened if non-dropped objects were dropped, etc.), all this taking into account the natural 
constraints  on  possibilities  induced  by  the  nature  and  environment  of  these  situations.  If  
something never happens in our accessible sample, then we can infer, by induction, that it never 
happens in the full set of possible situations of the same kind: it cannot happen for situations of 
this kind. This is just saying that if the model is accurate in our sample, then we can infer by 
induction that it is empirically adequate.

ME argues that this induction is fallible, but as good as any other kind of enumerative 
induction, at least once it  is granted that possible situations exist (their existence should be  
motivated independently). Of course, we should make sure that our sample is representative of 
the set of all possibilities, by varying the circumstances of applications. This corresponds to 
what scientists do in experiments: they vary the value of parameters, the circumstances, etc., as  
if exploring possibility space, which plays in favour of this account (but again, a full defence of 
ME is beyond the scope of this article).

Summary

Let us summarise the non-probabilistic version of ME’s modal epistemology, for the sake of a 
future comparison:

1) A context defines an a priori partition of coarse-grained possibilities for a situation with 
identifying (rigid) characteristics.

2) An applied model excludes some of these possibilities. The model is accurate if the  
possibilities that it excludes are not actually observed in context.

3) A  theoretical  model  is  a  function  from  context  to  applied  model.  The  model  is 
empirically adequate if the possibilities that are excluded by the model are objectively 
impossible for all relevant situations, in all possible contexts (it reflects what is possible  
or not in general for situations of a given kind).6

4) We can infer by enumerative induction that a model is empirically adequate if it  is  

6A caveat is that in this picture, a model that is not completely informative because it does not exclude all  
impossibilities can still be empirically adequate. This caveat will disappear in the probabilistic case.
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accurate in a range of contexts that is representative of all possibilities.

3 How to interpret probabilities?

So far, we have a picture of how scientific models represent possibilities, and how we can know 
by induction that they do so adequately. The problem with this picture is that it does not apply  
to  probabilistic  models.  This  inductive  epistemology  assumes  that  possibilities  are  either 
excluded or allowed by models, without any in-between. This is problematic, because the fact  
that  many scientific models are probabilistic is  one of the reasons to assume that  there are 
possibilities in the world in the first place, and that we need a modal epistemology. Luckily, this  
account can be extended to the probabilistic case. In the next two sections, we first discuss the  
nature  of  the  probabilities  that  scientific  models  describe,  and  then  go  on  to  provide  an 
extension of Modal Empiricism that applies to them.

Theories of probabilities

Let us review the options, following Suárez (2020). We can divide the interpretations of 
probability into i) subjective or epistemic, and ii) objective or ontic. Roughly (i) take it that 
probabilities  are  ‘in  the  head’  of  the  reflective  agent  or  scientist;  they  are  not  part  of  the 
furniture of the world but feature only in our cognitive and representational processes and states. 
By contrast (ii) assume that at least some probabilities are “in the world”; they are features of 
the physical constitution of reality, whether it be as properties of statistical ensembles, or as 
dispositional properties of objects. The labels can be blurred, in that there are objective elements 
in some epistemic accounts of probability, such as objective Bayesianism, and vice versa: most  
ontic conceptions of probability assume that at least some judgements are required to shape up 
regularities  into  the  right  kind  of  probabilities.  However,  the  distinction  points  to  a  clear  
ontological distinction regarding the sorts of systems that can be meaningfully said to exhibit or 
possess probabilities. In the subjective or epistemic conception, these are states of knowledge,  
information,  or  belief  in  the  minds  of  agents.  Objective  conceptions  take  it  that  there  are 
systems, states or processes in nature that exhibit such probabilities, regardless of any agents or  
their cognition.

The  first  alternative  is  the  main  contender  for  an  epistemic  conception  of  probability, 
namely subjective Bayesianism. In the wake of the so-called Ramsey-De Finetti theorem it is 
well-known  that  partial  degrees  of  belief  must  be  represented  by  probabilities  if  they  are 
coherent.  (Suárez,  2020,  ch.3;  see  algo  Gillies,  2000)  This  opens  space  for  a  thoroughly 
subjective interpretation of probability, where probabilities are just representations of ignorance, 
or incomplete information; they measure partial degrees of belief under conditions of limited 
information and instruct an ideal rational agent to adjust their degrees of belief in response to  
incoming evidence. Another contender, objective Bayesianism (Williamson, 2010), incorporates 
objective elements and is rather in the tradition of Keynes’ (1921)  principle of indifference. 
Either of these proposals ensues in a roughly inductive calculus for inductive or probabilistic  
inference as a measure of evidence. 

Since we are concerned with how scientific models represent real worldly possibilities, we 
shall  put  aside  subjective  and  epistemic  conceptions  of  probability.  As  was  noted,  we  are 
concerned partly with the inductive weight of evidence for and against models, but we are also 
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assuming outright that there are objective possibilities out there in the world, and that scientific 
models  are  in  the  business  of  describing  and  quantifying  them  by  means  of  objective 
probabilities. Hence, we cast aside all attempts to understand probability entirely as a measure 
of evidence or ignorance.

There  are  two  grand  families  of  objective  interpretations  of  probability,  in  terms  of 
frequencies and propensities. The frequency and the propensity interpretations of probability 
thus each come in some variety. The former typically identify probabilities with frequencies of 
given attributes in some sequence of outcomes of a particular chance setup. The critical issues 
here concern the definitions of “frequency”, “attribute”, “sequence”, and “setup”, and different 
frequency  interpretations  give  different  accounts  of  these  terms.  On  the  simplest  actual 
frequency account, any frequency of any given distinguishable attribute in the finite sequence 
generated by a stable chance setup that  allows for repeatable trials of the same experiment 
provides an empirical probability of that attribute (in that sequence). Hard questions arise then 
regarding any putative extension of the same trial. Suppose we have tossed a coin 100 times and 
observed 50 heads and 50 tails precisely. This actual frequency in this finite sequence provides a 
probability for landing heads / tails for a toss of this coin. However, if we toss it another 100 
times, we may not be able to preserve this exact ratio, and the question then arises whether we  
are compelled to change our probability ascription. The actual frequency account would seem to 
suggest so, but our intuition is clearly quite different — to stick to the first estimate. Any finite  
frequency can after all differ from the actual underlying probability and is in fact expected to do 
so within a range.

To  overcome  these  difficulties  appeals  have  been  made  to  limiting  or  hypothetical 
frequencies.  (See  Hájek,  1997;  2009  for  critical  discussion).  A  limiting  frequency  is  a 
mathematical abstraction – the number, if there is one, that the given frequency tends to in the 
limit when the sequence of outcomes goes to infinity. In the coin toss: the ratio of heads to tails 
that results when we let the sequence of tosses extend indefinitely. However, it is not always the 
case that this number exists. Many sequences diverge rather than converge in the limit. It is also  
strange (and would be contrary to the spirit of our proposal for probabilistic models anyway) to  
identify probabilities with abstract formal entities.

The alternative is to consider the hypothetical sequence that would result from tossing the 
coin indefinitely in the given circumstances, regardless of any mathematical limit of the set of 
intermediate finite  sequences.  However,  note that  any frequency ratios in such hypothetical  
sequences  would  themselves  be  hypothetical  –  i.e.,  they  would  incorporate  the  modality 
characteristic of a hypothesis regarding some possible development of a series that is not yet 
actual.  In other words,  hypothetical  frequentism is not motivated by any sort  of non-modal  
empiricism that  would  appeal  only  to  the  realm of  the  actual.  On  the  contrary,  it  is  fully 
committed to modality, and assumes that probabilities are modal properties or features of ideal 
sequences  generated  in  hypothetical  circumstances.  The  coin  has  in  this  actual  world  a  
probability ½ to fall heads only because an ideal sequence of tosses of that very coin in some 
possible  world  exhibits  that  frequency.  This  approach  thus  conveniently  lines  up  with  our 
account of modal epistemology for probabilistic models, which rejects the reduction of modal  
notions to non-modal ones. (As we have already pointed out,  Ruyant’s (2021) ME is not a  
reductionist attempt to do away with modality. On the contrary it is an attempt to find room for  
objective modalities within a broadly pragmatist scientific methodology.)
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We  avoid  hypothetical  frequency  interpretations  nonetheless  for  two  different  reasons. 
First,  the  implicit  appeal  in  these  interpretations  to  possible  worlds  is  incoherent  with  our 
rejection of possible world semantics for the sorts of situational possibilities that interest us.  
And there does not seem to be any other plausible semantics for hypothetical sequences, which 
are best understood as global descriptions of events through the history of some possible world 
that incorporates the actual world up to the present time. In other words, we cannot see how to  
apply our local and contextual situational semantics to the global hypothetical sequences that  
are demanded by hypothetical frequentism. Secondly, hypothetical frequencies are unsuited to  
our purposes, since they are group characteristics of a whole indefinite ideal sequence of events.  
That  is,  if  probabilities  are  hypothetical  frequencies,  then  they  are  properties  of  entire 
collectives  or  sequences  of  events.  For  our  purposes  we  would  like  rather  an  account  of 
probability that allows for single case chances; an account that allows us to ascribe objective 
probabilities to single events occurring to systems regarded in isolation (i.e., a single toss of a  
coin regarded in isolation), in the same way as the non-probabilistic version of ME attributes 
modal properties to single occurrent situations.

The  propensity  interpretation  would  seem  to  provide  just  this  since  contrary  to  what 
happens  in  a  frequency  account,  it  ascribes  a  property  to  the  chance  setup  or  system (or 
situation) that ought to be enough all by itself to yield the required probability for even just one  
operation of the chance setup. The idea is, roughly, that every time the chance setup operates in 
the actual world it displays the outcome of an underlying dispositional property with a given 
probability – a bona fide property of the one exercise of the setup. There is therefore no overt 
appeal, at least, to any global sequence of events, or collective, no implicit or explicit reference  
to global possible worlds, and chances are putatively understood fully to be properties of single 
events occurring to setups regarded in isolation. 

However,  there  is  discussion  amongst  defenders  of  propensities  about  how  reliant 
propensities ultimately are on either global sequences, or “collectives” in Von Mises (1957) 
sense of the term. The long-run version of the propensity interpretation (Gillies, 2000) tries to 
stay  resolutely  empiricist  (in  the  strict  non-modal  sense  of  empiricism)  by  conceptually 
connecting propensities to the long run sequences that chance setups generate. Thus, on this 
view, while the explanation still  appeals to properties of the setup, it  only appeals to those 
properties of the setup that are responsible for an indefinitely large sequence of events that  
broadly satisfy the conditions for a Von Mises collective. Putting aside issues regarding the 
definition of these collectives and whether they can be fully characterised in actualist terms, this 
again moves us away from our explicit aim to provide an account of probability that applies to 
the single case, i.e., that provides single case chances. The alternative is precisely the single case 
propensity accounts defended by Mellor (2005) and others, which explicitly make it clear that  
propensities are not in any way properties of collective or sequences (actual or hypothetical) but 
properties of chance setups exercised in every instance of their operation. Thus, a single coin 
tossed only one time – and thereafter, say, destroyed – also possesses a propensity to land heads  
or tails, and it displays that propensity in the only one occasion in which it is tossed throughout  
its history, regardless of any collectives or sequences that this toss may be said to belong to in 
theory. 

The single case propensity interpretation is thus roughly along the lines of what we call for.  
Yet it again has problems of its own, most notably so the so-called Humphreys’ paradox, which 
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has been carefully described elsewhere (Humphreys, 1985; Gillies, 2000; Suárez, 2014). The 
upshot of this debate is that while propensities understood as dispositional properties of chance 
setups can yield or generate single case chances for events in those setups,  they cannot be 
identified with them. Propensities and chances are not the same thing but are rather intricately 
related; propensities are those underlying properties of systems that can explain the single case  
chances that certain events within those systems display.

The complex nexus of chance

We have seen so far that probabilities cannot be strictly identified with either propensities 
or frequencies, and yet, they seem related to both. Suárez (2020) has referred to this intricate  
link as the Complex Nexus of Chance (CNC). Most objective chances – not necessarily all – are  
explainable  as  the  displays  of  underlying  propensities,  and  frequencies  of  attributes  in  a 
sequence are themselves the manifestation of these chances. Yet, the chances displayed and the 
propensities that explain them are not the same kind of thing, nor are the chances identical to 
their  manifested  frequencies.  Propensities  are  underlying  dispositional  properties  of  chance 
setups, while objective chances are the probabilities of certain outcomes displayed by events 
that are generated in those setups under specific circumstances. The former can be understood 
along the lines of several theories of dispositions, but no further assumptions shall be made 
regarding them here. The latter can be interpreted in a variety of different non-metaphysical 
ways,  including  Hoefer’s  (2019)  most  recent  best-system analysis  (see  Suárez,  2021  for  a 
review  of  its  most  pragmatic  components),  but  as  a  matter  of  fact  do  not  require  an 
interpretation (in line with Sober’s 2010 no-theory theory of probability, endorsed in Suárez, 
2020, Ch. 10).

This three-tier distinction between propensities, single-case chances and frequencies has 
strong affinities with ME. Recall that according to ME, theoretical models are functions from 
context  to  applied  models:  theoretical  statistical  models  would  therefore  represent  the 
dispositional properties of objects or kinds of objects, while applied statistical models would 
represent their single chances in a particular context. Accordingly, the adequacy of theoretical  
models,  in  a  probabilistic  version  of  ME,  should  correspond  to  the  fact  that  they  “get 
probabilities right” in all possible contexts (which is the analogue of being correct regarding 
what  is  objectively  possible  or  impossible  in  deterministic  models). In  other  words,  this  is 
fulfilling the requirement in Suárez (2020, p. 59) that “propensities (understood as dispositional 
properties of chance setups) are not tested against finite frequency data, but against probability 
distributions within statistical models of the phenomena”. We are thus implicitly providing a 
way to test abstract propensity claims against probability models grounded on frequency data, in 
agreement with a tripartite conception of objective chance such as the one in the CNC. 7 This 
adequacy should  be  inferred from the  extensional  accuracy of  concrete  applications,  where 
frequencies would play a central role. Our goal, in the next section, is to fill-in the details of this 
rough picture.

4 Probabilistic modal empiricism

Having settled on an objective chance interpretation of probabilities, we can now examine how 

7 For the abstract nature of propensities, see Suárez (2025)
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the modal epistemology presented in section 2 could be extended to account for probabilistic  
models. We shall assume, in line with ME, that a theoretical model is a function from context to  
applied models, where the context corresponds to a specific target system to which the model is  
applied, associated with specific values for dynamical parameters and a partition of possibility  
space that typically correspond to our empirical discrimination abilities. As already explained, 
the probabilities are then assumed to appear in the applied model (but not necessarily directly in  
the theoretical model): they weigh the possibility space of the target situation and correspond to 
the objective chances of this situation. They are, as per CNC, the manifestations of propensities 
in  particular  contexts.  The  objective  of  this  section  is  to  extend  the  induction-based 
epistemology presented before to this picture.

An issue with probabilistic adequacy

Let us start by noting that an extension of ME to the probabilistic case is not as straightforward 
as it could seem.

The problem is the following. Imagine we have a model of coin toss that tells us that the  
probability of heads is half. We toss a hundred coins and obtain roughly half heads and half  
tails.  We would like to say that  in this case,  our observations confirm the adequacy of the 
model. However, the inductive account laid out previously does not fit well with this inference. 
Remember that according to this account, if something is excluded in all observed cases, then 
you can infer by enumerative induction that it is excluded in all possible cases. But the coin  
model does not exclude anything: it tells us that both heads and tails are possible outcomes for 
every toss.

In the non-probabilistic case, modal knowledge is acquired by extrapolating from the fact 
that an individual characteristic is present in situations of a sample to the conclusion that it is  
present in all situations in a larger set. This is an inference from individual characteristics to  
individual characteristics, which is just what enumerative induction is. But what we do in the 
probabilistic  case  is  prima  facie  different:  it  apparently  amounts  to  inferring  individual 
characteristics  from  a  group  characteristic (single-case  probabilities  from  a  statistical 
distribution). This blocks a naive transposition of ME to the probabilistic case, or any account 
based  on  enumerative  induction  more  generally.  There  is  a  non-homogeneity  between  the 
premise and conclusion of the inference,  which means that the inference is ampliative in a  
stronger sense than enumerative induction: it is more of an inference to the best explanation. In 
the  case  at  hand,  we  could  say  that  probabilities  explain statistical  distributions,  but  the 
explanatory link between the two is  not  necessarily clear.  In any case,  this  blocks a direct  
transposition of ME to the probabilistic case.

A way to resolve this issue is to conceive of a probability as a kind of modal frequency: a 
ratio among possibilities. This way, it would seem, the premise and conclusion of the inference 
are of the same nature: from the fact that about half of realised coin tosses give us heads, we 
infer that half of possible coin tosses would give us heads. More precisely, we could understand 
accuracy for an applied probabilistic model in terms of a fit between its probabilities and the  
frequencies displayed in a collection of events (which would then be a matter of degree), and 
the  adequacy  of  the  corresponding  theoretical  model  in  terms  of  accuracy  in  all  or  most 
collections of possible events. If an account of this kind were fully developed, then plausibly,  
the  corresponding  notion  of  adequacy  would  be  justified  by  enumerative  induction  from 
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accuracy, just as ME has it. Perhaps this could be made to fit with either a long-run propensities 
theory or a hypothetical  frequencies theory of probabilities.  However,  as already explained, 
such theories do not fit very well with ME’s focus on situations, since it would appear that 
probabilistic models have as target systems collections of situations instead of situations. While 
leaving open the possibility of developing this option, we will focus here on the development of 
an epistemology that stays closer to non-probabilistic ME.

A look at scientific practice

It could seem that the probabilistic case is not congruent with ME. However, having a closer 
look  at  how  probabilistic  models  are  tested  in  science  does  not  warrant  the  idea  that 
probabilities are directly inferred from statistical distributions (indeed, if they were, we would 
never infer non-rational probabilities). It actually gives us a picture that is very close to what  
ME suggests in the non-probabilistic case.

Take, for example, how Mayo and Spanos (2006) characterises a severe test:

Data x0 in test T provide good evidence for inferring H (just) to the extent that 
H passes severely with x0, i.e., to the extent that  H would (very probably) not 
have survived the test so well were H false.

The idea is roughly that considering  H to be false gives a very low probability, lower than a 
significance threshold, for what is actually observed in a test. Considering H to be false amounts 
to considering a null-hypothesis that is the disjunction of all alternatives to H to be true (within 
a set of relevant alternatives given by the research context). The test is severe if it allows for an 
outcome that is given very low probability by this null-hypothesis, but not by H. Considering 
models instead of hypotheses, assuming a set of relevant models that apply to the same kinds of  
contexts (in the sense of ME), the narrative can be roughly paraphrased in this way:

1) A model is discarded when what it gives very low probability to is actually observed.
2) A model passes a severe test when all alternatives but the model are discarded.8

A severe test must allow us to discriminate between the model and all relevant alternatives, by 
allowing for an outcome that would discard all but the model.

Mayo and Spanos are interested in p-value testing for hypotheses here, but this kind of 
narrative, thus paraphrased, can easily be generalised to the confirmation of models in general. 
The main idea is that accepting a model or hypothesis requires discarding all its alternatives,  
which means  exploring the  space  of  possibilities  (see  Schupbach (2018)  for  an  account  of 
robustness along these lines), eliminating potential sources of errors, etc. And this is roughly 
what ME says. Point (1) above is almost exactly what our point (2) at the end of section 2 states, 
namely that a model is discarded (not accurate) if what it excludes is actually observed. We 
simply need to assimilate low probability attribution with exclusion of a possibility. As for (2), 
it corresponds closely to point (4) from section 2, which says that we can infer adequacy from 
accuracy in a representative range of contexts. As explained previously, the assumption that our 
sample of situations is representative involves making tests in a large enough range of varying 
circumstances, which means, in effect, confronting the model to all relevant alternatives, at least 

8This is not exactly what Mayo says, because the disjunction of all these models should be discarded  
rather than each of them independently, but this is close enough for our purpose.
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assuming that these alternatives would make a difference in at least one possible context : in at  
least one context, they attribute very low probabilities to an outcome while our confirmed model 
does not.

However, what is important to understand is that the models that are directly put to the test  
are  not in  general  basic  probabilistic  models.  They  are,  more  typically,  composite  models 
representing sequences of independent events, and attributing probabilities close to 1 and 0 of 
getting frequencies inside or outside a range. As a matter of fact, the frequencies of outcomes 
that are attributed high probabilities will correspond closely to the probabilities of the basic 
model,  thanks  to  the  central  limit  theorem.  Considering,  for  example,  a  model  of  100 
independent coin toss, where each toss has a half probability of yielding heads or tails, would 
give a very high probability of obtaining roughly as many heads as tails, between 45 and 55,  
say. But what is tested is not the basic coin toss model: it is a composite model, constructed 
from this basic model and other assumptions (the statistical independence of every toss), with 
the  notable  feature  that  it  yields  all-or-nothing  probabilities  for  specific  outcomes  (having 
frequencies inside or outside a range). And this is precisely the fact that such models yield 
“dichotomous claims” that makes them suitable for an empirical test, because these claims can 
be directly compared to what is observed and yield a determinate conclusion, e.g. that such 
alternative model is discarded (Uygun Tunç, Tunç, and Lakens 2023).

The lesson from these observations (which we do not take to be necessarily novel) is this:  
mild probabilities are never inferred directly from frequencies of outcomes. Only all-or-nothing 
probabilities  (1  or  0),  corresponding  to  necessities  and  impossibilities,  are  ever  confirmed 
experimentally. However, such probabilities can act as proxies for confirming models with mild 
probabilities,  with  the  mediation  of  composite  models,  such  as  models  of  sequences  of 
independent events.

Probabilistic Empirical Adequacy

This analysis points to a solution to our problem. Firstly, we can keep ME’s conception of  
empirical adequacy for the models that are directly confronted with experiments, by simply 
replacing the “excluding” in the original version by “giving a low enough probability weight”. 
Secondly, this picture can be completed with an account of how to infer, from the adequacy of a 
composite  model  constructed  from  more  basic  models,  that  the  basic  models  are  also 
empirically adequate.

“Giving a low enough probability weight” is not very precise, but this is not necessarily  
problematic.  What  counts  as  empirical  success  can  vary  from one  context  to  the  other,  in  
particular regarding the risk of error that one is willing to take. So, we can introduce a threshold 
γ, specified by the context, and assume that a model is accurate in context if the possibilities that 
are attributed a weight lower than γ do not actually occur (taking γ<1/N for N possibilities, to 
avoid cases where accuracy is impossible to achieve). The model will be discarded if these 
possibilities occur, and we would typically want γ to be small if the test is severe, because we 
don’t want to discard alternative models too easily. However, this would ultimately depend on 
the context of application9.

9The risk of error that one is willing to take in a context presumably depends on a value judgment, where 
the  values  involved could  be  either  epistemic,  pragmatic  or  socio-cultural  (as  per  the  inductive  risk 
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But there is another issue that should be addressed. In the non-probabilistic case, empirical 
adequacy just is accuracy in all possible contexts. This won’t do for the probabilistic case: we 
cannot infer, from empirical success, that a model would be accurate in  all possible contexts. 
For  example,  a  model  of  100  coin  tosses  would  be  accurate  in  all  possible  contexts  if 
necessarily, such sequences of tosses could only yield between 45 and 55 heads (assuming a 
particular threshold), but this is not correct: what the model actually says is that there is a small 
probability of getting a result outside of this range. The solution to this problem is to claim that  
an  adequate  model  is  accurate  in  most,  not all possible  contexts,  and  the  natural  way  of 
interpreting this is to say that its probability of accuracy is high enough, or that for all situations, 
the objective probability to display a possible outcome that is given a very low probability by 
the model is equally low (lower than a threshold which could be made to contextually depend 
on γ above).

We would not necessarily want to identify adequacy with probable accuracy in all possible 
contexts, however. A slightly stronger claim is that the probabilities attributed by the model to  
various  measurable  possibilities  correspond  to  objective  chances.  The  weaker  claim  is  a 
consequence of this stronger claim: if the model “gets probabilities right”, then its probability of 
inaccuracy (which is the probability of getting a result to which it attributes probabilities below 
γ) is low (it is lower than n∙γ, where n is the number of possibilities with attributed probabilities 
lower  than  γ).  Whether  this  stronger  claim  is  an  adequate  characterisation  of  empirical 
adequacy, that is, what would make a model ideally acceptable for an empiricist, depends on 
whether it can be inferred by induction from empirical success. And this is where the clause on  
composite models intervenes.

The reasoning is roughly the one from Mayo and Spanos in the citation above. If our model 
did not get probabilities right (if it were “false”), then there is at least one context involving a 
composite model constructed from it where this composite model would not be accurate with 
very high probability (it would “very probably not have survived the test so well”). Scientists 
can actively create a variety of contexts and composite models to test for this. If the composite  
models  are  accurate  in  all  such  contexts,  then  we  can  infer  that  our  original  model  gets  
probabilities right, at least in approximation, because all alternative models yielding different 
composite models are discarded up to a level of precision. Although it could be said that the 
probabilities of the basic model explain, in some sense, the statistics predicted by composite 
models, this explanatory power is more a consequence of empirical adequacy than a way of  
justifying the model: inferring that the basic model gets probabilities right is not an inference to 
the best explanation, at least not in the sense that some non-empirical virtues (simplicity etc.)  
would be invoked on top of empirical success. The point is rather that the accuracy of composite 
models in very specific situations informs us that some of the probability assignments that can 
be  derived from the  basic  model  are  roughly  correct  (the  ones  that  are  very  low),  and by 
induction on various model combinations, by implementing a variety of different situations, we 
can infer that all probability assignments are roughly correct, and with more and more precision.

argument).  We do not  wish to  take  a  stance  here  regarding which of  these  kinds  of  values  have a  
legitimate role to play in scientific practice: our approach is compatible with any stance on this question.
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Summary

To sum up,
1) A context defines an apriori partition of  N coarse-grained possibilities for a situation 

with identifying characteristics, and a risk threshold γ<1/N.
2) An applied model attributes probabilities to these contextual possibilities. The model is 

accurate if the possibilities that are attributed a probability lower than γ are not actually 
observed in context.

3) A theoretical  model  is  a  function  from context  to  applied  model.  It  is  empirically 
adequate  if  the  probabilities  assigned  to  contextual  possibilities  correspond  to  the 
objective probabilities of these possibilities obtaining.

4) We can infer that a model is empirically adequate if
a) it is mostly accurate in a large representative range of contexts
b) composite models constructed from it (using the compositional rules of the theory 

and possibly other adequate models) are also accurate in a representative range of 
contexts.

The main changes from our non-probabilistic version are that (i) we added a threshold γ to the  
context,  (ii)  we replaced “excluding” with “attributing a probability lower than γ”,  (iii)  we  
replaced “the possibilities that are excluded by the model are objectively impossible” with the 
idea of attributing the right probabilities (which implies that the probabilities given very low 
weight would normally not be observed), and (iv) point 4 now incorporates the idea of using 
model composition in order to fully test a model (something already alluded to in Ruyant (2021, 
ch. 3.3.5,  p. 87)).  This  shows  how propensities,  conceived  of  as  functions  from context  to 
probabilities, can be known by induction on experience.

5 Concluding remarks: is it still empiricism?

Modal Empiricism proposes that we can know about what is possible or not by induction on 
situations, assuming that actual situations of a type are representative of possible ones. This 
modal epistemology can be extended to the probabilistic case. Extreme probabilities, close to 1  
and 0, are tested empirically in the same way as necessities and impossibilities in the non-
probabilistic version of ME. Mild probabilities are assessed indirectly, through the construction 
of  composite  models,  such  as  models  of  sequences,  that  “convert”  them into  high  or  low 
probabilities of frequencies.

This  idea  that  models  should  be  considered  adequate  not  only  when  they  are  directly 
confronted with experimental data, but also when they can successfully be combined into more 
complex models that are empirically successful, was already hinted at in (Ruyant 2021, section 
3.3.5) but it becomes much more central in a probabilistic extension of ME. This brings into ME 
a  coherentist  component  that  could  play  a  role  in  accounting  for  how probabilities  can  be 
assigned  to  single  events  that  cannot  be  reproduced  into  sequences  (for  example  the 
probabilities of different scenario in climate science). We cannot expect the probabilities that 
figure in such complex models to be “severely tested” in the way explained in the previous  
section, but when complex models are built from simple ones that are empirically adequate, this 
gives  us  reasons  to  trust  that  they  are  themselves  at  least  approximately  adequate:  the 
probabilities that figure in them are good guesses about objective likelihoods. This means that  
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the present epistemology is flexible enough to account for a variety of uses of probabilities in 
science.

What is markedly inductive in this account (and goes beyond the hypothetico-deductivism 
of Mayo and Spanos from which it is inspired) is that we allow ourselves to infer, from the fact 
that a model passes a variety of severe tests, that it would pass any possible test, and therefore 
that it “gets probabilities right”. Of course, such inference is defeasible, as is the assumption 
that our sample of tested circumstances is representative of all possibilities and that all relevant  
alternatives  were  explored.  But  this  was  already  the  case  with  non-probabilistic  modal 
empiricism. Having said that, one could worry, in relation to probabilistic ME specifically, that  
introducing model composition opens an unfathomable range of possibilities, and that pragmatic 
or theoretical  limitations become necessary to make this possibility space manageable.  This 
would  mean  that  the  account  cannot  be  purely  empiricist.  Perhaps  a  priori  theoretical 
assumptions  are  also  involved  in  establishing  acceptable  model  composition  rules.  Finally, 
another place where extra-empirical considerations could intervene is that we cannot expect 
adequate models to be necessarily accurate, for reasons already given: rather they are accurate 
with high probability, and the tolerance to inaccuracy can be a matter of evaluating the risks 
involved in context. Concerning this latter aspect, let us note that the inductive process that we  
think is involved in assessing whether a model is adequate (which must involve a “severe” test)  
is  likely  to  wash  out  all  contextual  aspects,  including  any use  of  contextual  values  during 
concrete applications, because the aim, according to probabilistic ME, is to have models that are 
likely  to  be  accurate  in  all contexts,  whatever  the  tradeof  between false  positive  and false 
negative  that  one  is  willing  to  adopt  in  context.  This  simply  means  models  that  “get  
probabilities right”, which does not depend on contextual values. As for the other aspects, we 
take a pragmatic attitude to the theoretical choices that must be made. That is, we assume that 
these choices answer not to assessments of fit with reality, or any other metaphysical category, 
but rather strictly to reasons of pragmatic utility and plausibility within contexts of inquiry of  
the  sort  endorsed  by  (Suárez,  2020)  for  statistical  modelling  methodologies.  In  addition  to 
hypothetico-deductivism and strict inductivism, there are a variety of abductive features to those 
methodologies. Whether our adopting these features is enough to claim that we have left the 
territory of strict empiricism in favour of a pragmatist account, or something else, remains to be 
examined10, but whatever the answer, we do not think that this undermines the account.
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