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Abstract

In operational quantum mechanics two measurements are called operationally
equivalent if they yield the same distribution of outcomes in every quantum state
and hence are represented by the same operator. In this paper, I will show that
the ontological models for quantum mechanics and, more generally, for any oper-
ational theory sensitively depend on which measurement we choose from the class
of operationally equivalent measurements, or more precisely, which of the chosen
measurements can be performed simultaneously. To this goal, I will take first three
examples—a classical theory, the EPR-Bell scenario and the Popescu-Rochlich
box; then realize each example by two operationally equivalent but different oper-
ational theories—one with a trivial and another with a non-trivial compatibility
structure; and finally show that the ontological models for the different theo-
ries will be different with respect to their causal structure, contextuality, and
fine-tuning.

Keywords: operational theory, operational equivalence, contextuality, causal models,
fine-tuning

1 Introduction: a Bridgmanian perspective

On strict operationalism, concepts should be defined by empirical operations. In this
tradition, going back to Percy Bridgman (1927) and the Vienna Circle (Schlick, 1930),
two concepts which are defined by different operational procedures cannot be the same.
Using Bridgman’s example, length measured by a ruler and length measured by light
signals are different concepts, and true science should use different names to discern
them. As times passed, philosophy of science (and also Bridgman himself) has gradu-
ally moved away from strict operationalism and revealed various semantic, pragmatic
and common sense criteria for identifying concepts with different operational basis
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(Chang, 2019). In the case of physical magnitudes or observables, the standard way
was to check whether the two measurements defining the two observables have the
same outcome in their common domain. If the length of medium sized objects agree
when measured by a ruler or measured by light signals, then—at least in this common
domain—one is justified in using one length concept instead of two.

For this comparison, however, at least one of the two conditions needs to hold for
each system:

(i) either both measurements should be able to be performed simultaneously on the
system; or

(ii) we need to have a precise enough preparation procedure such that every prepara-
tion is an eigenstate for both measurements, that is a preparation in which both
measurements have definite result.
This latter happens in classical physics where each pure (dispersion-free) state is

an eigenstate for any measurements. Thus in classical physics, we can easily decide on
whether two measurements measure the same observable: just prepare the system in
an eigenstate, perform the one measurement, prepare the system again in the same
eigenstate, perform the other measurement and compare the outcomes. However, if
the preparation procedure is not as fine-grained as to yield definite results for all mea-
surements, as is the case in quantum mechanics, we are left with option (i) to identify
observables of different measurements: we need to measure them simultaneously and
check whether the outcomes match in every single run.

But what if the two measurement procedures cannot be performed at the same
time? From a strict operationalist position, we are not entitled to identify the two
observables in this case. Still, in quantum mechanics this is what happens. Here, two
measurements which yield the same outcome statistics in every quantum state are
represented by the same operator and said to measure the same observable. Such mea-
surements are called operationally equivalent. From the Bridgmanian perspective, the
identification of the observables of operationally equivalent measurements is physi-
cally unjustified. The mere statistical match of outcomes of two measurements which
cannot be performed at the same time on the same system does not guarantee that
the two measurements would give the same outcome run-by-run and hence that they
measure the same observable.

Operational equivalence is sometimes expressed in the form that observables are
not associated with measurement procedures, as in Bridgman, but with operators. So
instead of one measurement–one observable we have one operator–one observable. Let
me refer to the first identification of observables as Bridgmanian and to the second as
standard (standard in quantum mechanics). Schematically:
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Bridgmanian Standard

Operator: O O
↙ ↘ ↓

Observable: O1 O2 O
↓ ↓ ↙ ↘

Measurement: M1 M2 M1 M2

As an example, consider the following two measurement procedures for photon
polarization. “The first, which we denote by M1, constitutes a piece of polaroid
oriented to pass light that is vertically polarized along the ẑ axis, followed by a pho-
todetector. The second, which we denote by M2, constitutes a birefringent crystal
oriented to separate light that is vertically polarized along the ẑ axis from light that
is horizontally polarized along this axis, followed by a photodetector in the vertically
polarized output.” (Spekkens, 2005, p. 2). The two measurements are operationally
equivalent: they provide the same distribution of outcomes for photons in any quan-
tum state. Consequently, they are represented by the same operator, σz, in quantum
mechanics.

Now, do M1 and M2 measure the same observable or they measure different observ-
ables?1 According to the standard quantum mechanical approach, they measure the
same observable O, the polarization of the photon. According to the Bridgmanian
approach, they measure different observables: M1 measures O1, the polarization of the
photon with respect to a piece of polaroid, and M2 measures O2, the polarization of
the photon with respect to a birefringent crystal.

Note that the above Bridgmanian conditions to identify O1 and O2 are not fulfilled
now: (i) M1 and M2 cannot be simultaneously measured on the very same photon
since we need to decide on whether we insert a polaroid or a birefringent crystal in the
path of the photon. (ii) The outcome of M1 and M2 will not necessarily will be the
same for two photons prepared in the same state if this state is not an eigenstate of σz.
Thus, from the Bridgmanian perspective, the two observable should not be identified.

Even though from the Bridgmanian perspective the standard position is unsat-
isfactory, it has its own rationale. If all that quantum mechanics can predict is the
distribution of outcomes, and if there are no preparations which would discern two
measurements with respect to the outcome distribution, then why would one like to
discern the two measurements? They measure the same observables, like gas ther-
mometer and alcohol thermometer measure the same temperature, and any difference
in the concrete realization of the measurements is just of secondary importance.2

1Note that Spekkens, as a good operationalist, does not use the term ”observable” in his 2005 paper.
2Interestingly, we can defend the standard position even from a Bridgmanian perspective when modi-

fying the concept of measurement. If we take a measurement in quantum mechanics not to be a single
measurement but a sequence of measurements and an outcome not to be a single outcome but a statistical
distribution of outcomes, then we can apply criterion (ii) in arguing that two sequences of operationally
equivalent measurements measure the same observable: they have the same distribution of outcomes in
every state, therefore they measure the same observable.
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In any event, the standard position remains consistent as long as we remain at
the level of quantum theory. But at the moment when we try to extend the ontol-
ogy by ontic (hidden) states, the identification of observables corresponding different
measurements represented by the same operator becomes problematic. The Kochen-
Specker theorems highlight just this fact. It is instructive to see how Kochen-Specker
theorems are interpreted on the standard approach (Held 2022, Spekkens 2005, Hofer-
Szabó, 2021a, b, 2022). On this account, the lesson of the Kochen-Specker theorems is
that the value of certain observables associated with operators depends on the mea-
surement with which it is measured or co-measured. This fact is commonly referred to
as contextuality—or “ontological contextuality” (Redhead, 1989) if not only the value
but also the observables themselves depend on which measurement they are measured
by. But note that from the Bridgmanian perspective there is nothing contextual in
this fact; it simply shows that we were too quick to identify observables measured by
different measurements when we relied simply on the match of the outcome statistics.

In this paper, I will revisit the Bridgmanian view of operationalism and investi-
gate how far we get when we do not identify observables associated with operationally
equivalent measurements. To this goal, I will use the framework of operational theories
and ontological models introduced by Rob Spekkens (2005). This framework is gen-
eral enough to embrace classical, quantum, super-quantum theories, and to analyze
contextuality, causal structure and many other important features across the different
theories. The main claim of the paper can be formulated at the more specific level
of quantum mechanics and at the more general level of operational theories. As for
quantum mechanics, this claim reads as follows:

Ontological models for quantum mechanics are sensitive not only to the operators
but also to the measurements realizing these operators; more specifically, to whether
these measurements can be performed simultaneously or not. The ontological models for
these different measurements realizing the same set of operators in quantum mechanics
but having a different compatibility structure can be highly different with respect to the
causal structure, contextuality, and fine-tuning.

This strong dependence of the properties of the ontological models on the realizing
measurements, however, is not restricted to quantum mechanics. It is a general feature
of any operational theory. To show this, in the paper I will construct for an operational
theory another operational theory with a different compatibility structure such that
the measurements of the two theories are operationally equivalent, still they admit
different ontological models. Thus, the main general claim of our paper is the following:

Ontological models for general operational theories are sensitive not only to
the operationally equivalent classes of measurements but also to the measurements
themselves, more specifically, to the compatibility structure of these measurements.
Ontological models for operationally equivalent theories with different compatibility
structures can be highly different with respect to the causal structure, contextuality,
and fine-tuning.
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More specifically, I will do the following. Operational theories come together with
a set of measurements and a set of simultaneous measurements. For any operational
theory, I will construct another theory with the following properties: a) the measure-
ments of the new theory are operationally equivalent to the measurements of the old
theory; b) in the new theory, there are no simultaneous measurements. I will call this
procedure trivialization. With this procedure in hand, I will show the following:

1. The trivialization of an operational theory can be nicely represented graph
theoretically as taking the line graph of the graph representing the original theory.

2. On the example of three non-disturbing (no-signaling) operational theories—a clas-
sical theory, the EPR-Bell scenario, and the Popescu-Rorhlich box, I will show how
the most important features of the ontological models change when we replace an
operational theory with a new, trivialized theory.

3. I will discern two different and logically independent concepts of contextuality,
simultaneous contextuality and measurement contextuality, and show that the triv-
ialization can alter the ontological models with respect to the former but not to
the latter.

In the paper I will proceed as follows. After introducing the framework of operational
theories (Sec. 2) and ontological models (Sec. 3), I define the procedure of trivialization
(Sec. 4). Next, I compare the ontological model of three non-trivial (Sec. 5) and three
corresponding trivial (Sec. 6) operational theories. I analyze the causal structure of the
models (Sec. 7), show how trivialization leads to trivial causal graphs (Sec. 8), revisit
the special case of quantum mechanics (Sec. 9) and conclude with a short discussion
(Sec. 10).

2 Operational theories

The concept of measurements can be analyzed from several directions (Tal, 2020).
Mathematical theories of measurement (Suppes, 1951) are concerned with the question
of how to assign abstract terms to physical magnitudes. Operationalism and conven-
tionalism, on the other hand, focus on the semantics of measurements, and defines
the meaning of quantity-concepts in terms of operations (Bridgman, 1927) or ’coordi-
native definitions’ (Reichenbach 1927). Realism addresses the metaphysical nature of
measurable quantities and conceives of measurement results as approximations of the
true values of physical quantities (Trout 1998). Information-theoretic and model-based
accounts examine the epistemological aspects (informativity, coherence, consistency)
of measurements (van Fraassen, 2008).

In this paper, I will take an operationalist perspective to measurements. This
perspective has a long tradition in quantum theory starting with von Neumann (1932)
and followed by Mackey (1957), Ludwig (1983), Busch et al. (2016), D’Ariano et
al. (2017) and many others. Note, however, that, unlike many in the mathematical
physics community, I will use the term ’measurement’ in the original operationalist
meaning referring to the physical procedure itself and not to its various mathematical
representations, such as self-adjoint operators, PVMs, POVMs, effects, or whatever.
My approach will follow the operational theories and ontological models framework of
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Rob Spekkens (2005). In this and the next section, I introduce the main concepts of
this framework.

An operational theory is a theory which specifies the probability of the outcomes
of certain measurements performed on a physical system which was previously pre-
pared in certain states. Let P = {P1, P2, . . . } be set of preparations of the system,
M ={M1,M2, . . . } the set of measurements which can be performed on the system,
and let X = {X1, X2, . . . } be the set of outcomes.3 Let P,M, and X be random
variables running over the preparations, measurements and outcomes, respectively,
assigning to each event its index. (Thus, “P = 1” refers to the preparation P1, “M = 2”
refers to the measurement M2, etc.) Using these random variables, an operational
theory is simply a set of conditional probabilities of the outcomes given the various
measurements and preparations, that is

p(X|M,P ) (1)

where P,M, and X run over the set P, M, and X , respectively.
Two measurements M1 and M2 are simultaneously measurable, if they can be

performed on the same system at the same time. Simultaneous measurability is an
empirical question. Operationally, one identifies measurements by sets of laboratory
instructions. The spin measurement of an electron, for example, is given by the detailed
description of the path of the electron, the position of the Stern-Gerlach magnets and
detectors, etc. As a consequence of this characterization of measurements by sets of
laboratory instructions, two measurements M1 and M2 will be simultaneously measur-
able if and only if there is a measurement which can be identified by the conjunction
of the sets of instructions characterizing M1 and M2. We call this measurement the
simultaneous measurement of M1 and M2 and denote it by M1 ∧M2 (which is again
a measurement in M). The random variable M will assign to M1 ∧ M2 the pair
(1, 2) and the outcomes of M1 ∧M2 are taken from the set X (1) × X (2). From the
definition of simultaneous measurements it also follows that M1 ∧ M2 ∧ M3 ∈ M
implies M1 ∧M2 ∈ M. If M1 and M2 are not simultaneously measurable, we write
M1 ∧ M2 /∈ M. If a measurement in an operational theory is not a simultaneous
measurement of two or more other measurements, then we call it a basic measurement.

Note that M1 ∧M2 and M1 are simultaneous measurements since the conjunction
of the sets of instructions characterizing M1∧M2 and M1 is just the set characterizing
M1 ∧M2. Similarly, a measurement and a certain marginalization (see below) of this
measurement are simultaneous measurements since this latter measurement is just the
measurement plus some extra instructions.

An important consequence of defining measurements by sets of instructions is that
we do not identify two measurements just because they are operationally equiva-
lent. Two measurements M1 and M2 are called operationally equivalent and denoted
by M1 ∼ M2 if they yield the same probability distribution of outcomes in every
preparation4 of the system, that is if

3Without loss of generality, we can assume that all (basic, see below) measurements have the same set
of outcomes. If not, we just add null-outcomes to the outcome set of some measurements.

4Which are again identified by sets of laboratory instructions.
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p(X|M1, P ) = p(X|M2, P ) (2)

Note that two operationally equivalent measurements are different measurements if
they are defined by different set of instructions.5

A maximal set of basic measurements which can be performed simultaneously on a
system in an operational theory is called a context. M1 and M2 are in the same context
if and only if M1∧M2 ∈M. If {M1,M2,M3} is a context, then we call M1∧M2∧M3

a maximally simultaneous measurement and M1 ∧M2 a non-maximally simultaneous
measurement. The set of all contexts is a compatibility structure of the theory. If in
an operational theory there are no two measurements which can be simultaneously
measured, then the compatibility structure is the empty set. We also refer to such
operational theories as trivial.

We call two operational theories operationally equivalent (with respect to their
measurement) if any measurement in the one theory is operationally equivalent
with a measurement in the other theory or with a marginalization thereof (and the
preparations are the same).

We call an operational theory non-disturbing6 if no conditional probability depends
on whether the measurements are performed alone or along with simultaneous
measurements, that is:

p(X(i)|Mi, P ) = p(X(i)|Mi ∧Mj , P ) (3)

for any simultaneous measurement Mi ∧Mj ∈ M; otherwise, the operational theory
is called disturbing. Obviously, trivial operational theories are non-disturbing.

Next, we introduce a graph theoretical representation of operational theories bor-
rowed from the literature on the Kochen-Specker theorems (Kochen and Specker,
1967). In Figure 1, we depicted the graph of two Kochen-Specker theorems, the GHZ
theorem (Greenberger et al., 1990) on the left and the Peres-Mermin square (Peres,
1990; Mermin, 1993) on the right. The vertices of the graph represent self-adjoint
operators and a subset of vertices is connected by a (hyper)edge7 if and only if the
corresponding operators are pairwise commutating. In the GHZ graph one has 10
operators and 5 commuting subsets; in the Peres-Mermin graph one has 9 operators
and 6 commuting subsets. The (hyper)graph of most of the Kochen-Specker theorems
is linear which means that each pair of hyperedges intersects in at most one vertex.

In this paper, we take over this graphic representation and use it in the framework
of the operational theories but with a different meaning. Vertices will represent here
basic measurements and (hyper)edges will represent maximal sets of simultaneous
measurements, that is contexts. In this interpretation, the above GHZ graph represents

5Operational equivalence can be introduced into an operational theory inductively and successively: one
starts with a set of measurements and preparations and render measurements equivalent which provide the
same outcome statistics in every preparations. This equivalence class is relative to the set of preparations; a
new preparation procedure can break down operational equivalence if it discerns some measurements with
respect to their outcome statistics.

6Or no-signaling, if the measurements are spacelike separated.
7A hyperedge can connect more than two vertices.
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Fig. 1 The GHZ graph and Peres-Mermin graph

a non-trivial operational theory with 10 basic measurement arranged in 5 contexts
and the Peres-Mermin graph represents a non-trivial theory with 9 basic measurement
and 6 contexts. The (hyper)graph of both theory is linear: each basic measurement is
featuring in exactly two contexts.

3 Ontological models

The role of an ontological model (hidden variable model) is to account for the condi-
tional probabilities of an operational theory in terms of underlying ontic states (hidden
variables, elements of reality, beables, real states) of the measured system. Let the set
of ontic states be L={Λ1,Λ2, . . . } and let the random variable over L be Λ. An onto-
logical model specifies a probability distribution over the ontic states associated with
each preparation:

p(Λ|P ) (4)

and a set of response functions that is a set of conditional probabilities associated
with every measurement and every ontic state:

p(X|M,Λ) (5)

again with the obvious normalizations. Assuming the independence of the probability
distributions from the measurements, called no-conspiracy :

p(Λ|M,P ) = p(Λ|P ) (6)

and the independence of the response functions from the preparations in which the
ontic states are featuring, called l-sufficiency :

p(X|M,P,Λ) = p(X|M,Λ) (7)

and using the theorem of total probability, one can recover the operational theory from
the ontological model in terms of the probability distributions and response functions:

p(X|M,P ) =
∑
Λ

p(X|M,Λ) p(Λ|P ) (8)
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An ontological model is called outcome-deterministic (value-definite) if

p(X|M,Λ) ∈ {0, 1} (9)

otherwise it is called outcome-indeterministic.

Next, we define two different and logically independent concepts of noncontextual-
ity (see Hofer-Szabó, 2021a, b, 2022). First, an ontological model is called simultaneous
noncontextual if every ontic state determines the probability of the outcomes of
every measurement independently of what other measurements are simultaneously
performed, that is

p(X(i)|Mi,Λ) = p(X(i)|Mi ∧Mj ,Λ) (10)

for any simultaneous measurement Mi ∧ Mj ∈ M; otherwise the model is called
simultaneous contextual. Simultaneous noncontextuality is a kind of inference to the
best explanation for why an operational theory is non-disturbing: if the ontological
model for an operational theory is noncontextual in the sense of (10), then—assuming
no-conspiracy (6) and l-sufficiency (7)—one can show that the operational theory is
non-disturbing (3).

Second, an ontological model is called measurement noncontextual if any two opera-
tionally equivalent measurements, that isMi,Mj ∈M which have the same probability
distribution of outcomes in every preparation

p(X|Mi, P ) = p(X|Mj , P ) (11)

also have the same probability distribution of outcomes in every ontic state

p(X|Mi,Λ) = p(X|Mj ,Λ) (12)

Otherwise the model is called measurement contextual. Measurement noncontextuality
is again a kind of inference to the best explanation; in this case the explanation
of operational equivalence: (12)—together with no-conspiracy (6) and l-sufficiency
(7)—implies (11) (Hofer-Szabó, 2021a, Lin 2021).

In quantum mechanics where operationally equivalent measurements M1 ∼ M2

are represented by the same operator O, measurement noncontextuality is just the
requirement that the response functions of an ontological model should depend only
on the operator and not on which specific measurement is realizing the operator, that
is

p(X|M1,Λ) = p(X|M2,Λ) = p(X|O,Λ)

Note, that trivial operational theories are trivially simultaneously noncontextual
(since there are no simultaneous measurements) but they still can be measurement
contextual. Also note that although simultaneous noncontextuality and measure-
ment noncontextuality are different and logically independent notions, in case of
non-disturbing theories measurement noncontextuality implies simultaneous noncon-
textuality: if Mj does not disturb Mi, then (11) holds for Mi and Mi ∧ Mj (with
X = X(i)), but then, due to measurement noncontextuality, also (12), which is just
simultaneous noncontextuality (10).
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4 Trivialization

With the framework of operational theories and ontological models in hand, we can
now formulate the main claim of our paper more precisely. This claim was the following:
ontological models for quantum mechanics, and generally, for any operational theory
sensitively depend on which measurement we choose from the class of operationally
equivalent measurements. To show this dependence, I will investigate operational the-
ories in pairs such that the two theories have operationally equivalent measurements
but the first operational theory does have and the second operational theory does not
have simultaneous measurements. In other words, the first theory has a non-trivial
compatibility structure and the second theory has a trivial one. More precisely, I will
provide a construction, which I call trivialization, assigning to any non-trivial oper-
ational theory a trivial theory. This construction will yield us pairs of operational
theories which then can be compared with respect to the ontological models they
admit and with respect to such properties as the causal structure, contextuality, fine-
tuning, etc. We will see how sensitively the ontological models depend on whether the
operational model is trivial or not.

In this section, I will only outline the procedure of trivialization and show some of
its graph theoretical properties. In the next two sections, I will compare—on a classi-
cal, a quantum, and a super-quantum mechanical example—the ontological models of
three non-trivial and three corresponding trivial theories. In Section 9, I return to the
quantum mechanical example in order to highlight that operational theories realizing
the same set of operators by different measurements can be vastly different.

Let us now turn to the trivialization. Consider an operational theory with a
non-trivial compatibility structure that is a theory which comprises both basic and
simultaneous measurements. Trivialization then consists in the following procedure:

Replace some (or perhaps all) of the measurements in the non-trivial oper-
ational theory with new, operationally equivalent measurements such that in the
resulting operational theory there are no two measurements which can be performed
simultaneously.

An example might help. Consider a non-disturbing operational theory with the
following set of measurements:

M ={M1,M2,M3,M4,M5, M1 ∧M2, M1 ∧M2 ∧M3, M1 ∧M4}

The theory has five basic measurements, M1,M2,M3,M4,M5; one non-maximal simul-
taneous measurement M1 ∧ M2; and two maximally simultaneous measurements,
M1∧M2∧M3 andM1∧M4 corresponding to the contexts {M1,M2,M3} and {M1,M4},
respectively.

The trivialization ofM consist in the the following steps. We keep the basic mea-
surement M5 and replace M1 ∧M2 ∧M3 and M1 ∧M4 with two new measurements
M123 and M14 with outcome sets X (123) and X (14), respectively. Note that M123 and
M14 are completely new measurements and not the conjunctions M1 ∧M2 ∧M3 and
M1 ∧M4. The simple reason we denote them by multiple indices is to relate them to
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these conjunctions. These new measurements are operationally equivalent to the old
maximally simultaneous measurements:8

M123 ∼M1 ∧M2 ∧M3 and M14 ∼M1 ∧M4

This means that for every preparation:

p(f(X(1) ∧X(2) ∧X(3))|M123, P ) = p(X(1) ∧X(2) ∧X(3)|M1 ∧M2 ∧M3, P )

p(g(X(1) ∧X(4))|M14, P ) = p(X(1) ∧X(4)|M1 ∧M4, P )

where f is a bijection mapping the outcomes X (1) × X (2) × X (3) of M1 ∧M2 ∧M3

to the outcomes X (123) of M123, and g is another bijection mapping the outcomes
X (1) ×X (4) of M1 ∧M4 to the outcomes X (14) of M14.

The measurements M5,M123 and M14 are basic measurements and the operational
theory is trivial since no measurements can be simultaneously measured. Since the
theory is non-disturbing, the other five old measurements, M1,M2,M3,M4 and M1 ∧
M2 will operationally equivalent to certain coarse-graining or marginalization of the
new basic measurements, M123 and M14. To see this, let us introduce the following
notation. Let f(X(1)) denote the union of those outcomes of M1 ∧M2 ∧M3 which are
assigned to the outcome X(1) of M1 by the bijection f . Let f(X(2)) and f(X(3)) be
defined in a similar way. Furthermore, let f(X(1) ∧ X(2)) denote the union of those
outcomes of M1∧M2∧M3 which are assigned to the outcome X(1)∧X(2) of M1∧M2

by the bijection f . Finally, let g(X(1)) denote the union of those outcomes of M1∧M4

which are assigned to the outcome X(1) of M1 and let g(X(4)) be similarly defined.
Then, the five old measurements will be operationally equivalent to the following
marginalization of the new basic measurements:

p(f(X(1))|M123, P ) = p(g(X(1))|M14, P ) = p(X(1)|M1, P )

p(f(X(2))|M123, P ) = p(X(2)|M2, P )

p(f(X(3))|M123, P ) = p(X(3)|M3, P )

p(g(X(4))|M14, P ) = p(X(4)|M4, P )

p(f(X(1) ∧X(2))|M123, P ) = p(X(1) ∧X(2)|M1 ∧M2, P )

For the operational equivalence of these marginalizations, we will use the short hand

M
(1)
123 ∼M

(1)
14 ∼M1, M

(2)
123 ∼M2, M

(3)
123 ∼M3, M

(4)
14 ∼M4, M

(12)
123 ∼M1 ∧M2

where M
(1)
123 denotes the measurement that we first perform the measurement M123,

and then coarse-grain the outcomes into blocks such that each block corresponds—due
to the bijection f— to an outcome X(1) of M1.

8Obviously, it is a theoretical-experimental question whether such new measurements exist. In the quan-
tum mechanical scenario which we use in the paper they do, and we will explicitly show them in Section
9.
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To sum up, the new operational theory will be the following

M′ = {M123,M14,M5}
The two operational theoriesM andM′ are operationally equivalent,M∼M′, since
any measurement in M is operationally equivalent to a measurement or a specific
marginalization of a measurement in M′ and vica versa. They are, however, different
since they contain different measurements (except for the common M5). M is non-
trivial but M′ is trivial, it contains no simultaneous measurements.

Note again that even though M14 is indexed by two indices, it is just as a basic
measurement in the new operational theory as M1 and M4 was in the old theory. The
only reason why we use these multiple indices is to be able to relate M14 to M1 and
M4 simply by marginalization and operational equivalence. This notation, however,
should not blur the fact that M14 can be a simple measurement.9

Now, let us turn to the graphic representation of the trivialization. As we saw,
trivialization results in an operational theory with trivial compatibility structure. If
we represent this new operational theory by a graph, this graph will have only vertices
but no edges. The first two graphs in Figure 2 show the graph of our above mini
operational theory and the trivialized new theory.

MM M M

M M

M M1 2 3

14

123 123

14

M4 M M M5 5 5

Fig. 2 The graph and line graph of the toy operational theory

We could stop at this point but then some information would be lost, namely,
that certain marginalizations of the new measurements are operationally equivalent.
To preserve this information, we add (hyper)edges to the graph of the new theory
with the following meaning : we draw an (hyper)edge between a set of vertices in the
trivial theory, if the corresponding basic measurements have operationally equivalent
marginalizations.10 For example, the graph of our mini operational will get an edge
(see the third graph in Figure 2) because the appropriate marginalization M123 and
M14 are operationally equivalent to one another (both being operationally equivalent
to M1). Note that the (hyper)edges in the graph of the non-trivial and trivial theories

9Just to stress this fact again, one need not think of M14 as being two measurements performed on two
different subsystems, as in the usual spin measurement scenarios in quantum mechanics. M14 can also be
a measurement on a localized system.

10Or equivalently, if the contexts conforming to the maximally simultaneous measurements in the non-
trivial theory (which are represented by the vertices in the trivial theory) had at least one common basic
measurement.
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mean different things: in the non-trivial operational theory they meant simultaneous
measurability, while in the trivial operational theory they mean having operationally
equivalent marginalizations. To express this difference, we use continuous lines in the
non-trivial operational theories and broken lines in the trivial ones.

This construction can be nicely represented graph theoretically by simply taking
the line graphs of the (hyper)graph of the non-trivial operational theory. A line graph
L(G) is constructed from a graph G such that for each (hyper)edge in G we make a
vertex in L(G) and for every two (hyper)edges in G that have a vertex in common,
we make an edge between their corresponding vertices in L(G). The line graphs of
the GHZ graph and Peres-Mermin graph, for example, are depicted in Figure 3. The

Fig. 3 The line graphs of the GHZ graph and Peres-Mermin graph

number of the vertices and edges flip in both line graphs: the line graph of the GHZ
graph contains 5 vertices and 10 edges, the line graph of the Peres-Mermin graph
contains 6 vertices and 9 edges. Since both the GHZ graph and Peres-Mermin graph
are linear, their line graphs contain only edges but no hyperedges.

To sum up, in the graph G of the non-trivial operational theory, vertices rep-
resent the old basic measurements and (hyper)edges represented contexts that is
sets of simultaneous measurements. In the line graph L(G) of the trivialized theory,
vertices represent the new basic measurements but—since there are no simultane-
ous measurements— the (hyper)edges mean something else: they connect vertices
representing measurements which have operationally equivalent marginalizations.

5 Three operational theories with non-trivial
compatibility structure

In this Section, we consider three non-disturbing and non-trivial operational theories,
all of the form

M ={A0, A1, B0, B1, A0 ∧B0, A0 ∧B1, A1 ∧B0, A1 ∧B1}
Each theory has the same four basic measurements A0, A1, B0, B1 such that A0, A1

have binary outcomes X0, X1 and B0, B1 have binary outcomes Y0, Y1. In all three the-
ories, any A-measurement is simultaneously measurable with any B-measurement but

13



neither the two A-measurements nor the two B-measurements can be simultaneously
measured. In short, the compatibility structure of all three theories will be{

{A0, B0}, {A0, B1}, {A1, B0}, {A1, B1}
}

Consequently, the graph (and line graph, see next section) depicted in Figure 4 is
the same for all three operational theories. Since the graph is linear, the line graph
contains only edges and no hyperedges.

Fig. 4 The graph and line graph of the three operational theories

Let A be a random variable over the measurements {A0, A1} and B a random
variable over the measurements over the measurements {B0, B1}. Similarly, let X
and Y be random variables over the outcomes {X0, X1} and {Y0, Y1}, respectively,
such that A,B,X, Y = 0, 1. The operational theories differ in the preparations. Each
theory has only one preparation: the first one PCL, the second PEPR, and the third
PPR. We refer to the operational theories as a classical operational theory, the EPR-
Bell situation, and the Popescu-Rorhlich (PR) box (Popescu and Rohrlich, 1994),
respectively.

The three operational theories can be characterized by the following conditional
probabilities:

p(X|A,P ) = p(Y |B,P ) =
1

2
(13)

p(X,Y |A,B, PCL) =

{
1
2 if X ⊕ Y = 0

0 otherwise
(14)

p(X,Y |A,B, PEPR) =


3
8 if X ⊕ Y = 0 and A ·B = 0
1
8 if X ⊕ Y = 1 and A ·B = 0
1
2 if X ⊕ Y = 0 and A ·B = 1

0 if X ⊕ Y = 1 and A ·B = 1

(15)

p(X,Y |A,B, PPR) =

{
1
2 if X ⊕ Y = A ·B
0 otherwise

(16)

where P is a variable over P = {PCL, PEPR, PPR} and ⊕ is the sum modulo 2. We come
back to the quantum mechanical representation of the EPR-Bell situation in Section 9.

All three operational theories are non-disturbing:
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p(X|A,P ) = p(X|A,B, P ) =
1

2
(17)

p(Y |B,P ) = p(Y |A,B, P ) =
1

2
(18)

but they they represent three different classes of theories. The first is a classical theory,
the second is a quantum mechanical, the third is a super-quantum mechanical theory.
This difference is manifested in the satisfaction/violation of the CHSH inequality
(Clauser, Horne, Shimony, and Holt, 1969). Namely, the CHSH expression

CHSHP = 〈A0, B0〉P + 〈A0, B1〉P + 〈A1, B0〉P − 〈A1, B1〉P (19)

where
〈A,B〉P = p(X ⊕ Y = 0|A,B, P )− p(X ⊕ Y = 1|A,B, P )

is 2 for the classical theory, satisfying the CHSH inequality, |CHSHP | 6 2; it is 2.5 for
the EPR-Bell situation, violating (not maximally) the CHSH inequality; and 4 for the
PR box which is beyond the Tsirelson bound 2

√
2.

Next, we construct an ontological model for each operational theory. The exact
probabilistic specification of the models in terms of distributions and response func-
tions is given in the Appendix. From our perspective, however, it will be more
instructive to look at the bundle diagrams (see Abramsky et al., 2017; Abramsky &
Brandenburger, 2011) of the models depicted in Figure 5.
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1 1 1 1
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Classical PR−boxEPR−Bell

000
B B B

Fig. 5 Bundle diagrams of the ontological models for the operational theories with non-trivial
compatibility structure
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First, look at the “cuboid” of the classical model on the left. The quadrangle at
the bottom is the base space of the bundle, actually the graph of the operational
theory “laid down”. It consists of four vertices representing the four measurements
A0, A1, B0, B1 such that two measurements are connected if and only if they are in
the same context. The vertical broken lines are the fibers of the bundle. The two ver-
tices on a given fiber at different heights denoted by 0 and 1 represent the outcomes
of the corresponding measurements: X = 0, 1 for A = 0, 1 and Y = 0, 1 for B = 0, 1.
Now, there are two quadrangles in the figure, one connecting the upper vertices of
the adjacent fibers and one connecting the lower vertices. Each quadrangle represents
the response functions of the model for a given ontic state. The green and continu-
ous upper quadrangle represents the ontic state Λ1. In this ontic state the outcome
of each measurement is 1. (The outcome of A0, A1 is X1 and the outcome of B0, B1

is Y1.) The red and broken lower quadrangle represents the ontic state Λ0 for which
each outcome is 0. The model is outcome-deterministic. It also fixes the outcomes of
the simultaneous measurements in the different contexts such that no outcome of any
measurement in any ontic state depends on whether a simultaneous measurement is
also performed. Thus, the model is simultaneous noncontextual. Moreover, the model
is also measurement noncontextual: in both ontic state the outcome of any two oper-
ationally equivalent measurements is the same. Setting the probability of both ontic
states to 1

2 , the operational theory can be recovered.
Let us now go over to the bundle diagram of the PR-box on the right of Figure 5.

Again, we have two ontic states Λ1 and Λ0 but the green and red lines do not close
up now. They are discontinuous at the fibre of B1. To avoid ambiguity with respect to
the outcome of B1, we put a dot at the one end of both discontinuous lines. This dot
indicates the outcome of B1 if measured alone and not together with A0 or A1 (when
the outcome of B1 is indicated by the value of the appropriate segment of the green
or red lines connecting the fibre of B1 with the fibre of A0 or A1). Thus, the model is
outcome deterministic. However, it is simultaneous contextual:

δY,Λ = p(Y |B1,Λ) 6= p(Y |A1 ∧B1,Λ) = δY⊕1,Λ (20)

That is performing the measurement B1 in the “green” ontic state, Λ1, together with
A1, the outcome of B1 will be Y0, while performing B1 together with A0, the outcome
will be Y1; and vice versa for the “red” ontic state, Λ0. Since simultaneous contex-
tuality implies measurement contextuality for non-disturbing theories, the model for
the PR-box will also be measurement contextual. Indeed,

p(Y |B1, PPR) = p(X|A1 ∧B1, PPR) (21)

despite the fact that inequality (20) holds. We can recover the PR-box theory again
by setting the probability of both ontic states to 1

2 .
Finally, the bundle diagram in the middle of Figure 5 represents an ontological

model for the EPR-Bell scenario. Here we have four ontic states portrayed by lines of
different color and style. The “green” and “red” ontic states are outcome deterministic
and noncontextual in both senses. The “blue” and “brown” ontic states, however,
are outcome deterministic but simultaneous and hence measurement contextual: their
lines do not close on the fibre of B1. This means that in these ontic states the outcome
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of B1 will be different when measured alone and when co-measured with A0 or A1. The
dots at one end of the lines indicate the outcomes the outcome of B1 when measured
alone. By setting the probability of the two noncontextual ontic states to 3

8 and the
probability of the two contextual ontic states to 1

8 , the probabilities of the EPR-Bell
scenario can be recovered (see Appendix).

To sum up, we constructed three (among the many) outcome-deterministic onto-
logical models for the three operational theories such that the model for the classical
theory is noncontextual (in both senses) and the models for other two theories are
contextual (again, in both senses). This is in tune with the satisfaction and violation
of the CHSH inequality for the different theories.

6 Three operational theories with trivial
compatibility structure

The three operational theories in the previous Section were non-trivial, they had
a non-trivial compatibility structure. Let us now “trivialize” them in the way out-
lined in Section 4 and investigate the ontological models for these trivialized theories.
Trivialization consists in replacing each simultaneous measurement

A0 ∧B0, A0 ∧B1, A1 ∧B0, A1 ∧B1

with an operationally equivalent new basic measurement:

C00 ∼ A0 ∧B0, C01 ∼ A0 ∧B1

C10 ∼ A1 ∧B0, C11 ∼ A1 ∧B1

Note that C00, C01, C10 and C11 cannot be measured simultaneously.
Let the outcome space of each of the measurements in C =

{
C00, C01, C10, C11

}
be

the same Z=
{
Z00, Z01, Z10, Z11

}
. Let C be a random variable over C assigning to every

measurement its index pair. Similarly, let Z be a random variable over Z assigning to
every outcome its index pair. Both C and Z can be expressed as a Cartesian product:
C = C1 × C2 and Z = Z1 × Z2 where C1 and Z1 assign to every measurement or
outcome its first index and C2 and Z2 assign the second index.

Since the old operational theory is non-disturbing, the following marginaliza-
tions of the new basic measurements are operationally equivalent to the old basic
measurements:11

p(Z1|C00, P ) = p(Z1|C01, P ) = p(X|A0, P )

p(Z1|C10, P ) = p(Z1|C11, P ) = p(X|A1, P )

11Note that Z1 is the union of those two outcomes of C00, C01, C10 and C11 which has the same first
index. In the terminology introduced in Section 4, Z1 is the union of those outcomes which are assigned to
the outcome X of A0 by a bijection f0 or to the outcome X of A1 by a bijection f1 and also to the outcome
Y of B0 by a bijection g0 or to the outcome Y of B1 by a bijection g1. To keep the notation simple, we
drop these bijections and write simply Z1 instead of f0(X), f1(X), g0(Y ) and g1(Y ).
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p(Z2|C00, P ) = p(Z2|C01, P ) = p(Y |B0, P )

p(Z2|C01, P ) = p(Z2|C11, P ) = p(Y |B1, P )

or using the short hand introduced in Section 4:

C
(1)
00 ∼ C

(1)
01 ∼ A0, C

(1)
10 ∼ C

(1)
11 ∼ A1

C
(2)
00 ∼ C

(2)
10 ∼ B0, C

(2)
01 ∼ C

(2)
11 ∼ B1

That is, the old basic measurements A0, A1, B0, B1 can be recovered as marginaliza-
tions of the new basic measurements. Thus, the new trivialized operational theories
will be:

M′ = {C00, C01, C10, C11}
M′ is operationally equivalent to M introduced in the previous section, M∼M′, or
more precisely:

MCL∼M′CL, MEPR∼M′EPR, MPR∼M′PR

The line graph of M’ is depicted on the right side of Figure 4.
The three trivial operational theories can be characterized by the following

conditional probabilities:

p(Z|C,PCL) =

{
1
2 if Z1 ⊕ Z2 = 0

0 otherwise
(22)

p(Z|C,PEPR) =


3
8 if Z1 ⊕ Z2 = 0 and C1 · C2 = 0
1
8 if Z1 ⊕ Z2 = 1 and C1 · C2 = 0
1
2 if Z1 ⊕ Z2 = 0 and C1 · C2 = 1

0 if Z1 ⊕ Z2 = 1 and C1 · C2 = 1

(23)

p(Z|C,PPR) =

{
1
2 if Z1 ⊕ Z2 = C1 · C2

0 otherwise
(24)

Observe that the probabilistic description of the trivial operational theories is
formally analogous with that of the non-trivial theories of the previous section: we
obtain equations (14)-(16) from (22)-(24) by simply replacing C1, C2, Z1, Z2 with A,
B, X, Y , respectively. The measurements and outcomes, however, are different in the
two theories.

All three operational theories are non-disturbing in a trivial sense: there are no
simultaneous measurements. Therefore, the CHSH inequalities cannot be defined.
Again, one can construct an ontological model for each operational theory. The dis-
tribution of ontic states is the same as in the models for the non-trivial theories.
The response functions are obtained from those of the non-trivial theory by simply
replacing A, B, X, Y with C1, C2, Z1, Z2. All this is specified in the Appendix
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and visualized in Figure 6. As can be seen, the lines representing the outcomes of

Classical PR−boxEPR−Bell
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Fig. 6 Bundle diagrams of the ontological models for the operational theories with trivial
compatibility structure

simultaneous measurements have disappeared. Each basic measurement has a def-
inite outcome in every ontic state denoted by a dot at the appropriate height on
the fibre corresponding to the measurement. In the classical theory and in the PR
box there are two ontic states (“green” and “red”), in the EPR-Bell scenario there
are four ontic states (“green”, “red”, “blue” and “brown”). All three models are
outcome-deterministic and simultaneously non-contextual since there are no simulta-
neous measurement. But the non-classical (EPR and PR) models are measurement

contextual. Certain marginalizations of the measurements, for example, C
(2)
01 and C

(2)
11

are operationally equivalent. Still, both the “blue” and “brown” ontic states in the
EPR model and “green” and “red” ontic states in the PR model assign different out-
comes to them. This shows that measurement noncontextuality is a stronger concept
than simultaneous noncontextuality.

7 The causal structure of the ontological models

Let us turn now to the causal structure of the ontological models. Since these models
provide information only about the probabilistic relations of the events and not about
their spatiotemporal or other relations, the reconstruction of the causal structure will
rely solely on these probabilistic information. The machinery to deduce causal relations
from probabilistic relations is known as causal discovery algorithms and was introduced
in (Pearl, 2009; Spirtes, Glymour, Scheines, 2001). These algorithms do not make
use of the full probabilistic setting, they use only the conditional and unconditional
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independence relations to construct a causal graph. A causal graph is a directed acyclic
graph (DAG),12 where the vertices represent random variables and the directed edges
represent causal relevance between these variables. For a variable X, the set of vertices
that have directed edges in X is called the parents of X, denoted by Par(X), and the
set of vertices that are endpoints of a directed paths from X is called the descendants
of X, denoted by Des(X). A set V of random variables (on a classical probability
space) is said to satisfy the Causal Markov Condition relative to a causal graph G if
for any X ∈ V and Y /∈ Des(X):

p(X|Par(X), Y ) = p(X|Par(X))

That is, conditioning on its parents any random variable will be probabilistically
independent from any of its non-descendants.

Now, causal discovery algorithms take as input a set of conditional and uncondi-
tional independence relations among random variables and provide a causal graph G as
output which returns these independence relations if the Causal Markov Condition is
applied to the graph.13 Here we do not enter into the details of these algorithms; rather
we simply list the independence relations of the ontological models of the non-trivial
and trivial operational theory and the corresponding causal graphs.14

Let us start with the causal structure of the ontological models of the non-
trivial operational theories,M, introduced in Section 5. The conditional independence
relations in the ontological models of our three non-trivial theories are the following:

p(X|A,B) = p(X|A) (25)

p(Y |A,B) = p(Y |B) (26)

p(X|A, Y,Λ) = p(X|A,Λ) (27)

p(Y |X,B,Λ) = p(Y |B,Λ) (28)

p(X|A,B,Λ) = p(X|A,Λ) (29)

p(Y |A,B,Λ)
(CL)
= p(Y |B,Λ) (30)

The first two relations are just the non-disturbance equations (17)-(18), the sub-
sequent relations follow from the appropriate response functions (44)-(46), (49)-(51),
and (54)-(56) of the models specified in the Appendix. The first five conditional inde-
pendence relations (25)-(29) hold for all the three models but the last relation (30)
holds only for the classical model.

12Note that these causal graphs are different from the graphs and line graphs used in the previous Sections
representing compatibility structure and common marginalization.

13More precisely, the independence relations are returned if all those graphical criteria are applied to
the graph which can be derived from the Causal Markov Condition plus the semi-graphoid axioms. These
criteria are captured by the so-called d-separation criterion (see Pearl, 2009, Ch. 1).

14For the application of the causal discovery algorithm for the EPR-Bell scenario, see (Suarez, 2007;
Suarez and SanPedro, 2009; Wood and Spekkens, 2015). Also note that the independence relations also
include the ontic states. Thus, the causal discovery algorithms are not discovery algorithms in the sense
that they are based solely on the empirically accessible probabilities.
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The causal graphs which return the independences for the three models are
depicted in Figure 7. These graphs are minimal in the sense that no subgraph can
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Fig. 7 Causal structure of the ontological models with non-trivial compatibility structure

return all the independence relations. Applying the Causal Markov Condition to the
graphs, one obtains also an extra unconditional independence relation among the
exogenous variables (that is variables which have no parents):

p(A,B,Λ) = p(A)p(B)p(Λ) (31)

These relations are not specified in the model but are consistent with it. They are a
special case of the no-conspiracy condition (6).

Observe that there is an edge in the graph of the non-classical models connecting
A and Y . This edge represents the causal influence responsible for simultaneous con-
textuality: the value of Y causally depends not only on the value of X and Λ but also
on the value of A. If A and Y are spacelike separated, this edge represents a non-local
causal influence. Note again, however, that in constructing the graphs, we relied only
on the probabilistic features of the models and not on the spatiotemporal localizations
of the events—in strong contrast to the usual EPR-Bell analysis.

A further difference between the classical and non-classical models concerns fine-
tuning. To see this, first recall that any joint probability distribution of the random
variables which is compatible with the corresponding causal graphs in Figure 7 is of
the form

p(X,Y,A,B,Λ)
(CL)
= p(X|A,Λ)p(Y |B,Λ)p(A)p(B)p(Λ) (32)

for the classical model and of the form

p(X,Y,A,B,Λ)
(EPR, PR)

= p(X|A,Λ)p(Y |A,B,Λ)p(A)p(B)p(Λ) (33)

for the non-classical models. In both equations, the conditional probabilities (the
response functions) are called causal parameters and the unconditional probabilities
are called statistical parameters (where p(Λ) is just a short hand for p(Λ|P )). By
manipulating these parameters, one obtains all the joint distributions compatible with
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the causal graphs. Since causal discovery algorithms are sensitive only to the indepen-
dence relations and not to the full joint probability distribution, the question arises,
whether these independence relations are robust enough against the perturbation of
the causal-statistical parameters, that is whether they continue to hold when these
parameters are not those specified in the Appendix but take on arbitrary values. If so,
the graph is said to be faithful, if not, it is said to be fine-tuned.

Now, for the classical model all the conditional independences (25)-(30) can be
derived from the joint probability distribution equation (32) plus the theorem of total
probability. This means that the conditional independences hold for any choice of the
parameters. Thus, the classical model is faithful. The crucial step in the derivation of
the conditional independences is factorization

p(X,Y |A,B,Λ)
(CL)
= p(X|A,Λ)p(Y |B,Λ)

By summing up for the different variables, one recovers the different conditional
independences (25)-(30). In the non-classical models, however, one has

p(X,Y |A,B,Λ)
(EPR, PR)

= p(X|A,Λ)p(Y |A,B,Λ)

instead of the factorization and hence summing up does not recover (30), (28) and the
non-disturbance (26). And indeed, for a non-zero measure of the parameters, these
conditional independences will fail to hold. Therefore, the non-classical models are
fine-tuned.

These facts are in tune with Cavalcanti’s (2018) theorem on bipartite Bell scenarios
stating that every causal model for a non-disturbing operational theory violating the
CHSH inequality requires fine-tuning. Cavalcanti’s result highlights a deep connection
between simultaneous contextuality of the model and fine tuning of the corresponding
graph. At the end of his paper, he asks whether also measurement noncontextuality
can be understood as arising from the no-fine-tuning condition.

To answer Cavalcanti’s question, let us now turn to the causal structure of the
ontological models of the trivial theory . In these models there are no conditional
independence relations, except among the exogenous variables:

p(C,Λ) = p(C)p(Λ) (34)

which is again consistent with the models. The causal graph which is compatible with
(34) is depicted in Figure 8. Note, that the graph is the same for all three models.
The four measurements cannot be simultaneously performed, therefore the models are
(trivially) simultaneously noncontextual. The models are also faithful since any choice
of the parameters in the joint probability distribution equation

p(Z,C,Λ) = p(Z|C,Λ)p(C)p(Λ) (35)

compatible with the graph in Figure 8 will return the same independence relations,
that is (34). Thus, if Cavalcanti’s question is whether measurement contextual onto-
logical models for an operational theory are also fine-tuned, then the answer is no.
Both the models of the non-trivial and trivial non-classical operational theories are
measurement contextual, still the causal graphs are fine-tuned for the former and
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Fig. 8 Causal structure of the ontological models with trivial compatibility structure

faithful for the latter. Fine-tuning relates to simultaneous contextuality but not to
measurement contextuality.

To sum up, the causal graph of the model of the classical and non-classical non-
trivial operational theories are different; the graphs of the non-classical models are
fine-tuned and contain a directed edge representing the causal connection responsi-
ble for simultaneous contextuality. This difference between the graphs collapses upon
trivializing the theories; the graph of all three models will be the same: trivial and
faithful.

8 How trivialization leads to trivial causal graphs?

In this section, I return to the concept of trivialization and show how it leads to trivial
causal graphs. At the beginning of Section 6, we replaced the non-trivial operational
theory

M ={A0, A1, B0, B1, A0 ∧B0, A0 ∧B1, A1 ∧B0, A1 ∧B1}
with an operationally equivalent but different theory:

M′ = {C00, C01, C10, C11}
Why are the causal graphs different for M and M′?
As stated in the previous section, causal graphs arise from the conditional inde-

pendences of an ontological model via the causal discovery algorithms. Let us pick one
such independence from the non-trivial theory, for example, (29) with A = 0:

p(X|A0 ∧B0,Λ) = p(X|A0 ∧B1,Λ) = p(X|A0,Λ) (36)

What would be the “analogue” of (36) in the trivial theory?
One has two options—unfortunately neither yielding a conditional independence.

The first option is to replace A0 ∧B0 by C00, A0 ∧B1 by C01 and A0 by C
(1)
00 or C

(1)
01 .

Thus, we obtain:

p(Z1|C00,Λ) = p(Z1|C01,Λ) = p(Z1|C(1)
00 ,Λ) = p(Z1|C(1)

01 ,Λ) (37)

But (37) contains no conjunction, only marginalization. Consequently, (37) is not a

conditional independence. The other option is to replace, say, A0 by C
(1)
00 , B0 by C

(2)
10
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and B1 by C
(2)
11 . We obtain

p(Z1|C(1)
00 ∧ C

(2)
10 ,Λ) = p(Z1|C(1)

00 ∧ C
(2)
11 ,Λ) = p(Z1|C(1)

00 ,Λ) (38)

The problem with (38) is that it is ill-defined: the conjunctions C
(1)
00 ∧C

(2)
10 and C

(1)
00 ∧

C
(2)
11 are not defined since C00, C10 and C11 cannot be simultaneously measured. And

this is as it should be since M′ is a trivial theory.
In sum, trivialization removes conditional independences because in the trivialized

theory there will be no simultaneous measurements. Consequently, trivialization leads
to trivial causal graphs.

An anonymous referee suggested the following recovery of the conditional inde-
pendence (36). First, allow for an operational theory to contain measurements which
are defined not only by conjunctions but also by disjunctions of instructions. That
is, allow for measurements like, for example, C00 ∨ C10. Now, consider the following
operational theory

M′′ = {C00 ∨ C01, C11 ∨ C01, C11 ∨ C10, C00 ∨ C10, C00, C01, C10, C11}

Since C00 is a conjunction of C00∨C01 and C00∨C10 (and similarly for C01, C10, C11),
M′′ will be a nontrivial theory. Then the conditional independence (36) will look like
this:

p(Z1|(C00∨C01)∧(C00∨C10),Λ) = p(Z1|(C00∨C01)∧(C11∨C01),Λ) = p(Z1|C00∨C01,Λ)
(39)

Equation (39) indeed recovers (36); so embracing disjunctions seems to bring back non-
trivial theories and non-trivial causal structure. However, the operational theory M′′
is different fromM′. Namely, an operational theory is defined by a set of measurements
(and preparations). If one extends the set of measurements either by conjunctions or
by disjunctions, one gets another operation theory. This extended theory can well have
a causal structure which is different from that of the original theory. But even if M′′
has a non-trivial causal structure, this does not invalidate our central claim that the
causal structure ofM′ is trivial while the causal structure ofM which is operationally
equivalent to M′ is non-trivial.

To be clear, I have no problem with allowing for disjunctive measurements (“mea-
sure polarization along axis x or measure polarization along axis y“) in an operational
theory, as in the above example. What is important, however, is to keep in mind
that in the definition of simultaneous contextuality (10) only conjunctions pop up.
Therefore, the dividing line draws between theories in which there are only basic
measurements—be them disjunctive or not—and theories in which there are also con-
junctions thereof. The causal structure of the former theories will always be trivial,
whereas that of the latter can be nontrivial. And this difference depends only on the
presence of conjunctions and not of disjunctions in the operational theory.

It is worths reflecting for a moment on the difference between trivial and non-
trivial theories from a general Bridgmanian perspective. If we trivialize a theory, we
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change the empirical content. The new basic measurements will not be the same as
the old maximally simultaneous measurements and the old basic measurements will
not be the same of the marginalization of the new basic measurements. As a special
consequence of this general fact, measurements sitting in two different contexts in
the non-trivial theory (as A0 in our above example) will “multiply realized” in the

trivial theory by two different marginalized measurements (by C
(1)
00 and C

(1)
01 in our

example). This results in the disappearing of those conditional independences in which
the original measurement was featuring and consequently in the a radical change of
the causal structure based on these conditional independences. From a general point of
view, this is understandable: operational theories with different empirical content can
have different causal explanation. A causal explanation relies not only on the outcome
statistics of the measurements but also on their compatibility structure. Focusing only
on operationally equivalent measurement classes, this information about simultaneous
measurability gets lost.

9 Quantum mechanics

Quantum mechanics, at least in the minimalist interpretation, is an operational theory
in a special linear algebraic representation. Therefore, it is instructive to see how quan-
tum mechanics represents the EPR-Bell scenario and how this representation relates
to the Bridgmanian and the standard identification of observables. The probabilities
of the both the non-trivial operational theory (13) and (15) and the trivial operational
theory (23) are generated quantum mechanically as follows:

〈Ψs|(XA ⊗ I)Ψs〉 = p(X|A,PEPR) (40)

〈Ψs|(I⊗Y
B

)Ψs〉 = p(Y |B,PEPR) (41)

〈Ψs|(XA ⊗YB)Ψs〉 = p(X,Y |A,B, PEPR) (42)

where |Ψs〉 is the singlet state representing the preparation PEPR in the Hilbert space
H2 ⊗H2; I is the unit operator in H2; and XA and YB scroll over eight projections

X0
A0 , X1

A0 , X0
A1 , X1

A1

Y0
B0 , Y1

B0 , Y0
B1 , Y1

B1

corresponding to eight unit vectors |XA〉 and |Y B〉 in H2 such that

|〈XA|Y B〉|2 =


3
4 if X ⊕ Y = 0 and A ·B = 0
1
4 if X ⊕ Y = 1 and A ·B = 0

1 if X ⊕ Y = 0 and A ·B = 1

0 if X ⊕ Y = 1 and A ·B = 1

The operators representing the four measurements are:
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A0 = X0
A0 −X1

A0 , A1 = X0
A1 −X1

A1

B0 = Y0
B0 −Y1

B0 , B1 = Y0
B1 −Y1

B1

with eigenvalues ±1.
The operators, however, represent different measurements in the non-trivial and

trivial operational theory. Consider, for example, the quantum optical realization of the
EPR-Bell scenario. In both operational theories, one prepares an ensemble of photon
pairs in singlet state and performs certain polarization measurements on the pairs.

In the non-trivial theory, one has four local measurements: two linear polar-
ization measurements on the left photon, A0 and A1, and two linear polarization
measurements on the right photon, B0 and B1. These measurements are the following:

A0 : Measure the linear polarization of the left photon along a given transverse axis
a0 (with outcome +1 if the photon passes the polarizer and −1 if not)
A1 : Measure the linear polarization of the left photon along a transverse axis a1 at
60◦ from the axis a0

B0 : Measure the linear polarization of the right photon along a transverse axis b0 at
60◦ from the axis both a0 and a1

B1 : Measure the linear polarization of the right photon along the transverse axis
b1 = a1

The polarization measurements on the left subsystem can be simultaneously performed
with the polarization measurements on the right subsystem realizing the simultaneous
measurements A0 ∧ B0, A0 ∧ B1, A1 ∧ B0, and A1 ∧ B1. The local measurements do
not disturb one another, still the ontological model constructed above is simultaneous
contextual: performing measurement A0 or A1 causally influences the outcomes of B0

and B1. Since the events A and Y are spacelike separated, this is a clear violation of
local causality.

In the trivial operational theory, we replace the local measurements with global
measurements. We will have four new measurements, each with four outcomes
represented by four orthogonal unit vectors in H2 ⊗H2:

C00 : Perform a global polarization measurement on the pho-
ton pair with four outcomes corresponding to the basis{
|XA0

0 〉 ⊗ |Y
B0
0 〉 , |X

A0
0 〉 ⊗ |Y

B0
1 〉 , |X

A0
1 〉 ⊗ |Y

B0
0 〉 , |X

A0
1 〉 ⊗ |Y

B0
1 〉

}
C01 : Perform a global polarization measurement on the pho-
ton pair with four outcomes corresponding to the basis{
|XA0

0 〉 ⊗ |Y
B1
0 〉 , |X

A0
0 〉 ⊗ |Y

B1
1 〉 , |X

A0
1 〉 ⊗ |Y

B1
0 〉 , |X

A0
1 〉 ⊗ |Y

B1
1 〉

}
C10 : Perform a global polarization measurement on the pho-
ton pair with four outcomes corresponding to the basis{
|XA1

0 〉 ⊗ |Y
B0
0 〉 , |X

A1
0 〉 ⊗ |Y

B0
1 〉 , |X

A1
1 〉 ⊗ |Y

B0
0 〉 , |X

A1
1 〉 ⊗ |Y

B0
1 〉

}
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C11 : Perform a global polarization measurement on the pho-
ton pair with four outcomes corresponding to the basis{
|XA1

0 〉 ⊗ |Y
B1
0 〉 , |X

A1
0 〉 ⊗ |Y

B1
1 〉 , |X

A1
1 〉 ⊗ |Y

B1
0 〉 , |X

A1
1 〉 ⊗ |Y

B1
1 〉

}
Note that these global polarization measurements are realized by a complicated
arrangement of beam splitters, polarizing beam splitters, wave plates, photo detec-
tors and other non-linear optical devices (Mattle et al., 1996; Lütkenhaus et al., 1999;
Weihs and Zeilinger 2001). What is important, is that C00 is not simply performing
a linear polarization measurement on the left photon along axis a0 and performing a
linear polarization measurement on the right photon along a given transverse axis b0.
In other words, C00 is not the same measurement as A0 ∧ B0; they are only opera-

tionally equivalent. Consequently, C
(1)
00 will not be the same as A0; they will be only

operationally equivalent.
This new operational theory has a trivial compatibility structure: C01 and C11 can-

not be performed simultaneously, that is, they cannot be performed on the same pair
of photons. Consequently, any ontological model for the theory is (trivially) simulta-
neously noncontextual. But the model we provided will be measurement contextual:

some ontic states will provide different outcomes for the C
(2)
01 and C

(2)
11 contrary to

the fact that they are operationally equivalent. Note, however, that measurement
contextuality does not lead to the violation of local causality.

In the Introduction, we discerned the Bridgmanian and the standard identification
of observables. In the first case, we identified observables with operators, in the second,
with measurements. Applying this distinction to the EPR-Bell scenario, one gets the
following schema:

Bridgmanian Standard

Operator: A0 A0

↙ ↘ ↓
Observable: O1 O2 O

↓ ↓ ↙ ↘
Measurement: A0 ∼ C

(2)
00 A0 ∼ C

(2)
00

The local and global measurements are represented by the same operator in quan-
tum mechanics. But do they measure the same observable? According to the standard
approach: yes; according to the Brigdmannian approach: no.

10 Conclusions

Operational quantum mechanics is a special operational theory in a linear algebraic
representation. A distinctive feature of this theory is operational equivalence, the
representation of different (and not necessarily simultaneously performable) measure-
ments providing the same outcome statistics in every quantum state by the same
self-adjoint operator (or POVM). From the perspective of strict operationalism, the
identity of the representation of such measurements does not mean the identity of the
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measured observables. In this paper, I intended to explore some of the consequences of
this Bridgmanian perspective in quantum theory and in general operational theories.
We saw, how certain essential properties of the underlying ontological models changed
if some measurements were replaced by other operationally equivalent measurements.
This change is a straightforward consequence of the sensitivity of the ontological mod-
els to the compatibility structure of the theory. To illustrate this change in quantum
mechanics, I took the example of the EPR-Bell scenario and compared the ontological
models of the non-trivial and the trivial operational theories realizing the EPR-Bell
scenario by local and global measurements, respectively. The EPR-Bell situation, how-
ever, was not peculiar whatsoever; we could have equally well used the GHZ or the
Peres-Mermin case to this goal. The four commuting operators in the horizontal line
of the GHZ pentagram

σz ⊗ σz ⊗ σz σz ⊗ σx ⊗ σx σx ⊗ σz ⊗ σx σx ⊗ σx ⊗ σz

or the three commuting operators in the third column of the Peres-Mermin square

σz ⊗ σz σy ⊗ σy σx ⊗ σx

can also be represented both by local measurements on individual photons (represented
by the graphs in the Figure 1) and also by complicated global GHZ or Bell state mea-
surements on photon pairs or triples (represented by the linegraphs in the Figure 3).
These local and global measurements are different and so are the ontological models.
All ontological models will be measurement contextual, but those for global measure-
ments will be simultaneously noncontextual and will have a trivial causal structure
(Hofer-Szabó, 2021a, b, 2022). All these results point in the same direction which is
also the main message of this paper: Operationally equivalent families of measurements
represented by the same operators in quantum mechanics can give rise to ontological
models with highly different features. Thus, to study these models, it is not enough
to simply investigate quantum mechanics at an abstract mathematical level; we also
need to take into consideration the measurements represented by the operators. This
is the lesson that we can learn from Bridgman.

Appendix

Three outcome-deterministic ontological model for the three operational theories with
non-trivial compatibility structure:

Classical theory.

• Set of ontic states: L = {Λ0,Λ1}
• Random variable on L : Λ = 0, 1
• Probability distribution:

p(Λ|PCL) =
1

2
(43)
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• Response functions of the non-trivial theory:

p(X|A,Λ) = δX,Λ (44)

p(Y |B,Λ) = δY,Λ (45)

p(X,Y |A,B,Λ) = δX,Λ · δY,Λ (46)

where δ is the Kronecker delta function.
• Response functions of the trivial theory:

p(Z|C,Λ) = δZ1,Λ · δZ2,Λ (47)

The EPR-Bell scenario.

• Set of ontic states: L × L where L = {Λ0,Λ1}
• Random variable on L × L : Λ1 × Λ2 with Λ1,Λ2 = 0, 1
• Probability distribution:

p(Λ1,Λ2|PEPR) =

{
1
8 if Λ1 ⊕ Λ2 = 1
3
8 otherwise

(48)

• Response functions of the non-trivial theory:

p(X|A,Λ1,Λ2) = δX,Λ1
(49)

p(Y |B,Λ1,Λ2) = δY,Λ2
(50)

p(X,Y |A,B,Λ1,Λ2) = δX,Λ1
· (δY⊕(A·B),Λ2

· δΛ1⊕Λ2,1 + δY,Λ2
· δΛ1⊕Λ2,0) (51)

• Response functions of the trivial theory:

p(Z|C,Λ) = δZ1,Λ1 · (δZ2⊕(C1·C2),Λ2
· δΛ1⊕Λ2,1 + δZ2,Λ2 · δΛ1⊕Λ2,0) (52)

PR box.

• Set of ontic states: L = {Λ0,Λ1}
• Random variable on L : Λ = 0, 1
• Probability distribution:

p(Λ|PPR) =
1

2
(53)

• Response functions of the non-trivial theory:

p(X|A,Λ) = δX,Λ (54)

p(Y |B,Λ) = δY,Λ (55)
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p(X,Y |A,B,Λ) = δX,Λ · δY⊕(A·B),Λ (56)

• Response functions of the trivial theory:

p(Z|C,Λ) = δZ1,Λ · δZ2⊕(C1·C2),Λ (57)
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Busch P., Lahti P., Pellonpää J-P., Ylinen K. (2016). Quantum Measurement. Springer.

Cavalcanti, E. (2018). Classical Causal Models for Bell and Kochen-Specker Inequality Violations Require
Fine-Tuning, Phys. Rev. X, 8, 021018.

Chang, H. (2019). Operationalism, Stanford Encyclopedia of Philosophy. URL =
https://plato.stanford.edu/entries/ operationalism.

Clauser, J. F., M.A. Horne, A. Shimony and R. A. Holt, (1969). Proposed experiment to test local hidden-
variable theories, Phys. Rev. Lett., 23, 880-884.

Glymour, C., Scheines, R., and Spirtes, P. (2001). Causation, Prediction, and Search, (Cambridge: The MIT
Press).

Greenberger, D. M., Horne, M. A., Shimony, A. and Zeilinger, A. (1990). Bell?s theorem without inequalities,
Am. J. Phys. 58, 1131

D’Ariano G. M., Chiribella G., Perinotti P. (2017). Quantum Theory from First Principles: An Informational
Approach, Cambridge: Cambridge University Press.

Held, C. (2022). The Kochen-Specker Theorem, Stanford Encyclopedia of Philosophy

Kochen, S., and E. P. Specker (1967). The problem of hidden variables in quantum mechanics, J. Math.
Mech., 17, 59–87.

Lin, Y. (2021). Conspiracy in ontological models: λ sufficiency and measurement contextuality, Phys. Rev.
A 103, 022211.

Ludwig, G. (1983). Foundations of Quantum Mechanics. Springer.

Lütkenhaus, N., Calsamiglia, J., and Suominen, K-A. (1999). On Bell measurements for teleportation, Phys.
Rev. A, 59, 3295.

Mackey G. W. (1957). Quantum Mechanics and Hilbert Space. The American Mathematical Monthly, 64,
45-57.

Mattle, K., Weinfurter, H., Kwiat, P. G., and Zeilinger A. (1996). Dense Coding in Experimental Quantum
Communication, Phys. Rev. Lett, 76 (25), 4656-4659.

Mermin, D. (1993). Ontological states and the two theorems of John Bell, Rev. Mod. Phys., 65 (3), 803-815.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference, (Cambridge: Cambridge University Press)

Peres, A. (1990). Incompatible Results of Quantum Measurements,? Phys. Lett. A, 151, 107-108.

Popescu, S., and D. Rohrlich. (1994). Nonlocality as an axiom, Found. Phys., 24, 379-385.

Reichenbach, H. (1927). The Philosophy of Space and Time, New York: Dover Publications, 1958.

Schlick, M. (1930 [1979]). On the Foundations of Knowledge, in Philosophical Papers, vol. 2 (1925–1936),
H. L. Mulder and B. F. B. van de Velde-Schlick (eds.), Dordrecht: Reidel, pp. 370–387.

30



Spekkens, R. W. (2005). Contextuality for preparations transformations and unsharp measurements, Phys.
Rev. A 71:052108.

Suarez, M. (2007). Causal Inference in Quantum Mechanics: A Reassessment, in: F. Russo and J. Williamson
(eds.), Causality and Probability in the Sciences. College Publications.

Suarez, M. and SanPedro, I. (2009). Causal Markov, Robustness and the Quantum Correlations, in: M.
Suarez (ed.), Probabilities, Causes and Propensities in Physics, Synthese Library, Springer, Ch. 8.,
173-193.

Suppes, P. (1951). A set of independent axioms for extensive quantities, Portugaliae Mathematica, 10(4):
163–172.

Tal, E. (2020). Measurement in Science, Stanford Encyclopedia of Philosophy. URL =
https://plato.stanford.edu/entries/measurement-science

Trout, J.D. (1998). Measuring the intentional world: Realism, naturalism, and quantitative methods in the
behavioral sciences, Oxford: Oxford University Press.

Weihs, G., and Zeilinger, A. (2001). Photon statistics at beam splitters: an essential tool in quantum
information and teleportation, in: Jan Perina (ed), Coherence and Statistics of Photons and Atoms,
(John Wiley and Son, Inc, New York) 262-288.

van Fraassen, B.C. (1980). The Scientific Image, Oxford: Clarendon Press.

von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik, Springer.

Mathematische Grundlagen der Quantenmechanik

Wood, C. J., and Spekkens, R. W. (2015). The lesson of causal discovery algorithms for quantum
correlations: causal explanations of Bell-inequality violations require fine-tuning, New J. Phys. 17,
033002.

31


	Introduction: a Bridgmanian perspective
	Operational theories
	Ontological models
	Trivialization
	Three operational theories with non-trivial compatibility structure
	Three operational theories with trivial compatibility structure
	The causal structure of the ontological models
	How trivialization leads to trivial causal graphs?
	Quantum mechanics
	Conclusions

