
 1 

 
Dr. Izolda Takacs 

 
One Approach to the Necessary Conditions of Free Will 

Logical Paradox and the Essential Unpredictability of Physical Agents 
 
 
Even today, there is no precise definition of free will – only mere hypotheses and intuitions. This is why this paper 
will approach the question of free will from a negative perspective, depicting a scenario in which free will 
seemingly exists. Subsequently, it will attempt to refute this scenario (as a necessary condition for free will). The 
absence of free will might seem absolute if scientific determinism holds true. Therefore, the goal of the study is 
to present a logical argument (paradox) that demonstrates the impossibility of an omniscient (P) predictor 
(scientific determinism), highlighting its inherent self-contradiction. This paradox reveals that the prediction (P = 
C) by a (P) physical agent of itself is objectively impossible. In other words, even a fully deterministic agent in a 
deterministic universe cannot predict its own future state, not even in a Platonic sense. 
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1. Introduction 

 

If the doctrine of scientific determinism were true – i.e., if every single act were part of an 

essentially mechanistic, coherent and determinate structure in space-time – it would be the 

greatest obstacle to free will. For in this case, an omniscient predictor P (later christened 

Laplace’s demon) could, in principle, exist, e.g. a supercomputer, that, given all initial 

conditions and knowing the direction, mass, velocity and laws of physics of all the particles of 

the universe, could calculate each future event in advance with a desired precision, based on a 

deductive-nomological model) (Popper, 1950a, 1995). Thus, all events, including the lines of 

this paper, would have been determined and predictable since the formation of the first quarks, 

from the point when the force-carrying bosons (gauge bosons) compelled the quarks to interact. 

In this paper, I present a strong logical argument (paradox) that clearly demonstrates 

why such an omniscient predictor P cannot exist, even in the Platonic sense. It follows that 

scientific determinism is not only a falsifiable doctrine – primarily  due to quantum mechanics 

–, but also a self-contradictory one. Therefore, the logical paradox can be seen as a much 

stronger argument. The paradox of predictability shows that the physical agent’s prediction (P) 

of itself (P = C) is objectively impossible.  

The argument itself first appeared in the wake of Karl Popper’s writings from the early 

1950s (Indeterminism in quantum physics and in classical physics I-II, 1950), as well as in the 

studies reflecting on these (MacKay, 1967; Scriven, 1965), also within the context of free will. 

Popper derived the impossibility of self-prediction from Kurt Gödel’s first incompleteness 



 2 

theorem, so that his argument depends on whether Gödel’s theorems on which he based his 

reasoning are true. If they are true, and can be correctly applied to scientific determinism – 

against the Laplace demon – then Popper’s theory is correct and scientific determinism is only 

prima facie deterministic.1 Nota bene, Popper’s impossibility of self-prediction does not mean 

(as most authors suggest) that it merely proves that determinism is not equivalent to complete 

predictability – or that even if it exists, there is an objective explanation for feeling free – but 

rather implies that the whole universe is indeterministic. 

Popper’s main argument is that there are two obstacles to the self-prediction of physical 

systems: a physical obstacle and a (Gödel-type) logical obstacle. And because of these 

limitations, classical mechanics also has an indeterminacy, essentially similar to that known 

from quantum mechanics, which, although, not sufficient is a necessary condition for free will. 

Popper’s centre argument has resurfaced in contemporary philosophy and has been followed 

by an ongoing polemic. Therefore, after presenting the paradox, in the second part of the paper 

I will present this current debate through two approaches: the arguments of Rummens & 

Cuypers (2010) and Gijsbers (2023). Their writings (Determinism and the paradox of 

predictability, The Paradox of Predictability) focus on two fundamental paths to the paradox 

of predictability. One view (Rummens&Cuypers, 2010) holds that the computational process 

in the physical world (usually some process that gives rise to prediction) is such that, for some 

principled (but physical) reason, it can only reflect on itself by ‘influencing’ the computational 

process itself, causing the ‘prediction’ to turn out false. The other, more general approach 

(Gijsbers, 2023) is purely “logical”. According to him, the paradox of predictability is related 

to the impossibility of self-prediction and is based on a substantial unpredictability, since Alan 

Turing’s theorem on the halting problem “logically” follows directly from it. Thus, both ideas 

take as given that a paradox exists with respect to scientific determinism, but the issue in 

dispute concerns its source (i.e., the main question is whether we are talking about a substantive 

or non-substantive unpredictability). In this paper, I will argue that the second argument, i.e., 

the “logical” argument, is the decisive one.2 

 

2. Main concepts, the topic in general 

 

 
1I address this question along the lines of Gijsbers’ thesis on the undecidability problem (Turing's halting problem). 
2I would like to thank László E. Szabó, whose valuable feedback as an opponent greatly contributed to further 
clarifying the arguments in this paper. I am also grateful to Daniel Kodaj for his excellent insights during our 
consultations and discussions on the topic, and for all of his critical comments. 
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The notion of scientific determinism, as outlined in the introduction, is synonymous with 

predictability. Predictability means that all events, in principle, can be accurately predicted 

according to the methods of science. Formally, we can speak of scientific determinism if and 

only if the following statements are true:  

(1) Systems of a class C behave deterministically, then (2) there exists a set L of 

deterministic laws for systems C, such that (3) for any event E in system C, there would exist 

a set S1... Sn that describe deterministically sufficient preconditions for E. (4) Furthermore, S1... 

Sn and L, one could in principle deductively predict the event E exactly in advance. (5) And 

similarly, any event could in principle be calculated exactly, i.e. known in advance (Boyd, 1972, 

p. 431). In sum, if we take the deductive nomological model as a starting point, then scientific 

determinism is equivalent to predictability. 

I believe that determinism itself can be understood as the concept desribed above. Not 

least because of the definition of quantum mechanics as opposed to total predictability. More 

precisely because “Heisenberg’s argument against determinism is based upon the implicit 

assumption that determinism entails predictability from within, with any desired degree of 

precision.” (Popper 1995, p. 36). Thus, it is worth starting from this assumption and from the 

fact that scientific determinism is a logically much stronger doctrine than determinism itself. 

The latter, after all, leads to a trivially true, symmetrical argument (Kukla, 1978, 1980; Holton, 

2013).3  

Thus, if the case for scientific determinism holds, then free will – the concept of which 

intuitively implies in any case something that cannot be predicted (Kant, B 578), i.e. that no 

predictor can calculate in advance (necessary condition) even in theory – is merely an illusion, 

an epiphenomenon. We therefore feel free only because we are unable to calculate in some way 

exactly what will happen in the future, given our limited knowledge compared to the Laplacean 

demon, the omniscient super-intelligence.Hence, the subjective sense of freedom may derive 

from the objective fact (E. Szabó, 2002; Grünbaum, 1972) that our knowledge of the facts of 

the moment is severely limited. 

 

2.1 Why disprove scientific determinism in the age of quantum mechanics?   

 
3If the universe never repeats itself, then any class of events A has an effect B, where B is defined as the class of 
events that occur when the universe has a unique property and follow the occurrence of A within some time 
interval d. Since the universe is unlikely to actually repeat itself, these remain very weak arguments. Moreover, 
the doctrine of determinists does not impose any constraint on the possible sequence of events in the world (Kukla 
1978, 143). 
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While the ‘Newtonian scientific worldview’ outlined above – scientific determinism –, had to 

be accepted by thinkers in the pre-Heisenberg era because it was synonymous with scientific 

validity (Popper, 1995, p. 47), we now live in an age where quantum mechanics has replaced 

this worldview. It should be noted, however, that even the indeterminism ‘guaranteed’ by 

quantum mechanics does not provide a sufficient explanation for the existence of free will. On 

the one hand, because we cannot yet identify any form of within probability, since if we claim 

that predestination deprives us of free will, so does randomness. On the other hand, in the field 

of quantum mechanics, there are certain limits to our overall epistemic capacity (E. Szabó, 

2002; Takács, 2013), aspects of it that we cannot fully understand, which limits our epistemic 

access.  

While it is true that free will has not been salvaged by quantum mechanics, its empirical 

argument could still serve to falsify scientific determinism (given that the empirical evidence 

for quantum mechanics is quite strong, based on observations and experiments that suggest that 

the behaviour of particles in the world is fundamentally uncertain and probabilistic [Takács, 

2013], thus challenging the deterministic view of the universe).  

However, as the subject of this paper attempts to point out, it is not only the 

indeterminism, as we known from quantum mechanics that can explain why scientific 

determinism is false. But there is another line of reasoning that can show, on a more 

fundamental level, that scientific determinism cannot be fulfilled.  

 

3. The argument against scientific determinism: the paradox of predictability 

 

3.1. The paradox  

The basic thesis of the authors mentioned in the Introduction (Scriven, 1965; MacKay, 1967; 

Rummens&Cuypers, 2010; Gijsbers, 2023) is that the paradox arises because, even if we 

assume that in a deterministic universe U there exists an omniscient physical predictor P that 

could, in principle, predict with the desired accuracy all future decisions of another physical 

system C, a paradox can be used to demonstrate that P could still face a situation – by revealing 

the prediction to agent C – that could, in turn, change the outcome of its prediction.  

According to the central argument (Scriven, 1965), if a person or a robot is motivated 

to counter-predict, their decision cannot be computed even by an omniscient predictor, and his 

prediction will always prove false. The reason is that when a person or system learns (or 

replicates) a prediction about itself, it can also falsify it. 
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Thus, in such a specific situation, the failure of the prediction is guaranteed by the so-

called counter-predictivity. For example, if a friend of mine predicts that I will order paella at 

the restaurant and tells me so, and then, upon receiving this information, I will choose 

something else in order to refute the prediction. It is this act – the revelation of the prediction 

and the fact that agent C can thus refute any prediction that P makes about it (the counter-

predictive mechanism) – that will ultimately make it impossible for P to make an accurate 

prediction. 

 

What exactly is the paradox? 

 

To easily imagine what the paradox or counter-predictive mechanism consists of, suppose that 

there is a superintelligent predictor, let us call it SIP9000. There is a machine box in front of it, 

on top of which a red and a blue light bulb are placed. (This is roughly the example of Holton, 

2013, pp. 96–97). The operation of the light bulbs, i.e. their switching on and off, is controlled 

by this machine box. SIP9000 is given a challenge: its task is to predict which of the light bulbs 

applied  to the machine will light up blue or red at a given time, say noon – only one can light 

up at a time, they cannot light up at the same time. Since SIP9000 is a super-intelligent 

predictor, it will be able to: i. Have complete information about the operation of the machine 

box that controls the light bulbs. ii. With as much computing power as it wants, as much as it 

needs to compute accurately. iii. It also has all the knowledge of how the universe works. It 

will also know all its laws. iv. To make things even easier, it will be guaranteed that the universe 

is definitely determinate. Moreover, SIP9000 will be told in advance that the only purpose of 

the makers of the machine was that its prediction would certainly be wrong (Holton, 2013). So 

SIP9000 has this knowledge, too, cannot understand surprises.  

The task is simple, it only has to predict / calculate whether the blue or the red light 

bulb will light up at noon, but cannot keep its prediction a secret. There is also a button in front 

of it, which you must turn on if you have calculated with all your knowledge that the blue bulb 

will light, and leave off if you have calculated that the red bulb will light. And to be a true 

prediction, it is of course a requirement that you make your prediction one minute before the 

time given. For example, if you predict that the blue light bulb will come on at noon, you must 

press the button at 11:59 to make your prediction: 

 

t1: end of calculation time < t2: artuculate the prediction: 11:59 < t3: Noon. 
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This challenge looks easy, but it's all too good to be true. The hunch turns out to be true, because 

above the light bulbs there is a sensing device, let’s call it the Negator. It’s a simple little circuit 

that anyone can easily build. The ‘Negator’, when it detects that the button that SIP9000 uses 

to indicate that the blue one is on, turns on the red bulb at noon, and vice versa. The process is 

that the sensor-negator always waits until the prediction is made and published by the 

forecaster, i.e. until 11:59. Then it changes the result to the opposite of the prediction at noon.  

 

t1: end of calculation time, result of calculation: P = BLUE < t2: press the button at 11:59: P = 

BLUE <  ‘NEGATOR’  ®  t3: NOON: P = RED 

® P = not P, contradiction 

 

In this case, how did the predictor’s omniscience help? Is there any way to outsmart such a 

‘Negator’ machine? In what case can the paradox be resolved? 

The main thesis is that even in a perfectly deterministic Universe, it is easy to build a 

system (‘Negator’, counter-predictor) that can thwart the prediction of a physical predictor P 

for a physical system C, and therefore not all events E can be predicted. The latter can be simply 

proved by assuming – for the sake of reductio ad absurdum – that the omniscient predictor P 

exists. If this is so, then the prediction Pn for all events En will be true: En = Pn. And the 

contradiction will occur because it can be proved by a so-called contra-predictive mechanism 

(negator) that there can exist an event when Pn ≠ En. But since we have already assumed that 

∀(Pn = En), így egy Pn ≠ Pn (Pn = ¬ Pn), we will encounter a contradiction.  

 

3.2. The predictor 

 

From the above, the capabilities of the predictor in question have been clearly demonstrated: 

The predictor P is “a.) aware of all universal physical laws, b.) can perform all relevant 

calculations of mathematics and logic, c.) is a physical predictor, and d.) is part of the physical 

system it wants to predict” (Popper, 1995, p. 71).  

It is also not difficult to see that such a predictive ability is omniscient, universal, 

because P is capable of what the system it is intended to predict, C, is capable of (see [i]). That 

is, P can read, simulate and understand the meta-theory governing C’s behaviour, the principles 

governing its operation, its decision processes, etc. ‘For every physical event there exists a 
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predictor (it is physically possible to construct a prediction) which is able to reproduce the 

event in question in another system by reproducing one of the states of affairs which preceded 

the event’ (Popper, 1950a, p. 126). To simply understand why it is important for universal 

prediction that the same decision process which agent C performs can be simulated by predictor 

P, consider the following.  

There is a computer P, which can only calculate arithmetic problems, and another 

machine, which is a C chess automaton and can only calculate chess steps. In this case, it is 

obviously not possible to ask the chess automaton for arithmetic steps, and vice versa. Hence, 

a predictor P that wants to compute the steps of a chess automaton C must in any case contain 

a description of the chess automaton. And if predictor P wants to predict two computers, a 

chess machine and a machine performing arithmetic computations, it is obvious that P must be 

able to simulate both its own and the other two machines and have a meta-theory that contains 

the description and algorithm of the operation of both machines in order to make an accurate 

prediction. This is the only way to talk about universal prediction. 

 

4. Rummens and Cuypers’ arguments: embedded and external predictability 

 

To illustrate the paradox, the authors Rummens and Cuypers first separated 1) embedded 

predictability and 2) external predictability. Then they stated a priori that the paradox can only 

exist in the first case, i.e. if the predictor is inside the physical universe U (Rummens&Cuypers, 

2010). 

Their central argument is that the coexistence of three necessary conditions generates 

the paradox of predictability. If any one of these is not satisfied, then no paradox is generated. 

It requires the aforementioned (a) intrinsic predictability (embeddedness in the physical 

universe), (b) revelation (causality), i.e. that the prediction about itself is somehow known by 

the system, or the predictor being forced to reveal its prediction. The last necessary condition 

is the (c) counter-predictive mechanism, i.e., the act of going against the prediction after it has 

been revealed (Rummens&Cuypers, 2010, p. 237). 

It is important to point out that an essential element of Rummens and Cuypers’ thought 

experiment on the paradox is that they have removed all obstacles, which they call epistemic 

limitations, from the path of the internal predictor. In other words, they assumed that the 

internal predictor possesses infinite knowledge and has infinite computational capacity. They 

also put aside the impossibility of obtaining information about events outside the (space-time) 

light cone, etc. They further assumed that it could complete its computation in finite time with 
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the desired accuracy. This thought experiment also circumvents the common objection that no 

internal prediction can be successful in principle because the predictor does not have access in 

time to all the data needed for the prediction (including the extent to which the information 

obtained has interfered with the other system). 

Their argument is that even if all the latter conditions were true, the embedded 

‘omniscient predictor P’ would not be able to predict all events, because – as I deduced in the 

light bulb example – in such a case the embedded predictor would always be faced with an 

unsolvable system of equations.  

Suppose that at an initial time t0 (a), the subsystem S1 embedded in the universe is asked 

to predict the future action E of another subsystem S2 of the universe U occurring later at time 

t2. This action is: E = 0 or E = 1. S1 has to make his prediction (P) at time t1, where t0 <  t1 <  

t2. P is a physical event, i.e. S1 has to print the number 0 or 1 on a piece of paper. The prediction 

task of S1 can be formulated as P = E. The above condition is satisfied if there is some 

interaction between S1 and S2, say S1 is informed of a prediction about its future behavior. This 

is the condition of revelation (b): prediction P is revealed. E.g. Jacob learns before the vote that 

his neighbor predicted that he will definitely vote Republican. The first two conditions (a, b) 

of the paradox are thus satisfied. Now suppose also that the subsystem S2 is counterpredictive 

(c.) i.e. S2 always tends to contradict predictions about its future actions (it always does exactly 

the opposite of what it was predicted to do). 
Jacob learns of his neighbour’s prediction and votes Democrat just to contradict it. If P 

is revealed, then E = not P, but since we have already assumed that P = E, it is a contradiction 

(Rummens&Cuypers, 2010, pp. 234–237). 

Thus, the paradoxical nature of the situation is that any prediction of the future action 

of E at time t2 of another subsystem (S2) of the universe U embedded in the universe U will 

inevitably be self-refuting (Rummens&Cuypers, 2010, p. 237). 

Rummens and Cuypers do not consider the contradiction to be a substantial 

unpredictability. This is explained by the fact that the prediction is otherwise correct. P 

correctly predicted C’s system, was able to accurately predict C’s choice in advance, but after 

its prediction turned out to be correct, C acted contrary to it. They argue that if C had not known 

about the prediction, P’s prediction would have been valid. On the other hand, predictor P also 

knows that once it reveals its correct prediction, agent C will act in spite of it. Therefore, under 

such conditions, P will never be able to get in front of the system, so its omniscience is only 

sufficient for this case.  
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Moreover, it is believed that the paradoxical situation would not even arise if the predictor were 

an external (non-physical observer) prediction (external predictability). This is because if the 

external P* predictor (demon-like being) is not part of the universe, then it has no causal 

relation to the system C (conditions a, b are not satisfied). 

Thus, such an external predictor does not have to reveal its own prediction to agent C, so C 

remains unaware of the prediction, it does not affect it. In this case, if the internal physical 

predictor’s prediction is Pem and the external (non-physical) predictor’s prediction is Pex, then 

Pem ≠ Pex must also be true.  

The biggest problem with their argument is that they did not seriously consider the 

situation where an agent C and a predictor P are not two separate entities, but agent C is also 

the predictor P. For prediction is, in fact, dual in concept. On the one hand it denotes the so-

called hetero-predictability (P¹ C) (MacKay, 1967; Grünbaum, 1971, p. 314), which refers to 

the predictability of one (C) system of physical agents by another (P) agent and its limits, and, 

on the other hand, the so-called self-predictability, when one (P) physical agent predicts about 

itself (P = C).  

Moreover, in the default case (due to physical constraints), identity (P = C) is 

established as soon as P interacts with C – that is, if P’s prediction affects agent C in any way, 

P can no longer be independent of C, so the problem of self-prediction cannot be avoided. As 

Popper wrote: the point is that once system C ‘discovers’ predictor P (or any system its assigned 

predictor), i.e., acquires information about it, from that point oonward predictor P will no 

longer be able to predict that system C, because C’s future behavior will immediately become 

a function of predictor P’s own behavior. This makes C a part of P, they form a system (C = 

P). Consequently, P should also predict about itself, but this is precisely what it is unable to do 

(Popper, 1950a). 

 

5. If P = C, counterargument to Rummens and Cuypers’  theses  

 

To easily understand where Rummens and Cuypers may be incorrect, suppose that we have a 

predictor P, defined by the pair of authors’ conditions, which wants to make a scientific 

prediction about its own decision (P = C). P is a physical predictor embedded in the mechanical 

universe U, where P has the infinite knowledge necessary to make the correct prediction, can 

complete its computation in finite time with the desired accuracy, and therefore its prediction 

is a correct conclusion.  
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Rummens and Cuypers argued that the paradox is not a substantive unpredictability 

because if a predictor P kept its prediction secret from agent C (causal relation [b] would not 

be satisfied), it could not falsify the prediction. E.g. I (with all knowledge) predict that Jacob 

will vote for the Democrats. I write it down on a piece of paper, but I don’t tell him, I mail it to 

him. Jacob will receive this after the vote and will see that my prediction was correct. That in 

itself would be a perfectly plausible argument, except that the whole paradox, the predictability 

problem, doesn’t go that far. Even so, the question remains relevant: can an omniscient, 

physical predictor P accurately predict what it will calculate for itself?  

Because, if predictor P examines both possibilities (yes / no), it will also arrive at the paradox 

by answering ‘no’.  

 

Theorem I: Although the prediction made by a physical predictor P about another, 

completely independent physical agent C may be correct, even then P cannot know what its 

own prediction will be regarding what it will compute for itself, and this follows from the  due 

impossibility of self-prediction.  

 

For the counterargument, I must explain that the paradox does not merely extend to the stage 

mentioned by Rummens and Cuypers, but rather arises from the impossibility of self-

prediction. And I will then demonstrate that the paradox itself is the direct consequence of an 

essential unpredictability. However in order to justify the logical argument regarding the self-

prediction of physical systems, thereby refuting Rummens and Cuypers’ thesis, I will first show 

what the impossibility of self-prediction of physical systems means and why it occurs.  

 

5.1. The impossibility of self-prediction 

 

For my thought experiment I will use the arguments of MacKay (1967) mutatis mutandis. For 

it was MacKay who demonstrated Popper’s basic idea of the impossibility of self-prediction 

through conscious human agents. This is significant because Rummens rejects the argument 

for substantive unpredictability – Gijsbers’ thesis that the paradox can be traced back to 

Turing’s halting problem (see below) – on the grounds that it is an exclusively artificial, formal, 

mathematical construct, and not at all relevant to physical (human) agents (Rummens 2024). 

Therefore, before presenting the logical arguments for substantive unpredictability, I will 

present my counter-argument by applying it to human agents. 
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Ad 1. MacKay’s fundamental idea was to first postulate (MacKay, 1967; Watkins, 1971) 

that the human brain operates as mechanically as clockwork – that is he imagined an extreme 

case in which mechanistic brain theory develops into a fully deterministic science. “Suppose 

that all the relevant facts on the workings of your brain could be made available, without 

disturbing it, to a computer system capable of predicting its future behaviour from these facts 

and the environmental forces acting on your nervous system” (MacKay, 1967, p. 8). As a first 

step, let us consider this possibility. 

Ad 2. MacKay (1967) also postulated that when a human agent acquires knowledge 

(learns a prediction about itself), it inevitably causes a change (disturbance) in the physical 

brain = mechanistic brain theory. This, in turn may, explain why an agent’s previous prediction 

about its own decision may become obsolete once it becomes aware of its own decision as new 

(additional)4 information.  

Ad 3. Finally, MacKay’s basic idea serves as a counter to Rummens’ arguments because, 

in his precise definition of  prediction, Rummens emphasized that a prediction denotes a 

physical event occurring in space-time. Predictor P actually performs the ‘calculation’ and 

stores the result in its memory. “This prediction is therefore either physical, a hardware 

memory record, or a physical brain state, depending on the nature of the predictor” (Rummens, 

2024, p. 2099). Since a prediction is a computation and lasts for a certain time (time t), the 

change in physical brain state occurs after the prediction is made, after the prediction (new 

data) is revealed.  

 

Following MacKay let us accept the following two conditions, mutatis mutandis: 

 

1. The mechanistic theory of the brain is true: the brain works in a completely 

mechanistic way, with the determinism of a computer. 2. the agent's brain function is not 

observed by lab technicians (as in MacKay), but by the agent itself, on a computer (the ability 

to compute the agent's own prediction). Then, let us also suppose the following:  

A physical agent P(eter) wants to compute a future decision, for which it has all the 

necessary inputs for the prediction (: all the data required for prediction, with complete 

knowledge of the effects of environmental forces on P(eter)’s nervous system). According the 

 
4In a certain sense – according to scientific determinism –, we could not account for new information if all the 
data were available, and all predictions could be deduced from it. However, prediction is a process, meaning that 
the result is not immediately known to the agent (even with complete knowledge of the data), but emerges later 
through a computational process at some point in time. In this sense, awareness of a prediction (including 
awareness of one’s own prediction) can be interpreted as new information. 
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definition of scientific determinism, the following will hold true for P(eter)’s prediction: 

P(eter)’s brain S1... Sn and the set L of deterministic laws will be able to deductively calculate 

his future decision (prediction P) in advance and accurately, and the prediction P will 

necessarily be true. That is, let us accept the premise (also adopted by Rummens and Cuypers) 

that prediction P follows logically from the conjunction of L and S. Therefore, the following 

meta-linguistic claim will be true:   

Proposition (1): ‘If L and S, then P’ is true. Then the prediction computed by the agent 

is: 

 

L 

S 

N (If L and S, then P)  

------------------------ 

P 

 

In short:  

L and S, therefore P (Watkins, 1971, p. 266). 

 

So far, this premise aligns with Rummens and Cuypers’ basic assumption that the predictor P 

has all the information necessary to make an accurate, correct prediction (in fact, there are no 

epistemic constraints in its way, it can complete its computation within finite time with the 

desired accuracy).  

 

What will happen?  

 

Subject to the above, agent P(eter)’s brain will accurately calculate its own future decision. 

That is, his brain, which operates with the determinism of a computer, is able to calculate, after 

all the necessary information, at time tx, a correct prediction P for ty at a later time, which the 

agent immediately reads from the monitor. Note that this does not require anybody (lab 

observers) to make the prediction. The prediction of P for time ty at time tx will be known to 

the agent as its own correct (true) prediction for time ty.   

It is easy to see from this that if this prediction P appears on the monitor before the 

agent has performed the action – and if we follow the mechanistic theory of the brain – then in 

this case, that the agent immediately records (becomes aware of) the prediction P about 
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himself. However, the awareness of the predicted activity also changes the agent’s physical 

brain state, because, as I described in the conditions, according to mechanistic brain theory, 

whenever a human agent acquires new knowledge, it always causes a change in the physical 

brain. Therefore, when an agent records a prediction, it may also alter the prediction P itself, 

for the following reasons: 

It has already followed from the above premise that L and S logically implied the correct 

prediction P. Except that the original premise L and S, once realized, is also augmented by P 

as new information (I) at time tx – let the two together be, for simplicity, a confirmed S, i.e. S’. 

But then, at time ty, the result will be P’ instead of P, so that the prediction P’ will eventually 

be true, since, if it were not, it would lead to inconsistency. For, if I add I to L and S, but the 

proposition (2) remains L and S’ would therefore remain P, it would be inconsistent (Watkins, 

1971). 

 

Thus Theorem (2) is correctly L and S’, hence P’ 

And so on.  

 

This demonstrates that, if we accept the above conditions, P(eter) a physical agent can never 

predict his own future decision (at time ty) without his own prediction affecting his future 

action. That is, he cannot make a prediction about himself without having to take his own 

prediction P into account. However, the change – the mere act of discovering P – means that 

his earlier prediction will no longer be accurate. It may have been correct up until the tx moment 

before the prediction was known, but once he learns the prediction (memory fixation), it may 

become immediately obsolete. Yet the agent cannot integrate this altered state into his initial 

prediction, meaning he will never be able to get ahead of the process. Therefore, he cannot 

calculate in advance what he will calculate at the later ty time, because he would always 

contradict it. Thus, even if a human agent possessed all information about his own brain state, 

thought processes, etc., it could not predict with certainty what he will do in the future.  

Consequently, it can be seen that self-prediction (P = C) is a more fundamental concept 

regarding the paradox and extends beyond the point outlined by Rummens and Cuypers. From 

this stage onward, it only remains to highlight that the paradox – the impossibility of self-

prediction – encompasses an essential unpredictability. 

 

6. Gijsbers’ counterargument 
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Victor Gijsbers has also attempted to justify substantive unpredictability, and thus to refute 

Rummens and Cuypers’ arguments regarding the paradox, in his paper The Paradox of 

Predictability. His central argument is that neither revelation (b) nor the embeddedness of P in 

the predictive universe (a) are necessary conditions for the paradox.  

Although Gijsbers also considers the distinction between the external and the internal 

predictor to be indispensable for presenting the paradox, he nonetheless calls for a complete 

redefinition of it. In his view, the external predictor as described by Rummens and Cuypers, as 

it stands, cannot resolve the paradox. Rummens and Cuypers’ external predictor was by 

definition a disembodied, external observer who, although not part of the universe U, makes 

predictions [Ut = fL ( U0 )] for all future events in U based on perfect knowledge of the initial 

conditions U0 and the law-like function fL (Rummens&Cuypers 2010, p. 234). It follows from 

this definition, according to Gijsbers, that such an external predictor computes future events 

using the same algorithm as the internal ‘predictor’. That is, the external predictor (regardless 

of whether it is disembodied or not) also makes its prediction via a well-defined reasoning 

process, taking the initial state of the universe (U0) and the laws of nature as its input. For this 

reason, it will find itself in exactly the same situation as the embedded, physical predictor, and 

the defeat of one predictor will necessarily result in the defeat of the other (Gijsbers, 2023, p. 

585). Moreover, just because a predictor is assumed to be non-physical does not make it 

external.   

Gijsbers’s conclusion is that if an agent C is capable of the process (algorithm) used to 

compute the prediction P of its behaviour, then any predictor using the same process will be 

equally unpredictable to that system C. Hence, the paradox implies inherent unpredictability, 

and the inability of a predictor to make an accurate prediction will hold regardless of other 

properties of the system, such as whether it is a disembodied or a physical predictor.  

Gijsbers supports his argument with a rigorous formal proof. He argues that the paradox 

of predictability is structurally identical to Alan Turing’s proof of the undecidability of the 

halting problem. Consequently, whatever is true of the former will be true of the predictability 

paradox. For this argument to hold, all that is required, he says, is that the system in question, 

the Universe, “must be able to incorporate the process (algorithmic computational T.I.) that 

generates P’s prediction. If that condition is met, Turing’s formal proof allows us to show that 

P will not, in general, be able to predict the behaviour of the given system” (Gijsbers, 2023, p. 

588). 
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It is well known that the halting problem seeks to answer the question whether there 

exists an algorithm (Turing machine) that determines for an arbitrary algorithm whether it halts 

or runs to infinity for a given input. Alan Turing proved that there is no algorithm that always 

solves the stopping problem correctly. Gijsbers derived the predictability paradox from this 

rigorous formal proof. That is, if the halting problem holds true, then no program can compute 

its own behavior in every case, given its own description as input. Because any program that 

can predict its own behaviour can be used to construct a counter-predictive statement, leading 

to a logical contradiction in any case. From this, he pointed out that exactly the same situation 

occurs in the case of the paradox of predictability, which is why any predictor P (assumed to 

be omniscient) – whether physical or disembodied –,  that attempts to predict what it will itself 

predict about a future decision will inevitably encounter the same logical contradiction.  

 

To summarize: 

 

(I) The paradox of predictability is not dependent on of the necessary conditions specified by 

Rummens and Cuypers.  

 (II) Second, from a certain material condition, which means that the paradox requires that the 

(computational) process of prediction must be able to manifest/be modelled in the given 

universe (Gijsbers, 2023, p. 588). In other words, the universe U must be able to generate the 

process that generates the prediction of P (see also above under point i). If it can, then it can be 

stated that there can never be an internal or external predictor that can outsmart the counter-

predictor.  

(III) It further follows from Proposition II.1 that, by the structural identity that can be drawn 

between Turing’s proof and the predictability paradox, there exists a rigorous formal proof that 

a deterministic system C can never be predicted even by a predictor assumed to be omniscient, 

P. After all, both are associated with a system that tries to predict its own behaviour (self-

prediction) and this will always turn out to be false (Gijsbers, 2023).  

(IV.) So, if the Halting problem is accepted as true, the only philosophical consequence is that 

“Turing’s proof shows that perfect knowledge of perfectly deterministic and perfectly 

determinate laws does not imply complete predictability” (Gijsbers, 2023, p. 590), not even in 

theory.  

Gijsbers believes that the concept of the Turing machine is the real source of the 

contradiction, because all the properties relevant to the proof are common to the machine and 

to mathematics. Thus, it can be considered both a physical device and a mathematical construct, 



 16 

so that it is very easy to cross the boundary of the indeterminacy of a mathematical problem in 

the direction of the indeterminacy of a certain type of physical entity (even human agents) 

(Gijsbers, 2023, p. 595).  

Finally, if the paradox can demonstrate that complete computability is logically 

impossible, the question arises as to what further philosophical implications this might have 

for free will. 

 

7. Concluding remarks – Paradox and the freedom of will 

 

While paradox does indeed disprove total predictability, contradiction does not bring us much 

closer to free will. On the one hand, we do not know whether the world is metaphysically 

indeterministic or deterministic, and on the other hand, we do not know exactly what free will 

means. As I said, there is no consensus on the latter. There are more ambitious libertarian and 

less ambitious compatibilist notions of free will, but the rejection of paradox itself does not 

directly overlap with any of the well-known models of free will.  

At the same time, if we assume – as I outlined at the beginning of this paper – that free 

will certainly implies some action that no predictor can predict, then in line with this concept, 

one of the necessary conditions of free will is the refutation of scientific determinism. In 

addition, the paradox remains invariant to different philosophical isms that conflict on 

fundamental issues. Therefore, the arguments presented above have made a significant 

contribution (Holton, 2013) in removing the most formidable obstacle to free will. Moreover, 

we have achieved this without needing to include any theory other than the one implicit in the 

concept of scientific determinism, or without having to relax the draconian conditions of 

scientific determinism.  
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