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Abstract: Where does the Born Rule come from? We ask: “What is
the simplest extension of probability theory where the Born rule appears”?
This is answered by introducing “superposition events” in addition to the
usual discrete events. Two-dimensional matrices (e.g., incidence matrices
and density matrices) are needed to mathematically represent the differences
between the two types of events. Then it is shown that those incidence and
density matrices for superposition events are the (outer) products of a vector
and its transpose whose components foreshadow the “amplitudes” of quantum
mechanics. The squares of the components of those “amplitude” vectors
yield the probabilities of the outcomes. That is how probability amplitudes
and the Born Rule arise in the minimal extension of probability theory to
include superposition events. This naturally extends to the full Born Rule
in the Hilbert spaces over the complex numbers of quantum mechanics. It
would perhaps be satisfying if probability amplitudes and the Born Rule only
arose as the result of deep results in quantum mechanics (e.g., Gleason’s
Theorem). But both arise in a simple extension of probability theory to include
“superposition events”–which should not be too surprising since superposition
is the key non-classical concept in quantum mechanics.

Keywords: Born Rule, superposition, amplitudes, density matrices, finite
probability theory

1. Introduction

In quantum mechanics (QM), the Born Rule provides the all-important link between
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the mathematical formalism (e.g., the wave function) and experimental results in terms of
probabilities. The rule does not occur in ordinary classical probability theory. Hence one
might ask with Steven Weinberg: “So where does the Born Rule come from?” [21, p. 92]
Can it be derived from the other postulates of QM or must it be assumed as an additional
postulate? There is a vast and sophisticated literature debating these questions–see [16],
[20], [15], and the articles cited therein.

In this paper, a different approach is taken. We ask what is the simplest extension
to classical probability theory where the Born Rule appears? We expand ordinary finite
probability theory by introducing “superposition events” in addition to the usual “discrete”
events. Hence there two versions of events, the usual discrete events as a subset of
the outcome or sample space, and associated with the same subset is a superposition
event where the outcomes in the event are intuitively blurred, blobbed, or cohered
together. The point probabilities for the outcomes are the same in the discrete version
and the superposition version of the event. The difference lies in how the outcomes are
not distinguished from each other in the superposition event since they are blobbed or
superposed together.

If we represent each type of event with a n× 1 column vector of probabilities, then the
two vectors are the same. Therefore to mathematically represent the difference between
these two types of events, we need to add another dimension to form a n × n matrix
where the difference lies in the off-diagonal terms. If the ith and kth outcome are blobbed
together, this is indicated with the i, k off-diagonal element being non-zero. The discrete
events are then represented with diagonal n × n matrices of no non-zero off-diagonal
elements. From that simple difference, probability amplitudes and the Born Rule arise.

How does this extension of probability theory to include superposition events with
matrix representations lead to the Born rule? We will construct the matrices that exhibit
the difference between discrete and superposition events. We will see that if the matrix
represents a single superposition event, then it can be constructed as the “outer product”
of a new column vector times its transpose (a row vector). No such construction is
possible for the diagonal matrices representing discrete events (except in the overlapping
case of a singleton event). Thus these new vectors contain something new that is not
there in the ordinary probability theory for discrete events. The entries in these new
vectors are “probability amplitudes” whose squares give the probabilities of the outcomes
in the superposition event. And that is the Born Rule. This simple case then extends
in a straightforward manner to quantum mechanics where the n × n matrices are density
matrices over the field of complex numbers (so the transpose is then the conjugate transpose
and the squares are the absolute squares). That is the “battle plan” to show where the Born
Rule comes from.

Why superposition events? It is not a coincidence that superposition (including the
special case of entanglement) is the key non-classical notion in quantum mechanics.
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• For instance, superposition, with the attendant riddles of entanglement and reduction,
remains the central and generic interpretative problem of quantum theory. [3, p. 27]

• Some writers use the word “entanglement” to mean or include superposition.1 “The
superposition or ‘entanglement’ of states is a hallmark of quantum mechanics.” [2,
p. 50]

• “In this sense, one can say that the entanglement arising from summation
of probability amplitudes over all possible Feynman paths in the appropriate
configuration space is the distinctive feature of quantum mechanics, the sole
mystery.” [19, p. 248]

Dirac was quite clear on this point from the beginning.

The nature of the relationships which the superposition principle requires
to exist between the states of any system is of a kind that cannot be explained in
terms of familiar physical concepts. One cannot in the classical sense picture
a system being partly in each of two states and see the equivalence of this to
the system being completely in some other state. There is an entirely new idea
involved, to which one must get accustomed and in terms of which one must
proceed to build up an exact mathematical theory, without having any detailed
classical picture. [4, p. 12]

As a purely mathematical notion (as developed here), superposition events along with the
Born Rule could have been (but were not) introduced long before QM. The thesis is that the
Born Rule is not a bug that needs to be “explained” or “justified”; it is just a feature of the
mathematics of superposition events foreshadowed in this minimally expanded probability
theory using only the real numbers–and then extended to the Hilbert spaces over C in
QM. The fact that the Born Rule works to give empirical probabilities is an empirically
corroborated fact. No one can “derive” that empirical fact. Our task is only to develop the
mathematical fact that it arises when probability theory is extended to include a notion of
superposition events in addition to the usual discrete events.

2. Intuitively modeling superposition events

In classical finite probability theory, the outcome (or sample) space is a set U =

{u1, ..., un} (where we assume equal probabilities until different point probabilities are
introduced). An (ordinary) event S is a non-empty subset S ⊆ U . In an (ordinary) event S,

1 The argument by some that it is only entanglement proper that is characteristic of QM, since there is
superposition in classical electromagnetic waves or in water waves, will be addressed below.
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the atomic outcomes or elements of S are considered as perfectly discrete and distinguished
from each other; in each run of the “experiment” or trial, there is the probability Pr(S)

occurring and the probability Pr(T |S) of an event T ⊆ U occurring given that S occurs
(including the case of a specific outcome T = {ui}).

The intuitive idea of the corresponding superposition event, denoted ΣS, is that the
outcomes in the event are not distinguished from each other but are blobbed or cohered
together as an indefinite event. We will see how the concept of superposition yields the
notion of amplitudes as the relative ‘strength’ of the outcomes in the superposition. It is
the rules for dealing with amplitudes that separates quantum probabilities from ordinary
probabilities.

In the two-slit experiment, for example, passage through one slit or the other
is only a distinguishable alternative if a counter is placed behind one of the
slits; without such a counter, these are indistinguishable alternatives. Classical
probability rules apply to distinguishable processes. Nonclassical probability
amplitude rules apply to indistinguishable processes. [18, p. 314]

Hence we are considering the minimal extension of classical probability theory that
includes superposition events and thus also the notion of amplitudes in the superposition.
No physics is involved in this extension; we are only investigating what emerges naturally
from the mathematics with these concepts introduced into otherwise classical probability
theory.

In each run of the “experiment” or trial conditioned on ΣS, the indefinite event is
sharpened to a less indefinite event which is maximally sharpened to one of the definite
outcomes in S. The probabilities of the individual outcomes are assumed to be the
same when conditioned by the discrete event or the superposition event: Pr(ui|S) =

Pr(ui|ΣS) = pi where p = (p1, ..., pn) are the point probabilities.2 In the case of a
singleton event S = {ui}, the ordinary event S = {ui} is the same as the superposition
event ΣS = Σ{ui} = {ui} = S.

There are two fundamentally different ways to interpret superposition: the classical
wave-addition version and the objective indefiniteness version. In the classical
wave-addition version, the superposition of two definite waves is another equally definite
wave as illustrated in Figure 1. There is no hint of indefiniteness.

The appropriate quantum notion of superposition-as-indefiniteness differs from the
classical superposition of electromagnetic waves or even water waves. The ontic difference
is that, in quantum superposition, the superposed definite- or eigen-states are rendered

2 This is not a bug but a feature since in QM, the probabilities of the eigenstates in a superposition are the
same as the probabilities in the corresponding completely decomposed mixed state.
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Figure 1. Classical wave-addition notion of superposition

indefinite on how they differ–which is variously described in the literature as superpositions
being blurry, unsharp, smudged, blunt, cohered, fuzzy, blob-like, dispersed, smeared-out,
indeterminate, spread-out, or indefinite. In contrast, the superposition of two classical
waves is just as definite as the summands.

For a visual illustration of the simple indefiniteness or blurred version of superposition,
consider the real x, y plane with the two definite basis vectors or eigen (= definite) states,
the definite state of “x-ness” (1, 0) and the definite state of “y-ness” (0, 1). Then their
superposition (1, 0)+(0, 1) = (1, 1) should be thought of as the state (equally in this case)
indefinite between the two definite basis (or eigen) vectors as in Figure 2.

Figure 2. The vector (1, 1) as being indefinite between definite basis vectors
(1, 0) and (0, 1)

In contrast, no such blurriness or indefiniteness occurs in the classical superposition
of, say, water or electromagnetic waves. That is why the standard classroom ripple-tank
model of the two-slit experiment is seriously misleading since it represents superposition
classically as the addition of matter waves.

For a suggestive visual example, consider the outcome set U as a pair of isosceles
triangles that are distinct by the labels on the equal sides and the opposing angles as in
Figure 3.
The superposition event ΣU is definite on the properties that are common to the elements
of U , i.e., the angle a and the opposing side A, but is indefinite where the two triangles are
distinct, i.e., the two equal sides and their opposing angles are not distinguished by labels
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Figure 3. Set of distinct isosceles triangles

as illustrated in Figure 4.

Figure 4. The superposition event ΣU

3. Mathematically modeling superposition events (over the reals)

What is a mathematical model that will distinguish between the ordinary discrete event
S ⊆ U and the superposition event ΣS? Using n-ary column vectors in Rn, the ordinary
event S could be represented by the column vector, denoted |S⟩, with the ith entry χS(ui),
where χS : U = {u1, ..., un} → {0, 1} is the characteristic function for S, i.e., χS(ui) = 1

if ui ∈ S, else 0. That vector representation is insufficient to represent whether the elements
of S are superposed or not. Hence to represent the superposition event ΣS, we need to add
a dimension to use two-dimensional n × n matrices to represent the blobbing together or
cohering of the elements of S in the superposition event ΣS by the off-diagonal elements.

An incidence matrix for a binary relation R ⊆ U × U is the n× n matrix In(R) where
In(R)jk = 1 if (uj , uk) ∈ R, else 0. The diagonal ∆S is the binary relation consisting of
the ordered pairs {(ui, ui) : ui ∈ S} and its incidence matrix In(∆S) is the diagonal matrix
with the diagonal elements χS(ui). The superposition state ΣS could then be represented
as In(S × S), the incidence matrix of the binary relation S × S ⊆ U × U , where the
non-zero off-diagonal elements represent the rendering-indefinite, equating, cohering, or
blobbing together of the corresponding diagonal elements in a single superposition event.
If the blobbing together is thought of as a type of equating, then the superposition is like
an equivalence class in an equivalence relation. On the universe set U , the binary relation
U × U is the universal equivalence relation which equates all the elements of U . Thus
S × S is the universal equivalence relation on S which equates all its elements.

Given two column vectors |s⟩ = (s1, ..., sn)
t and |t⟩ = (t1, ..., tn)

t in Rn(where ()t is
the transpose), their inner product is the sum of the products of the corresponding entries
and is denoted ⟨t|s⟩ = (|t⟩)t|s⟩ =

∑n
i=1 tisi.
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To explain “where the Born Rule comes from,” we have to also show how probability
amplitudes arise in our extension of classical probability theory. This is foreshadowed even
at the level of incidence matrices. The outer product |s⟩⟨t| is the n × n matrix denoted as
|s⟩⟨t| = |s⟩(|t⟩)t. The key result, that foreshadows probability amplitudes, is that the outer
product of |S⟩ with its transpose is the incidence matrix representing the superposition
event–and vice-versa.

Theorem 1. Given |S⟩, the outer product |S⟩⟨S| is an incidence matrix of the form In(S×
S), and given an incidence matrix with the form In(S × S), it is obtained as the outer
product |S⟩⟨S|.

Proof: (|S⟩⟨S|)ik = χS(ui)χS(uk) = 1 if and only if (iff) (ui, uk) ∈ S × S.□
This is a key result because it directly connects the outer product of a vector and its

transpose with the notion of superposition (even though the vectors and matrices have only
0, 1 entries). The vector in the outer product foreshadows the vector of “amplitudes” that is
used in the Born Rule and thereby the connection with superposition. Moreover, it might
be noted that |S⟩ is an eigenvector of In (S × S) with the eigenvalue |S| = tr [In (S × S)]

since (where the trace tr [M ] of a square matrix M is the sum of its diagonal elements):

In (S × S) |S⟩ = |S⟩⟨S||S⟩ = |S| |S⟩ = tr [In (S × S)] |S⟩.

These results for incidence matrices foreshadow the corresponding results for pure state
density matrices in the mathematics of QM to be considered below.

If we divided In(∆S) and In(S × S) through by their trace (sum of diagonal elements)
|S|, then we obtain two density matrices:

ρ(S) = In(∆S)
|S| and ρ(ΣS) = In(S×S)

|S| = 1√
|S|

|S⟩⟨S| 1√
|S|

over the reals R. In the case of equiprobable outcomes pi = 1
n , we already have a special

case of the Born Rule for the probability of ui given the superposition event ΣS:

⟨ui| 1√
|S|
S⟩2 = 1

|S|χS(ui).

In general, a density matrix ρ over the reals R (or the complex numbers C) is a
symmetric matrix ρ = ρt (or conjugate symmetric matrix ρ = (ρ∗)t in the case of C)
with trace tr[ρ] = 1 and all non-negative eigenvalues which sum to 1.

The analogue to a probability theory discrete event in QM is a completely discrete (or
decomposed) mixed state. It is not a vector in Hilbert space. A vector in Hilbert space
represents a pure state which is in general a superposition in a given basis and thus it is the
analogue of a superposition event, i.e., superposition event ≈ pure state in QM.

One virtue of density matrices is that they represent both mixed and pure states. A
density matrix ρ is pure if ρ2 = ρ, otherwise a mixture. The existence of the non-zero
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off-diagonal elements in the incidence matrices and thus in the density matrices indicates
the presence of not only superposition but also amplitudes indicating the coherence of the
superposed outcomes.

For this reason, the off-diagonal terms of a density matrix ... are often called
quantum coherences because they are responsible for the interference effects
typical of quantum mechanics that are absent in classical dynamics. [1, p. 177]

Consider the partition π = {B1, B2} = {{♢,♡}, {♣,♠}} on the outcome set U =

{♣,♢,♡,♠} with equiprobable outcomes like drawing cards from a randomized deck.
For instance, the superposition event associated with B1 = {♢,♡}, has a pure density
matrix since (rows and columns labeled in the order {♣,♢,♡,♠}):

ρ(ΣB1) =
1√
|B1|


0

1

1

0


[
0 1 1 0

]
1√
|B1|

= 1
|B1|


0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 =


0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0


equals its square, but density matrix for the discrete event B1:

ρ(B1) =


0 0 0 0

0 1
2 0 0

0 0 1
2 0

0 0 0 0


is a mixture since it does not equal its square.

Intuitively, the interpretation of the superposition event represented by ρ(ΣB1) =

ρ(Σ{♢,♡}) is that it is definite on the properties common to its elements, e.g., in this
case, being a red suite, but indefinite on where the elements differ. The indefiniteness is
indicated by the non-zero off-diagonal elements that indicate that the differences between
the diamond suite ♢ and the hearts suite ♡ are rendered indefinite, blurred, cohered, or
superposed in the superposition state Σ{♢,♡}.

The next step is to bring in general point probabilities p = (p1, ..., pn) where those two
real density matrices ρ(S) and ρ(ΣS) defined above correspond to the special case of the
equiprobable distribution on S with 0 probabilities outside of S.

4. Density matrices with general probability distributions

Let the outcome space U = {u1, ..., un} have the strictly positive point probabilities
p = {p1, ..., pn}. The probability of a (discrete) subset S is Pr(S) =

∑
ui∈S pi and the

conditional probability of T ⊆ U given S is: Pr(T |S) = Pr(T∩S)
Pr(S) . But we have now

reformulated both the usual discrete event S and the new superposition event ΣS in matrix
terms. Hence we need to reformulate the usual conditional probability calculation in matrix
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terms and then apply the same matrix operations to define the conditional probabilities for
the superposition events.

The density matrix ρ(U) for the discrete event U is the diagonal matrix with the
point probabilities down the diagonal. Let PS be the diagonal (projection) matrix with
the diagonal entries χS(ui). Then Pr(S) can be computed by replacing the summation∑

ui∈S pi with the trace formula: Pr(S) = tr[PSρ(U)]. The density matrix ρ(S) for the
classical discrete S is defined as the diagonal matrix with diagonal entries pi

Pr(S) if ui ∈ S,
else 0, which yields the mixture density matrix ρ(S). For ρ(S), the eigenvalues are just the
conditional probabilities Pr({ui}|S) = Pr({ui}∩S)

Pr(S) = pi
Pr(S)χS(ui) for i = 1, ..., n. Then

the conditional probability Pr(T |S) is reproduced in the matrix format as:

Pr(T |S) = tr[PTρ(S)].

The previously constructed density matrix ρ(ΣS) = 1√
|S|

|S⟩⟨S| 1√
|S|

for the

superposition event ΣS was for the special case of equiprobable outcomes. In the general
case of point probabilities, the normalized column vector 1√

|S|
|S⟩ is generalized to the

normalized |s⟩ where the ith entry, symbolized ⟨ui|s⟩, is the amplitude
√

pi
Pr(S) if ui ∈ S,

else 0. Then ρ(ΣS) = 1√
|S|

|S⟩⟨S| 1√
|S|

generalizes to ρ(ΣS) = |s⟩⟨s| which is a pure

state since:

ρ(ΣS)2 = |s⟩ ⟨s|s⟩ ⟨s| = tr[|s⟩⟨s|]|s⟩⟨s| = |s⟩⟨s| = ρ(ΣS).

For the pure density matrix ρ(ΣS), there is one eigenvalue of 1 with the rest of the
eigenvalues being zeros (since the sum of the eigenvalues is the trace). Given just ρ(ΣS),
the vector |s⟩ is recovered (up to sign) as the normalized eigenvector associated with
the eigenvalue of 1 and ρ(ΣS) = |s⟩⟨s|.3 The “amplitude” vector |s⟩ arises from the
representation of ρ(ΣS) as an outer product (foreshadowed even for incidence matrices)
and the Born Rule mathematically arises in this extended probability theory as:

⟨ui|s⟩2 = pi
Pr(S)χS(ui) = Pr (ui|S).

The probabilities computed for the classical and superposition events will be the
same–which is a feature, not a bug, since the same thing occurs in quantum mechanics.4 It
is the interpretation, not the probabilities, that are different for the two types of events. For
discrete events, the given discrete event S is reduced by conditioning to the discrete event

3 This is by the spectral decomposition of that real density matrix as a Hermitian matrix.
4 For instance, a spin measurement along, say, the z-axis of an electron cannot distinguish between the

superposition state 1√
2
(| ↑⟩ + | ↓⟩) with a density matrix like ρ(ΣU) and a statistical mixture of half

electrons with spin up and half with spin down with a density matrix like ρ(U) [1, p. 176]. A measurement
in a different basis is necessary to distinguish them.
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T ∩S. For superposition events, the given superposition event ΣS is sharpened (i.e., made
less indefinite) to the superposition event Σ(T ∩ S).

5. The math of indefiniteness/definiteness: Partitions

Since superposition is interpreted in terms of an indefinite combination of the definite
(eigen-) states (not as the addition of definite waves to give a definite wave), we can
reformulate the mathematics in terms of partitions. A partition π = {B1, ..., Bm} on
U is a set of non-empty subsets, called blocks, Bj ⊆ U that are disjoint and whose
union is U . Partitions (or equivalence relations) are the natural mathematics to represent
indefiniteness (within a block or equivalence class) and definiteness (between blocks or
equivalence classes). Taking each block Bj as a superposition event, then there is the
normalized column vector |bj⟩ whose ith entry is ⟨ui|bj⟩ =

√
pi

Pr(Bj)
χBj (ui) and the pure

state density matrix ρ(ΣBj) = |bj⟩⟨bj | for the superposition subset ΣBj . Then the density
matrix ρ(π) for the partition π is just the probability sum of those pure density matrices for
the superposition blocks:

ρ(π) =
∑m

j=1 Pr(Bj)ρ(ΣBj).

The eigenvalues for ρ(π) are the m probabilities Pr(Bj) =
∑

ui∈Bj
pi with the remaining

n−m values of 0. Then ρ (π)ik = √
pipk if (ui, uk) is an indistinction of π, i.e., (ui, uk) ∈

Bj ×Bj for someBj ∈ π, and otherwise zero. Thus ρ (π)ik is an indistinction (coherence)
amplitude in the sense that its square is the probability in two random draws from U of
getting the ordered pair (ui, uk) as an indistinction of π.

Given two partitions π = {B1, ..., Bm} and σ = {C1, ..., Cm′}, the partition π refines
the partition σ, written σ ≾ π, if for each block Bj ∈ π, there is a block Cj′ ∈ σ such
that Bj ⊆ Cj′ . The partitions on U form a partial order under refinement. The maximum
partition or top of the order is the discrete partition 1U = {{ui}}ni=1 where all the blocks
are singletons. The minimum partition or bottom is the indiscrete partition 0U = {U}
with only one block U where all the elements of U are blobbed together. Then the density
matrices for these top and bottom partitions are just the density matrices for the discrete set
U and the superposition set ΣU . The pure state density matrix ρ (ΣU) has an eigenvalue
of 1 and the associated eigenvector is |u⟩ so that ρ(ΣU) = |u⟩⟨u|.

Theorem 2. ρ(1U ) = ρ(U) and ρ(0U ) = ρ(ΣU) = |u⟩⟨u|.

The same holds if we cut down to any event Bj ⊆ U , which comes in the two forms,
i.e., ρ(1Bj ) = ρ(Bj) and ρ(0Bj ) = ρ(ΣBj) = |bj⟩⟨bj |. Since 0S represents the
blobbing together of the elements of S and 1S represents the discrete set S, i.e., the event
S in ordinary finite probability theory, this result using partitions verifies the previous
mathematical treatment of superposition events ΣS as opposed to discrete events S.
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Partitions show the difference. ΣS is the equivalence class that is the single block in the
indiscrete partition 0S and S is the set of discrete elements in the discrete partition 1S of
singletons of the elements of S.

This treatment of superposition events can be further confirmed. Let supp (ψ) ⊆ U

be the support set of |ψ⟩ (the set of ui ∈ U with non-zero coefficients ⟨ui|ψ⟩ in |ψ⟩ =∑n
i=1 ⟨ui|ψ⟩ |ui⟩) and let supp (ρ) be the 0, 1 matrix giving the pattern of zero and non-zero

entries in ρ, i.e., supp (ρ)ik = 1 if ρik ̸= 0, else 0. Then we have the following result
about the pattern of zero and non-zero entries in any pure state density matrix in QM. The
result connects superposition events and pure state density matrices in QM. It confirms our
original treatment of superposition events ΣS being represented by In (S × S).5 Let |ψ⟩
be a normalized state vector and ρ = |ψ⟩⟨ψ| the corresponding pure state density matrix in
QM.

Theorem 3. supp (ρ) = In (supp (ψ)× supp (ψ)).

Proof: Since the complex numbers are a field (as opposed to only a ring), a product of
two entries ⟨ui|ψ⟩ and ⟨ψ|uk⟩ in ρ = |ψ⟩⟨ψ| is non-zero if and only if the two entries are
non-zero if and only if ui, uk ∈ supp (ψ), i.e., (ui, uk) ∈ supp (ψ)× supp (ψ).□

The situation can be illustrated by considering the case of flipping a fair coin. The
classical set of outcomes U = {H,T} is represented by the density matrix and Figure 5:

ρ(U) =

[
1
2 0

0 1
2

]
.

Figure 5. Classical event: A trial picks out heads or tails

The superposition event ΣU , that blends or superposes heads and tails, is represented by
the density matrix and Figure 6:

ρ(ΣU) =

[
1
2

1
2

1
2

1
2

]
.

The probability of getting heads in each case is:

5 This result also illustrates the connection between full QM and the pedagogical model of “quantum
mechanics over support sets” or QM/Sets where superposition sets in QM/Sets are the set version of pure
states in QM ([5]; [11]).
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Figure 6. Superposition event: A trial sharpens to heads or tails

Pr(H|ρ(U)) = tr[P{H}ρ(U)] = tr[

[
1 0

0 0

][
1
2 0

0 1
2

]
] = tr

[
1
2 0

0 0

]
= 1

2

Pr(H|ρ(ΣU)) = tr[P{H}ρ(ΣU)] = tr[

[
1 0

0 0

][
1
2

1
2

1
2

1
2

]
] = tr

[
1
2

1
2

0 0

]
= 1

2

and similarly for tails. Thus the two conditioning events U and ΣU cannot be distinguished
by performing an experiment or trial that distinguishes heads and tails. As noted, this is a
feature, not a bug, since the same thing occurs in quantum mechanics. In QM, they can only
be distinguished by measurement in a different observable basis (see [6] for an example).

The density matrix ρ(1U ) for the discrete partition 1U is the density matrix ρ(U) for
the classical discrete set U which is like a “ statistical mixture describing the state of a
classical dice before the outcome of the throw.” [1, p. 176] In the logic of partitions (or
equivalence relations) [9] and its quantitative version, logical information theory based on
logical entropy [7], the distinctions or dits of a partition π = (B1, ..., Bm) on U are the
ordered pairs in U × U whose elements are in different blocks of the partition. The set
of all distinctions is the ditset dit(π) = ∪m

j,k=1;j ̸=kBj × Bk. The complementary set in
U ×U is the set of all indistinctions or indits (ordered pairs of elements in the same block)
is indit(π) = ∪m

j=1Bj ×Bj which is the equivalence relation associated with the partition
π. In the lattice of partitions on U , the top discrete partition represents classicality while all
the partitions below it represent states in the quantum “underworld” since they all involve
a non-singleton block, i.e., a superposition set.[12] The classical (non-quantum) nature of
the discrete partition 1U and its density matrix ρ(U) is shown by that partition and only
that partition satisfying the:

Partition version of Leibniz’s Principle of Identity of Indistinguishables

If (u, u′) ∈ indit(1U ), then u = u′. .

That is, if u, u′ ∈ U are indistinguishable by the discrete partition, i.e., (u, u′) ∈ indit(1U ),
then they are identical. This is trivial mathematically since indit(1U ) = ∆ = {(ui, ui) :
ui ∈ U}.
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6. Conclusion: The Born Rule

The Born Rule does not occur in ordinary classical probability theory because that
theory does not include superposition events and the accompanying amplitudes (that come
from representing the density matrix of a superposition event as an outer product). When
superposition events are introduced into the purely mathematical theory (over the reals),
then the probability of outcomes can be computed as the squares of the coefficients in the
normalized amplitude vector |s⟩ associated with the superposition event ΣS.

We have seen that pure state density matrices ρ(ΣS) can be constructed as the outer
product ρ(ΣS) = |s⟩⟨s| where |s⟩ is the n-ary ket vector with the ith entry as the amplitude

⟨ui|s⟩ =
√

pi
Pr(S)χS(ui) =

√
Pr({ui}∩S)

Pr(S) . Or starting with the pure state density matrix

ρ(ΣS) = ρ(ΣS)2, then |s⟩ is obtained (up to sign) as the normalized eigenvector associated
with the eigenvalue of 1 and ρ(ΣS) = |s⟩⟨s| is obtained as the spectral decomposition of
ρ(ΣS) as a Hermitian matrix.

The probability of ui conditioned on the superposition event ΣS is:

Pr(ui|ΣS) = tr[P{ui}ρ(ΣS)] =
pi

Pr(S)χS(ui).

The point is that this same probability conditioned by the two-dimensional n × n density
matrix ρ(ΣS) could also be obtained from the ket vector |s⟩ of amplitudes as the square of
the amplitudes:

⟨ui|s⟩2 = Pr(ui|ΣS).
The Born Rule (special case of real density matrices)

In classical finite probability theory, the events S are all discrete sets that can be
represented by n-ary columns of non-negative numbers, i.e., a 0, 1-vector to represent
the elements of S or the vector of the probabilities pi

Pr(S)χS(ui). The associated n × n

diagonal density matrix ρ(S) for the classical discrete event S is not the outer product
of a one-dimensional vector with itself (except when S is a singleton, i.e., the null case
of superposition). It has no non-zero off-diagonal elements indicating the blurring or
cohering together of the elements of S. Thus the outcomes in a classical discrete event
have probabilities, not amplitudes.

To accommodate the notion of a superposition event ΣS, it is necessary to use
two-dimensional n×n density matrices ρ(ΣS) where the non-zero off-diagonal amplitudes
indicate the blobbing or cohering together in superposition of the elements associated with
the corresponding diagonal entries. And mathematically those density matrices ρ(ΣS),
unlike ρ(S), can be constructed as the outer products |s⟩(|s⟩)t = |s⟩⟨s| of ket vectors
|s⟩ of amplitudes. Then the probability of the individual outcomes ui conditioned by the
superposition event ΣS is given as the square of amplitudes: ⟨ui|s⟩2 = pi

Pr(S)χS(ui).
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Thus the Born Rule arises naturally out of the mathematics of probability theory
minimally enriched over the reals by superposition events and their associated amplitudes.
Developing the probability theory enriched by superposition events over the complex
numbers yields the mathematics of probabilities in quantum mechanics. In the Hilbert
spaces over the complex numbers C of quantum mechanics, the components in |s⟩ may be
complex (and the bra ⟨s| is the conjugate transpose of the corresponding ket) so the square
⟨ui|s⟩2 is then the absolute square |⟨ui|s⟩|2. But that introduces nothing new in principle
over what we have shown here with real matrices arising from the extension of ordinary
probability theory with superposition events.

The fact that the Born Rule works in QM is an empirical fact that cannot be derived
from any probability theory (enriched with superposition events or not and over the reals
or complex numbers).

Does this treatment of the Born Rule have any implications for the “demolition derby”
of interpretations of QM? It is not the Born Rule itself but the interpretation of superposition
in terms of indefiniteness (rather than classical wave addition), that points toward what
Abner Shimony called the “Literal Interpretation.”

Heisenberg [14, p. 53] used the term “potentiality” to characterize a
property which is objectively indefinite, whose value when actualized is a
matter of objective chance, and which is assigned a definite probability by
an algorithm presupposing a definite mathematical structure of states and
properties. ...These statements, together with the theses about potentiality, may
collectively be called "the Literal Interpretation" of quantum mechanics. This
is the interpretation resulting from taking the formalism of quantum mechanics
literally, as giving a representation of physical properties themselves, rather
than of human knowledge of them, and by taking this representation to be
complete. [17, pp. 6-7]

This is the interpretation held implicitly by a non-philosophical quantum physicist who
considers a superposition state as having objectively indefinite values of an observable
prior to a state reduction. [12]

How does this treatment of the Born Rule compare to the other “derivations” or analyses
in the literature, e.g., [16], [20], [15], and the articles cited therein–including Gleason’s
Theorem [13]? The answer is simply that those treatments work within the full Hilbert
space framework of QM whereas our analysis has shown that the Born Rule and probability
amplitudes arise at the much more elementary mathematical level of adding superposition
events to the usual discrete events in probability theory.

Given the ‘mystery’ that surrounds QM, it would perhaps be gratifying if the Born
Rule was some deep theorem (like the Spin-Statistics Theorem). But the Born Rule
does not need any more-exotic or physics-based explanation. Perhaps it is something of
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a ‘disappointment’ that the Born Rule emerges as just a somewhat mundane feature of
the mathematics of superposition-enriched probability theory. But superposition is, not
coincidentally, the key non-classical feature of quantum mechanics so, in short, the answer
to Weinberg’s question: “So where does the Born Rule come from?” is “superposition.”
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