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Abstract  

This article describes confirmation of the proposition that numbers are identified with 

operators in the following three steps. 1. The set of operators to construct finite cardinals 

satisfies Peano Axioms. 2. Accordingly, the natural numbers can be identified with these 

operators. 3. From the operators, five kinds of operators are derived, and on the basis of the 

step 2, the integers, the fractions, the real numbers, the complex numbers and the quaternions 

are identified with the five kinds of operators respectively. These operators stand in a 

sequential inclusion relationship, in contrast to the embedding relationship between those 

kinds of numbers defined as sets.  
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1. Introduction 

  Our intuitive conception of a natural number would be the number of elements of a 

finite set, such as the number of the people in a room, namely, finite cardinals. Then, a 

cardinal is a common property to the sets with the same number of elements, where the same 

number is defined using a bijection between the sets. That is, a cardinal is the set of the sets 

related by bijections. Thus, a natural number is defined as the set of these sets. Russell (1919) 

and Holmes (1998) give this definition of the natural numbers. 

Then, ‘the set of the sets with the same number of elements’ in this definition can be 

replaced with a different formulation. Since the sets with a cardinal have a common structure 

preserved under bijections between them, this structure is identified with the cardinal. For 

instance, three persons in a room sitting on three chairs respectively make a set of cardinal 3.  

Then, any combination of three persons is a set of cardinal 3. These sets have a common 

structure regardless of the combinations of three persons, i.e., the room with the three chairs. 

The chairs represent spaces where persons occupy in the room. The spaces differ each other 

and any person or objects in general can occupy any space one to one. These spaces are 

denoted by s. Then, the structure of the sets of cardinal 3 is represented by {s, s, s}. These 

three ss are spaces different each other to situate different objects, but are not differentiated as 

components with the same capacity in the structures, like chairs in a room or bricks in a brick 

wall.  By assigning any three objects to the three ss in {s, s, s}, sets of cardinal 3 are acquired, 

for example, {Socrates, the Earth, Eiffel Tower}, and this structure keeps constant between 

the sets related by bijections. This structure is equivalent with the set of the sets with three 

elements or cardinal 3. Thus, the above definition of cardinals is equivalent with that based 

on the structures stated above.       

To define the natural numbers, Russell (1919) constructs the natural numbers from the 

null set and a successor function. The successor function is the operator to add a new element 

to each of the sets with a finite cardinal, say n, to construct the sets with the cardinal n+1. 

Then, the set of finite cardinals satisfies Peano Axioms. Thus, the natural numbers can be 
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defined as the set of the cardinals related by the successor function with the null set as the 

beginning of the relation.  

    In the case of cardinals defined as set structures, the successor function is the operator 

to add a new space to a set structure with, say n spaces, to construct the set structure with n+1 

spaces. As the beginning of the construction of cardinals, let the set structure with no space 

introduce into the set of set structures, which defines the cardinal 0, and is denoted by  ∅. The 

operator ‘addition of a new space s to a set structure ’ is denoted by 𝑃(𝜂). For example,  

P(∅) = {𝑠}, P(P(∅)) = P({𝑠}) = {𝑠, 𝑠}.  

The set of all set structures constructed in this way is supposed to satisfy Peano Axioms. If 

this is the case, the natural numbers can also be defined as the set of the set structures 

constructed in this way.  

Corresponding to the set of these set structures, the operators to construct them, which 

are iterations of P operating on ∅, form a set. If the set of the set structures satisfies Peano 

Axioms, this set of operators should also satisfies Peano Axioms. Then, there is a possibility 

that the natural numbers are identified with these operators. In general, operators are 

components of the world different from sets. They transform objects and cause various 

phenomena. Addition, for instance, is an action that creates an object from objects, but sets 

are not action or do not possess action as their attribute. In other words, the extension of an 

operator, such as the set of ordered pairs, do not have the capacity of the operation to create 

something in the world. Therefore, I try to construct operators based on the operator P with 

which the natural numbers are identified. If this is possible, we can further suppose that there 

may exist certain extensions of the operators with which the integers, the fractions, or others 

are identified. These anticipations are examined in the following sections.  

 

 

2. The natural numbers N 

The set of all the set structures constructed from iterations of P on ∅ is denoted by 

[N]. For this construction, it is postulated that whenever P operates on a set structure, a new 

space not in the set structure exists. Then, it can be shown that [N] with P as a successor 

function satisfies the following Peano Axioms:  

 

1.0 ∈ N;  

2. For any 𝑛 ∈ N, there is only one 𝑛′ ∈ N, where ′ is a successor function, ;  
3.  For any 𝑛, 𝑚 ∈ N, if 𝑛 ≠ 𝑚, then, 𝑛′ ≠ 𝑚′ ;   
4.  There is no 𝑛 ∈ N,  such that 𝑛′ = 0 ;  

5. If S ⊆ N such that 0 ∈ S, and for all 𝑛 ∈ S , 𝑛′ ∈ S , then S = N.  
 

The proof is as follows.  

1. ∅ ∈ [N],  by the definition of ∅.  

2. There is only one P(𝜂) ∈ [N] for any 𝜂 ∈ [N]. This is obvious by the definition of [N].    

3. Let 𝛼, 𝛽 ∈ [N] and 𝛼 ≠ 𝛽, then, P(𝛼) = {𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒𝑠 𝑖𝑛 𝛼, 𝑠},  and P(𝛽) =
{𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒𝑠 𝑖𝑛 𝛽, 𝑠}.  Since there is no bijection between  and , so is no bijection between 

P() and P(). Thus, P(𝛼) ≠ P(𝛽).  

4. There is no such  that P(𝜂) = ∅. This is obvious by the definition of ∅.  

5. Let 𝑆 ⊆ [N], ∅ ∈ S, and for any 𝜂 ∈ S , P(𝜂) ∈ S. If S ≠ [N], there exists 𝜒 ∈ [N] such that 

𝜒 ∉ 𝑆. Let the first element with respect to P within 𝜒 ∉S be . Then there exists 𝛼 ∈ S such 

that P(𝛼) = 𝛽, which is followed by P(𝛼) ∈S. Hence, there is no such . That is, S = [N].  
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P(P(P ⋯ (η) ⋯ )) is denoted by 𝑃 ∗ 𝑃 ∗ 𝑃 ∗ ⋯ (𝜂). Iteration of P, P ∗ P ∗ P ⋯, is 

called a connection of Ps, and the iteration times of P in the connection is called it-times, and 

P is called it-unit of the connection.  

[N] is constructed by operating connections of Ps on ∅ without limit. Then, [N] do not 

include the set structure with infinitely many elements, which is the limit that the 

construction of operators cannot reach.     

Since construction of [N] follows corresponding construction of operators, i.e. 

connections of Ps, these operators also form a set. This set plus the operator that adds no 

space to a set structure, denoted by 𝑃0,  is denoted by [𝑁𝑜]. Then, it is obvious that [No] also 

satisfies Peano Axioms with P ∗  as the successor function.  

 

1. P0 ∈ [No] ;   
2. If  𝑎 ∈ [No], then  P ∗ 𝑎 ∈ [No] ;  
3. If 𝑎 ≠ 𝑏 for 𝑎, 𝑏 ∈ [No], then, P ∗ 𝑎 ≠ P ∗ 𝑏 ;          

4. There is no 𝑏 ∈ [No] such that P ∗ 𝑏 = P0 ;  

5. If S ⊆ [𝑁𝑜], Po ∈ S and for all 𝑛 ∈ S, P ∗ 𝑛 ∈ S, then S = [No].   
 

The definition of addition between elements of [N] follows addition between elements 

of [No]. It would be natural that the latter addition is connection of the elements with ∗ to 

form a connection of Ps.  

• Definition of addition on [No].   
For 𝑎, 𝑏 ∈ [No],  
𝑎 + 𝑏 = 𝑎 ∗ 𝑏.  

 

This addition satisfies Peano Axioms on addition:  

1. ∀𝑥(𝑥 + 0 = 𝑥) ;  

2. ∀𝑥∀𝑦(𝑥 + 𝑦′ = (𝑥 + 𝑦)′).  

 

By the definition of addition stated above,  

1. For any 𝑥 ∈ [No], 𝑥 + P0 = 𝑥 ∗ P0 = 𝑥 ;  

2. For any 𝑥, 𝑦 ∈ [No], 𝑥 + P ∗ 𝑦 = 𝑥 ∗ (P ∗ 𝑦) = 𝑥 ∗ P ∗ 𝑦 = P ∗ 𝑥 ∗ 𝑦 = P ∗ (𝑥 ∗ 𝑦), 

because x is a connection of Ps.  

Thus, this addition satisfies those axioms.  

                                                          

Since every element of [No] is a simple iteration of Ps by ∗, there is no order of Ps in 

the connection. That is, addition of elements of [No] is irrelevant to the order of connection 

of Ps in the elements. Therefore, the commutative law and associative law hold for this 

addition. Then, Po is the additive identity for this addition.    

An operator a, an iteration of P it-times in a, is denoted as 𝛴𝑎𝑃. Then,  

𝑎 + 𝑏 = 𝑎 ∗ 𝑏 = Σ𝑎P ∗ ΣbP = Σ𝑎+𝑏P.  

This is the connection of Ps it-times of P in a plus those in b.  

Addition between elements of [N] follows from addition in [No].  
For 𝛼, 𝛽 ∈ [N] , there are 𝑎, 𝑏 ∈ [No] such that  

𝛼 = 𝑎(∅) and 𝛽 = 𝑏(∅).  

 

Then, addition of  and  is defined as  

𝛼 + 𝛽 = 𝑎 ∗ 𝑏(∅).  

Naturally, Peano Axioms on addition hold for [N] with this addition.  

The associative law and commutative law also hold for [N], where ∅ is the additive identity.           
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• The conception of multiplication 𝑎 × 𝑏 for 𝑎, 𝑏 ∈ [No], is iteration of a it-times of P in b, 

i.e. a is regarded as the it-unit of 𝑎 × 𝑏. Then, multiplication on [No] is defined as   

 𝑎 × 𝑏 = Σ𝑏𝑎  

 

Then, Peano Axioms on multiplication  

1. ∀𝑥(𝑥 × 0 = 0) ;  

2. ∀𝑥∀𝑦(𝑥 × 𝑦′ = 𝑥𝑦 + 𝑥) ;  

are satisfied by this definition in the following way.  

 

1. For any 𝑎 ∈ [No],  𝑎 × P𝑜 = Σ𝑃𝑜𝑎 = P𝑜;   

2. 𝑎 × (𝑃 + 𝑏) = Σ𝑃∗𝑏𝑎 = Σ𝑃𝑎 ∗ Σ𝑏𝑎 = 𝑎 ∗ Σ𝑏𝑎 = Σ𝑏𝑎 ∗ 𝑎 = 𝑎 × b + 𝑎.  

Since  

𝑎 × 𝑃 = Σ𝑃𝑎 = 𝑎, 

P is the unit element for this multiplication.  

 

The associative law and commutative law of this multiplication and the distributive 

law for [No] can be proved by simply comparing the it-times of P in the right side and the left 

side of each of the following equations.  

1. 𝑎 × 𝑏 = 𝑏 × 𝑎 ;  

2.𝑎 × (𝑏 × 𝑐) = (𝑎 × 𝑏) × 𝑐 ;  

3.𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).  

I omit the proofs of these equations.   

   

For 𝛼, 𝛽 ∈ [N], let 𝛼 = 𝑎(∅) and 𝛽 = 𝑏(∅)), where 𝑎, 𝑏 ∈ [No]. Then, multiplication 

of  and  is defined as  

𝛼 × 𝛽 = (𝑎 × 𝑏)(∅).  

 

Naturally this multiplication satisfies Peano Axioms on multiplication. The commutative law, 

associative law and distributive law also hold for [N], according to those that hold for [No].  
The elements of [N] formed according to the construction of the set structures are 

ordered by the numbers of spaces in the set structures, i.e. ∅ < {𝑠} < {𝑠, 𝑠} < {𝑠, 𝑠, 𝑠}, 

which is a total order. The elements of [No] , which correspond to set structures, are also 

ordered by their it-times of P.  

As a result of the discussion stated above, N is defined as [N]. At the same time, N 

can be identified with the set of operators [No]. This would be another viewpoint on the 

natural numbers, in contrast to that based on the numbers of elements in sets. The following 

discussion is constructed on this operator-based viewpoint on numbers.    

 

3. The integers Z 

There is an operator that operates on P to reverse the direction of its operation, that is, 

from addition of a space to a set structure to subtraction of a space from a set structure. This 

operator is denoted by −. For 𝑎 ∈ [No], −𝑎(𝜂) is the operator that subtract spaces one by one 

the it-times of P in a from the set structure . Since  

𝑎 ∗ −𝑎 = 𝑃𝑜,  

−a is the inverse element of a.  The operator that does not vary the direction of P is denoted 

by +′: +′𝑎 = 𝑎. The parameter that ranges over the set {+′, −} is denoted by . Then the set 

of ∆𝑎, for 𝑎 ∈ [No] is denoted by [∆𝑁𝑜].  
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• Addition on [∆No] is defined by extending that on [No].  
For 𝑎, 𝑏 ∈ [ΔNo],  
𝑎 + 𝑏 = 𝑎 ∗ 𝑏.  

 

The additive identity is P0:  𝑎 + 𝑃𝑜 = 𝑎 ∗ P𝑜 = 𝑎. 

The inverse element of 𝑎 ∈ [ΔNo] is −a.  

 

An operator that is a connection of it-unit operator P is irrelevant to the order of it-unit 

operators in the connection. Hence, this addition satisfies the associative law and 

commutative law. There are cases where the results of the operations by operators of [∆No] 
on set structures do not exist in [N], e.g. −P(∅). However, operators themselves can be 

constructed from operators in [No], which have results of their operations.  

 

• Multiplication on [∆No] is also defined by extending that on [No].  
For 𝑎, 𝑏 ∈ [No], ∆𝑎 × ∆𝑏 is iteration of ∆𝑎 it-times of P in b in the direction of the  in b, 

which is denoted as  

∆𝑎 × ∆𝑏 = Σ∆𝑏Δ𝑎.   

 

For example,  

∆𝑎 × (+′P) = ΣPΔ𝑎 = ∆𝑎   

i.e. The operator +′P = P is the unit element for this multiplication;  

∆𝑎 × (−P) = Σ−PΔ𝑎 = −∆𝑎.  

Then, the following equations hold. 

∆P𝑜 = Po ;        

∆𝑎 × P𝑜 = Po;  

𝑎 × 𝑏 = (+′𝑎) × (+′𝑏) = (−𝑎) × (−𝑏) = +′(𝑎 × 𝑏) ;  

(−𝑎) × (+′𝑏) = (+′𝑎) × (−𝑏) = −(𝑎 × 𝑏).  

 

• The associative law of this multiplication is derived using mathematical induction. For 

𝑎, 𝑏 ∈ [∆No],  
1. 𝑎 × (𝑏 × ∆P) = 𝑎 × ∆𝑏 = ∆(𝑎 × 𝑏) = (𝑎 × 𝑏) × ∆P  (1)  

2. To the next step of the proof, the distributive law  

𝑏 × (𝑐 + 𝑑) = (𝑏 × 𝑐) + (𝑏 × 𝑑) for 𝑐, 𝑑 ∈ [∆N𝑜],   
 is necessary. Let 𝑑 = ∆P, then, 

𝑏 × (𝑐 + ∆P) = Σ𝑐+∆P𝑏 = (𝑏 × 𝑐) + (b × ∆P)  (2).  

By the induction hypothesis,  

𝑏 × (𝑐 + (𝑑 + ∆P)) = 𝑏 × ((𝑐 + 𝑑) + ∆P) = 𝑏 × (𝑐 + 𝑑) + ∆𝑏 = (𝑏 × 𝑐) + (𝑏 × 𝑑) +
∆𝑏 = (𝑏 × 𝑐) + (𝑏 × (𝑑 + ∆P))  (3).  

Thus, the distributive law follows from the equations (2) and (3). Hence, 

𝑎 × (𝑏 × (𝑐 + ∆P)) = 𝑎 × ((𝑏 × 𝑐) + ∆𝑏)= 𝑎 × (𝑏 × 𝑐) + ∆(𝑎 × 𝑏)  (4).  

On the other hand. 

(𝑎 × 𝑏) × (𝑐 + ∆P) = (𝑎 × 𝑏) × 𝑐 + ∆(𝑎 × 𝑏)  (5).  

By the induction hypothesis, the formula (5) is equivalent with the formula (4). Hence, the 

associative law follows from the equations (1), (4), and (5); (ab)c can be denoted as 

abc.  

 

• The commutative law  

𝑎 × 𝑏 = 𝑏 × 𝑎  

is proved in the similar way as the associative law.       
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1.𝑎 × ∆P = ∆P × 𝑎  (6).  

2.𝑎 × (𝑏 + ∆P) = 𝑎 × 𝑏 + ∆𝑎  (7).  

3. To prove (𝑏 + ∆𝑃) × 𝑎 = 𝑏 × 𝑎 + ∆𝑎  (8),  

The distributive law, (𝑎 + 𝑏) × 𝑐 = 𝑎 × 𝑐 + 𝑏 × 𝑐, is necessary in advance.  

In the first place,  

(𝑎 + 𝑏) × ∆P = 𝑎 × ∆P + 𝑏 × ∆P.  

By the induction hypothesis, 

(𝑎 + 𝑏) × (𝑐 + ∆P) = ((𝑎 + 𝑏) × 𝑐) + ∆(𝑎 + 𝑏) = 𝑎 × 𝑐 + 𝑏 × 𝑐 + ∆𝑎 + ∆𝑏.  

On the other hand,  

𝑎 × (𝑐 + ∆P) + 𝑏 × (𝑐 + ∆P) = 𝑎 × 𝑐 + ∆𝑎 + 𝑏 × 𝑐 + ∆𝑏.  

Thus,  
(𝑎 + 𝑏) × (𝑐 + ∆P) = 𝑎 × (𝑐 + ∆P) + 𝑏 × (𝑐 + ∆P) = 𝑎 × 𝑐 + ∆𝑎 + 𝑏 × 𝑐 + ∆𝑏.  

Accordingly, the distributive law, hence, equation (8), holds. Therefore, the commutative law 

follows from the equations (6), (7), and (8).  

 

• The distributive law has been proved in the course of the above two proofs.  

 

The order relation in [No] can be extended to [∆No] by ordering −a for 𝑎 ∈ [N𝑜], as 

inverse order of 𝑎 ∈ [No] and combining this order with that in [No]. Thus, the set of integers 

Z is identified with [∆No], which is written by [Z].     

 

4. The fractions Q     

When 𝑎 = 𝑏 × 𝑐 = Σ𝑐𝑏 for 𝑎, 𝑐 ∈ [Z], an operator to construct b from a and c can be 

defined as a divided equally it-times of P in c. This operator is denoted by ÷ (𝑎, 𝑐) or ac. 

When P = 𝑏 × 𝑐, P ÷ 𝑐 is the inverse element of c, which is denoted by Pc: P divided equally 

it-times of P in c, so it is a part of P. Thus, Pc is associative and commutative with P. Then, 

  

P ÷ P𝑐 = 𝑐 ;      

P ÷ P = PP = P by definition;  

𝑎 ÷ 𝑐 = (𝑎 × (Pc × 𝑐)) ÷ 𝑐 = ((𝑎 × P𝑐) × 𝑐) ÷ 𝑐 = Σ𝑐(𝑎 × P𝑐) ÷ 𝑐 = 𝑎 × Pc.  

 

Except for the case 𝑥 = P, the inverse element of 𝑥 ∈ [Z], Px, is not a member of [Z]. 

The set of operators ÷ (𝑥, 𝑦) (= P𝑦 × 𝑥, for 𝑥, 𝑦 ∈ [Z]) is written by [Q]. It should be noted 

that ÷ (𝑥, P0) cannot be constructed. By the definition,  

÷ (𝑎, P) = 𝑎, for 𝑎 ∈ [Z]. 
That is, (a, P) and a are the same operators. Therefore,  
[𝑍] ⊂ [Q].       
 

• Since P𝑥 is the same kind of operator as P, addition of P𝑦 × 𝑥 is defined as ∗.  

P𝑎 × 𝑚 + Pb × 𝑛 = P𝑎 × 𝑚 ∗ Pb × 𝑛 = P𝑎×𝑏 × (𝑚 × 𝑏) ∗ P𝑏×𝑎 × (𝑛 × 𝑎) =
𝛴𝑚×𝑏∗𝑛×𝑎P𝑎×𝑏 = P𝑎×𝑏 × (𝑚 × 𝑏 + 𝑛 × 𝑎) , for 𝑎, 𝑏, 𝑚, 𝑛 ∈ [𝑍].  
 

For 𝑥 ∈ [Q], 
 𝑥 + P0 = 𝑥, and 𝑥 + (−𝑥) = P0.  

Thus, additive identity and the inverse element of x for the addition are P0 and −x 

respectively.  

 

• The associative law   
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P𝑎 × 𝑚 + (P𝑏 × 𝑛 + Pc × 𝑘) = P𝑎 × 𝑚 + Pb×c × (𝑛 × 𝑐 + 𝑘 × 𝑏) = P𝑎×𝑏×𝑐(𝑚 × 𝑏 × 𝑐 +
𝑎 × (𝑛 × 𝑐 + 𝑘 × 𝑏)) = P𝑎×𝑏×𝑐 × (𝑚 × 𝑏 × 𝑐 + 𝑎 × 𝑛 × 𝑐 + 𝑎 × 𝑘 × 𝑏)  (1).      

On the other hand,  

(P𝑎 × 𝑚 + P𝑏 × 𝑛) + P𝑐 × 𝑘 = P𝑎×𝑏 × (𝑚 × 𝑏 + 𝑛 × 𝑎) + P𝑐 × 𝑘 = P𝑎×𝑏×𝑐 × ((𝑚 × 𝑏 +
𝑛 × 𝑎) × 𝑐 + 𝑎 × 𝑏 × 𝑘) = P𝑎×𝑏×𝑐(𝑚 × 𝑏 × 𝑐 + 𝑛 × 𝑎 × 𝑐 + 𝑎 × 𝑏 × 𝑘)  (2).   

The associative law follows from equations (1) and (2).  

 

• The commutative law  

By the commutative law for [Z],  

P𝑎 × 𝑚 + P𝑏 × 𝑛 = P𝑎×𝑏 × (𝑚 × 𝑏 + 𝑛 × 𝑎) = P𝑏×𝑎 × (𝑛 × 𝑎 + 𝑚 × 𝑏) = P𝑏 × 𝑛 +
P𝑎 × 𝑚.  

 

• Multiplication on [Q] is also defined by extending that on [Z].  

(P𝑎 × 𝑚) × (P𝑏 × 𝑛) = (P𝑎×𝑏 × 𝑚 × 𝑏) × (Pb×a × 𝑛 × 𝑎) = P𝑎×𝑏 × P𝑎×𝑏 × 𝑚 × 𝑏 × 𝑛 ×
𝑎 = P𝑎×𝑏 × (𝑚 × 𝑛).  

Then,  

(P𝑎 × 𝑚) × (Pm × 𝑎) = P𝑎×𝑚 × (𝑚 × 𝑎) = P, and 

(P𝑎 × 𝑚) × P = P𝑎 × 𝑚.  

Thus,  

Pm × 𝑎  is the inverse element of P𝑎 × 𝑚, and P is the identity element for the multiplication.  

 

• The associative law follows from the equations:  

(P𝑎 × 𝑚) × ((Pb × 𝑛) × (P𝑐 × 𝑘)) = (P𝑎 × 𝑚) × (P𝑏×𝑐 × (𝑛 × 𝑘)) = P𝑎×𝑏×𝑐 ×

(𝑚 × (𝑛 × 𝑘)) = P𝑎×𝑏×𝑐 × (𝑚 × 𝑛 × 𝑘). 

((P𝑎 × 𝑚) × (P𝑏 × 𝑛)) × (P𝑐 × 𝑘) = (P𝑎×𝑏 × (𝑚 × 𝑛)) × (P𝑐 × 𝑘) = P𝑎×𝑏×𝑐 × ((𝑚 × 𝑛) ×
𝑘) = P𝑎×𝑏×𝑐 × (𝑚 × 𝑛 × 𝑘).  

 

• The commutative law  

(P𝑎 × 𝑚) × (Pb × 𝑛) = P𝑎×𝑏 × (𝑚 × 𝑛) = P𝑏×𝑎 × (𝑛 × 𝑚) = (P𝑏 × 𝑛) × (P𝑎 × 𝑚).  

 

• The distributive law  

(P𝑎 × 𝑚) × ((Pb × 𝑛) + (P𝑐 × 𝑘)) = (P𝑎 × 𝑚) × (Pb×c × (𝑛 × 𝑐 + 𝑘 × 𝑏)) =
P𝑎×b×c × (𝑚 × (𝑛 × 𝑐 + 𝑘 × 𝑏)) = P𝑎×𝑏×𝑐 × (𝑚 × 𝑛 × 𝑐 + 𝑚 × 𝑘 × 𝑏)  (3).  

On the other hand,  

(P𝑎 × 𝑚 × P𝑏 × 𝑛) + (P𝑎 × 𝑚 × P𝑐 × 𝑘) = (P𝑎×𝑏 × (𝑚 × 𝑛)) + (P𝑎×𝑐 × (𝑚 × 𝑘)) =
P𝑎×𝑏×𝑎×𝑐 × (𝑚 × 𝑛 × 𝑎 × 𝑐) + P𝑎×𝑏×𝑎×𝑐 × (𝑚 × 𝑘 × 𝑎 × 𝑏) = P𝑎×𝑏×𝑐 × (𝑚 × 𝑛 × 𝑐 +
𝑚 × 𝑘 × 𝑏)  (4).  
The distributive law follows from the equations (3) and (4).  

 

• Addition of 𝑚 ∈ [𝑍] and P𝑎 × 𝑛 ∈ [Q], for 𝑛 ∈ [𝑍].   
Since 𝑚 = P𝑎 × 𝑎 × PP × 𝑚 = P𝑎 × (𝑎 × 𝑚),  

𝑚 + P𝑎 × 𝑛 = P𝑎 × (𝑎 × 𝑚) + P𝑎 × 𝑛 = P𝑎 × (𝑎 × 𝑚 + 𝑛).  

As a result of the discussion stated above, the fractions Q is identified with [Q].  

 

5. The real numbers R  

 The real numbers are infinite decimals that have their respective convergences. Then, 

the positive real numbers, denoted by R+, are series that have the structure:   

 

 𝑅+(𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2, ⋯ ) = 10𝑛𝑥𝑛 + 10𝑛−1𝑥𝑛−1 + 10𝑛−2𝑥𝑛−2 + 10𝑛−3𝑥𝑛−3 + ⋯,  
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for any natural number n, where 𝑥𝑖, 𝑖 ≤ 𝑛,  is a variable that ranges over the set of natural 

numbers, 0 ≤ 𝑥𝑖 ≤ 9. The negative real numbers are represented by −𝑅+(𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2, ⋯ ).  

Each real number is the convergence of an infinite series that is obtained by substituting the 

sequence of variables with a sequence of natural numbers satisfying the above condition.  

 Then, replacement of the sequence of the natural numbers with corresponding 

operators in [N0] forms an infinite series of the operators in [Q]. These series of operators 

correspond to real numbers one to one. When a series is finite, it is also an operator as the 

addition of operators in [Q]. Then, introduction of an infinite series of operators that have 

convergences is an extended operator of a finite series of operators in [Q].     

 These operators correspond to the real numbers one to one. They are denoted by [R]. 

Since these extended operators are constructed from [Q], addition and multiplication of the 

extended operators are defined according to the construction. Accordingly, the associative 

law, commutative law and distributive law also hold for [R].  As a result, the real numbers R 

can be identified with [R]. 

 

6. The complex numbers C 

Many physical objects that have operation on something go through levels of 

activation until they activate as operators. For instance, motors do not move until the 

electricity reaches to a certain voltage, or digestive enzymes begin to operate on foods when 

the temperature of them rises to a certain degree. By analogy with the levels of activation of 

these objects or operators, from dormant level to active level, I introduce three levels of 

activation of the operator −: The level of full activation, the level of null activation, the level 

of half a full activation (the level of half activation), which does not activate –, but reaches 

the level of full activation by adding more half a full activation. I try to extend the operators 

[R] by introducing these three levels to −, which are denoted by −1, −0, −1 2⁄ , respectively. 

Then, −1𝑎 = −𝑎, −0𝑎 = 𝑎, −1 2⁄ (−1 2⁄ )𝑎 = (−1 2⁄ ∗ −1 2⁄ )𝑎 =  −1𝑎 = −𝑎, for 𝑎 ∈ [R].   

Because a and −1 2⁄ 𝑏 for 𝑎, 𝑏 ∈ [R] are both certain levels of operators, which have a 

capacity or potential to operate on set structures, they can be connected with ∗ to form an 

operator that can operate on set structures,  

𝑎 + (−1 2⁄ )𝑏 = 𝑎 ∗ (−1 2⁄ )𝑏.    

It is obvious that  

𝑎 + (−1 2⁄ )𝑏 = 𝑎′ + (−1 2⁄ )𝑏′ ↔ 𝑎 = 𝑎′𝑎𝑛𝑑 𝑏 = 𝑏′ .                                                                        

Naturally, they are associative and commutative for ∗.     

The set of operators, {𝑥 + (−1 2⁄ )𝑦| 𝑥, 𝑦 ∈ [R]} is written as [C].    

   

• Addition on [C] is defined naturally as  

(𝑎 + (−1 2⁄ )𝑏) + (𝑎′ + (−1 2⁄ )𝑏′) = (𝑎 + (−1 2⁄ )𝑏) ∗ (𝑎′ + (−1 2⁄ )𝑏′) = (𝑎 + 𝑎′) +

(−1 2⁄ )(𝑏 + 𝑏′), for 𝑎, 𝑏, 𝑎′, 𝑏′ ∈ [R].  
 

Since connection of operators does not depend on its order, the associative law and 

commutative law hold for [C].  

Since  

(𝑎 + (−1 2⁄ )𝑏) + (Po + (−1 2⁄ )Po) = 𝑎 + (−1/2)𝑏 , 

 P𝑜 + (−1/2)P𝑜 is the additive identity.  

Since 

(𝑎 + (−1 2⁄ )𝑏) +(−(𝑎 + (−1 2⁄ )𝑏)) = Po + (−1 2⁄ )Po,  

−(𝑎 + (−1 2⁄ )𝑏)is the inverse element of 𝑎 + (−1 2⁄ )𝑏  
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• Multiplication on [C] is defined by extending that on [R].  

At first, by the definition of −1 2⁄ ,  

𝑎 × (−1 2⁄ )𝑏 = Σ−1 2⁄ 𝑏𝑎 = −1 2⁄ (𝑎 × 𝑏),  

that is, iteration of a it-times of −1 2⁄ P in b, where 𝑎 × −1 2⁄ P makes a with the stage −1 2⁄ .   

Then,  

(𝑎 + (−1 2⁄ )𝑏) × (𝑎′ + (−1 2⁄ )𝑏′) = 𝛴𝑎′+(−1 2⁄ )𝑏′
(𝑎 + (−1 2⁄ )𝑏) = 𝛴𝑎′

(𝑎 + (−1 2⁄ )𝑏) +

𝛴−1 2⁄ 𝑏′
(𝑎 + (−1 2⁄ )𝑏) = (𝑎 + (−1 2⁄ )𝑏) × 𝑎′ + (𝑎 + (−1 2⁄ )𝑏) × (−1 2⁄ )𝑏′ = (𝑎 × 𝑎′) +

(−1 2⁄ )𝑏 × 𝑎′ + (−1 2⁄ )𝑎 × 𝑏′ + (−𝑏 × 𝑏′) = (𝑎 × 𝑎′) + (−𝑏 × 𝑏′) + (−1 2⁄ )(𝑏 × 𝑎′ +
𝑎 × 𝑏′).  

In particular,  

(−1 2⁄ P)2 = −1 2⁄ P × (−1 2⁄ P) = −P × 𝑃 = −𝑃.  

Since P is the unit element for multiplication, −1 2⁄ P is identical with the imaginary unit i.  

 

Because of the associative law and commutative law of multiplication on [R], they also hold 

for [C].  

Since  

(𝑎 + (−1 2⁄ )𝑏) × P = 𝑎 + (−1 2⁄ )𝑏,  

P is the unit element for the multiplication.  

  

• The distributive law  

((𝑎 + (−1 2⁄ )𝑏) + (𝑎′ + (−1 2⁄ )𝑏′)) × (𝑐 + (−1 2⁄ )𝑐′) = ((𝑎 + 𝑎′) + (−1 2⁄ )(𝑏 + 𝑏′)) ×

(𝑐 + (−1 2⁄ )𝑐′) = 𝛴𝑐+(−1 2⁄ )𝑐′
((𝑎 + 𝑎′) + (−1 2⁄ )(𝑏 + 𝑏′)) = ((𝑎 + 𝑎′) + (−1 2⁄ )(𝑏 +

𝑏′)) × 𝑐 + ((𝑎 + 𝑎′) + (−1 2⁄ )(𝑏 + 𝑏′)) × (−1 2⁄ )𝑐′ = (𝑎 + 𝑎′) × 𝑐 + (−1 2⁄ )(𝑏 + 𝑏′) × 𝑐 +

(−1 2⁄ )((𝑎 + 𝑎′) × 𝑐′) + (−(𝑏 + 𝑏′) × 𝑐′) = (𝑎 + 𝑎′) × 𝑐 + (−(𝑏 + 𝑏′) × 𝑐′) +

(−1 2⁄ )((𝑏 + 𝑏′) × 𝑐 + (𝑎 + 𝑎′) × 𝑐′).  (1),  

On the other hand, 

(𝑎 + (−1 2⁄ )𝑏) × (𝑐 + (−1 2⁄ )𝑐′) + (𝑎′ + (−1 2⁄ )𝑏′) × (𝑐 + (−1 2⁄ )𝑐′) = 𝑎 × 𝑐 +

(−𝑏 × 𝑐′) + (−1 2⁄ )(𝑎 × 𝑐′ + 𝑏 × 𝑐) + 𝑎′ × 𝑐 + (−𝑏′ × 𝑐′) + (−1 2⁄ )(𝑎′ × 𝑐′ + 𝑏′ × 𝑐) =
(𝑎 + 𝑎′) × 𝑐 + −(𝑏 + 𝑏′) × 𝑐′ + (−1 2⁄ )((𝑏+𝑏′) × 𝑐 + (𝑎 + 𝑎′) × 𝑐′)  (2).  

Thus, the distributive law follows from the equations (1) and (2). 

  

• Inverse element for the multiplication   

Let (𝑎 + (−1 2⁄ )𝑏) × 𝑥 = P. Then,  

𝑥 = P ÷ (𝑎 + (−1 2⁄ )𝑏) = P𝑎+(−1 2⁄ )𝑏 = ((𝑎 + −(−1 2⁄ )𝑏) ÷ (𝑎 + −(−1 2⁄ )𝑏)) ×

P𝑎+(−1 2⁄ )𝑏 = 𝑃𝑎+−(−1 2⁄ )𝑏 × (𝑎 + −(−1 2⁄ )𝑏) × P𝑎+(−1 2⁄ )𝑏 = P(𝑎+−(−1 2⁄ )𝑏)×(𝑎+(−1 2⁄ )𝑏) ×

(𝑎 + −(−1 2⁄ )𝑏) = P𝑎×𝑎+𝑏×𝑏 × (𝑎 + −(−1 2⁄ )𝑏).  

This is the inverse element of 𝑎 + (−1 2⁄ )𝑏.  

 

As stated above, [C] has a unit element, inverse elements, and satisfies the associative 

law, commutative law and distributive law with respect to addition and multiplication 

respectively. Therefore, the complex numbers C is identified with [C].  

 

7. The quaternions H 

 The quaternions are defined by introducing the three kinds of imaginary units, i, j, k 

into the real numbers that satisfy the following conditions:  
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1. 𝑖2 = 𝑗2 = 𝑘2 = −1, and quaternions have the form, 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 , where a, b, c, d are 

real numbers.  

2. 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 = 𝑎 + 𝑏′𝑖 + 𝑐′𝑗 + 𝑑′𝑘 ↔ 𝑎 = 𝑎′, 𝑏 = 𝑏′, 𝑐 = 𝑐′, 𝑎𝑛𝑑 𝑑 = 𝑑′.  
3. (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘)+(𝑎′ + 𝑏′𝑖 + 𝑐′𝑗 + 𝑑′𝑘) = (𝑎 + 𝑎′) + (𝑏 + 𝑏′)𝑖 + (𝑐 + 𝑐′)𝑗 + (𝑑 +
𝑑′)𝑘.  

4. 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗.  

5. The distributive law.   

 

 Introduction of i, j, and k into R corresponds to introduction of three kinds of half 

activation levels of −𝑃 into [R]. The three kinds of half activation levels of – are denoted by  

  −ℎ1, −ℎ2, 𝑎𝑛𝑑 −ℎ3, respectively. Then,  

(−ℎ1P)2 = −ℎ1(−ℎ1P) = −ℎ1+ℎ1P = −1P = −P    
In the same way,  

(−ℎ2P)2 = (−ℎ3P)2 = −P.     

That is, −ℎ1P, −ℎ2P, 𝑎𝑛𝑑 −ℎ3P correspond to i, j, and k respectively in the condition 1.  

 By introducing them into [R], an extended [R] is constructed. Then, by replacing i, j, 

and k in the conditions 1~4 with these three operators, the conditions that the three operators 

must possess to identify the quaternion with this extended [R] are obtained. Multiplication of 

these operators is, for example, 

𝑖 × 𝑗 = 𝑘 →  (−ℎ1P) × (−ℎ2P) = −ℎ2(−ℎ1P) = −ℎ1+ℎ2P = −ℎ3P  

𝑗 × 𝑖 = −𝑘 →  (−ℎ2P)(−ℎ1P) = −ℎ1(−ℎ2P) = −ℎ2+ℎ1P = −1+ℎ1+ℎ2P = −1+ℎ3P =
−(−ℎ3P)  

Multiplication of the other combinations of the three operators is obtained in the same way to 

satisfy the condition 4. Multiplication of operators in the extended [R] is defined so as to 

satisfy the condition 5, the distributive law.  

 As a consequence of the above construction, the quaternions H is identified with this 

extended [R], which is denoted by [H].  

 

       

8. Conclusion  

In this article I have identified numbers with operators to construct finite cardinals 

and their derivatives in the following steps.  

1. Finite cardinals are defined as structures of the sets with the cardinals.  

2. The operator P to construct the set structure of a finite cardinal from the set structure of 

one smaller cardinal than the former is introduced. The iteration of the operation of P, which 

is made by connections of Ps, relates the set structures of the finite cardinals in a total order.  

3. Furthermore, addition and multiplication are defined on the set structures on the basis of 

connections of Ps. Then, it has been shown that the set of the set structures with the addition 

and the multiplication satisfies Peano Axioms. Accordingly, the natural numbers are defined 

as the set of the set structures.  

4. At the same time, it has been shown that the set of connections of Ps satisfies Peano 

Axioms, hence the natural numbers can be identified with this set.  

5. The operator P is extended in five ways: (1) To reverse the direction of the operation of P, 

(2) To divide P into finite number of sub-operators, (3) To introduce infinite series of the sub-

operators that converge, (4) To introduce the half activation level of the operator −P, (5) To 

introduce two more half activation level of −Ps other than the former one. Addition and 

multiplication are defined on these five sets of the extended operators, respectively. Then, the 

integers, the fractions, the real numbers, the complex numbers, and the quaternions are 

identified with the sets of the operators extended in these five ways, respectively. This result 
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supports the possibility that numbers in general can be identified with such kinds of 

operators.  

Since these operators are derivatives of P and the same kinds of objects with P, they 

are related in inclusion relationship. Naturally, these six sets of operators can be connected by 

addition or multiplication to form the same kind of operators as stated in this article. On the 

contrary, numbers defined as sets, e.g., one that proposed by Russell (1919) are related in 

embedding relationship. This is because the natural numbers, the integers, the fractions, the 

real numbers, and the complex numbers are all different kinds of sets. In this case, numbers 

form a complex system that consists of many kinds of objects. Moreover, addition of real part 

and imaginary part in complex numbers, that is, addition of different kinds of objects or sets, 

seems to be something different from addition of the same kind of numbers e.g. addition of 

two integers.  Thus, to identify numbers with operators introduces a new viewpoint on 

numbers and would enlarge the concept of numbers.          

Three problems concerning this construction of operators to identify numbers are left 

open.  

1. Operators [No], [Z], [Q], [R], [C], and [H] exist on the basis of the existence of P, ∗, −, P𝑛, 

infinite series of P𝑛 and −ℎ1, −ℎ2, −ℎ3, regardless of existence of the set structures that 

should be the result of the operations. [No] has [N] as the set structures constructed by [No]. I 
wonder if the set structures constructed by [Z], [Q], [R], [C], or [H] exist.  

2. Construction of [N] and [No] is limitless. Accordingly, the result of the limit is not 

included in [N] and [No]. This limit is necessary to include infinity in numbers. What is the 

limit of the construction, i.e. limit of operators and set structures?      

These problems will be the next steps to construct operators with which numbers are 

identified.  

3. Finally, it will be natural to expect that provided that the operator −P has the half 

activation level, +′P also has the same kind of half activation level, that is, +′1 2⁄ P and 

(+′1 2⁄ P)2  = P. This characterization of +′1 2⁄ P agrees with the definition of the imaginary 

unit of the split complex numbers. Then, in the same way as the case of the complex 

numbers, it is expected that the split complex numbers will be identified with [R] with 

+′1 2⁄ P.  

 However, I wonder what these numbers or operators are in the world.   
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