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Summary. In the first part of this contribution1 I will present aspects and atti-
tudes towards ’axiomatic thinking’ in various branches of theoretical physics. In the
second and more technical part, which is approximately of the same size, I will fo-
cus on mathematical results that are relevant for axiomatic schemes of space-time
in connection with attempts to axiomatise Special and General Relativity.

1 Prologue

In the introduction to his “Axiomatik der relativistischen Raum-Zeit Lehre”,
Hans Reichenbach (1924) wrote the following words, emphasising the principal
difference between physics and mathematics, as regards the axiomatic method.
In the englisch translation by his wife Maria (Reichenbach, 1969) they read2:

“The value of an axiomatic exposition consists in summarising the
content of a scientific theory in a small number of statements. An
evaluation of the theory may then be limited to an evaluation of the
axioms, because every statement of the theory is implicitly contained
in the axioms. [...] The problem of the axioms of mathematics was
solved by the discovery that they are definitions, that is, arbitrary

1It appeared in: Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga
(eds.): “Axiomatic Thinking”, Volume II, pp. 235-268, Springer Nature Switzerland
AG, 2022; URL:https://doi.org/10.1007/978-3-030-77799-9_10. It is based on
a talk given at the joint meeting of the Swiss Mathematical Society and the Swiss So-
ciety for Logic and Philosophy of Science on Axiomatic Thinking, that took place on
September 14.-15. 2017 to commemorate the centennial of Hilbert’s famous address
“Axiomatisches Denken”, delivered on September 11. 1917 at the Swiss Mathemat-
ical Society in Zürich.

2The german originals of all translated quotations will be given in the Appendix.

https://doi.org/10.1007/978-3-030-77799-9_10
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stipulations which are neither true nor false, and that only the logi-
cal properties of a system—its consistency, independence, uniqueness,
and completeness—can be the subjects of critical investigation.”

“There is, however, a fundamental difference between physics and
mathematics. Physical statements are more than mere consequences
of arbitrary definitions; they are supposed to describe the real world.”

“‘Truth’ and ‘falsehood’ have entirely different meanings in physics
and in mathematics; to judge that a statement in physics is true is
not a logical judgement but a judgement concerning the occurrence or
nonoccurrence of sense perceptions. To the physicist the question of
truth is the most interesting one, for if his theory is true, he can call
it in a certain sense a description of reality.”

“The axiomatic exposition of a physical theory is at the outset subject
to the same laws as that of a mathematical theory [...]. Yet since the
physical axioms also contain the whole theory implicitly, they must
themselves be justified: they must not be arbitrary but true. ‘True’
refers again to a factual judgment ultimately tested by perception.”

2 Introduction

The foundation on which contemporary physics rests consists of various the-
ories describing “physical systems”, their “interactions” and “evolution” in
time. These systems are thought of as being embedded in an exterior struc-
tures called “space” and “time”, or “space-time” for short. These exterior
structures are themselves either fixed, in the sense of not being acted upon by
the systems it contains, or changing according to some dynamical laws that
also govern the interaction of the systems (i.e. “matter”) and space-time. We
will have later plenty of opportunity to further explain this difference, but
for the moment it suffices to say that in our current collection of theories in
physics, only General Relativity makes use of a dynamical space-time struc-
ture and that this theory need not be considered if gravitational fields play no
significant role in the theoretical description of the system and its associated
phenomena. So for a very large piece of physics space-time, is a fixed entity
the structure of which is unchanging. This does, of course, not mean that
the laws of physics are insensitive to that fixed structure; quite the contrary!
But it does mean that all systems are embedded into the very same exterior
structure that universally acts on all (non gravitating) systems.

Having said this, I wish to start by briefly recalling some disciplines in
physics, where axiomatic thinking has made, or continues to make, fruitful
contributions for progress and understanding. I will also list some names as-
sociated with these developments, without in any way claiming even approxi-
mate completeness, neither in the areas and certainly not for the names. They
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just reflect what I am more or less familiar with. I do not want to rule out
the possibility that there exist other examples which are equally well suited.

• Mechanics: Issac Newton (1642-1726), Joseph-Luis de Lagrange (1736-
1813), Carl Gustav Jacobi (1804-51), William Rowan Hamilton (1805-65),
William Thomson [Lord Kelvin](1824-1907), Peter Guthrie Tait (1831-
1901), Ludwig Lange (1863-1936), Gottlob Frege (1848-1925), Heinrich
Hertz (1857-94), Georg Hamel (1877-1954), Jean-Marie Souriau (1922-
2012), Ralph Abraham (1936), Wladimir Igorewitsch Arnold (1937-2010),
Jerrold Eldon Marsden (1942-2010), ...

• Thermodynamics: Constantin Carathéodory (1873-1950), Robin Giles
(1935), Elliot Lieb (1932) & Jakob Yngvason (1945), ...

• Electrodynamics: James Clerk Maxwell (1831-79), Gustav Mie (1868-
1957), Evert Jan Post (1915-2015), Friedrich Hehl (1937) & Yuri Obukhov
(1956), ...

• Special Relativity: Wladimir Sergejewitsch Ignatowski (1875-1942) Her-
mann Rothe (1882-1923), Alfred Robb (1873-1936), Hans Reichenbach
(1891-1953), Alexander Danilowitsch Alexandrow (1912-99), Erik Christo-
pher Zeeman (1925-2016), Walter Benz (1931-2017), ...

• General Relativity: David Hilbert (1862-1943), Hermann Weyl (1885-
1955), Alfred Schild (1921-77), Felix Pirani (1928-2015), Jürgen Ehlers
(1929-2008), Andrzej Trautman(1933), Herbert Pfister (1936-2015), Jürgen
Audretsch (1942-2018), ...

• Quantum Theory: George David Birkhoff (1884-1944), Paul Adrien
Maurice Dirac (1902-84), Johann von Neumann (1903-57), Joseph Maria
Jauch (1914-74), George Whitelaw Mackey (1916-2006), Günther Ludwig
(1918-2007), Constantin Piron (1932-2012), ...

• Quantum Field Theory: Res Jost (1918-90), Lars Gøarding (1919-
2014), Arthur Strong Wightman (1922-2013), Rudolf Haag (1922-2016),
Daniel Kastler (1926-2015), Huzihiro Araki (1932), Robert Schrader (1939-
2015), Konrad Osterwalder (1942), Detlev Buchholz (1944), Alain Connes
(1947), ...

– and many others –

I cannot even do approximate justice to all the past and present develop-
ments in these areas. Instead I will pick some examples, most of them well
known in one aspect or another, to illustrate some attitudes towards axiomatic
thinking in physics. The reader should not be surprised that within the physics
community opinions differ regarding the use and value of axiomatic thinking.
The above quotation of Reichenbach’s words should make clear why this is
the case. Another famous and memorable quotation in that regard is that
Einstein gave as the answer to what he called a “disturbing riddle”, namely
how can it be that mathematics, which is a product of human thinking alone
and (apparently) independent of experience, fits so well to the objects in the
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world around us? Is it possible that the human mind is capable to discover
and understand the world around us - at least to some extent - by pure reason
and without any (apparent) resort to experience? Einsteins proverbial answer
is now a classic (Einstein, 1921):

“Insofar as the statements of mathematics refer to reality [german:
Wirklichkeit] they are not certain and insofar they are certain, they
do not refer to reality.”

Einsteins praises the axiomatic method for bringing clarity into this di-
chotomy. It allows to cleanly separate the formal aspects from those regarding
the (physical) content. I think it is fair to say that this is an attitude most
working theoretical physicists would agree with.

In a second and more technical part I will focus on the geometric theories
of Special- and General Relativity, which I am most familiar with. There I will
also report on some mathematical results that relate to various axiomatisation
programmes of space-time theories.

3 Some examples

In this section I wish to touch upon a few examples in modern (after and
including Newton) physics, with ambivalent attitudes towards axiomatisation.

3.1 Isaac Newton and mechanics

Ever since Newton’s Principia (Philosophiae Naturalis Principia Mathematica
(1686)), theories for selected parts of the phenomenological world have been
presented in a more or less axiomatic form. In the physics community it is
widely accepted, if sometimes only implicitly, that

falsification is the essence of progress in physics

A → B ⇒ B̄ → Ā (1)

Only if the physicist’s ‘deduction’ A → B from the theoretical hypotheses
– here collectively denoted by the letter A – to the phenomenological conse-
quences – collectively denoted by B – is indeed an unbroken logical conclusion
(within the logical system of the theory at hand) can we actually learn some-
thing definite from the occurrence of B̄, namely that at least some of our
hypotheses within A must be false. Nothing definite can be learned from B
happening, except a gain in (subjective) confidence into our theory, which is
often referred to as a theory’s ‘confirmation’. It is mainly for this reason that
the axiomatic method is accepted in physics as a proper mode of generating
progress.

For a modern physicist, Newton’s Principia is the classic example for that
kind of approach. Rigorous mathematical deductions based on careful and
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Fig. 1. Isaac Newton and the cover page of his Principia, in which he presented
his theory in a form that would do honour to modern treatments in its consistency
and clarity with which ideas from mathematics and natural philosophy (physics) are
developed separately and – carefully – connected. [Picture credits: Wikimedia]

profound conceptual discussions. On the other hand, in order to keep this
rigorous line of reasoning, Newton had to abstain from certain speculations
that, too, are a necessary part of theorising in physics. A famous example of
this is given by his letter to Bentley of February 25. 1692, in which Newton
clearly states - like nowhere in the Principia - his belief that his theory of
gravity is essentially incomplete, despite the fact that it allows to compute
celestial motions. What it lacks is a proper “philosophical” understanding of
how the gravitational action, the quantity of which he had fully outlined,
is actually mediated from one body to another. He writes (Newton, 1961,
Letter 406, pp. 253-4)

“That gravity should be innate inherent and essential to matter so
that one body may act upon another at a distance through a vacuum
without the mediation of anything else by and through which their
action of force may be conveyed from one to another, is to me so great
an absurdity that I believe no man who has in philosophical matters
any competent faculty of thinking can ever fall into it. Gravity must
be caused by an agent acting constantly according to certain laws, but
whether this agent be material or immaterial is a question I have left
to the consideration of my readers [of the Principia]”.

By “leaving the decision to the readers” Newton seems to say that the intended
applications of his theory are independent of such “philosophical” questions.
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This is, of course, not true. In 1805, Laplace in his Mécanique Céleste, consid-
ered a fluid-model of the aether as the carrier of gravitational fields, which put
the finite propagation speed into evidence and had the immediate consequence
that the force that one body exerts onto another does not point parallel to the
line connecting simultaneous positions. Nevertheless, the tremendous success
of the Principia can be seen as due to Newtons clever and well chosen separa-
tion between aspects that fit into an axiomatic scheme of sufficient predictive
power and those aspects that await further “philosophical” clarification with-
out much impact on the current set of intended applications. In my opinion,
a very strong case for the axiomatic method indeed.

3.2 Heinrich Hertz and modern analytical mechanics

Fig. 2. Heinrich Hertz and the cover page of his remarkable book on the “Prinzipien
der Mechanik”, which unfortunately left little lasting impression in the physics com-
munity. [Picture credits: Wikimedia (left); the right picture is taken from the public
domain reprint of (Hertz, 1984) by Sändig Reprint Verlag, Liechtenstein (1999)]

Hertz’s “Prinzipien der Mechanik” were finished in Oktober 1893, three month
before the author’s tragic death at the age of 36 due to “blood poisoning”.3 It
was published posthumously in 1894 by his assistant Philipp Lenard. This is
a very unusual book indeed, praised by many, but also considered as “not re-
ally useful” and “totally unsuitable for the beginners” in the classic text-book

3A very readable biography of Hertz is by Fölsing (1997).
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on mechanics by Sommerfeld (1962a), which is the first book in his famous
six-volume lecture series on theoretical physics.4 Hertz’s treatise presents the
foundations of mechanics in a new and axiomatic way, keeping a strict separa-
tion between “kinematics and geometry” on one side, and “mechanics proper”
on the other. A central aim of Hertz’s programme was to eliminate the semi-
intuitive usage of the concept of “force” and to replace it with the analyti-
cally much clearer variational principles (d’Alembert, Maupertuis, Lagrange,
Jacobi, Hamilton), to the collection of which Hertz contributed yet another
one: the principle of straightest path.

Today Hertz’s Mechanics is little to almost not known by physicists. What
remained of his treatment are the systematic distinction and characterisa-
tion of “holonomic” (integrable) and “anholonomoic” (non-integrable) con-
straints, nowadays presented in modern differential-geometric language, and,
more famously, the exceptional introductory chapter that outlines in a pro-
grammatic fashion and in great detail (50 pages) Hertz’s epistemological con-
cept of the role of theories in physics and science in general. It gives a clear
view on the philosophical attitude behind this remarkable treatise on mechan-
ics. It is symptomatic that this “Einleitung” is still available as a separate
book in a modern edition, whereas the actual text on mechanics only exists
as a photocopy-based reproduction by Sändig Reprint Verlag, Liechtenstein
(1999).

The extensive “Einleitung” is, to be sure, meant to justify the approach
that is to follow: a meticulously organised string of definitions, remarks (“An-
merkungen”), theorems (“Lehrsätze”), conclusions (“Folgerungen”), additions
(“Zusätze”), and exercises (“Aufgaben”). The book is divided into two parts,
called “books” (“Bücher”), the first being entitled: “On geometry and kine-
matics of material systems”, the second: “On mechanics of material systems”.
The logic behind this strict division reflects the epistemological Ansatz out-
lined in the introduction to (Hertz, 1984):

“We form for ourselves images or symbols of external objects; and the
form which we give them is such that the necessary consequents of the
images in our mind are always the necessary consequents in nature of
the things pictured.”

“The images which we here speak of are our conceptions of things.
With the things themselves they are in conformity in one important
respect, namely, in satisfying the above-mentioned requirement. For
our purpose it is not necessary that they should be in conformity with
the things in any other respect whatever”.

4Sommerfeld mentions Heinrich Hertz’s book on Mechanics in connection with
the idea to eliminate the notion of “force” with the following words: “Heinrich Hertz
hat dieses Programm mit meisterhafter Konsequenz durchgeführt. Aber zu frucht-
baren Folgerungen ist seine Methode kaum gelangt; insbesondere für den Anfänger
ist sie völlig ungeeignet.” A highly informative and also very readable biography of
Sommerfeld is by Eckert (2013).
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“The images which we may form of things are not determined without
ambiguity by the requirement, that the consequences of the images must
be the images of the consequences.”

“Of two images of the same object, that one is the more appropriate
which pictures more of the essential relations of the object, – the one
which we may call the more distinct. Of two images of equal distinct-
ness the more appropriate is the one which contains, in addition to the
essential characteristics, the smaller number of superfluous or empty
relations – the simpler of the two”.

Fig. 3. Table of contents of both parts - “books” - of Hertz’ “Prinzipien der
Mechanik”. The first book (left) on the “geometry and kinematics or material sys-
tems” is deliberately and carefully kept distinct from the second (right) on the “me-
chanics of material systems”. [Picture credits: Pictures reproduced from the public
domain reprint of (Hertz, 1984) by Sändig Resprint Verlag, Liechtenstein (1999)]

The table-of-contents of both books are given in Fig. 3. This division clearly
illustrates Hertz’ epistemology: Abstract pictures (left-hand side) obtained
from “inner inspection” (innere Anschauung) versus knowledge of the real
world (right-hand side) obtained from “experience” (Erfahrung). For exam-
ple, the first chapter in each book is on the concepts of “Time, Space and
Mass”, approached via “inner inspection” and “experience”, respectively. This
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may be criticised on many accounts, not least because “experience as such”
is too naive a concept. But what is important for us here is that this dual ap-
proach that aims for axiomatisation is spelled out explicitly and embedded in
a richt epistemological discussion. Hertz convincingly demonstrates how this
“mapping-epistemology” almost inevitably leads the requirement of a dual
development, keeping the formulation of structures based on “inner inspec-
tion” and “outer experience” sufficiently independent with connections being
carefully (and reversibly!) drawn only after they are reasonably matured.

3.3 Constantin Carathéodory and classical thermodynamics

A classic branch of physics that has invited axiomatic formulations again and
again up to this very day is Thermodynamics. The preface of Sommerfeld’s
5th volume of his “Lectures on Theoretical Physics”, which are on Thermo-
dynamics and Statistics, opens with the following sentence:

“Thermodynamics is the paradigm [german: Musterbeispiel] of an
axiomatically constructed science.”

The person most often named as the initiator of serious mathematical at-
tempts in this direction is Constantin Carathéodory5 In 1909 he gave an inno-
vative axiomatic formulation of phenomenological (i.e. not statistical) thermo-
dynamics which included his “principle of adiabatic inaccessibility”(Carathéodory,
1909). That principle, which he understood as direct expression of numerous
phenomenological facts, had a very simple formulation in terms of Pfaffians
(differential 1-forms). Is says - in modernised vocabulary- that the kernel dis-
tribution for the one-form of heat must be integrable and hence admits an
integrating factor (denominator), the latter being essentially the temperature
(up to reparametrisation). In this way the powerful machinery of differential
forms was identified as the right tool to express phenomenological facts of
great generality and almost universal applicability. 6

5A biography of Carathéodory is (Georgiadou, 2004).
6More precisely, the assumptions are as follows: The set M of equilibrium states

of a thermodynamical system is assumed to be a smooth manifold. The inner energy
of the system is represented by a real-valued function U on M ; it is a function of
state. “Heat” is also a real-valued quantity, but in contrast to energy it is not
associated to states, i.e. points in M , but rather to “quasi-static processes”, i.e.
piecewise C1 curves in M . These are called “quasi-static” because the process is
assumed to remain within M , i.e. to only proceed in a succession of equilibrium
states, which means that the real-time process must be “sufficiently slow”. Hence
heat is represented by a one-form that we denote by ω. Another one-form is that
of “reversible work”, which we denote by α. Typically one has α = −p dV + · · · ,
where p stands for pressure and V for volume, both of which are functions of state.
The first law of thermodynamics then says that dU = ω + α. Now, a quasi-static
process γ (piecewise C1 a curve in M) is called “adiabatic” if ω(γ̇) = 0, i.e. if
the heat associated to this process vanishes. Carathéodory’s principle of adiabatic
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Fig. 4. Constantin Carathéodory and the top of the first page of his axiomatic for-
mulation of thermodynamics (Carathéodory, 1909) that later received great recogni-
tion and largely influenced modern developments. [Picture credits: Wikimedia (left)
and Springer Verlag (right)]

With a delay of about 10 years Carathéodory’s axiomatisation was greeted
with much respect and considered highly useful for future developments, in-
cluding pedagogical aspects. The first to recognise this was Born (1921), fol-
lowed by Ehrenfest-Afanasjewa (1925) and even the influential and widely read
Geiger-Scheel Handbook of Physics included a separat entry on Carathéodorys
axiomatisation, written by Landé (1926). Born, who can be said to have made
the strongest early supporter of this line of research, remained a lifelong advo-
cator, as can be seen from his wonderful presentation of Carathéodory’s ideas
in his famous semi-popular book “Natural Philosophy of Cause and Chance”
(Born, 1949). Many modern textbooks and lecture notes from the 2nd half

inaccessibility then says that for any p ∈ M and any neighbourhood Vp ⊂ M of p
there is a point q ∈ Vp such that no adiabatic process exists connecting p and q. If
TpM denotes the tangent space to M at p ∈ M and TM = ∪p∈MTpM its tangent
bundle, we define the “kernel distribution” as the subbundle Kω := {v ∈ T (M) :
ω(v) = 0} ⊂ T (M). It is clear that the principle of adiabatic inaccessibility holds
if Kω is integrable: just choose for q a point in Vp that is not on the same integral
submanifold (leaf) as p. The no-trivial mathematical result of Carathéodory (1909)
is the proof of the converse; that is, adiabatic inaccessibility is not only sufficient
but also necessary for Kω to be integrable. Integrability is equivalent to dω|Kω = 0
or ω ∧ dω = 0, as has been known from Frobenius (1877), long before the work of
Carathéodory (1909). This implies the existence of a function T on M such that
d(ω/T ) = 0 (T is a so-called integrating denominator). Hence (locally) there is a
function S on M such that ω/T = dS; this is how temperature T and entropy S
emerge from the principle of adiabatic inaccessibility.
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of the 20th century pay due tribute to the work of Carathéeordory; see. e.g.,
(Sommerfeld, 1962b) and (Straumann, 1986).

But there is more to it. Carathéodory’s work inspired others to pursue
further this programme of axiomatisation of thermodynamics. In particular,
it was felt that Carathéodory’s principle is genuinely local in nature, whereas
one would also like to make global statements; see (Giles, 1964, chapter 1.3).
Moreover, it was felt that the restriction to equilibrium states should be re-
laxed, so as to also include the more realistic processes in actual applications.
This development already set in the 1960s with with the remarkable treatise
by Giles (1964), the programme of which was extended and given new life
with a “fresh approach” by Elliot Lieb and Jakob Yngvason in an impressive
series of papers addressing a wide range of interested physicists and mathe-
maticians alike (Lieb and Yngvason, 1998, 1999, 2000, 2013). Their work is
fundamentally based on the structure imposed by an order relation ≺ to be
red as: A ≺ B if and only if state B is adiabatically accessible from state A.
Now this relation is defined globally on the space of admissible (not necessarily
equilibrium) states.

Many physicists think that abstract experimenting with axiomatic for-
mulations is a game to be played at best after the essential physics has
already been understood. But thermodynamics is a case where this critical
attitude is certainly unjustified. It that respect it is remarkable that the “tour
de force of physical and mathematical reasoning”, as the Lieb-Yngvason ap-
proach was sometimes called (Marsland et al., 2015, p 631), was highly wel-
comed by some members of the engineering departments, as is evidenced by
the textbook of Thess (2011) entiteled: “The Entropy Principle” and the sub-
title:“Thermodynamics for the Unsatisfied”. In the preface of that book the
author, who is a professor of mechanical engineering, states his dissatisfaction
with the often-made claim by physicists that the concept of entropy cannot be
understood without recourse to statistical mechanics. He tells the story that
when he came across the “fresh look at entropy and the second law of theo-
rmodynamics” (Lieb and Yngvason, 2000) and also the corresponding more
technical elaboration (Lieb and Yngvason, 1999), he felt that

“For the first time in my academic life I began to feel that I really
understood the entropy of classical thermodynamics.[...] Although the
theory is mathematically complex, it is based on an idea so simple that
each student of science or engineering should be able to understand it.
I then decided to involve my students in order to test whether the
Lieb-Yngvason theory is as convincing as I believed.”

Well, the test went apparently positive and the book (Thess, 2011) is an
outcome of that endeavour.
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Fig. 5. Max Born and the cover page of his book on the “mechanics of the atom”
(Atommechanik) that resulted from his lectures of the winter semester 1923/24 in
Göttingen and that at the eve of Quantum Mechanics he described as a “logical
experiment”. [Picture credits: Springer Verlag (left) and Wikimedia (right)]

3.4 Max Born and the “old” quantum mechanics

Quantum Mechanics, as we know and use it today, was formulated by Heisen-
berg (matrix mechanics 1925) and Schrödinger (wave mechanics 1926). In the
time immediately before that period the physicists approach to the “mechan-
ics of the atom” consisted in applications of advanced methods from analytical
mechanics and perturbation theory, mostly borrowed from the methods that
theoretical astronomers used. In particular this included Hamilton-Jacobi the-
ory. These methods were supplemented by “quantum rules” that were imposed
on top of, and largely in contradiction with, the dynamical laws of mechanics
and electrodynamics, so as to be able to explain the typical quantum phe-
nomena, like the discrete spectral lines, which must correspond to transitions
between discrete stable stationary states of the atom, whereas the classical
theory inevitably leads to a continuum of unstable states (due to electromag-
netic decay). It was clear to everybody that a proper theoretical understanding
had to come from a fundamental change in the theoretical foundations, though
opinions and expectations differed as to which of the fundamental principles
could be maintained and trusted and which had to be given up.

One might think that there can be little value to any attempts to axioma-
tise a theory that in the minds of the leading scientists is already “written-off”.
The Bohr-Sommerfeld theory, as it was called, was a pragmatic list of recipes
to calculate (surprisingly successfully) spectroscopic data, but what could
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possibly be gained from a deep-lying mathematical and conceptual analysis?
After all, the theory simply cannot be true.

Precisely! one may reply with Max Born. And because it cannot be true
we wish to known how and where it fails, not just that is fails “somehow”
and “somewhere”. In order to be able to draw such conclusions, or at least
in order to gain insights in that direction, we must give the doomed theory
a logical shape that - in principle - allows to draw such conclusions. The
book “Atommechanik” by Born (1925) is just such an attempt. This is best
explained in the introduction by Born himself:

“The title ‘Atommechanik’ of this lecture, which I delivered in the
winter-semester 1923/24 in Göttingen, is formed after the label ‘Ce-
lestial Mechanics’. In the same way as the latter labels that part of
theoretical astronomy which is concerned with the calculation of tra-
jectories of heavenly bodies according to the laws of mechanics, the
word ‘Atommechanik’ is meant to express that here we deal with the
facts of atomic physics from the particular point of view of applying
mechanical principles. This means that we are attempting a deductive
presentation of atomic theory. The reservations, that the theory is not
sufficiently developed (matured), I wish to disperse with the remark
that we are dealing with a test case, a logical experiment, the meaning
of which just lies in the determination of the limits to which the prin-
ciples of atomic- and quantum physics succeed, and to pave the ways
which shall lead us beyond that limits. I called this book ‘Volume I’ in
order to express this programme already in the title; the second volume
shall then contain a higher approximation to the ‘final’ mechanics of
atoms.”

We refer to (Giulini, 2013) for a detailed discussion of Born’s book. As a result
one may say that it did serve its purpose to some extent, for it was Born
himself who made some of the decisive contributions to quantum mechanics
in the years to follow. In that sense the book is now obsolete, though it is still
known for its concise discussion and application of Hamilton-Jacobi theory (in
the older, non-geometric presentation) and its use in mechanical perturbation
theory.

3.5 Werner Heisenberg and quantum field theory

It is interesting to compare the approaches discussed so far with that of Heisen-
berg, who in his later years hoped to give a unified mathematical formulation
of elementary particles and their interactions. His basic idea arose from his
critical reflection on the very notion of “particle”, which in quantum field
theory is far less obvious concept than the often made recurse to ancient
philosophical concepts might suggest. In quantum field theory, the basic en-
tity is the field, which obeys dynamical laws and respects certain symmetries,
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including the automorphisms of space-time. Particles are associated to cer-
tain states, which may or may not be dynamically stable according to the
laws of interaction. Heisenberg compared these states with the states of an
atom in ordinary quantum mechanics, among which there may be transitions
according to dynamical laws and selection rules imposed by symmetries. This
attempt of Heisenberg’s was not successful for many reasons, not least because
of its uncertain mathematical setting and the ensuing lack of mathematical
control, which prevented proper deductions. What is of interest to us here is
that Heisenberg takes a different view as regards to what should come first:
a controlled mathematical setting or a proper physical understanding. This
Heisenberg (1967) outlined in the preface of his book “Einführung in die Ein-
heitliche Feldtheorie der Elementarteilchen”:

“The idea, according to which elemen-
tary particles appear as dynamical sys-
tems, comparable to the stationary states
of a complicated atom or molecule and as
determined universally by quantum me-
chanics, has for a long time found little
response by physicists.”
“At the current state of the theory it
would be premature to start with a set
of well defined axioms and deduce the
theory by means of exact mathematical
methods. What we need is a mathemati-
cal description which fits the experimen-
tal situation, which does not seem to con-
tain contradictions and which, therefore,
may perhaps be later completed into an
exact mathematical scheme. History of
physics teaches us that, usually, a new
theory can only then be given precise
mathematical expression if all essential
physical problems have been solved.”

Fig. 6. Quotation from, and cover page of, Werner Heisenberg’s book on the at-
tempted unified field theory of elementary particles (Heisenberg, 1967). [Picture
credit: Cover page reprinted with kind permission of Hirzel Verlag]

Most physicists would presumably agree that one should not start too
early to strive for mathematical rigour. On the other hand, it also seems
unclear what it could mean that a physical problem has been “solved”, if
not on the basis of “exact mathematical expression”. Here, in my opinion,
Born has the better approach in regarding exact mathematical expressions as
part of a “logical experiment”. Like a laboratory experiment requires utmost
care in the articulation of its setup as well as its actual performance in order
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to guarantee its reproducibility, a logical experiment can likewise not bear
with faulty or uncontrolled mathematical expression. Proper understanding
in physics equally relies on both of these aspects, which should go hand in
hand rather than being played off against each other.

This ends our presentation of selected examples of axiomatic thinking in
physics. Perhaps the biggest gap in our selection is that left by omitting
axiomatic quantum field theory, which would have gone beyond the scope of
this presentation, and certainly beyond my scope of expertise. In the second
part of this contribution I will focus on theories and mathematical models of
space-time, which due to their close relation with geometry can be viewed as
an ideal playing ground for axiomatic thinking.

4 Space-Time

Ever since the advent of Special Relativity (SR) in 1905 and General Relativ-
ity in 1915 it became manifest that the geometric structure of space-time is
to be addressed explicitly as a contingent entity in the formulation of physical
laws. This is not to say that space-time structure has a lesser role in, say,
classical mechanics. But for a long time that structure was taken as more or
less self-evident and without need to be separately listed among the hypothe-
ses of physical theories. It is characteristic of that situation that the need to
spell out explicitly the geometric hypotheses underlying Galilei-Newton space-
times was only felt after Special Relativity was formulated. To my knowledge
the first to do this for Galilei-Newton space-time was Hermann Weyl in his
famous book Raum-Zeit-Materie, the first edition of which appeared in 1918.7

He characterised the geometry of Galilei-Newton space-time in terms of affine
and metric structures, the latter separately for a “time-metric”, that mea-
sures oriented time distances between any two points – also called “events”
– in space-time, and a space metric, that measures distances between any
pair of simultaneous points, i.e. points of vanishing time difference. Follow-
ing the spirit of Felix Klein’s Erlanger Programm (Klein, 1872) Weyl (1918,
§ 18) argued that this type of “geometry” may be characterised by its automor-
phism group, which in case of Newton-Galilei space-time is the inhomogeneous
Galilei group and in case of Special Relativity is the inhomogeneous Lorentz
group, also known as Poincaré group. See (Künzle, 1972) for a comprehensive
comparison of these structures.

4.1 Minkowski space

Since Weyl’s treatment of various space-time structures from a unifying per-
spective, the question of how to characterise and motivate them appeared
time and again on the agenda of mathematically inspired physicists. It led

7This Weyl extended in the 3rd and 5th edition of 1921 and 1923.
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to various attempts to axiomatise the geometry of Minkowski space, i.e. the
space-time of SR. An early and very elaborate attempt - even before Weyl
- ist that of Robb (1911, 1914, 1921, 1936), who based his axioms on light
propagation in the attempt to design primitives based on intuitive physical
operations. Characteristic for his complex systems of axioms8 is the funda-
mental role played by relations of causality, which in view of later develop-
ments (see below) lets Robb appear much ahead of his time (Briginshaw,
1979). Another system of axioms for Minkowski space, somewhat modelled
after Hilbert’s system for euclidean Geometry, has been established by Schutz
(1997). Remarkably, this system of axioms is shown to be independent. Let it
also be mentioned that once more Carathéodory (1924) was amongst the first
to give a simplified axiomatic formulation of SR, the intention of which was
also to eliminate “rods” but retain a simplified concept of “clock” based, on
light signals, a so called “Lichtuhr”, the concept of which already appeared in
(Hilbert, 1917, p. 54), though without further explanation.9 Weyl once more
returned to an axiomatisation of Minkowski space in his (so far unpublished)
lecture on “Axiomatik”, held at the University of Göttingen of the winter
semester 1930-31, of which a manuscript survived at the Princeton Institute
for Advanced Studies (Weyl, 1930-31).10

It would clearly be hopeless to attempt to give a fair overview over these
developments over the last 100 years, not all or which appeal to the physicist.
For a physicist the axioms should have some more or less intuitive relation to
operations that can, in principle, be carried out by means of existing objects.
Rather, I wish to state some more or less recent results that are of interest
from the physical as well as mathematical point of view.

Beckman-Quarles analogues

We begin by recalling the famous theorem of Beckman and Quarles (1953)
that characterises the euclidean group as distance-preserving maps:

Theorem 1 (Beckmann & Quarles 1953). Let (Rn, Q) be euclidean space
for n ≥ 2 with standard euclidean quadratic form Q(x) =

󰁓n
i=1 x

2
i and associ-

ated distance function d(x, y) :=
󰁳
Q(x− y). Let T : Rn → Rn be a map such

8Robb’s system in its final form is complex and takes more than 400 pages for
its presentation and discussion (Robb, 1936). It contains 21 axioms which are based
on the relations of “before” and “after” which can be reduced to that of lightlike
connectability. It was later shown by Mundy (1986) that this system is amenable to
considerable simplification.

9This concept was only spelled out 40 years after Carathéodory by Marzke and
Wheeler (1964) based on (Marzke, 1959).

10Weyl’s “Axiomatik” lecture has 40 paragraphs grouped into five chapters:
chapter I (paragraphs 1-9) on “Geometrie”; chapter II (paragraphs 10-15) on “Die
Raum-Zeit-Lehre der Speziellen Relativitätstheorie”; chapter III (paragraphs 16-25)
on “Raum und Zahl”; chapter IV (paragraphs 26-36) on “Algebra”; chapterV (para-
graphs 37-40) on “Topologie”.
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that there exists a positive real number ρ so that d(x, y) = ρ ⇒ d
󰀃
f(x), f(y)

󰀄
=

ρ, then T is an element of the group En of euclidean transformations (includ-
ing orientation reversing reflections).

This theorem is remarkable insofar as the map T is not required to fulfil any
other property than preserving a single length ρ. No assumptions whatsoever
are made concerning injectivity, surjectivity, bijectivity, continuity, or affine-
linearity. All these properties are implied by the single requirement that some
distance ρ > 0 be preserved, as well the isometry property that if a single
distance is preserved, all distances are. Note also that for n = 1 the statement
of the theorem is obviously false: For example, the map T : R → R given
by T (x) = x + 1 for x ∈ Z ⊂ R and T (x) = x for x ∕∈ Z ⊂ R satisfies the
hypotheses for ρ = 1.

It is clear that the Beckman-Quarles theorem can just as well be stated
for a general real (or complex, but we are interested in the real case only)
affine space An of dimension n ≥ 2, whose associated vector space V has a
symmetric, positive definite inner product g : V ×V → R, associated quadratic
form Qg(x) = g(x, x), and distance function dg(x, y) :=

󰁳
Qg(x− y).

The situation in Special Relativity differs from that only insofar as g is
not positive definite, but rather has signature (−1, 1, 1, 1). This means that
point-pairs (x, y) have either

Qg(x− y)

󰀻
󰁁󰀿

󰁁󰀽

< 0 ⇔ (x, y) are timelike separated ,

= 0 ⇔ (x, y) are lightlike separated ,

> 0 ⇔ (x, y) are spacelike separated .

(2)

In this case, a distance function dg does not exist. For example, the naive

generalisation, dg(x, y) =
󰁳
|Qg(x− y)|, gives dg(x, y) = 0 whenever (x, y) are

lightlike separated and does not imply x = y. However, it is clear that we could
have formulated the Beckman-Quarles theorem using the “squared distance”
d2g(x, y) = Qg(x − y). Then it is natural to ask whether the corresponding
statement remains true in the indefinite case. This is not at all obvious since
the starting idea of the proof given by Beckman and Quarles (1953) is tailored
to the positive definite case. However, after some efforts, it turned out that a
Beckman-Quarles result indeed holds for non-zero “squared-distances”:

Theorem 2 (Benz 1980-1 and Lester 1981). Let (Rn, g) be Minkowski
space for n ≥ 2 with standard Minkowskian quadratic form Qg(x) = g(x, x) =

−x2
0 +

󰁓n−1
i=1 x2

i . Let T : Rn → Rn be a map such that there exists a non-
zero real number σ so that Q(x − y) = σ ⇒ Q

󰀃
T (x) − T (y)

󰀄
= σ. Then T

is an element of the Poincaré group Pn of (Rn, g), i.e. the composition of
a translation and a Lorentz transformation (including orientation-reversing
reflections).

The cases of timelike separation (σ < 0) were proven for all dimensions (n ≥ 2)
by Benz (1980), the planar case (n = 2) for timelike or spacelike separation
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(σ ∕= 0) by Benz (1981), and the remaining cases of spacelike separation
(σ > 0) and dimensions n ≥ 3 by Lester (1981).

Causal relations

What about lightlike seprations? Here no Beckman-Quarles theorem is known.
What is known are several results for maps that are required to be bijections
and that in both directions preserve the causal- and light-cone structure im-
plicit in (2), possibly refined by adding a time orientation.

To state them more precisely we recall that a time orientation on Minkowski
space consists in the selection of one of the two components of the set of non-
zero causal (i.e. timelike or lightlike) vectors. The selected component is then
called the set of “future pointing” causal vectors. Any member o of that com-
ponent may then represent the choice of orientation as follows: Let (V, g) be an
n-dimensional real vector space with inner product of signature (−1, 1, · · · , 1).
Let o be timelike, i.e. g(o, o) = −1 (without loss of generality we can choose
o to be normalised). The cone of causal vectors in which o lies is called “the
future”. Then it is easy to see that any other non-zero causal (i.e. timelike or
lightlike) vector v (i.e. g(v, v) ≤ 0) is also an element of the future, if and only
if g(v, o) < 0.

This allows to introduce into Minkowski space M (the affine space corre-
sponding to V ) the notions of causal and chronological future and past, as
well as the light cones, as follows:

I+(x) := {y ∈ M : Qg(y − x) < 0 ∧ g(y − x, o) < 0} (3a)

= “chronological future of x”

I−(x) := {y ∈ M : Qg(y − x) < 0 ∧ g(y − x, o) > 0} (3b)

= “chronological past of x”

J+(x) := {y ∈ M : Qg(y − x) ≤ 0 ∧ g(y − x, o) < 0} (3c)

= “causal future of x”

J−(x) := {y ∈ M : Qg(y − x) ≤ 0 ∧ g(y − x, o) > 0} (3d)

= “causal past of x”

L+(x) := {y ∈ M : Qg(y − x) = 0 ∧ g(y − x, o) < 0} (3e)

= “future light-cone of x”

L−(x) := {y ∈ M : Qg(y − x) = 0 ∧ g(y − x, o) > 0} (3f)

= “past light-cone of x”

Clearly L±(x) = J±(x)−I±(x). We also use the notation I+(x)∪I−(x) = I(x)
and correspondingly J+(x) ∪ J−(x) = J(x) and L+(x) ∪ L−(x) = L(x) for
the double cones.

Using this language, we first state some the main theorems concerning the
question as to how far the casual relations determine the Poincaré group and
therefore encode the geometry of Minkowski space time:
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Theorem 3 (Alexandrov, Zeeman, Borchers & Hegerfeld). Let (M, g)
be n > 2 dimensional Minkowski space and T : M → M a bijection so that
whenever y ∈ I+(x) then T (y) ∈ I+

󰀃
T (x)

󰀄
and T−1(y) ∈ I+

󰀃
T−1(x)

󰀄
; then

T is the composition of a time-orientation preserving Poincaré transforma-
tion and a positive constant rescaling x 󰀁→ ax, called a positive “homothety”,
where a > 0. The same is true if we replace I+ by I− or J+ or J−, L+ or
L−. Moreover, without invoking a time orientation, we still have the cor-
responding statements. That is, if y ∈ I(x) implies T (y) ∈ I

󰀃
T (x)

󰀄
and

T−1(y) ∈ I
󰀃
T−1(x)

󰀄
, then it follows that T is a Poincaré transformation

(including time-orientation reversing ones) and general homotheties x 󰀁→ ax
with a ∕= 0.

Most of this was proven by Alexandrov (1975) and independently by Zee-
man (1964), the non time-oriented case separately by Borchers and Hegerfeld
(1972). Note that the existence of the additional homotheties x 󰀁→ ax is ob-
vious, since they clearly preserve the causal and chronological relations and
also lightlike separations. In that sense the stated results are the strongest
one could have hoped for, except perhaps for the requirement that the maps
be bijections, a requirement that was not necessary in the Beckman-Quarles
case. But again we emphasise that continuity and even the affine character
was not required, but rather comes out as a result.

The results of this last theorem have been interpreted in various ways. For
example, the fact that Poincaré transformations and homotheties are the only
bijections that preserve the relation of point pairs to be lightlike separated can
be read as saying that the invariance of the speed of light alone already deter-
mines the Poincaré group (up to homotheties), without any essential further
input from the “principle of relativity” and, in particular, the “law of inertia”.
We recall that it is the latter that is usually invoked to get the affine structure
of space-time through the particular path-structure determined by the law of
inertia.11 Hence we may say that the affine structure of Minkowski space
is already encoded in its light-come structure, and also its causal structure.
Sometimes this is expressed - not quite accurately - that “causality implies
the Lorentz group”, which, in fact, is just the title of (Zeeman, 1964).

Non standard topologies

An related line of attack for characterising the full structure of Minkowski
space by axioms in terms of operations that have a more or less intuitive
physical meaning in terms of elementary operations is to endow it with an-
other, finer (in the sense of “more” open sets) topology than the standard

11 See (Ehlers and Köhler, 1977; Coleman and Korte, 1980) for the formal defi-
nition of a path structure. More on the connection between the law of interia and
the affine structure of space-time may be found in (Giulini, 2002; Pfister and King,
2015).
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one.12 A first suggestion in that direction was made by Zeeman (1967) with
his “fine topology”, which is the finest that induces the standard topology
on any timelike straight line and any spacelike hyperplane. This topology
is strictly finer than the standard one and Zeeman showed that the group
of homeomorphisms of Minkowski space endowed with the fine topology is
precisely the Poincaré group extended by homothetys. Negative aspects of
this fine topology are that, albeit being Hausdorff connected and locally con-
nected, it is neither normal, nor locally compact, nor first countable. Zeeman
concluded that “these disadvantages are outweighed by the physical advan-
tages” (Zeeman, 1967, p. 162). The physical advantages may be expressed by
saying that “openness” in this topology is defined in a physically more opera-
tional form, since a set is defined to be open if an inertial observer (moving on
a timelike straight line) “times” it to be open, and if every equivalence class
of mutually simultaneous events intersect it in an open set.

That these “advantages” are not so obvious has been argued by Hawking
et al. (1977). First, the restriction to inertial observers (i.e. to straight time-
like lines) is clearly too restrictitive and, second, an experiment that takes
place in real time with finite duration cannot directly access sets of mutu-
ally simultaneous events. Consequently, a different topology was proposed by
Hawking et al. (1977), called the “path topology”, which is defined to be the
finest topology that induces the standard topology on any timelike curve.13

That is, a set is open if and only if any observer “times” it to be open. This
definition applies to arbitrary space-times, not just Minkowski space, and
leads to topologies which are path connected, locally path connected (hence
connected and locally connected), and Hausdorff, but improves on Zeeman’s
fine topology by being also first countable and separable. However, it is not
regular, normal, locally compact, or paracompact (Hawking et al., 1977, The-
orem3). The set of homeomorphims of a space-time in the path topology are
precisely the smooth conformal isometries. In that sense can the causal, dif-
ferential, and conformal structure of a space-time be encoded into a topology
that has a fairly straightforward physical interpretation. That this is true in
any space-time (and not just the so-called strongly causal ones, as assumed
by Hawking et al. (1977)) has been proven by Malament (1977). Moreover,
for special space-times which obey the condition of being “future and past
distinguishing”, there is indeed a certain analog of the Alexandrov-Zeeman
results quoted above. To state it we remark that the definitions (3) can be
generalised to arbitrary Lorentzian, time oriented manifolds (M, g) where, e.g.
the chronological future I+(x) of a point x is the set of points that can be

12We recall that an affine space inherits a natural topology from its associated
vector space. This is also the natural manifold topology it receives from the atlas of
affine charts; i.e. it is the coarsest (in the sense of “fewest” open sets) topology in
which all chart-maps are continuous.

13The set of timelike curves considered here includes nowhere differentiable ones;
the notion of being timelike cannot in this case be defined by the tangent vector and
has to be generalised.
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connected to x by a future-pointing timelike smooth curve. If we replace the
word timelike by causal (i.e. nowhere spacelike) we get the definition of J+(x).
Now, a space-time is future or past distinguishing, if and only if I+(x) = I+(y)
implies x = y and I−(x) = I−(y) implies x = y, respectively. Then we have

Theorem 4 (Malament 1977). Let (M, g) and (M ′, g′) be two future and
past distinguishing space-times (connected, time-oriented, 4-dimensional smooth
Lorentz manifolds without boundary). Let T : M → M ′ be a bijection so that
y ∈ I+(x) implies T (y) ∈ I+

󰀃
T (x)

󰀄
and T−1(y) ∈ I+

󰀃
T−1(x)

󰀄
. Then T is a

smooth conformal isometry; that is, T is a diffeomorphism and there exists a
smooth, nowhere vanishing function Ω on M so that T ∗g′ = Ω2 g.

This is proven (amongst other results) by Malament (1977). The half-order
relation of causal connectability encodes the entire topological, differential,
and conformal structure, at least if the space-time is assumed to be future- as
well as past distinguishing. The necessity of both conditions has been demon-
strated by Malament (1977).

4.2 General Relativity

With the work of Hawking et al. (1977) and Malament (1977) we have en-
tered the realm of General Relativity, the axiomatisation of which goes back
to Hilbert’s “Grundlagen der Physik” (Hilbert, 1915, 1917, 1924)14 and had
ever since remained a research topic on the agenda of interested and mathe-
matically inspired relativists. Activities in the 100 years since Hilbert’s first
attempts have rather increased than decreased if one compares the second to
the first 50 years since then.

General Relativity describes the gravitational interaction of matter in
terms of the geometry of space-time (M, g), which is considered to be a
4-dimensional differentiable manifold M (the points of which are called
“events”) with Lorentzian structure g (i.e. a symmetric, non-gegenerate bi-
linear form in each tangent space, which is of signature (−1, 1, 1, 1)). The
fundamental physical principle behind this geometrisation of gravity is Ein-
stein’s Equivalence Principle, according to which all matter components, from
elementary fields and particles to astronomical objects, couple to gravity in
a universal fashion. This “universality” is such that it can be encoded in a
single geometry of space-time that is the common habitat for any form of
matter.

Hilbert’s axiomatisation of General Relativity is closely linked up with
the far more ambitious project to find a common basis for all of (funda-
mental) physics in terms of the then known fundamental fields, namely the
gravitational- and the electromagnetic field. For the latter he followed the lines

14We note that (Hilbert, 1924) is a combination of (Hilbert, 1915) and (Hilbert,
1917) with various changes taking into account suggestions and criticism by Klein
(1917) and results of Noether (1918), which also led to additional axioms.
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of “Grundlagen einer Theorie der Materie” by Mie (1912a,b, 1913), the plan
of which was to understand the elementary constituents of matter, e.g., the
electron, in terms of exact, finite-energy solutions of a mathematically modi-
fied, non-linear theory for the electromagnetic field. At that time Mie’s Theory
was perceived by many to be a promising candidate, among them Weyl, who
from the third edition of Weyl (1918) included summaries of Mie’s theory in
his “Raum-Zeit-Materie”, though in the 5. edition turned more sceptical. The
“feldtheoretische Einheitsideal”, as Hilbert still liked to call it in (Hilbert,
1924, p. 1), was looked upon with increasing scepticism by the then younger
generation of physicists, perhaps most penetrating by 20-years young Wolf-
gang Pauli, who ended his celebrated 237-page article “Relativitätstheorie”,
written for the “Enzyklopädie der Mathematischen Wissenschaften”, after
having devoted separate chapters to various “matter-theories” of Mie, Weyl,
and Einstein, with the following words (Pauli, 1921, p. 775):

“Whatever one may think of these arguments, one thing seems cer-
tain: that the foundations of the current theory need to be supplemented
by new elements, which are foreign to the continuum theory of fields,
in order to achieve a satisfactory solution of the problem of matter.”

More modern attempts to give an axiomatic basis for General Relativ-
ity are much more reluctant in linking it up with contemporary theories of
fundamental matter. Still today it is entirely unclear how the quantum(field)-
theoretic nature of fundamental matter relates to the classical field theory of
space-time and its geometry, which has so far resisted all attempts to “quan-
tisation”, despite enormous efforts up to this day. On the other hand, General
Relativity needs matter for its interpretation as a theory of “physical geom-
etry”. Its geometric statements refer to the actual behaviour of “clocks” and
“rods”. But “clocks” and “rods” are usually very complex many-body sys-
tems, eventually based on the laws of quantum physics.

This operational meaning of the notion of “geometry” in physics has been
frequently stressed by Einstein, in a very illuminating form in his “Geometrie
und Erfahrung” (Einstein, 1921). “Clocks” and “rods” entered the picture as
idealised objects the relations of which define what one intends to define by
“physical geometry” in the first place. Hence there is a reciprocal dependence
between matter and geometry, since the laws of matter also depend on the
geometry of space and time.

One might argue that even with the addition of the qualification “dealised”,
clocks and rods are not yet sufficiently well characterised, for it has not yet
been said precisely what geometric relations they are supposed to determine.
This has once been pointedly expressed by Robb, whose scepticism against
the use of such vaguely defined concepts is omnipresent throughout his entire
work (Robb, 1911, 1914, 1921, 1936). In Robb (1936, p. 13) he wrote:

“It is not sufficient to say that Einstein’s clocks and measuring rods
are ideal ones: for, before we are in the position to speak of them as
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being ideal, it is necessary to have some clear conception as to how one
could, at least theoretically, recognise ideal clocks and measuring rods
in case one were ever sufficiently fortunate as to come across such
things; and in case we have this clear conception, it is quite unneces-
sary, in our theoretical investigations, to introduce clocks or measuring
rods at all.”

In a memorable discussion that took place in September 1920 at the
“Tagung der Gesellschaft Deutscher Naturforscher und Ärzte in Bad Nauheim”,
where many “anti-relativists” voiced their “concerns”, Einstein addressed this
fundamental difficulty in a reply to to the mathematician Georg Hamel, who
inquired about the physical interpretation of gravitational redshift. Einstein’s
reply reads as follows (Janssen et al., 2002, Doc. 46, p. 353):

“It is a logical weakness of the theory of relativity in its present state
to be forced to introduce rods and clocks as separate entities instead
of being able to deduce them as solutions of differential equations.
However, in view of the empirical foundations of the theory, those
consequences regarding the behaviour of rigid bodies and clocks are
among the most reliable ones.”

Weyl, who also attended and spoke at this conference, was the first to sys-
tematically replace these unclear (in the sense of their dynamical modelling)
notions of “clocks” and “rods” by something more transparent. He clearly
felt that these notions of uncertain physical foundation should not serve as
primitives in any axiomatic scheme of GR. This is why he came up with
the idea to at least reduce complexity by replacing “clocks” and “rods” with
“particles” and “light-rays”, both of which are, in fact, solutions to differen-
tial equations, as Einstein required in his reply to Hamel. Particles move on
timelike “autoparallel curves”, by which one understands geodesics modulo
their parametrisation. If the autoparallel curve is parametrised by its proper
length, or any parameter affinely equivalent to that, it is called a “geodesic”.15

But here it is deliberately not assumed that the particle is a clock, that is,

15Here we use the following terminology: An “autoparallel” is a curve λ 󰀁→ x(λ)
that satisfies the differential equation ẍa + Γ a

bcẋ
bẋc = f(λ)ẋa, where f remains un-

specified. A “geodesic” is a curve that satisfies this differential equation for f ≡ 0.
Note that Γ a

bc are the components of the connection (the Christoffel symbols in Rie-
mannian and semi-Riemannian geometry). Any autoparallel can be turned into a
geodesic by reparametrisation. This fixes the parameter λ up to affine transforma-
tions: λ 󰀁→ λ′ := aλ + b, where a ∈ R − {0} and b ∈ R. Sometimes people speak of
“unparametrised geodesics” instead of “autoparallels”, but we shall not adopt this
terminology here.
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it is not capable of measuring and recording the length of the curve.16 Hence
“particles” determine the set of all timelike autoparallels (or unparametrised
timelike geodesics), which in Weyl’s terminology define a “projective struc-
ture”. In contrast, an “affine structure” is defined by the set of all geodesics
(parametrised). Light rays, on the other hand, determine the light cone in
each tangent space of the manifold. Now, knowing the set of vectors v for
which Qg(v) = 0 determines the quadratic form Qg, and hence g, up to a
multiplicative constant. For the manifold this means that light rays deter-
mine the metric up to conformal rescalings g 󰀁→ Ω2g, or, in other words, the
conformal structure. Weyl proved that a Lorentzian metric is – up to globally
constant rescalings – uniquely characterised by the conformal and projective
structures it defines.

But the actual task is the converse: To derive the existence of a Lorentzian
metric form the primitives consisting of a set M of events and sets of sub-
sets called “particles” and “light rays“. In 1972 Ehlers et al. (1972)17 posed
and partially solved the ambitious problem of setting up a system of axioms
involving only “particles” and “light rays”, from which the hierarchy of

topological – differential – conformal – projective – affine – metric

structures should be derived, eventually resulting in a four-dimensional differ-
entiable manifold with pseudo Riemannian structure of Lorentzian singature
(−,+,+,+).

The Ehlers-Pirani-Schild system

The system of axioms set up by Jürgen Ehlers, Felix Pirani, and Alfred Schild
– or “EPS-System” as it is often called – has, roughly, the following structure:

• Primitive elements are a set M of “events” (points in space-time) and two
sets of subsets L and P, called “light-rays” and “particles”.

D A set D1, · · · , D4 of four axioms characterise the differential-topological
structure ofM . Typical requirements are that “particles” are smooth (here
C3) one-dimensional manifolds and that the self-maps from one particle
to itself based on light-“echoes” (forward-backward connections between
neighbouring particles using light rays) are also smooth.

16 In General Relativity, a “clock” is usually defined as any device that is capable
of measuring the proper length (or any preferred parameter affinely equivalent to
that) of a timelike curve. This may be its own worldline (if it defines any) or that of
another object. How this can be done – in principle – with light rays alone, thereby
giving operational meaning to the concept of a “Lichtuhr” already mentioned by
Hilbert (1917, p. 54), has been explained by Marzke and Wheeler (1964) based on
(Marzke, 1959).

17This difficult-to-access paper was republished as “Golden Oldie” in (Ehlers
et al., 2012).
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L On top of [D], a set L1, L2 of two axioms fix the causal structure with
an underlying C3 manifold M and a C2 conformal structure. The latter
consists in a conformal equivalence class C of Lorentzian metrics: if g ∈ C
then C = {exp(Ω)g : Ω ∈ C2(M,R)}. Here C2(M,R) denotes the set of
twice continuously differentiable (C2), real-valued functions on M .

P On top of [D], a set P1, P2 of two axioms characterise a projective struc-
ture P, by which one understands the class of free-fall worldlines without
parametrisation, i.e. embedded one-dimensional submanifolds. In terms
of curves as maps R → M , i.e. parametrised curves, the former can be
characterised by equivalence classes with respect to the equivalence rela-
tion induced by reparametrisation. Eventually, P can be thought of as an
equivalence class of torsion free connection, where if Γ ∈ P and E denotes
the T 1

1 (M)-valued tensor-field of identity-endomorphisms (in each tangent
space), then P = {Γ +E ⊗ ϕ+ ϕ⊗E : ϕ ∈ ST ∗(M)}. (ST ∗(M) denotes
the set of smooth sections in the cotangent bundle.)

C A last axiom, C, requires some “compatibility“ (see below) between the
conformal structure C and the projective structure P. Given that com-
patibility, the authors claim to be able to derive a Weyl structure18, by
which one understands a triple (M,C ,∇), where ∇ is a C -compatible con-
nection, which means that it is torsion free and there exists for any g ∈ C
a covector field ϕg such that

∇g = ϕg ⊗ g . (4)

It is easy to check that if (4) holds for (g,ϕg) then it also holds for (g′,ϕg′)
with g′ = exp(Ω)g and ϕg′ = ϕg + dΩ.

R In order to reduce this to a semi-Riemannian geometry, additional physical
input is needed. Ehlers et al. (1972) choice was to postulate the absence
of so called “second clock-effect”.19 In this case the one-form ϕg is closed,
dϕg = 0, and hence locally exact, ϕg = −dΩ, so that ∇ is the Levi-Civita
connection for g′ = exp(Ω)g and we are back to the semi-Riemannian case.
In this case one calls the Weyl geometry “integrable”.

18A “Weyl structure” is equivalent to a “Weyl geometry” in (Matveev and Scholz,
2020)’s terminology. The latter is defined by an equivalence class of pairs (g,ϕ) with
equivalence relation (g,ϕ) ∼ (g′,ϕ′) ⇔ g′ = exp(Ω)g and ϕ′ = ϕ+ dΩ. It is easy to
see by the obvious generalisation of the standard Koszul formula that for any given
pair (g,ϕg) there is a unique torsion-free ∇ satisfying (4)

19The “first clock-effect” just means that initially synchronised clocks generally
show different readings when connecting two timelike separated events by different
worldlines. Geometrically this just refers to the trivial fact the lengths of paths
connecting two given points in space-time depend on the paths. The “second clock-
effect” refers to the (mathematical) possibility that the ticking rates of the two
clocks may also differ upon being brought together, depending on their pre-history.
A general, non-integrable Weyl geometry allows for such second clock-effects.
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There is a technical and a conceptual problem with this approach. The
technical issue concerns the precise notion of “compatibility” that should be
invoked in axiomC to achieve the reduction to a Weyl geometry. The concep-
tual issue concerns the choice of physical input that allows to further reduce
the Weyl- to the semi-Riemannian geometry.

Let us start with the conceptual problem first. It was felt by many that the
choice of Ehlers et al. (1972), to just declare the non existence the second clock-
effect, is physically not convincing and going against the spirit of the whole
approach. First, it is not convincing because just postulating the absence
of these unwanted effect is conceptually not sufficient. Rather, one should
show their incompatibility with fundamental properties of matter. Second it’s
against the spirit because it re-introduces the notion of “clocks” which we
wanted to eliminate.20

It is clear that in order to meet this conceptual criticism one has to in-
ject more physics into the scheme that, first, allows to eliminate non inte-
grable Weyl geometries and, second, keeps the newly injected physics simple
enough to not lead us back to “clocks” and “rods”. The central and physi-
cally very plausible idea was to inject the information that the point particles
that define the projective structure are, according to modern physics, eventu-
ally described by quantum mechanics and/or quantum field theory, the wave
equations of which lead to particle trajectories in the short-wavelength-limit.
Just like light-rays emerge in the short-wavelength-limit from Maxwell’s equa-
tions. But here we get timelike worldlines for massive fields. It could indeed
be shown that using matter fields as primitives suffices to finally arrive at
semi-Riemannian geometries; see (Audretsch, 1983; Audretsch et al., 1984;
Audretsch and Lämmerzahl, 1991).

As regards the technical problem, it turned out that that there can be
subtle differences in the precise formulation of how the projective structure P
and the conformal structure C are required to be “compatible”. A recent paper
by Matveev and Scholz (2020) distinguishes three notions of compatibility:

A) Light cone compatibility: Every lightlike autoparallel of C is an autopar-
allel of one (and hence each) connection representing P. This is how the
compatibility is formulated by Ehlers et al. (1972).

20Note that a Weyl structure(M,C ,∇) only includes a conformal equivalence
class C of semi-Riemannian metrics. This suffices to define timelike curves as those
curves γ where g(γ̇, γ̇) < 0 for one – and hence any – representative g ∈ C , which also
does not depend of the parametrisation. But lengths of curves are not determined
by C so that the notion of a “clock” cannot be defined as before in footnote 16,
namely as a device measuring the proper lengths of timelike curves (or any of the
affinely equivalent parameters). Instead, in Weylian space-times, a “clock” is defined,
according to Perlick (1994), by a device that allows to measure any of the preferred
parameters within the affine equivalence class of curve parameters with respect to
which the acceleration γ̈ = ∇γ̇ γ̇ is C -perpendicular to the direction of the curve,
i.e. g(γ̈, γ̇) = 0 for one – and hence any – g ∈ C .
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B) Riemannian compatibility: There exists a g ∈ C the Levi-Civity connection
of which represents P.

C) Weyl compatibility: There is a C -compatible Weyl connection representing
P.

The issue arises because in Ehlers et al. (1972) compatibility is defined as in
A) above, but the conclusion drawn by these authors is as if C) were required.
Now, it is not difficult to see that C) and B) each imply A). Comparatively
recently it was shown by Matveev and Trautman (2013) that B) is strictly
stronger than A), i.e. that A) does not imply B). This left open the question
whether A) implied C), as conjectured by Ehlers et al. (1972). This question
was answered in the affirmative only very recently by Matveev and Scholz
(2020), so that A) and C) are, in fact, equivalent.

Finally, I wish to add one more technical observation concerning the EPS
scheme. One might wonder how, despite the final gap from Weyl- to semi-
Riemannian geometries, this scheme manages to end up straight with the
already very special class of Weyl geometries. How, for example, does it come
about that Finsler geometries are ruled out? We recall that Finsler-like gener-
alisations of Lorentzian geometries can be defined21 and have been applied to
problems in gravitational physics in order to test possible deviations from the
predictions of General Relativity; see (Lämmerzahl et al., 2012; Lämmerzahl
and Perlick, 2018). Now, given a Lorentzian metrig g, it is not difficult to see
that Finsler geometries (of Berwald type) exist that have the same conformal
and projective structure as g but are not semi-Riemannian; see (Tavakol and
van den Bergh, 1985).22 This suggests that EPS’ final arrival at a Weyl struc-
ture may crucially depend on fine tuned technical assumptions the physical
justification of which one should clarify. To see this in slightly more detail, we
look at their axiom L1:
The subtle point here is the required differentiability-class C2 of the function
g : p 󰀁→ −t(e1)t(e2) on all of U , that is, including the points p on P . The
function g itself is something like the squared spacelike distance of p to the
midpoint between e1 and e2. If the distance function is of euclidean type, i.e.
its square is a homogeneous polynomial of degree two (in the limit p → e),
its second derivative would just be twice the metric tensor at e. But for a

21There are various approaches, not all of which allow the notion of lightlike
geodesics. A scheme in which this is possible has been introduced and used by
Lämmerzahl et al. (2012). See (Lämmerzahl and Perlick, 2018) for a review and
references and (Minguzzi, 2015) for a discussion of conditions on Finsler metrics
that lead to Lorentzian-like two-component lightcones.

22 The idea is simple: Take as Lagrange function (square of the “Finsler func-
tion”) L(x, ẋ) = exp

󰀃
2σ(x, ẋ)

󰀄
gab(x)ẋ

aẋb with σ : TM → R any smooth func-
tion. This obviously leads to the same conformal structure. As shown by Tavakol
and van den Bergh (1985), it has the same projective structure if σ satisfies
∂σ/∂xb − (∂σ/∂ẋa)Γ a

bcẋ
c = 0, where Γ a

bc are the components of the Levi-Civita
connection (Christoffel symbols) for g.
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“Any event e has a neighbourhood V
such that each event p in V can be
connected within V to a particle P
by at most two light rays. Moreover,
given such a neighbourhood and a par-
ticle P through e, there is another
neighbourhood U ⊂ V , such that any
event p in U can, in fact, be connected
with P within V by precisely two light
rays L1 and L2 and these intersect P
in two distinct events e1, e2 if p ∕∈ P .
If t is a coordinate on P ∩ V with
t(e) = 0, then g : p 󰀁→ −t(e1)t(e2)
is a function of class C2 on U”.

Fig. 7. Drawing and quotation from (Ehlers et al., 2012, p. 72-73). [Picture credit:
Springer Verlag; the figure on the left is reproduced from the cited reprint]

genuin Finsler metric the limit p → e of the second derivative will be direc-
tion dependent. The C2-requirement therefore eliminates all Finsler metrics
which are not of (semi-)Riemannian type.23 Note that Finsler metrics still give
rise to well defined geodesic problems, that is, curves extremising the length
functional (in the positive definite case) or energy functional (in the indef-
inite case), giving rise to ordinary differential equations satisfying existence
and uniqueness criteria, like Lipschitz continuity, so that Picard-Lindelöf’s
theorem can be applied to assure existence and uniqueness. Hence, from that
perspective, it would, have been sufficient to adopt a weaker than C2 criterion
and still obtain well defined geodesic principles.24This point has already been
made by Tavakol and van den Bergh (1985) and more recently by Lämmerzahl
and Perlick (2018). For a very most recent comprehensive account, see (Bernal
et al., 2020).

So how could the C2-requirement really be justified? Ehlers et al. (1972)
discuss the physical motivation for their axiom L1 and refer to Isaak (1969) for
observational/experimental support. But looking up this reference the reader
finds no real “paper” but rather a short letter to the editor (about 2/3 of

23To prove that the C2 requirement is, in fact, sufficient, to deduce the Lorentzian
nature of the geometry is one of the crucial steps in (Ehlers et al., 1972) which is
not proven in detail. It relies on the classification of quadrics in projective 3-space
(not stated by the authors) from which the further axiom L2 then picks out those
containing the required two components of the set of lightlike directions.

24This was just the central idea behind Paul Finsler’s generalisation of Rie-
mannian geometry, that he developed in his 1918 thesis under the supervision of
Carathéodory: to generalise the geodesic variational principle as much as possible
while maintaining existence and uniqueness for the solutions of the resulting Euler-
Lagrange equations (Finsler, 1951)
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a single column on a 2-column page), followed by the referee’s report which
is so critical that the editor decided to only publish the paper together with
the report “by arrangement with the author and the referee”. In any case,
Isaak (1969) reports on what was then the current observational status on
the universal properties of light propagation in matter-free space; universal-
ity meaning independence of a) orientation in space, b) the source’s state of
motion, c) the frequency, and d) the polarisation. Finslerian geometries are
generically non-isotropic and would hence violate a) and possibly also c) and
d), though there are interpretational issues regarding cancellations of these
non-isotropy effects, which act on the optical as well as solid-state compo-
nents of the actual experimental device; compare (Lämmerzahl et al., 2012).

The lesson to be learned from this is that much more physics than naively
anticipated may be hidden in apparently small and innocently looking regu-
larity assumptions which, therefore, are not so innocent after all.25

5 Conclusions and Summary

This ends our little tour on selected aspects of axiomatic thinking in physics.
Some of these aspects were rather superficial, others somewhat deeper. I find
it hard to come up with a résumé that states more than what has already been
said (and partially quoted) by Reichenbach and Einstein. It is clear that the
famous dictum ascribed to Hilbert, who in view of the axioms of Euclidean
geometry allegedly once said that instead of “points”, “lines”, and “planes”
we could just as well say “tables”, “chairs”, and “beer-mugs” is a critical
one when applied to axiomatic physics. In an obvious sense it remains true:
axiomatisation of, say, geometric structures do as such not care about what
the objects of this geometry are. They may, for example, be quantum states
(density matrices), classical states, or space-time points. But then, as Re-
ichenbach stressed at the beginning, the task for the physicist is not finished.
The primitives need to be related to reality, they need to be endowed with
a “Wirklichkeitsbezug”. And then, a “beer-mug” makes quite a difference to
an abstract “plane”. For the working physicist the most important value in
axiomatic thinking lies in what Einstein (1921) called the clean separation of
formal aspects from those regarding the (physical) content. Clearly, one might
argue that this dichotomy is by itself not so well founded as Einstein made
it sound, and I would be inclined to agree with that. On the other hand, I
would not know how to substantially improve on (Einstein, 1921)’s statement

25In fact, after this paper was written, my attention was drawn to the very recent
work of Bernal et al. (2020) in which a far more detailed analysis of the compatibility
of Finsler geometries with the EPS scheme was made. In particular, the authors also
discuss the justification of the C2 assumption in axiom L1 in more detail as here
and as in (Lämmerzahl and Perlick, 2018) and also come to the conclusion that it
may well be relaxed. I thank Christian Pfeifer for pointing out this reference to me.
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from “Geometrie und Erfahrung”, which reads as follows (Janssen et al., 2002,
Doc. 52, p 386):

“The progress brought about by axiomatics consists in separating
the logically-formal aspects from the actual content and intuitive [an-
schaulische] aspects; only the logically-formal is subject to axiomatics,
not the intuitive [anschauliche] or any other [sonstige] content.”

I do not quite like the “any other” [sonstige], which to me sounds as if the
scheme alone were devoid of any content. To me, the physical content can-
not be thought of as entirely independent of the logical and mathematical
structures within which the articulation of that “content” takes place. Pur-
suing this will presumably lead me onto rather thin ice. So let me therefore
summarise:

• Hilbert’s axiomatisation programme is pursued - in one form or another
- in many branches of classical and modern physics, though the status of
axioms is different to that in pure mathematics.

• Opinions diverge as regards its heuristic value, that is, concerning its use
and power in the creative process of developing “insight” into the laws of
Nature.

• One of the most interesting but also most difficult question intimately
associated to this programme is how to interpret Hilbert’s term “deep-
ening” (german: “Tieferlegung”). There is no natural objective measure
for “depth” and often, in physics, the number of axioms is reduced at the
price of a priori inbuilt physical limitations (e.g., Hilbert’s connection of
General Relativity with Mie’s theory).

• In physics this is related to the problem of “fundamentality”, which is of-
ten passionately discussed with too many ideologically motivated precon-
ceptions. I suggest to follow Max Born and regard axiomatic approaches
pragmatically as “logical experiments”, which contribute to our under-
standing just as much as experiments in the lab do. Both should go hand
in hand and not be played off against each other.

• Axiomatic approaches to space-time theories in physics are alive and ac-
tive.



Axiomatic Physics 31

Appendix: German originals of quotations

Reichenbach

From “Axiomatik der relativistischen Raum-Zeit Lehre”
(Reichenbach, 1924, p. 1-2), quoted on page .1:

“Es ist der Wert einer axiomatischen Darstellung, dass sie den Inhalt
einer wissenschaftlichen Theorie in wenigen Sätzen zusammenfasst;
jedes Urteil über die Aussagen der Theorie darf sich dann auf ein
Urteil über die Axiome beschränken, denn in ihnen ist jeder Satz der
Theorie schon implizite enthalten. ... die Frage der mathematischen
Axiome ist geklärt durch die Entdeckung, dass die mathematischen
Axiome Definitionen sind, d.h. willkürliche Festsetzungen, über die es
kein wahr oder falsch gibt, und dass nur die logischen Eigenschaften
des Systems, Widerspruchsfreiheit, Unabhängigkeit, Eindeutigkeit, Voll-
ständigkeit Gegenstand der Kritik sein können.”

“Die Physik unterscheidet sich jedoch von der Mathematik in einer
wesentlichen Beziehung. Ihre Sätze wollen mehr sein als konsequente
Folgen willkürlicher Setzungen; sie wollen für die Wirklichkeit Geltung
besitzen.”

“Das Urteil ‘wahr’ oder ‘falsch’ bedeutet deshalb in der Physik et-
was wesentlich anderes als in der Mathematik; es ist eine außer-
logische Beziehung, es besagt das Zutreffen oder Nichtzutreffen eines
Wahrnehmungserlebnisses. Und die Frage nach der Wahrheit er-
scheint dem Physiker als das eigentlich Interessante; denn wenn sie
bejaht wird, darf er seine Theorie in einem gewissen Sinne als eine
Beschreibung der Wirklichkeit bezeichnen.”

“Die axiomatische Darstellung einer physikalischen Theorie ist zu-
nächst den gleichen Gesetzen unterworfen wie in der Mathematik [...].
Aber gerade weil die physikalischen Axiome ebenfalls die ganze The-
orie schon implizite enthalten, überträgt sich der Geltungsanspruch
auch auf sie; die physikalischen Axiome dürfen nicht willkürlich, sie
müssen wahr sein. Wahr bedeutet hier wieder ein Tatsachenurteil,
welches letzten Endes die Wahrnehmung fällt.”
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Einstein

From “Geometrie und Erfahrung”
(Janssen et al., 2002, Doc. 52, p. 385-6), quoted on page 4:

“Insofern sich sie Sätze der Mathematik auf die Wirklichkeit beziehen
sind sie nicht sicher, und insofern sie sicher sind, beziehen sie sich
nicht auf die Wirklichkeit”

From discussions at Bad-Nauheim (1920)
(Janssen et al., 2002, Doc. 46, p. 353), quoted on page 7:

“Es ist eine logische Schwäche der Relativitätstheorie in ihrem heuti-
gen Zustande, dass sie Maßstäbe und Uhren gesondert einführen muss,
statt sie als Lösungen von Differentialgleichungen konstruieren zu
können. Was aber die Zuverlässigkeit der Konsequenzen hinsichtlich
der Beziehung auf das empirische Fundament der Theorie anbelangt,
so sind die Konsequenzen, welche das Verhalten der starren Körper
und Uhren betreffen, die am besten gesicherten.”

From “Geometrie und Erfahrung”
(Janssen et al., 2002, Doc. 52, p. 386), quoted on page 30:

“Der von der Axiomatik erzielte Fortschritt besteht nämlich darin,
dass durch sie das Logisch-Formale vom sachlichen oder anschaulichen
Gehalt sauber getrennt wurde; nur das Logisch-Formale bildet gemäß
der Axiomatik den Gegenstand der Mathematik, nicht aber der mit
dem Logisch-Formalen verknüpfte anschauliche oder sonstige Inhalt.”

Hertz

From the introduction of “Prinzipien der Mechanik”
(Hertz, 1984, p, 1-3), quoted on page 7:

“Wir machen uns innere Scheinbilder oder Symbole der äußeren
Gegenstände, und zwar machen wir sie von solcher Art, dass die den-
knotwendigen Folgen der Bilder stets wieder die Bilder seien von den
naturnotwendigen Folgen der abgebildeten Gegenstände.”

“Die Bilder, von welchen wir reden, sind unsere Vorstellungen von
den Dingen; sie haben mit den Dingen die eine wesentliche Überein-
stimmung, welche in der Erfüllung der genannten Forderung liegt,
aber es ist für ihren Zweck nicht nötig, dass die irgend eine weitere
Übereinstimmung mit den Dingen haben.”

“Eindeutig sind die Bilder, welche wir uns von den Dingen machen
wollen, noch nicht bestimmt durch die Forderung, dass die Folgen der
Bilder wieder die Bilder der Folgen seien.”
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“Von zwei Bildern desselben Gegenstandes wird dasjenige das zweck-
mäßigere sein, welches mehr wesentliche Beziehungen des Gegen-
standes wiederspiegelt als das andere, welches, wie wir sagen wollen,
das deutlichere ist. Bei gleicher Deutlichkeit wird von zwei Bildern
dasjenige zweckmäßiger, welches neben den wesentlichen Zügen die
geringere Zahl überflüssiger oder leerer Beziehungen enthält, welches
also das einfachere ist.”

Pauli

From (Pauli, 1921, p. 775), quoted on page 22:

“Wie immer man sich im Einzelnen zu diesen Argumenten stellen
mag, so viel scheint sicher zu sein, dass zu den Grundlagen der
bisher aufgestellten Theorien erst neue, der Kontinuumsauffassung
des Feldes fremde Elemente hinzukommen müssen, damit man zu
einer befriedigenden Lösung des Problems der Materie gelangt.”
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Maria Georgiadou. Constantin Carathéodory: Mathematics and Politics in
Turbulent Times. Springer-Verlag, Berlin, 2004.

Robin Giles. Mathematical Foundations of Thermodynamics, volume 53 of
International series of monographs on pure and applied mathematics. Perg-
amon Press, Oxford, 1964.

Domenico Giulini. Das Problem der Trägheit. Philosophia Naturalis, 39(2):
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