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Abstract

I consider the sense in which teleparallel gravity and symmetric teleparallel gravity may
be understood as gauge theories of gravity. I first argue that both theories have surplus
structure. I then consider the relationship between Yang-Mills theory and Poincaré Gauge
Theory and argue that though these use similar formalisms, there are subtle disanalogies in
their interpretation.

1. Introduction

Motivated by a range of considerations, such as the conceptual conflict between general

relativity (GR) and quantum theory (Crowther, 2025), the observation that GR “breaks

down” in certain domains (Earman, 1995; Weatherall, 2023), and the surprising cosmological

observations associated with dark matter and dark energy (Martens and King, 2023; Smeenk

and Weatherall, 2024), many physicists have been drawn to the idea that GR should be

“modified”. In some cases, these “modified gravity” scenarios have been characterized as

“gauge theories of gravity”. In part this is a marketing scheme: gauge theory – that is,

Yang-Mills theory (YMT), which underlies the Standard Model of Particle Physics – has

many virtues, such as being quantizable (at least in its linearized, weak-field regime) and

pertubatively renormalizable. Authors of these gauge theories of gravity apparently hope

to benefit by association. Even so, it is not entirely clear what the marketers intend to

claim. In particular, as Weatherall (2016c) has emphasized, there are multiple distinct ways

in which the term “gauge” is used in physics. For instance, “gauge theory” is sometimes
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used to refer to theories with “surplus” or “superfluous” structure (Redhead, 2003; Ismael

and van Fraassen, 2003; Earman, 2004; Healey, 2007); and it is sometimes used to refer to

theories with a certain formal structure, viz., “any physical theory of a dynamic variable

which [sic], at the classical level, may be identified with a connection on a principal bundle”

(Trautman, 1980, p. 306).1

In the present paper, I will investigate these issues within the context of the “geometric

trinity” of gravity, as introduced by Jiménez et al. (2019). As I describe in detail in section

2, the geometric trinity consists of three theories of gravitation that describe the same

physical phenomena using different geometrical structures: curvature, as in GR; torsion,

as in teleparallel gravity (TEGR) (Aldrovandi and Pereira, 2013); and non-metricity, as in

symmetric teleparallel gravity (STEGR) (Nester and Yo, 1999).2 Each of these are often

described as “gauge theories”; my goal here is to clarify the senses of “gauge” on which

these claims come out as true. Previous work has shown that GR is a gauge theory in the

second sense (Trautman, 1980; Weatherall, 2016b), but arguably not the first (Weatherall,

2016c), and so I will focus on TEGR and STEGR. In section 3, building on previous work

by Weatherall and Meskhidze (202?) and Chen et al. (2024), I will show that both of these

are gauge theories in the first sense, i.e., they have surplus structure. Of course, this need

not mean they are not also gauge theories in the second sense, and TEGR in particular has

been described as both a “gauge theory of the translation group” and as a type of “Poincaré

Gauge Theory” (PGT), in analogy to YMT.3 In section 4, I will argue that although TEGR

1See Bleecker (1981) Palais (1981), Weatherall (2016b), and Gomes (2025) for background on theories of
this form and their interpretation. There are plausibly yet other uses of “gauge theory”, such as theories
with primary first-class constraints in the constrained Hamiltonian formalism (Earman, 2002).

2We adopt the acronyms used by Jiménez et al. (2019). Teleparallel gravity in particular has recently
been a topic of active research in philosophy of physics: see Knox (2011), Read and Teh (2018), Meskhidze
and Weatherall (2024), March et al. (2024a), Weatherall and Meskhidze (202?), Chen et al. (2024), and
Mulder and Read (2024). The geometric trinity has been discussed by Wolf et al. (2024b), Wolf et al.
(2024a), and March et al. (2024b).

3Lyre and Eynck (2003) offer an early philosophical analysis of both PGT and TEGR, understood as a
gauge theory of translation.
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can be presented using similar tools as YMT, its interpretation is importantly different.

Section 5 concludes.

2. The Geometric Trinity

We now introduce the geometric trinity. Let M be a smooth, four-dimensional manifold,

which we assume to be Hausdorff, paracompact, and parallelizable.4 For all three of the the-

ories we presently consider, we assume that M is equipped with a smooth, Lorentz-signature

metric, which determines the causal structure of spacetime. Though dynamics will play no

role in what follows, in all three theories the metric is dynamically related to the distribution

of matter in space and time. Finally, in all three theories, the manifold is also equipped

with a (smooth) covariant derivative operator ∇. The differences between the theories cor-

respond to different choices of derivative operator, for some fixed distribution of matter.

These different choices of ∇ lead to different descriptions of gravitational phenomena.

Recall that in GR, ∇ is taken to be the Levi-Civita derivative operator, i.e., the unique

covariant derivative operator on M with the properties that (a) for any smooth scalar field

α, ∇[a∇b]α = 0 and (b) ∇agbc = 0. (When a derivative operator satisfies (a), we say it is

torsion-free; and if it satisfies (b) we say it is metric compatible.) In general, this derivative

operator will have curvature, i.e., it will have non-zero Riemann curvature tensor Ra
bcd,

defined as the unique tensor field such that for any smooth vector field ξa,

Ra
bcdξ

b = −2∇[c∇d]ξ
a.

Curvature represents a failure of path-independence of parallel transport, even locally, for

vectors around closed curves. If curvature vanishes, the derivative operator is said to be flat.

4For background on the formalism used here, using the same notation, see Wald (1984) or Malament
(2012). Parallelizability is a non-standard requirement in GR, but it is necessary and sufficient for the
existence of a (global) flat derivative operator.
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We can think of the curvature of a derivative operator as measuring a failure of integrability,

in the following sense: given a basis for the tangent space at a point p, one can extend that

basis, by parallel transport, to constant vector fields on a neighborhood of the point just in

case curvature vanishes.5

It is standard to characterize models of GR as pairs, (M, gab). For present purposes, it is

useful to expand these somewhat, to include explicit reference to the Levi-Civita derivative

operator: (M, gab,∇). Doing so changes nothing, since ∇ is uniquely determined by gab.

We simply make implicit structure explicit. (This will not be the case for the other theories

we consider.) Free massive test bodies in GR follow (timelike) geodesics of ∇, and light

rays follow null geodesics. We take the empirical content of a model to be exhausted by the

structure (M, gab), since gab uniquely determines ∇; and gab is determined, up to a constant,

by the timelike and null geodesics (Weyl, 1922; Malament, 2012).

Now consider TEGR. In this theory, we place different constraints on the derivative

operator ∇. We still assume that ∇ is metric compatible, but now we require it to be

flat. To do this, we must relax the assumption that it is torsion-free, because in general,

a derivative operator cannot be metric compatible, torsion-free, and flat, except for very

special metrics. Instead, the derivative operator will have a non-zero torsion tensor, defined

so that for an smooth scalar field α,

T a
bc∇aα = 2∇[b∇c]α.

Torsion is a measure of the asymmetry of a derivative operator. Note that whereas there

is a unique torsion-free derivative operator compatible with any metric gab, no analogous

5Why think of this as “integrability”? There are two ways to think of it. One is that the equation
determining parallel transport is a first order ordinary differential equation, which we integrate to find a
solution. Flatness implies that the integrals performed over different curves agree. The other, more geometric
interpretation involves observing that a derivative operator gives rise to a field of horizontal subspaces of the
tangent space to the tangent bundle, and these horizontal subspaces can be locally integrated to be tangent
to smooth surfaces if and only if the derivative operator is flat.
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result holds for flat, metric-compatible ones once we drop the torsion-free condition. In

other words, given a metric gab, there are many flat derivative operators compatible with it.

Torsion, too, can be thought of as measuring a failure of integrability, but now in a different

sense. Since the derivative operator is flat, it also admits cobases of constant covector fields,

at least locally. But those covector fields can be integrated to determine smooth surfaces to

which they are normal only if the derivative operator is torsion-free.

As with GR, we can characterize models of TEGR as ordered triples (M, gab, ∇̃), where

∇̃ is metric-compatible and flat. On this theory, free massive test particles no longer follow

timelike (affine) geodesics. Instead, they accelerate according to a force law:

ξn∇̃nξ
a = −Ka

bcξ
aξb,

where ξa is the unit tangent vector to the particle’s worldline andKa
bc =

1
2
(T a

bc−Tcb
a−Tbc

a)

is the contorsion tensor associated with ∇̃. Note that these curves, while not geodesics of

∇̃, do correspond to the locally extremal curves of the metric gab, and thus the geodesics of

its Levi-Civita derivative operator. For this reason, we will once again take the empirical

content of a model to be exhausted by the structure (M, gab).
6

Finally, we turn to STEGR. Here we assume that ∇ is both flat and torsion-free, but

we relax metric compatibility. Instead, we suppose ∇ has a non-zero non-metricity tensor,

defined by

Qabc = ∇agbc

Non-metricity can be thought of as a measure of the degree to which vector lengths and

angles, as measured by the metric, are preserved under parallel transport relative to ∇.

Suppose, for instance, that ξa is a constant vector field with respect to ∇. Then it need not

6Could torsion have independent empirical significance? In principle, yes, but in the context of the
geometric trinity, it is important that TEGR be taken to be empirically equivalent to GR, since it is
supposed to be a mere reformulation.
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follow that the vector have constant length: instead, ∇a(ξ
nξmgmn) = ξnξmQamn. There are

no failures of integrability associated with derivative operators on this theory; there is also

no relationship between the metric structure of spacetime and its affine structure.

We can think of models of STEGR as triples (M, gab, ∇̄), where ∇̄ is flat and torsion-free.

Free massive test particles follow accelerated curves, now given by

ξn∇̄nξ
a = −La

mnξ
mξn

where La
bc =

1
2
Qa

bc − Q(b
a
c) is the distorsion tensor associated with ∇̄. Once again, these

curves turn out to be the extremal curves of the metric, and so again we take the empirical

content of a model to be exhausted by the structure (M, gab).

3. TEGR and STEGR have Surplus Structure

We now turn to assessing the sense whether TEGR and STEGR are gauge theories. The

first thing to say concerns their names: we have been using the acronyms “TEGR” and

“STEGR” throughout the paper, because they are used by Jiménez et al. (2019). These

stand for “teleparallel equivalent of GR”and “symmetric teleparallel equivalent of GR”,

respectively. But in fact, despite the names, these theories are not all (theoretically) equiv-

alent.7 In particular, Weatherall and Meskhidze (202?) show that TEGR and GR fail to

be categorically equivalent—which in turn means that they are not equivalent by any of the

other, generally stronger, criteria that are widely discussed in the literature.8

We will presently show that a similar result holds for STEGR. But first, it will be helpful

to review the result from Weatherall and Meskhidze (202?). The starting point is to define

a pair of categories, GR and TEGR, whose objects are models of the respective theories

7By construction, they are empirically equivalent.
8See Weatherall (2019a,b) for a review of these criteria of theoretical equivalence. Chen et al. (2024)

have subsequently shown that various other ways of formulating TEGR are categorically equivalent to the
presentation Weatherall and Meskhidze (202?) consider, and all have more structure than GR.
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and whose arrows are “structure preserving maps”. For convenience, we will consider only

isomorphisms.9 In the case of GR, this means models are objects of the form (M, gab,∇),

defined as above, and the arrows are isometries. (Note that, since ∇ is a Levi-Civita deriva-

tive operator, it is automatically preserved by every isometry.) For TEGR, the objects are

structures (M, gab, ∇̃) and the arrows are isometries that preserve ∇̃.

Since for both theories, the empirical significance of a model is entirely encoded in the

substructure (M, gab), there is a canonical functor relating these theories and preserving

empirical content, namely the functor F : TEGR → GR taking models (M, gab, ∇̃) to

(M, gab,∇) and taking arrows to themselves. If these theories were categorically equivalent,

in the sense of Weatherall (2016a), that functor would be (one half of) an equivalence of

categories. But Weatherall and Meskhidze (202?) show it is not an equivalence. The reason

is that it fails to be full : that is, the induced mapping on sets of arrows between pairs

of objects of TEGR fails to be surjective. This is because not every isometry preserves

arbitrary flat, metric-compatible derivative operators.

We now turn to STEGR. Nearly identical arguments establish that STEGR and GR are

also inequivalent. We work with the same category GR as before, and we define a new

category STEGR in the obvious way: the objects are structures (M, gab, ∇̄) and the arrows

are isometries that preserve ∇̄. Once again, there is a canonical functor F ′ : STEGR → GR

that takes models (M, gab, ∇̄) to (M, gab,∇) and isometries to themselves. If these were

categorically equivalent, F ′ would be an equivalence of categories. But it is not. We have

the following result.

Proposition 1. The functor F ′ : STEGR → GR fails to be full.

Proof. Fix a model (M, gab,∇) of GR. For simplicity, we assume M admits global coordi-

nate systems and that (M, gab,∇) has no automorphisms. Let (M, gab, ∇̄) and (M, gab, ∇̄′)

9Since I present only inequivalence results, corresponding results for categories with more arrows whose
associated groupoids coincide with the ones we consider will follow immediately.
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be distinct, non-isomorphic objects of STEGR corresponding to the same object of GR.

(These always exist. Pick two coordinate systems with distinct coordinate derivatives, and

take the models of STEGR to have those derivative operators.) Then there is no arrow

between (M, gab, ∇̄) and (M, gab, ∇̄′), even though both map to the same model of GR un-

der F ′. It follows that F ′ is not full, because no arrow between those objects maps to the

identity on (M, gab,∇). □.

How do these results bear on the sense in which TEGR and STEGR are gauge theories?

Weatherall (2016c), following Baez et al. (2004), classifies functors according to what they

“forget”. An equivalence of categories forgets nothing; any functor that fails to be an equiv-

alence forgets something. In particular, when a functor fails to be full, one should think

of it as “forgetting structure”. This is because it shows how the objects in the codomain

category have more symmetries than those in the domain category, at least relative to that

functor. In the present case, we see that both TEGR and STEGR involve making addi-

tional choices, above and beyond specifying a metric structure. Arrows of the corresponding

categories need to preserve those choices—which is why there are fewer of them than the

corresponding models of GR. This is the sense in which those theories have more structure.

Weatherall goes on to propose that we should say one theory has surplus structure just

in case there exists another theory, empirically equivalent to the first, and a functor relat-

ing their categories of models that preserves the empirical content of those models while

forgetting structure. In that case, one should say that there is an alternative theory that

can represent the same phenomena, but which does so with less structure. Hence, whatever

structure distinguishes the theories from one another is unnecessary for representational

purposes. Thus, we have a precise sense in which TEGR and STEGR are gauge theories, in

the first sense given above.
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4. Einstein-Cartan vs Yang-Mills

We have now seen that TEGR and STEGR both have surplus structure, relative to GR,

and thus they are both gauge theories in the surplus structure sense. But what about the

other sense of gauge? We will not consider STEGR further, as it is relatively uncommon

to present that theory as analogous to Yang-Mills theory.10 But many authors working on

TEGR have claimed that it should be understood as either a “gauge theory of translations”

(Aldrovandi and Pereira, 2013) or a special case of Poincare Gauge Theory (PGT) (Hehl

et al., 1976; Hehl, 1980; Blagojevic and Vasilic, 2000). Advocates for both approaches claim

that TEGR can be see as a theory of a dynamical connection on a principal bundle. To the

extent that they are correct, TEGR apparently meets Trautman’s criterion to be a gauge

theory. But what should we make of these claims? I will now argue that despite apparent

similarities, there are important disanalogies between TEGR and YMT on both approaches.

It will be helpful to first recall how YMT deploys this formalism. YMT is a theory (or

family of theories) of matter in space and time carrying some property – a type of charge

that we will call YM-charge – that influences how that matter evolves. More precisely: given

a relativistic spacetime (M, gab), states of YM-charged matter are represented by sections

of a (typically complex) vector bundle V → E
π−→ M , usually equipped with some further

structure such as a Hermitian inner product and an orientation, which we stipulate is not

tangent to the manifold.11 This vector bundle carries a linear connection, which figures

in the matter field’s dynamics much like the Levi-Civita derivative operator does in GR.

And also like in GR, this connection may be curved, where that curvature is related to the

distribution of charge-current density from all matter carrying the same YM-charge by the

Yang-Mills equation.

In what sense is this a theory of a dynamical connection on a principal bundle? The idea

10Uncommon, but not without precedent: see (Adak, 2018).
11More precisely, and generalizing away from a single spacetime, states of matter are valued in a gauge

natural bundle, but not a natural bundle (March and Weatherall, 202?).

9



is that any vector bundle can be associated with a principal bundle G → P
℘−→ M , where

G, called the “structure group” of the bundle, is the symmetry group of the (structured)

fibers of the vector bundle. So, for instance, if the fibers are three dimensional complex

vector spaces with a Hermitian inner product and orientation, the structure group G would

be SU(3).12 The linear connection on the vector bundle would then uniquely determine a

(dynamical) principal connection on this principal bundle, and vice-versa.

This perspective is especially useful because very often, different species of matter all

carry the same YM-charge. (For instance, quarks, antiquarks, and gluons all carry the

strong force, but their states are sections of different vector bundles.) In that case, the

matter may have properties valued in different vector bundles. We can still make sense of

them carrying the same kind of charge and participating in the same force, however, because

all of them are associated to the same principal bundle, and the principal connection on that

bundle determines linear connections on all of these associated vector bundles. Very often,

physicists think of the principal connection as the primary object, with the Yang-Mills

equation understood as an equation on the total space of the principal bundle. This is the

sense in which YMT is a theory of a dynamical connection on a principal bundle.

What about TEGR? As noted, Aldrovandi and Pereira (2013) argue that TEGR can

also be seen as a theory of a dynamical connection on a principal bundle over the spacetime

manifold, where now the structure group of the principal bundle is the translation group

T 4 on R4. In fact, this proposal is controversial, and it is not clear precisely how the

mathematics is supposed to work (Fontanini et al., 2019; Delliou et al., 2020; Huguet et al.,

2021b,a).13 But for present purposes, the details of the approach, and of the dispute, do

not matter. It suffices to observe that any theory with the general structure just described

12More generally, the fibers might be tensor products of vector spaces, with structure inherited from the
factors, in which case the structure group would the symmetry group of the factors. See Gomes (202?) for
discussion.

13Pereira and Yuri N (2019) defend the approach against some of the criticisms, but they agree on the
salient points for the arguments I will presently make.
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would be strikingly disanalogous to YMT. To see this, observe that since we are interested

in gravitational phenomena, and we expect matter experience gravitational influences to be

represented by sections of the tangent bundle (or tensor bundles based thereon), we should

expect that for a theory analogous to YMT, that the tangent bundle would be associated to

whatever principal bundle carries the dynamical connection under consideration and that

the principal connection on that bundle would determine a linear connection on the tangent

bundle (or some bundle isomorphic to it) via the standard associated bundle construction.

But this cannot happen if the structure group is the translation group. Broadly, the issue

is that the translation group is not the symmetry group of fibers of the tangent bundle,

with or without metric. More generally, there are no non-trivial representations of the

translation group in four dimensions on a four-dimensional vector space, because translations

do not preserve the origin. So whatever else may be true, TEGR, viewed this way, uses the

formalism differently from YMT.

To address problems closely related to this, Fontanini et al. (2019) suggest moving to

(pseudo-)Riemann-Cartan geometry, which can be thought of as a generalization of the

pseudo-Riemannian geometry usually used in GR to a context where we think of a manifold

of having a local “Kleinian geometry” structure. This is the geometry of PGT.14 A Riemann-

Cartan geometry consists of a smooth manifold M , a principal bundle H → P
℘−→ M , and a

Cartan connection, which is a Lie algebra-valued 1-form ηAα on P satisfying certain further

conditions.15 This Cartan connection is not a principal connection, because the Lie algebra

in which it takes its values is not the Lie algebra of H. Instead, it is the Lie algebra of

another group, G, which has dimension dim(M)+dim(H) and which contains H as a closed

14Due to space constraints, we suppress some detail. For more, see Hehl (1980). Chen et al. (2024) offer
a very helpful compact exposition of the key ideas at a higher level of generality. The idea that TEGR is a
special case of PGT predates the recent debates; see, for instance, (Blagojevic and Vasilic, 2000).

15We adopt the notation presented in the appendices to Weatherall (2016b), though with the caveats
explained in the main text and the next note that this is not a principal connection.
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(normal) subgroup.16 The torsor of the quotient group G/H, which is a homogeneous space

of the same dimension as M , is the “local Kleinian geometry” on which the Riemann-Cartan

space is modeled.

We can think of ηAα as encoding two kinds of information: a true principal connection

ωA′
α, valued in the Lie-algebra h, and a solder form on P , which in this case is a one-form

valued in g/h that can be interpreted as identifying elements of the tangent space of M at

each point with tangent vectors of the “model space”, i.e., the local Kleinian geometry G/H.

Note that ηAα can also be viewed as (uniquely determining) a principal connection αA
α on

a principal G-bundle G → Q → M , which we may understand as an associated bundle to P .

In PGT, we consider the special case where the structure group H is the Lorentz group

in four dimensions, SO(1, 3), and the supergroup G is the Poincaré group, SO(1, 3) ⋉ T 4,

where T 4 = R4 is the translation group on Minkowski spacetime. Thus, we can think of

PGT as a theory of a (dynamical) principal connection on a principal bundle, or as a theory

of a (dynamical) Cartan connection on a (different) principal bundle. (TEGR arises in the

special case where the Cartan connection determines a flat affine connection on the tangent

bundle.)

Geometrically, the Riemann-Cartan geometry on which PGT is based is unimpeachable,

and I am not aware of any criticisms that theory is mathematically problematic. But as a

matter of interpretation, there are several salient disanalogies with YMT. First, just as we

argued above for the T 4-bundle approach, four-dimensional vector spaces do not carry a non-

trivial representation of the Poincaré group, and so the tangent bundle cannot be thought

of as associated to the principal bundle G → Q → M . So this bundle cannot play the role

of the principal bundle in YMT. On the other hand, there are faithful representations of

SO(1, 3) on a four-dimensional vector space, and so, under sensible assumptions about the

16Importantly, in addition to other conditions such as equivariance, the connection is required to satisfy
the Cartan condition, which states that at each point of P , η is an isomorphism from the tangent space at
that point to g, the Lie algebra of G.
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topology of the bundle H → P → M , the tangent bundle will be isomorphic to a vector

bundle associated to P ; likewise, the Cartan connection also a linear connection of that

associated bundle. This is much closer to YMT.

But there remains a disanalogy, because the Cartan connection does more than induce

a connection on its associated bundles.17 It also determines an isomorphism between fibers

of the associated vector bundle and fibers of the tangent bundle to M , via the induced

dynamical solder form; and, via this isomorphism, it induces a metric field on the tangent

bundle. This blocks an interpretation of P as the frame bundle for the tangent bundle,

because the frame bundle comes equipped with a canonical solder form. In other words, the

Cartan connection – and Cartan geometry more generally – can represent the geometrical

structure we use in GR and in TEGR, and it can generalize both to allow a combination of

curvature and torsion in an elegant geometrical framework. But the sort of information it

encodes, and the way it encodes it, is subtly different from in YMT.

Of course, this sort of disanalogy does not preclude including PGT (and TEGR) among

the gauge theories in the second sense; whether one does so is a matter of semantics, and

perhaps Trautman exegesis.18 And of course, there are also disanalogies between GR and

PGT, also related to torsion and solder forms (Trautman, 1980; Weatherall, 2016b; March

and Weatherall, 202?). But from a conceptual perspective, the differences between PGT

and YMT are both subtle and worth emphasizing, even if one does wish to classify them

together as “gauge theories”.

17There is another disanalogy between PGT and GR / YMT, which is that a Cartan connection is neither
a section of a natural bundle over M nor a gauge natural bundle over P (March and Weatherall, 202?).
Thanks to Eleanor March for observing this.

18There are very good reasons to think Trautman would have called PGT a gauge theory (Trautman,
1980, p. 305).
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5. Conclusion

This paper has considered in what senses one should think of TEGR and STEGR as gauge

theories of gravity. After introducing the theories in more detail, I argued that both TEGR

and STEGR should be understood as gauge theories in the sense that they both posit “sur-

plus structure”. In this, they should be sharply distinguished from GR, which does not posit

surplus structure. I then considered the sense in which TEGR should be understood as a

gauge theory by virtue of being a theory of a connection on principal bundle, as suggested by

Trautman. As I argued, while it is true that TEGR can be seen as a theory of a dynamical

connection on a principal bundles, details of the interpretation matter. The different geo-

metrical structures in each case encode different information about their associated vector

bundles. This does not necessarily mean that TEGR (or PGT) should not count as a gauge

theory in the second sense, but it suggests that they are, at very least, distinct subspecies.
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