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Abstract

The nodes of the ‘geometric trinity’ are: (i) general relativity (in which grav-

itational effects are a manifestation of spacetime curvature), (ii) the ‘teleparallel

equivalent’ of general relativity (which trades spacetime curvature for torsion),

and (iii) the ‘symmetric teleparallel equivalent’ of general relativity (which trades

spacetime curvature for non-metricity). One popular reformulation of (iii) is ‘co-

incident general relativity’, but this theory has yet to receive any philosophical

attention. This article aims both to introduce philosophers to coincident general

relativity, and to undertake a detailed assessment of its features.
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1 Introduction
General relativity (GR) is our best current theory of space and time; according to this

theory, gravitational effects are a manifestation of the curvature of spacetime.
1

Since

Lyre and Eynck (2003) and Knox (2011), philosophers have become increasingly attuned

to the fact that there exists a so-called ‘teleparallel equivalent’ of GR (‘TEGR’), accord-

ing to which gravitational effects are a manifestation not of the curvature of spacetime

but rather of its torsion, and in which (just as in Newtonian physics) gravity acts as a

force.
2

Since that work, TEGR has been discussed extensively by philosophers—see e.g.

Dürr and Read (2024), Mulder and Read (2024), Read (2023), Read and Teh (2018),

Weatherall and Meskhidze (2024), and Wolf and Read (2023). However, what philoso-

phers seem to have become aware of only very recently is that there is yet another possi-

ble geometric reformulation of GR, known as the ‘symmetric teleparallel equivalent’ of

GR (‘STEGR’), according to which gravitational effects are a manifestation neither or

curvature nor torsion, but now of spacetime non-metricity.
3

Together, GR, TEGR, and

STEGR constitute a ‘geometric trinity’ of gravitational theories (see Beltrán Jiménez et

al. (2019)), which all share the same empirical content.

Existing philosophy papers which explore this entire geometric trinity of gravita-

tional theories are March et al. (2024), Weatherall (2025), and Wolf et al. (2023b, 2024).

But there remains much to interrogate, especially regarding STEGR. In this article, we

aim to do just this, by studying in a systematic and thorough way a version of STEGR

which has as-yet received absolutely no attention from philosophers: a theory known

as ‘coincident general relativity’ (henceforth ‘CGR’).

The idea behind CGR is this (to be explained in more detail below). One takes the

torsion-free, flat, non-metric connection of STEGR; being torsion-free, the coefficients

of this connection can be made to vanish at a certain point; being flat, this can in fact

be done globally. One then introduces new physical ‘Stückelberg’ fields, which elevate

this coordinate choice to a set of four new scalar fields on spacetime.
4

Thereby, one

1
Curvature is the property whereby parallel transporting a vector around a closed loop does not pre-

serve the direction in which that vector points.

2
Torsion is the property whereby the operations of transporting two vectors at a point along the

directions picked out by the other do not commute (so, loosely, parallelograms do not ‘close’).

3
Non-metricity is the geometric property whereby parallel transporting a vector around a closed loop

changes the length of that vector (or, more generally, angles between vectors).

4
Essentially, therefore, these fields are ‘clock fields’, on which see Pitts (2009), which we’ll have occa-

sion to discuss further below.
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has constructed a very simple and tractable version of STEGR (because the connection

itself is effectively eliminated) which nevertheless retains the empirical content of that

theory (and ipso facto also of GR).
5

What we intend to do in this article is to ask (and, we hope, answer), the following

questions: what conceptual features does CGR have, and is it a viable theory in light of

these features? After a brief review of the geometric trinity in §2 and of CGR in §3, our

plan for the article is this:

• In §4, we consider the sense in which CGR is a ‘gauge theory of translations’ (as is

sometimes claimed—see e.g. Beltrán Jiménez and Koivisto (2022)); this turns out

to be a very different sense to that in which TEGR is a ‘gauge theory of transla-

tions’ (see Aldrovandi and Pereira (2013) for such a claim, which indeed has been

found to be problematic by Huguet et al. (2021a,b) and Le Delliou et al. (2020);

for philosophical discussion of these issues, see Dürr and Read (2025), March et

al. (2025), and Weatherall (2025)).

• In §5, we consider whether CGR really is theoretically equivalent (in the sense of

categorical equivalence) to STEGR, giving a negative verdict (because, in a tech-

nical sense, CGR has more ‘structure’ than STEGR). In doing so, we complete

a map of how different versions of the different nodes of the geometric trinity

are/aren’t equivalent to each other which was begun by March et al. (2025).

• In §6, we consider the status of the equivalence principle in CGR, finding that

this principle (which, of course, we’ll disambiguate suitably) is violated in CGR

for much the same reasons that it is violated in the well-known theory of GR

‘with a preferred frame’ due to Jacobson and Mattingly (2001).

• In §7, we consider whether CGR is ‘background independent’ in light of its

Stückelberg fields; on most (but not all) of the analyses of background indepen-

dence catalogued by Read (2023), the answer is ‘no’.

Overall, then, our verdict will be somewhat negative: CGR (i) isn’t in any particularly

deep sense a ‘gauge theory of translations’, (ii) has more structure than STEGR (a for-
tiori GR, since STEGR has more structure than GR—see Weatherall (2025)), (iii) vio-

lates the equivalence principle, and (iv) isn’t background independent. We’ll summarise

these conclusions in §8.

5
Over the course of this paper, our guiding articles from the physics literature will be Beltrán Jiménez

et al. (2018, 2019) and Beltrán Jiménez and Koivisto (2022).
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2 The geometric trinity
Models of GR are given by tuples ⟨M, gab,∇GR

, T ab⟩, whereM is a differentiable man-

ifold, gab is a Lorentzian metric field on M , ∇
GR

is the Levi-Civita derivative operator

compatible with gab (ipso facto torsion-free, metric, generically curved), and T ab
repre-

sents material stress-energy content. The full dynamical content of GR is expressed by

the Einstein field equations, which are those equations obtained by varying the follow-

ing action, the Einstein–Palatini action:

S
EP

=
1

2

∫
d4x

√
gR+S

matter
; δS

EP
= 0 =⇒ Rab−

1

2
Rgab = kTab. (1)

Here Rab is the Ricci tensor and R is the Ricci scalar. The Ricci curvature tensor Rab

is built out of the coefficients of the Levi-Civita connection, which in turn are related

to the metric gab and its derivatives.

Now for TEGR. Models of TEGR are given by tuples ⟨M, gab,∇TEGR
, T ab⟩, which

have the same constituents of the models of GR, save that we now have the derivative

operator ∇
TEGR

, which is flat and metric but generically torsionful.
6

TEGR dynamics

are given by

S
TEGR

= −1

2

∫
d4x

√
gT + S

matter
, (2)

where T is the torsion scalar (in analogy with the Ricci curvature scalar R), defined as

T := −1

4
TabcT

abc − 1

2
TabcT

bac + TaT
a, (3)

where in turn Tb := T a
ba is the trace of the torsion tensor (Beltrán Jiménez et al. 2019,

§3).

Finally, models of STEGR are given by tuples ⟨M, gab,∇STEGR
, T ab⟩, which have

the same constituents of the models of GR, save that we now have the derivative op-

erator ∇
STEGR

, which is flat and torsion-free but non-metric (i.e., not compatible with

gab).
7

This theory is given by the action

S
STEGR

= −1

2

∫
d4x

√
gQ+ S

matter
, (4)

6
Of course, sensu stricto we still have ∇GR implicitly in the models of TEGR since this is fixed by

gab—see Wolf et al. (2024).

7
The point made in the previous footnote applies to the models of STEGR also.
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where Q is the non-metricity scalar (again in analogy with the Ricci curvature scalar R
and the torsion scalar T ), defined as

Q :=
1

4
QabcQ

abc − 1

2
QabcQ

bac − 1

4
QaQ

a +
1

2
QaQ̃

a, (5)

where Qa := Q d
ad and Q̃a := Qd

da are two independent traces of the non-metricity

tensor (Beltrán Jiménez et al. 2019, §4), itself defined as Qabc := ∇agbc.

GR, TEGR, and STEGR are all empirically equivalent in the sense of sharing the

same dynamical content. This equivalence can be seen immediately when one considers

that shifting between the various affine connections allows one to express the relation-

ship between the theories’ geometric scalars as
8

−R = T + 2∇aT
a = Q+∇a(Q

a − Q̃a), (6)

so the actions differ only by a boundary term.

3 Coincident general relativity
So much for the geometric trinity; now for coincident general relativity. Since the

STEGR connection is torsion-free, its components are symmetric, and as such can be

set to vanish by way of a judicious choice of coordinatesxµ
—sometimes, this is referred

to as the ‘coincident gauge’ (see e.g. Beltrán Jiménez et al. (2019, p. 8)).
9

If one then

boosts to an arbitrary coordinate system ξµ, one will find that the connection coeffi-

cients in this new coordinate system take the form

Γα
µβ =

∂xα

∂ξλ
∂µ∂βξ

λ. (7)

(This is obvious, once one recalls the usual transformation law for connection coeffi-

cients.)

The next trick on the path to CGR is to elevate the coordinates ξµ to four new

linearly physical fields ξa: so-called ‘Stückelberg fields’. In case this is unfamiliar, let’s

recall some of the details of this ‘Stückelberg trick’. As stated by Ruegg and Ruiz-Altaba

(2004, p. 1), “[t]he Stueckelberg mechanism is the introduction of new fields to re-

veal a symmetry of a gauge-fixed theory”; or, as put by Lyakhovich (2021, p. 1), “the

8
See Beltrán Jiménez et al. (2019), Järv et al. (2018), and Wolf et al. (2023b).

9
Clearly, the coincident gauge is fixed only up to an affine transformation; this will be of relevance in

§4 below.
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general idea attributed to Stueckelberg has been widely used to equivalently reformu-

late the original non-gauge theory in a gauge invariant way by introducing some extra

fields.” The approach is perhaps even more illuminatingly contrasted with the ‘dress-

ing field method’ which has recently drawn the attention of philosophers (especially as

contrasted with ‘traditional’ methods of gauge fixing—see in particular Berghofer and

François (2024), François (2019), Wallace (2024), and Wolf et al. (2023a)): as François

(2019, p. 5) writes, “One may think of the dressing field method as a reciprocal to the

Stueckelberg trick: the latter aims at implementing an artificial gauge freedom, the for-

mer seeks to erase it to reveal the gauge-invariant content.”

How does this move play out in the case under consideration here? The idea is sim-

ple. By fixing a gauge (read here: coordinate system) such that components of the non-

metric connection vanish, one has thereby moved to a gauge-fixed—and thereby gauge-

invariant (cf. Wallace (2024)) formalism, in which the coordinate (read: passive diffeo-

morphism) symmetry has been expunged. If, however, one then wishes to restore this

symmetry—perhaps in line with a desire to ensure that one’s theory be ‘generally covari-

ant’ (more on this in §7)—one can elevate these coordinates to physical fields, ensuring

thereby that the conditions imposed having made the original coordinate choice are

now encoded in those very fields, and as such remain imposed even after subsequently

transforming to some new coordinate system. In the case of CGR, it will matter for our

purposes later that these ξa fields in fact count also as ‘clock fields’, which are exactly

preferred coordinates elevated to the status of physical scalar fields (for a masterly study

and exposition of clock fields, see Pitts (2009)).
10

What results from these surgical interventions upon STEGR is a new theory, CGR,

which has models ⟨M, gab, T
ab, ξa⟩. In these models one no longer has∇

STEGR
because

one instead has the Stückelberg fields ξa—and relevant objects, e.g. connection coeffi-

cients, non-metricities, etc., can be recast in terms of these fields.
11

When it comes to

dynamics: for an explicit presentation of the action of CGR, see Beltrán Jiménez et

al. (2019, p. 8); one of the advantages of CGR is that its action “only [involves] first

derivatives of the metric, thus leading to a well-posed variational principle without any

Gibbons–Hawking–York boundary terms.”
12

10
In this particular case, then, the Stückelberg trick yields clock fields. In general, however (and es-

pecially when one is dealing with other symmetries than spacetime diffeomorphisms), Stückelberg fields

will not be clock fields.

11
For further discussion of this move and the advantages of making it, see Beltrán Jiménez et al. (2018)

and Beltrán Jiménez and Koivisto (2022).

12
CGR effectively uses the background structure ξa to write down Einstein’s ΓΓ action; in this re-

spect, there are clear affinities with the approach of Sorkin (1986). Our thanks to Brian Pitts for pointing

this out.
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This presentation of CGR will suffice for our purposes in this article. What we turn

to now is an appraisal of various conceptual aspects of CGR, some of which have been

pointed to in the physics literature on this theory. In particular, we’ll now consider (i)

whether CGR is a gauge theory of translations (§4), (ii) whether or not CGR is equiva-

lent to STEGR (and a fortiori whether or not it is equivalent to GR) (§5), (iii) whether

or not the equivalence principle is satisfied in the theory (§6), and (iv) the sense in which

CGR really is ‘substantively generally covariant’ or (if one prefers) ‘background inde-

pendent’.

4 Gauge theories of translations
It’s sometimes claimed that CGR is a ‘gauge theory of translations’—see e.g. Beltrán

Jiménez et al. (2019, p. 16). This claim has to do with the fact that the components of the

connection given in (7) are invariant under affine transformations of the Stückelberg

fields,

ξα 7→ Mα
β ξ

β + aα. (8)

This is true—but at this stage we want to make a few points about whether it is really

appropriate to aver in light of this that CGR is indeed a translational gauge theory.

Our first point is so obvious that we will mention it only briefly and then set it aside:

(8) encompasses more than merely translational redundancy (encoded, of course, in the

translational part aα), but also redundancy in the linear part of the affine transforma-

tion. And as such, there is here not merely translational gauge freedom.

Our second point is more interesting. TEGR is sometimes also claimed to be a

‘gauge theory of translations’ (see in particular Aldrovandi and Pereira (2013) on this

claim), because (the claim goes) the theory can be understood as being built upon a

principal fibre bundle which has the translation group as its structure group. In fact,

it’s not obvious to us that the reasoning which proponents of TEGR deploy in order to

arrive at this conclusion is coherent (see Dürr and Read (2025)), and if one does desire

(for whatever reason) to understand TEGR as a gauge theory of translations, then one

likely has to move to understanding the theory in terms of Cartan connections rather

than Ehresmann connections (see Huguet et al. (2021a,b) and Le Delliou et al. (2020),

and for philosophical discussion March et al. (2025) and Weatherall (2025)). But in any

case, the point we want to make here is that this is evidently a very different sense of

the theory being a ‘gauge theory of translations’ to that which authors seem to have in

mind in the case of CGR.

Our third point is in fact a continuation of this. As Weatherall (2015) has pointed

out, the term ‘gauge’ is used in many different senses in contemporary physics. One
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such sense has to do with ‘representational redundancy’, which is quite evidently what

those working on CGR have in mind when they point to the representational redun-

dancy encoded in (8) (setting aside, again, the fact that these are affine transformations

and not merely translations!). Another sense has to do with a theory being built on

the model of a Yang–Mills theory, and in particular in the framework of principal fibre

bundles. This latter sense is more akin to the sense in which TEGR is a ‘gauge theory of

translations’ (although even here one has to be careful, because Yang–Mills theory uses

Ehresmann connections not Cartan connections—see Weatherall (2025)), but (to our

knowledge) is not what those working on CGR have in mind. Perhaps one could refor-

mulate CGR in the language of principal bundles in order to encode the gauge freedom

(8), but to our knowledge this has not been done, and in any case it’s not entirely clear

what the deep payoff from making this move would be.

5 Theoretical equivalence
We turn next to issues of theoretical equivalence. Before proceeding further, we’ll need

to get the (by now quite standard) tools of ‘categorical equivalence’ on the table, since

in this section we’ll work in that framework.

Weatherall (2016) has proposed a criterion of equivalence of physical theories, ac-

cording to which two theories are equivalent just in case (a) their associated categories

of models are equivalent, and (b) the functors realising said equivalence preserve empir-

ical content. The category of models associated with a theory is a category the objects

of which are models of that theory, and the morphisms of which relate models regarded

as having the ‘same structure’.

What is it for two categories to be equivalent? Two categoriesA andB are equivalent

just in case there exist functors F : A → B and G : B → A such that FG ∼= 1B,

and GF ∼= 1A. Equivalently, the categorical equivalence of A and B amounts to the

existence of a functor relating them which is:

Full: For all objects a, b ∈ A, the map (f : a → b) 7→ (F (f) : F (a) → F (b)) in-

duced by F is surjective.

Faithful: For all objects a, b ∈ A, the map (f : a → b) 7→ (F (f) : F (a) → F (b))
induced by F is injective.

Essentially surjective: For every object x ∈ B, there is some object a ∈ A and

arrows f : F (a) → x and f−1 : x → F (a) such that f ◦ f−1 = 1x.

8



A functor ‘forgets structure’ just in case it is not full; ‘forgets stuff’ just in case it is not

faithful, and ‘forgets properties’ just in case it is not essentially surjective.

For the geometric trinity, philosophers—in particular March et al. (2025), Weather-

all (2025), and Weatherall and Meskhidze (2024)—have recently become interested in

clarifying whether (different versions of) the different nodes of the geometric trinity are

or are not categorically equivalent. The upshots, in brief, are as follows:

• TEGR and STEGR, when formulated as in §2 of this article, are categorically in-

equivalent to GR, because they have more structure than GR. (Weatherall 2025;

Weatherall and Meskhidze 2024)

• There are many different formulations of TEGR, but most of them turn out to

be categorically equivalent to TEGR as formulated in §2 of this article, and ipso
facto categorically inequivalent to GR (because, again, they have more structure

than it). (March et al. 2025)

• There is one version of TEGR due to Baez and Wise (2015), based upon the

formalism of ‘higher gauge theory’ (see March et al. (2025) for a philosophical

primer), which is categorically inequivalent to GR by virtue of having less struc-

ture than it. However, there is a strong case to be made that this theory is empir-

ically inadequate and/or predictively impotent.

In light of these points, there are good reasons to think (at least when one sets aside

possible ancillary physics payoffs of using one formalism as opposed to another) that

one might as well commit only to the structure of GR when confronted with the geo-

metric trinity, because GR optimises the tradeoff between ontological parsimony and

empirical adequacy. (This point has been made in various ways by March et al. (2024),

Weatherall and Meskhidze (2024), and Wolf et al. (2024); we in fact endorse this con-

clusion.)

But in any case, a full explorations of the web of (in)equivalence relations between

(different formulations of) the different nodes of the geometric trinity is not yet com-

plete, for we have yet to fit CGR into this picture. Thankfully, it is not difficult to do so.

First, we define a pair of categories STEGR and CGR. Objects of STEGR are mod-

els of STEGR as given above, and morphisms are isometries which preserve ∇
STEGR

.

Objects of CGR are models of CGR as given above, and morphisms are isometries

which preserve ξa. Note in particular that inCGR objects which are models of the the-

ory which are otherwise identical but where the Stückelberg fields are related by affine

transformations as per (the active equivalent of) (8) are not related by morphisms; we’ll

return to this below.
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Consider now the functor F : CGR → STEGR which maps ⟨M, gab, T
ab, ξa⟩

to ⟨M, gab,∇STEGR
, T ab⟩ and takes arrows to themselves. We have this proposition:

Proposition 1. The functor F : CGR → STEGR is not full.

Proof. Consider a model ⟨M, gab,∇STEGR
, T ab⟩of STEGR. Let ⟨M, gab, T

ab, ξa⟩ and

⟨M, gab, T
ab, ξ′a⟩ be two distinct objects of CGR corresponding to the same model of

STEGR (and so related by an affine transformation of the Stückelberg fields). There’s

no arrow between these models, yet they map to the same model of STEGR under F .

Hence, F isn’t full.

So, although CGR might have some physical advantages to it over STEGR as al-

ready alluded to in previous sections of this article, on occamist grounds alone one

should arguably prefer to work with STEGR over CGR.

Now, of course, one could contrive some new category, call it CGR (in analogy

with EM2 for Weatherall (2015, 2016) in the context of electromagnetism; see March

et al. (2025) for further discussion), in which one inserts morphisms by hand between

otherwise-identical objects in which the Stückelberg fields are related by affine trans-

formations; then (left as an exercise for the reader) this version of CGR will in fact be

categorically equivalent to STEGR. One can of course do this—but note that it would

be an instance of ‘external sophistication’ in the sense of Dewar (2019), and for that

reason arguably metaphysically unperspicuous (what, after all, does it mean to declare

isomorphic—by inserting morphisms into a category—models which are themselves

not isomorphic?); for further discussion here, see March et al. (2025), Martens and Read

(2020), and Read (2025).

6 The equivalence principle
The next thing to think about is the equivalence principle, where for our purposes here

we mean something like ‘local physics without a preferred frame’. We’ll approach this

issue obliquely, by first recalling the basic outline of a related theory developed by Jacob-

son and Mattingly (2001) in their article, ‘Gravity with a dynamical preferred frame’.

The key idea behind the Jacobson–Mattingly theory is very simple. One takes GR,

but introduces into its models a timelike vector field Aa
; thus, models of the theory

overall are given by tuples ⟨M, gab, T
ab, Aa⟩. Insofar as this theory picks out a pre-

ferred frame at every point (the rest frame of the ‘observer’ associated with Aa
at that

point) there is a relatively clear sense in which this theory violates the ‘strong equiva-

lence principle’, which states something like ‘special relativity is valid locally in general
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relativity’, and which in this particular case can be precisified as ‘in any model of GR,

one recovers Poincaré symmetries at every point’.
13

This sense in which the Jacobson–Mattingly theory violates the equivalence prin-

ciple is discussed further by Read et al. (2018).
14

But note that there are clear affinities

between the models of the Jacobson–Mattingly theory and the models of CGR (save

for the facts that (a) there is no injunction in CGR that all the Stückelberg fields ξa be

timelike at every point, and (b) we in fact have four linearly independent fields in the

case of CGR). As such, one would expect a similar analysis to go through in the case

of CGR. And, ceteris paribus, one might well take the violation of (this version of the)

equivalence principle to be a mark against CGR.

7 Background independence
As our final point of conceptual discussion, let’s consider the issue of whether CGR

is ‘substantively generally covariant’ or (what amounts to the same thing) ‘background

independent’. There is a sense in which the introduction of clock fields amounts to a

merely artificial restoration of general covariance. Pitts (2009, p. 15), indeed, offers the

following definition of substantive general covariance which runs along these lines:

A field theory is substantively generally covariant just in case it is formally

generally covariant (in the sense of admitting at least arbitrary infinitesi-

mal coordinate transformations and some finite transformations near the

Lorentz group), lacks irrelevant fields (in the sense of James Anderson

[Anderson 1967; Pitts 2006]), lacks nonvariational fields and lacks clock

fields.

Proponents of CGR (e.g. Beltrán Jiménez et al. (2018, 2019) and Beltrán Jiménez and

Koivisto (2022)) typically insist that introducing the Stückelberg fields in their theory

have restored general covariance. However, in fact by virtue of the existence of these

fields CGR is not substantively generally covariant, on Pitts’ analysis.

What of other definitions of background independence, as surveyed by Read (2023,

ch. 3)? Interestingly, definitions of background independence which preclude the ex-

istence of ‘absolute objects’, i.e. objects fixed up to isomorphism in the dynamical pos-

sibilities of a theory (this being a proposal which goes back to Anderson (1967), and

13
There is a recent back-and-forth on this topic in the literature—see Fletcher and Weatherall

(2023a,b), Fletcher (2020), Linnemann et al. (2024), March (2025), Read et al. (2018), and Weatherall

(2020).

14
For further background on the equivalence principle in general, see Lehmkuhl (2021).
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which was later taken up by Friedman (1983)—see Pitts (2006) for discussion and com-

parison) flounder with clock fields (as Pitts (2009) discusses in depth), for clock fields

can vary from dynamical possibility to dynamical possibility. These issues also tar def-

initions of background independence in terms of what Read (2023, ch. 3) calls ‘fixed

fields’ and ‘absolute fields’ (which are, in the end, variations on the ‘no absolute ob-

jects’ definition of background independence). Note, however, that in the particular

case of CGR, definitions such as the ‘no absolute objects’ injunction will still adjudi-

cate that this theory is background dependent, due to the presence of the square root

of the metric determinant,

√
−g.

15

While e.g. Pooley (2017) has proposed a definition of background independence in

terms of variational principles—essentially, that every field in the theory (i) is subject to

Hamilton’s principle and (ii) represents something ‘physical’ (the latter admittedly be-

ing a somewhat vague, or at least interpretative, matter)—which seems again to floun-

der with clock fields (in the sense that it can adjudicate that theories with clock fields are
background independent), Read (2023) has shown that this can be repaired by insist-

ing that every field must be subject to Hamilton’s principle; this turns out not to be the

case for clock fields, since they have trivial equations of motion (see Pitts (2009)). On

this modified definition of background independence in terms of variational principles,

CGR turns out to be background dependent.

Another interesting case is the definition of background independence due to Be-

lot (2011), according to which (roughly—see Read (2023, ch. 3) for a detailed recapit-

ulation) ‘material’ degrees of freedom co-vary with ‘geometrical’ degrees of freedom

in the models of the theory under consideration. In CGR, there is a case to be made

that this is in fact so, since the Stückleberg fields ξa fix the connection (essentially, of

course, ∇
STEGR

), which in turn is coupled to the material stress-energy content T ab
via

the (STEGR equivalent of) Einstein’s equation. Suffice it to say, then, that the situa-

tion for CGR vis-à-vis its background independence is more delicate, when the latter

notion in assessed on Belot’s terms.

Stepping back, then, the situation regarding the ‘substantive general covariance’ or

‘background independence’ of CGR is complicated. The theory clearly violates the

proposal of Pitts (2009), as we’ve seen above, due to its invocation of clock fields. The

theory seems to violate ‘no absolute objects’ definitions, albeit for reasons which have

nothing to do with the Stückelberg fields. With judicious tweaking, the theory vio-

lates definitions of background independence based upon variational principles. And

arguably, the theory satisfies Belot’s definition of background independence.

In any case, though, the point which we want to stress here is a simple one: although

15
For discussion on this point, see Pitts (2006) and Read (2023).
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proponents of CGR (e.g. Beltrán Jiménez et al. (2018, 2019) and Beltrán Jiménez and

Koivisto (2022)) claim that the theory is generally covariant, with Pitts (2009) we are

of the view that the fact that this ‘general covariance’ is achieved via clock fields means

that this isn’t so in a substantive sense. And in any case, we see that the situation here is

actually quite complicated, given that different analyses of background independence

seem to give different verdicts on CGR.

8 Close
Let’s wrap up. In this article, we’ve recalled the essential aspects of the geometric trin-

ity, before zooming in on STEGR and the particular version of this which is CGR,

which gauge-fixes the non-metric connection to vanish, and then achieves this in a ‘gen-

erally covariant’ manner via the introduction of Stückelberg fields. Various features of

CGR are identified by its proponents—specifically, that the theory is a ‘gauge theory of

translations’, and is generally covariant. In this article, we’ve seen that these claims are

tendentious. Various merits of CGR are also sometimes adduced by its proponents—

specifically, that it is a simpler/more parsimonious version of STEGR, and that it sat-

isfies the equivalence principle. In this article, we’ve also argued that these claims are

specious. All together, we think one would be right to take these points to temper one’s

enthusiasm for CGR—especially when, as we’ve also pointed out above, a more onto-

logically parsimonious version of CGR is available in any case—namely, GR itself!
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