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Abstract
How to make sense of the notion of force-free motion which seems to be

presupposed by Newton’s first law? One can identify in the literature various
different answers to this question, one among which is to be found in the writ-
ings of Torretti (1983). In a wonderful recent article, however, Hoek (2023) has
proposed a radical revision to our understanding of Newton’s first law, motivated
on both exegetical and philosophical grounds. In light of this, one is left wonder-
ing whether this reconceptualisation of the content of Newton’s first law obviates
the need to provide a notion of force-free motion with which to undergird it. In
this note, I’ll argue that this is not the case: one can (and should!) endorse Hoek’s
understanding of the first law, while nevertheless seeking to define force-free mo-
tions in one of the various ways which have been proposed in the literature.

1 Introduction
In a wonderful recent article, Daniel Hoek (2023) has proposed, on the basis of sus-
tained textual evidence, a compelling and quite radical reconceptualisation of the con-
tent of Newton’s first law of motion (henceforth N1L). A standard orthodox statement
of N1L is this:

N1LO: Force-free bodies travel with uniform velocities.

(‘O’ for ‘orthodox’.) Such a statement would have it that N1L has to do only with the
motions of unforced bodies. Hoek, on the other hand, argues that N1L should be
taken to be a more general principle, having to do also with the circumstances under
which bodiesdeviate from uniform motion. In order to motivate his alternative reading
of N1L, Hoek turns to the Cohen and Whitman translation of Newton’s Principia,
according to which N1L reads as follows:
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Every body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by the
forces impressed. (Newton, 1999, p. 416)

Note that this is already a more general statement that N1LO, as one can see from the
‘except insofar as’ clause, which identifies possible circumstances under which bodies
do not move uniformly. Taking his cue from the above translation, Hoek arrives at the
following alternative statement of N1L:1

N1LH: Bodies travel with uniform velocities unless impressed forces act on them, and
when forces do act on them they diverge from the trajectories that they would
have followed if their velocities were to have been uniform only to the extent that
these forces compel them to do so.

(‘H’ for ‘Hoek’ or ‘heterodox’. In a previous draft, I formulated N1LH as follows: ‘Bod-
ies travel with uniform velocities, unless and to the extent that they are compelled to
change their state of motion by an impressed force.’ This has the merit of being sim-
pler than the formulation above, but the demerit of inviting a reading in which the
conjunction is split into two—but where then the second conjunct (‘Bodies travel with
uniform velocities to the extent that they are compelled to change their state of mo-
tion by an impressed force.’) is garbled. As such, I have plumped for the less elegant
formulation above.)

In addition to the textual evidence, Hoek suggests that there are a number of con-
ceptual advantages which speak in favour of N1LH over N1LO. In particular, N1LH
affords a solution to two long-standing issues in the interpretation of Newton’s laws,
which Hoek calls the ‘independence problem’ (‘Since N1L is a special case of N2L, why
state it as a separate law?’), and the ‘triviality problem’ (‘Since there are no force-free
bodies, N1L is trivially true.’). Hoek is completely correct to state that N1LH avoids
both of these issues whereas N1LO does not: clearly, on his reading, N1L is not a spe-
cial case of N2L (hence dispatching the independence problem); moreover, N1LH does
not quantify over force-free bodies (hence dispatching the triviality problem).

All this being said, there remain a few aspects of Hoek’s approach to N1L which
are worth teasing out in more detail. First: one might ask how Hoek’s approach bears
on more orthodox approaches to understanding N1L as (e.g.) offering an operational
definition of/prescription for the identification of force-free bodies: although Hoek’s
discussion might suggest that these approaches can now be discarded, I’ll argue here
that this isn’t the case: even reading Newton’s first law as N1LH rather than N1LO,

1This is my formulation of N1LH, but Hoek has confirmed in personal correspondence that he
agrees with it.
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one still requires an independent characterisation of inertial motion. Second: it’s worth
drawing attention to certain extra dynamical assumptions when engaging with Hoek
on Newton’s laws. And third: it is also worth reconsidering the significance of New-
ton’s third law on Hoek’s approach; this I will do both with reference to Torretti (1983)
and with reference to recent work on reformulations of Newtonian gravity by Saunders
(2013).

2 Defining inertial motion
One of the challenges for the orthodox reading of Newton’s laws, and in particular
N1L, regards the definition of force-free motion—in the absence of such a definition,
N1LO would seem to be radically under-specified.

In the literature, there is a range of different possible ways of cashing out what it is
for a body to be force-free—these have been canvassed recently in e.g. (Read, 2023, ch.
1). To name here a few such approaches:2 one could for example take a ‘geometrical’ ap-
proach to the definition of force-freeness, according to which a particle is force-free just
in case its trajectory is straight according to the affine connection of Galilean spacetime
(Friedman, 1983).3 Alternatively, one could take a more empiricist/operationalist line,
according to which e.g.:

1. Force-free bodies are those sufficiently far removed from all other matter in the
universe (see e.g. (Brown, 2005)).4

2. Force-free bodies are identified via a generalised Humean strategy (see e.g. (Huggett,
2006)).

3. Force-free bodies are to be identified as those bodies which move on uniform
trajectories in those frames of reference in which Newton’s third law (henceforth

2Hoek discusses such approaches and others at (Hoek, 2023, pp. 72–3).
3On this approach, Hoek writes the following:

The geometric approach rests on the observation that the weak First Law implies the
existence of infinite, straight spacetime trajectories through any point and in any direc-
tion (Earman and Friedman 1973; Anderson 1990; Brown 2006). By treating this as a
consequence rather than a presupposition of the First Law, the law is transformed into a
load-bearing principle in the theory of spacetime structure. (Hoek, 2023, p. 73)

4This is somewhat akin to the claim made by Poincaré that “the variation of the acceleration of a
body depends only on the position of the body and of neighbouring bodies” (Poincaré, 2017, p. 93). This
could be read as implying that a non-accelerating body is one which has no neighbouring bodies—i.e., is
far removed from other bodies. My thanks to Daniel Hoek for drawing this connection to my attention.
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N3L)—that for every force exerted by one body on another, there is an equal
and opposite force exerted by the second body on the first—is satisfied (see e.g.
(Torretti, 1983)5).

I won’t go into these options any more right now, although I will discuss (3) further
in §4. Suffice it to say that all of these approaches are related to attempts to reconstrue
N1LO as a disguised operational definition of/prescription for the identification of the
inertial (i.e., N1LO-satisfying) frames.

Now, on the face of it, moving from N1LO to N1LH might invite the thought
that the need to define force-free motion is obviated, since the latter does not refer
to/quantify over force-free bodies as does the former. To say this would, however, be
too fast—for although it is indeed true that N1LH doesn’t make reference to force-free
bodies in the same way as does N1LO, it still appeals to the concept of inertial motion
insofar as it makes reference to ‘uniform velocities’—and so one might still desire an
independent characterisation of what said inertial motion amounts to. Indeed, this
is especially evident given the counterfactual formulation of N1LH above, on which
of course we still need to understand just what are the trajectories that bodies “would
have followed if their velocities were to have been uniform”. Note moreover that N2L
is unable to do this, for that law gives a handle on what the divergences from uniform
motion are, but it does not allow one to understand what those divergences are from,
for which one still requires such an independent standard of force-free motion. Thus:
even though the above options for notions of inertial motions were articulated origi-
nally out of discussions to do with the content of N1LO, there is therefore a good case
to be made that these definitions remain important even given Hoek’s preferred formu-
lation of Newtonian mechanics.6

3 Velocity-dependent functions
The next point which I want to make has to do with rendering explicit some assump-
tions which one might (at least initially) think are made by Hoek (2023) in giving various

5Here, Torretti follows the lead of Stein (1974).
6At one point towards the end of his article, Hoek writes: “Far from being a trivial truth, the strong

First Law [i.e., N1LH] is arguably false in light of General Relativity: in curved spacetimes, particles
change direction without the action of any impressed force” (Hoek, 2023, p. 74). It is not obvious that
this is so, since gravitating but otherwise force-free bodies in general relativity follow geodesics—they do
not “change direction”. So, as far as I can tell, N1LH can hold just as well in general relativity as in
Newtonian gravitation. This, indeed, all carries over to Newton–Cartan theory (see (Malament, 2012,
ch. 4)), which is good news for Hoek, considering that Newton–Cartan spacetime is often regarded as
being the “most appropriate spacetime setting” for Newtonian gravitation (see Knox (2014)).
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different statements of his preferred form of N1L. Hoek’s initial statement of N1LH—
reproduced above—can be schematised as follows:7

∆(uniform motion) ⇒ force. (1)

Now, if one reads ‘uniform motion’ as ‘velocity’, then one can rewrite the above as:

∆(v) ⇒ force. (2)

Now, on the assumption that masses (and forces) aren’t functions of absolute velocities
(i.e. m ̸= m(v)), one can infer from this that:

∆(mv) ⇒ force, (3)

which states that any change in the momentum of a body is due to a force. At first
blush, one might read Hoek (2023) as equivocating between the first and last of these
statements of N1LH: he writes explicitly that his version of N1L “says that every change
in a body’s momentum is due to impressed forces” (Hoek, 2023, p. 62). But recall now
that it has long been appreciated that Newton’s derivation of Corollary V (seemingly)
goes through only if he assumes that masses and forces are not functions of absolute
velocities—see (Brown, 1993) and (Barbour, 1988); the same assumption is required here
in order to move from the first to the third of these formulations.8

At this point, however, it is very important to be clear that there is a more charitable
reading of Hoek available here. Newton himself defined ‘quantity of motion’ in terms
of (speaking anachronistically)momentum—in which case one should have begunwith
(3) above, and (rather) the velocity-independence of masses is required to move to (2),
rather than the other way around! On this reading, the velocity-independence of mass
is not an illicit presupposition of Hoek’s analysis. I commend this reading of Hoek

7This schematisation of N1LH might be taken to imply that it is the contrapositive of N1LO, and
hence logically equivalent to it. That would not be a correct reading, for as Hoek writes:

But [N1LO] and [N1LH] are not contrapositives: [N1LO] fails to entail [N1LH], because
[N1LO] leaves open the possibility of an unforced change in the state of motion of a body
subject to impressed forces (it could simultaneously be subject to influences other than
impressed forces, or undergo random changes, for no reason at all). (Hoek, 2023, p. 62)

As such, one should not read ‘⇒’ as a material implication. On N1LH, the change in motion must
be due to forces, rather than just accompanied by forces; it’s of course very well known that these causal
connections are not fully captured if one uses the material implication—see e.g. Henderson (1954). (I’m
grateful to Caspar Jacobs and Josef Vacha for discussions here.)

8More on this assumption in the next section.
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(2023)—nevertheless, I think it’s helpful to think through how dynamical assumptions
about (say) velocity-independence enter the picture here.

To close this section and explore this point a little further, note that one can under-
stand N2L as the converse of N1LH (but not as the converse of N1LO), so reading:

force ⇒ ∆(uniform motion). (4)

Again, if one reads ‘uniform motion’ as ‘velocity’, then one can rewrite the above as:

force ⇒ ∆(velocity). (5)

On the assumption that m ̸= m(v), the above then implies that

force ⇒ ∆(mv). (6)

So to derive the ‘change of momentum’ version of N2L, one again needs to same dy-
namical assumptions as discussed above—unless, again with Newton, one begins by
identifying ‘quantity of motion’ with momentum, in which case the derivation pro-
ceeds the other way around.

4 The role of the third law
The final point which I want to make in this note has to do with the role of N3L on
Hoek’s preferred understanding of the content of Newtonian mechanics. One ques-
tion which has sometimes been asked in the foundations of Newtonian mechanics is
whether N3L is presupposed by N1L—that is, whether frames in which N1L is sat-
isfied are frames in which N3L is satisfied (for the classic discussion of this question,
see (Torretti, 1983); the issue is also discussed in (Read, 2023, ch. 1)).9 This question
remains meaningful when one moves from understanding N1L as N1LH rather than
as N1LO—to see this, consider some frame of reference in which N1LH holds, then
boost to some frame of reference accelerating uniformly with respect to the original
frame. In that new frame, there will be changes of motions of bodies not caused by any
physical force (although, of course, those changes will still be correlated with fictitious

9“We saw on pages 19–20 that in the Newtonian theory the Third Law is quite essential for distin-
guishing the family of inertial frames from any family of frames travelling past it with the same constant
acceleration” (Torretti, 1983, p. 51). In this passage, Torretti goes on to acknowledge that “the Third Law
is not required for singling out the inertial frames in Einstein’s theory”, thereby anticipating the same
point made in (Read, 2023, ch. 1).
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forces)—the situation here is analogous to the failure of N1LO when one moves to an
arbitrarily-moving frame of reference.10

As a result of this, questions regarding the extent to which N3L affords a means
of identifying operationally the frames of reference in which N1L obtains remain per-
tinent in the context of N1LH as well as the context of N1LO. This, of course, is op-
tion (3) in §2. Moreover, even if one chooses to define force-free motions in some other
way—perhaps via the geometrical strategy of Friedman (1983) as also mentioned in §2—
it remains perfectly legitimate (and interesting) to ask about the extent to which the
N3L-satisfying frames are ‘adapted’ to this spacetime structure.

For the sake of clarity in the remainder of this section, let me switch back now to
understanding N1L as N1LO. In (Read, 2023, ch. 1), I presented some simple problem
cases for this ‘operational identification via N3L’ strategy, and I stick by those. There’s
another straightforward way to see this point, though, which is to note that Saunders’
‘vector relationalism’—his reformulation of Newtonian gravity in terms of relational
quantities, which has the Maxwell group as its dynamical symmetries (see Saunders
(2013))—commits explicitly to N3L, yet has no standard of inertial (non-rotational)
motion. Hence, the inference from N3L to N1LO must fail.11

Here is a further way to see the point. As already discussed, Barbour (1988) and
Brown (1993) have pointed out that the assumption of the velocity-independence of
forces and masses is (seemingly) needed for Newton’s derivation of the Galilean in-
variance of his laws (i.e., his derivation of Corollary V) to go through. What happens,
though, if one makes the weaker assumption that forces be constrained to satisfy N3L,
while still allowing that they (and the inertial masses) might be functions of absolute ve-
locities? If no restrictions are placed on forces and masses with respect to their velocity-
dependence, then the symmetries of the laws will in general (i.e., save in special cases) be
those of the Newton group (see Pooley (2013) for an explicit statement of the Newton
group), because boosts will generally not preserve the laws; on the other hand, velocity-
independence of forces and masses underwrites Galilean invariance. So what happens
in this intermediate case?

10Of course, if one is already taking motions to be with respect to (say) Newtonian absolute space,
then ipso facto N1LH obtains in all frames of reference. Evidently, this is not the reading of N1LH which
I have in mind here.

11How can this be so, given the stress which both Stein (1974) and Torretti (1983) place upon the
significance of N3L as restricting to the inertial frames (special problem cases such as those discussed
in (Barbour, 1988, pp. 577–8) and (Read, 2023, ch. 1) notwithstanding)? The point is that Saunders
(2013) is concerned only with relational quantities to begin with; for that reason, global non-rotational
accelerations can remain symmetries of his theory, despite the imposition of N3L. Nevertheless, N3L
does underwrite a standard of absolute rotational acceleration in Saunders’ theory, as I discuss further
below.
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The situation has already been considered in a very illuminating passage from (Bar-
bour, 1988, pp. 577–8): as Barbour writes, even assuming N3L, there is “no reason what-
ever why the strength of interaction (the impulses) between two bodies (to consider the
simplest case) should be the same when their centre of mass moves through absolute
space with a uniform velocity as when it is at rest”—this already serves to temper the
thought that N3L alone can take us to the inertial frames. So, if we have some force
function for the ith particle of the form∑

j

Fij = miai, (7)

then scaling all the forces after a boost will not be a symmetry of the laws—assuming
that we don’t also scale the inertial masses. (And even in that case, it will only be a
symmetry if we assume that all forces Fij scale in the same way.) So, insisting on N3L
but assuming that only forces are functions of absolute velocities (and in particular that
masses are not) would again seem to make it the case that boosts aren’t symmetries and
that the symmetry group of the laws is therefore the Newton group.

But if we make it the case that masses scale with absolute velocities in the same way
as forces, then all of the scale factors in the above equation will cancel and we’ll have
it the case that symmetries are still Galilean—this is just one of the special cases of the
kind mentioned above, in which one secures Galilean invariance of the laws without
necessarily assuming something so strong as velocity-independence of the forces and
masses.12 In other words, what we see here is that merely assuming N3L doesn’t by
itself secure Galilean invariance of the laws. But N3L plus the additional assumption
that masses scale just as do forces with absolute velocities (and, indeed, that forces all
scale in the same way with absolute velocities) does underwrite this.13

12Note that this actually tempers, to a very mild degree, the point made by Barbour (1988) and Brown
(1993).

13These transformations would seem to be a hidden symmetry of Newtonian gravitation (for re-
cent philosophical discussions of hidden symmetries in physics more generally, see Bielińska and Jacobs
(2024); Read (2024)). If there were some way of detecting these absolute masses directly, then of course
the Galilean symmetry might thereby be broken (my thanks to Bhanu Narra for raising this point). It’s
also straightforward to show that these ‘scale’ transformations are not variational symmetries, despite be-
ing dynamical symmetries—in which case, one would not expect there to be associated conserved quan-
tities by Noether’s first theorem. That said, it’s also somewhat unclear whether Noether’s first theorem is
applicable here in any case, given that the theorem deals with transformations of the dependent and inde-
pendent variables, rather than with transformations of parameters such as masses. (My thanks to Harvey
Brown for discussions regarding these ‘scale’ transformations and Noether’s theorem; for further recent
philosophical work on Noether’s theorems, see Read and Teh (2022).) In addition: one wonders what
is the right thing to say about the invariant structure associated with these ‘scale’ transformations—but
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While we’re here, there’s one final puzzle regarding such an approach to Newtonian
gravity which I’d like to take the opportunity to shore up; this comes back again to the
work of Saunders (2013). An earlier approach to reformulating Newtonian gravity in
terms of relational quantities is due to Hood (1970).14 But since (a) Saunders (2013)
takes N3L to have been essential to his derivation, yet (b) Hood (1970) does not avail
himself of N3L, there’s a question regarding how Hood is also able to derive a theory
with the Maxwell group as its dynamical symmetries. Thankfully, it’s straightforward
to identify the solution here, which is just this: Hood’s theory is in fact invariant under
the fullLeibniz group of transformations; it is only when one assumes N3L (in the form
of the antisymmetry of the force function between any two particles) that one restricts
this to the Maxwell group of transformations—because N3L will (save in very special
cases) distinguish between states which differ only in their overall rotation.15

5 Close
The alternative understanding of N1L proposed by Hoek (2023) is compelling, both
exegetically and philosophically. That said, in this note I have tried to demonstrate that
embracing Hoek’s approach to Newton’s laws does not—as one might initially worry
—render null-and-void much of the extant philosophical work on the content of New-
ton’s laws, for even granting Hoek’s understanding of N1L, (i) one arguably still re-
quires a way of cashing out inertial motion/force-freeness (§2), (ii) one still has to be
sensitive to extra dynamical assumptions which might in play (§3), and (iii) questions
regarding the relationship between N3L and the other laws of motion, and regarding
how N3L can be put to operational/empirical work—questions which occupied giants
such as Torretti (1983)—remain of philosophical interest (§4).
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