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Abstract

We consider the distinction between ‘qualified’ and ‘unqualified’ approaches

introduced by Read (2020a) in the context of the dynamical/geometrical debate.

We show that one fruitful way in which to understand this distinction is in terms

of what one takes the kinematically possible models of a given theory to represent;

moreover, we show that the qualified/unqualified distinction is applicable not

only to the geometrical approach (which is the case considered by Read (2020a)),

but also to the dynamical approach. Finally, having made these points, we con-

nect them to other discussions of representation and of explanation in this corner

of the literature.
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1 Introduction
Does the geometrical structure of spacetime explain the dynamical behaviour of matter,

or vice versa? This question lies at the heart of the dynamical/geometrical debate in

the foundations of spacetime theories, promulgated by Brown (2005) and Brown and

Pooley (2001, 2004), and by now well-established in the literature.
1

Recall that, in this

debate, proponents of the ‘dynamical’ view have it that (in some way or other to be

articulated) the dynamics of matter explain why spacetime structure is what it is; by

contrast, proponents of the ‘geometrical’ view have it that (again, in some way or other

to be articulated) it is the geometrical structure of spacetime which explains why the

dynamics of matter are what they are.

In their original writings on this topic, Brown and Pooley (2001, 2004) situated

themselves as proponents of the dynamical view, and raised the following charge against

their geometrical adversaries:

[A]s matter of logic alone, if one postulates spacetime structure as a self-

standing, autonomous element in one’s theory, it need have no constrain-

ing role on the form of the laws governing the rest of content of the the-

ory’s models. So how is its influence on these laws supposed to work?

(Brown and Pooley 2004, p. 14)

The thought here is that there are plenty of physical theories (some of which are can-

vassed by Brown and Pooley (2004), and later by e.g. Read et al. (2018)—cf. Read and

Menon (2021)) in which (a) one has some putative piece of geometrical structure, along-

side (b) some dynamical material fields, but (c) the material fields needn’t ‘advert’ to

that spacetime structure. This is supposed to be a problem for self-identifying ‘geomet-

rical’ authors, for example Maudlin (2012), who writes in the specific context of special

relativity that

the laws of physics take exactly the same coordinate-based form when stated

in a coordinate-based language in any Lorentz coordinate system (because

the laws can only advert to the Minkowski geometry, and it has the same

coordinate-based description). (Maudlin 2012, pp. 117–8, our emphasis)

1
See Brown and Read (2022) for a recent review.
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The reason that such cases seem to be problematic for geometrical views is this: how

can it be the case that laws must ‘advert’ to spacetime geometry, when mismatches of

the kind identified by those authors are possible?

But is this charge from Brown and Pooley (2004) really fair? Read (2020a) argues

‘no’: the charge tracks only a version of the geometrical view which he dubs the ‘unqual-

ified geometrical approach’ (UGA), according to which, without further constraints, a

given piece of spacetime structure (Minkowski spacetime, in the case of special relativ-

ity) constrains laws to have a certain form—in particular, the geometry constrains the

symmetries of the dynamical laws to ‘advert’ to it. UGA is indeed subject to the ‘How

is this explanation supposed to work?’ charge, given the existence of legitimate mathe-

matical and physical possibilities which appear to be in tension with it.

There are, however, other ways than UGA in which to read the italisised passage

in the quote from Maudlin above. One such option is what Read (2020a) dubs the

‘qualified geometrical approach’ (QGA), according to which when one antecendently
restricts to certain possibilities—namely, those in which (a) spacetime takes a certain

form with certain symmetries (i.e. isometries; we focus here on the case of fixed, non-

dynamical spacetimes for simplicity) and (b) material fields are governed by laws with

those selfsame symmetries—one can indeed appeal to spacetime structure to explain

certain facts about the dynamics of matter—because, of course, the problematic sce-

narios are excluded ex hypothesi. There is some textual evidence that QGA rather than

UGA seems to be a better fit for the attitude of Maudlin (2012) himself—consider e.g.

passages such as the following:

The fundamental requirement of a relativistic theory is that the physical

laws should be specifiable using only the relativistic space-time geometry.

For Special Relativity, this means in particular Minkowski space-time. It is

the symmetry of Minkowski space-time that allows us to prove our general

result. (Maudlin 2012, p. 117)

It seems charitable to think that Maudlin’s invocation of this ‘fundamental require-

ment’ exactly captures his endorsement of (something like) QGA as opposed to UGA,

in which case, the ‘How is this explanation supposed to work?’ charge from Brown and

Pooley (2004) seems specious (against Maudlin, at least).

So much for the background. Our purpose in this article is to explore some fur-

ther, novel aspects of this unqualified/qualified distinction in the foundations of space-

time theories, and also to integrate recent discussions on the dynamical/geometrical ap-

proach by in particular Acuña (2016, 2025a) and Fletcher (2025) with this distinction.

In particular, we’ll aim to make good on the following goals:
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1. To take up a suggestion by March (forthcoming) that the dynamical/geometrical

debate can be understood fruitfully with the kinematics/dynamics distinction in

mind, and to show how this relates to the qualified/unqualified distinction.

2. Building on this, to show that the qualified/unqualified distinction applies not

only to the geometrical approach, but also to the dynamical approach. As such,

to show that there is a distinction to be drawn between ‘qualified’ and ‘unquali-

fied’ dynamical approaches.

3. To consider how one can accept a ‘qualified’ approach while remaining non-

committal on the dynamical/geometrical approach—and, moreover, to show

that to do so is exactly to adopt the ‘counterparts view’ espoused by Acuña (2016,

2025a,b).

4. To think about what the unqualified and qualified approaches have to do with

the thesis of ‘geometrical representation by stipulation’ introduced recently by

Fletcher (2025).

5. Having done all of the above work, to shore up and illustrate some outstanding

issues regarding explanation in the debate between dynamical and geometrical

approaches, in dialogue with Read (2020b).

Here’s the plan. In §2, we show how to understand the qualified/unqualified dis-

tinction in terms of the kinematics/dynamics distinction. In §3, we show that a quali-

fied/unqualified distinction is possible within the context of the dynamical approach;

as such, the qualified/unqualified distinction turns out to be orthogonal to the dynam-

ical/geometrical distinction. In §4, we describe how the ‘counterparts view’ of Acuña

(2025a) fits into this setting. In §5, we consider in this context the above-mentioned the-

ses regarding the representation of geometry in one’s physical theories. In §6, we turn

to explanation, and in §7 we seek to illustrate many of the themes and issues raised in

this article in the particular context of the famous thought experiment of the rockets

due to Bell (2004). In §8 we wrap up.

2 Qualification and the kinematics/dynamics distinc-
tion

It’s pretty widespread in the foundation of spacetime theories to specify spacetime the-

ories by first (a) specifying their ‘kinematically possible models’ (KPMs), which are tu-

ples of geometric objects out of which the theories are constructed, and subsequently
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KPMs

DPMs

Figure 1: As defined, the dynamically possible models (DPMs) of a theory are nested

inside its kinematically possible models (KPMs).

(b) restricting to their ‘dynamically possible models’ (DPMs), which are those KPMs in

which the geometric objects specified therein are constrained to satisfy certain dynam-

ical equations.
2

Given a class of KPMs, there is of course a range of different choices of

dynamics that determine different classes of DPMs, and in turn different such choices

determine different theories with the same kinematical structure. But the main point

here is that thinking in terms of KPMs and DPMs invites a stratified picture, whereby

the DPMs are nested inside the KPMs, as in Figure 1.

To give one simple example: the KPMs of a massive Klein–Gordon theory are triples

⟨M, ηab, φ⟩ where M is a differentiable manifold, ηab is a fixed Minkowski metric field

on M , and φ is a real scalar field on M ; the DPMs are then given by the massive Klein–

Gordon equation,

ηab∇a∇bφ−mφ = 0, (1)

where m ∈ R.

Our first contention in this article is that one can think about the differences be-

tween UGA and QGA in terms of the framework of KPMs and DPMs. Consider some

theory—the Klein–Gordon theory given above would serve as an example—in which

symmetries of the dynamical laws (in the example above, (1)) coincide with the sym-

metries (i.e. isometries) of the spacetime structure (in the example above, ηab). In the

DPMs of the theory, there is therefore accord between dynamical and spacetime sym-

metries. Evidently, however, this accord does not extend to all the KPMs determined

by the geometric objects, for there the dynamics are unspecified, and in principle it is

2
Here, we’ll set aside some delicate issues, e.g. that spinors aren’t geometric objects—for more on

that topic, see Pitts (2012).
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possible that dynamical symmetries come apart from spacetime symmetries. (For exam-

ple, in the KPMs of the above theory, there will be DPMs in which the fields satisfy the

massless Klein–Gordon equation,

ηab∇a∇bφ = 0, (2)

which also has conformal symmetries.)

Let’s call a theory ‘well-tuned’ just in case its dynamical symmetries coincide with

its spacetime symmetries in its DPMs. In other words, a theory is well-tuned just when

it satisfies in its DPMs the famous symmetry principles of Earman (1989, p. 46), SP1
(‘any dynamical symmetry is a spacetime symmetry’) and SP2 (‘any spacetime symme-

try is a dynamical symmetry’). Moreover, for the sake of clarity we’ll restrict to well-

tuned theories in our discussions over the next few sections, although we will relax the

assumption in §5.

For well-tuned theories, then: by considering the question of whether spacetime

can explain the dynamics of matter after restricting to the well-tuned DPMs within a

class of KPMs determined by certain geometric objects, one is automatically embracing

a qualified approach (e.g. QGA for the geometrical approach); worries about symmetry

mismatches in the KPMs cut no ice against such qualified views. When considering the

entire space of KPMs and making assertions that there cannot be symmetry mismatches

here (or, better, in the possible worlds which these KPMs purport to represent), one is

working within the framework of an unqualified approach (e.g. UGA for the geomet-

rical approach), and is ipso facto leaving oneself open to the problem cases pointed to

by proponents of the dynamical approach such as Brown and Pooley (2004), as already

discussed above.

All of this, we take it, is consistent with and substantiates a suggestion recently

made by March (forthcoming, fn. 20), that the kinematics/dynamics distinction can

be brought to bear in fruitful ways upon the dynamical/geometrical debate. But just

to say a little more about the qualified/unqualified distinction here: according to qual-

ified approaches (e.g. QGA), one could say that the DPMs of a theory represent phys-

ically possible worlds (according to that theory, of course), while KPMs which are not

DPMs (‘mere KPMs’) represent merely metaphysically possible worlds. Now, explana-

tory questions are to be raised and answered exclusively in the content of the physi-

cally possible worlds, where (for well-tuned theories) spacetime symmetries and dy-

namical symmetries coincide. However and by contrast, according to proponents of

UGA, arguments might be mustered to the effect that spacetime–dynamics symmetry

mismatches—i.e., violations of the symmetry principles of Earman (1989)—are meta-

physically or logically impossible. Thus, while they might be legitimate pieces of mathe-

matics, the mere KPMs don’t represent worlds in which there are symmetry mismatches,
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i.e. in which Earman’s principles are violated. Thus, the physically possible worlds rep-

resented by the theory via its DPMs observe such principles, and the violation thereof

is in fact a metaphysical or logical impossibility. If such arguments are compelling,

then advocates of unqualified approaches needn’t be worried by cases of spacetime–

dynamics symmetry mismatches in the KPMs of the theory; the problem, of course

(and to repeat), is that prima facie the claim seems to be subject to the ‘How is this

supposed to work?’ charge.

3 Qualified dynamical approaches
Now that we’ve seen that it’s quite natural to associate qualified approaches with an

exclusive focus on the DPMs of a given theory (as opposed to its KPMs) when it comes

to explanatory questions regarding the relationship between spacetime and material

dynamics, it’s also natural to ask whether the notion of ‘qualification’ in the dynam-

ical/geometrical debate can in fact be liberated from the geometrical perspective in par-

ticular. In other words, it’s natural to ask this: is there any such view as a qualified

dynamical approach?

We think that the answer to this question is ‘yes’. The idea is this. Just as UGA has

it that a piece of geometrical structure per se constrains the dynamical laws to ‘advert’

to it, so too would an unqualified dynamical approach (henceforth ‘UDA’) have it that

a set of dynamical laws (with certain dynamical symmetries) per se constrains the space-

time geometry to be what it is. To pick up our discussion from the previous section:

one could say that, on UGA, spacetime—dynamics symmetry mismatches are meta-

physically or logically impossible, for geometry always constrains the laws for material

fields to take a certain form (with certain symmetries). On the other hand, for QGA,

spacetime–dynamics symmetry mismatches are (at least in well-tuned theories—which

recall are our exclusive focus here) physically impossible but metaphysically possible, for

at least in the DPMs spacetime structure can be used to explain facts about the dynam-

ics, the form of the laws, etc.

Similar ideas carry over to qualified and unqualified versions of the dynamical ap-

proach (in what follows, call the qualified version of the dynamical approach ‘QDA’),

but with the arrows of explanation reversed. One can say that, on UDA, spacetime–

dynamics symmetry mismatches are metaphysically impossible, for dynamical laws (and

their symmetries) always constrain spacetime geometry to take a certain form. On the

other hand, for QDA, spacetime–dynamics symmetry mismatches are (at least in well-

tuned theories) physically impossible but metaphysically possible, and at least in the

DPMs dynamical laws (and their symmetries) can be used to explain certain facts about
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Geometrical approach Dynamical approach

Mismatches metaphysically impossible UGA UDA

Mismatches physically impossible but metaphysically possible QGA QDA

Table 1: The dynamical/geometrical debate is orthogonal to the qualified/unqualified

distinction.

the spacetime geometry. Given this, then, it turns out that there are in fact four dis-

tinct positions here, and that the qualified/unqualified distinction is orthogonal to the

dynamical/geometrical distinction. We have summarised these four positions in Table

1.

Having formulated the dynamical/geometrical debate in terms of KPMs and DPMs,

and having identified QDA as yet another possible stance which one could hold in this

debate, we can now further characterise the differences between QGA and QDA. One

could say that that while spacetime symmetries and dynamical symmetries agree in all

physically possible worlds for a well-tuned theory, and it is these worlds (represented

by the DPMs of the theory under consideration) which are of exclusive interest to pro-

ponents of qualified views, QGA and QDA both nevertheless recognise hyperinten-
sional explanatory asymmetries in these worlds—explanatory asymmetries which cut

finer than intensional differences in this set of worlds (see e.g. Berto and Nolan (2023)).

In particular, the QGAist thinks that the explanatory arrow runs from geometry to dy-

namics in these worlds, whereas for the QDAist the opposite is true.

Of course, however, it’s all well and good to identify new positions in logical space—

but what one would really like to do is to show that these positions occupied by flesh-

and-blood actors in the debates. In fact, we think that this is indeed the case. For exam-

ple, one way of reading Brown (2005), at least in the context of special relativity (and

other theories where the spacetime structure is fixed and non-dynamical—see Brown

and Read (2022)), is that it is metaphysically impossible for spacetime symmetries to

come apart from dynamical symmetries, because the former are always explained by

the latter; spacetime is only a dispensable condification of the dynamical symmetries. If

this is correct, then Brown in the context of special relativity can be taken to endorse

UDA.

On the other hand, because Brown (2005, ch. 9) maintains that the metric field

of general relativity is on the same ontological footing as material fields, that the cou-

pling between metric and material fields is contingent, and no longer embraces the

above-described ontological reduction thesis in this setting, he is willing to countenance

spacetime–dynamics symmetry mismatches, and so better qualifies as a proponent of
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QDA when it comes to general relativity.
3

Given his claim that the connection between spacetime and dynamical symmetries

is analytic, one could also perhaps read Myrvold (2019) as a proponent of UDA; we will

in fact have more to say about Myrvold’s views, especially as compared with those of

Acuña (2016, 2025a), in the next section.

4 The counterparts view
Taking stock, what we’ve seen so far is that: (i) the kinematics/dynamics distinction

is a helpful way of understanding the distinction between qualified/unqualified ap-

proaches (§2), and (ii) one can liberate the qualified/unqualified distinction from ge-

ometricism in particular, to see that this distinction applies also within the context of

the dynamical approach (§3). Now we spell out how the ‘counterparts view’ of the

explanatory relation between spacetime and geometry, espoused primarily by Acuña

(2016, 2025a,b), enters this way of thinking.
4

According to the counterparts view, in well-tuned cases like special relativity, space-

time geometry and dynamical symmetries are ‘two sides of the same coin’ (Acuña 2016),

and neither per se has explanatory priority over the other. It is this explanatory non-

priority thesis which we would like to focus on in this section, for it also seems to us

that such a position fits naturally into the framework which we have developed above.

To be more specific, our thought—developing on from Acuña (2025a) in partic-

ular, where connections between the counterparts view and the qualified/unqualified

distinction are suggested en passant—would be this. The counterparts view is perhaps

best regarded as being a certain kind of qualified view: when dynamical symmetries co-

incide with spacetime symmetries, one can consider explanations which run from ge-

ometry to dynamics, and vice versa. One can treat such explanations in an entirely prag-

matic manner, and does not have to commit (per either the dynamicist or geometricist)

to the explanatory arrows running exclusively in one direction or the other.
5

When dy-

3
All of this presupposes that it makes sense to speak of spacetime symmetries and dynamical symme-

tries in the context of general relativity—Read et al. (2018) propose to do this locally, but this suggestion

has faced reasonable pushback and calls for clarification from Fletcher and Weatherall (2023a,b), Fletcher

(2020), and Weatherall (2020). We won’t go further into any of these issues here.

4
To be clear, this ‘counterparts view’ obviously has nothing to do with counterpart theory in the

sense of Lewisian modal metaphysics.

5
Note that there is a case to be made that Weatherall (2017, p. 157) also espouses something the coun-

terparts view, since he writes “And so, geometry constrains dynamics, but so too dynamics constrains

geometry. The inferences—and the explanations—go in both directions.” For further discussion of this,

see Acuña (2025a).
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namical symmetries do not coincide with spacetime symmetries, however, it is not so

clear that this explanatory bidirectionality is available—the explanations seem ‘partial’,

in the sense of Read (2020a, §5.2.2).
6

Moving on: another author who has written on the dynamical/geometrical debate

in recent times, and who is often regarded as being a kindred spirit of Acuña (2016)—

perhaps (one might think) another proponent of the counterpart view—is Myrvold

(2019). Myrvold has it that Earman’s symmetry principles—recall again, the coinci-

dence of dynamical and spacetime symmetries—are analytic, in the sense that they en-

code connections between spacetime symmetries and dynamical symmetries which ob-

tain in virtue of meaning. But if this analyticity thesis holds up, then it is hard to see

how Myrvold could ever envisage spacetime symmetries coming apart from dynamical

symmetries in any metaphysically possible world, and as such it makes sense to identify

him as a proponent of an unqualified approach. This, of course, is a stronger thesis than

the counterpart/pragmatic view attributed to Acuña (2016, 2025a,b) above, which (as

we understood it above) is a qualified view: one can use spacetime structure to explain

facts about the dynamics and vice versa in the physically possible worlds according to

a well-tuned theory as represented by its DPMs, but this isn’t to deny that spacetime

symmetries might come apart from dynamical symmetries in other (metaphysically)

possible worlds. As a result of this, what we see then is that the qualified/unqualified

distinction affords us the means to articulate ways in which one might distinguish be-

tween views—namely and to repeat, those of Myrvold (2019) and Acuña (2016)—which

might otherwise be assimilated in the literature.
7

Finally on this topic: in response to the above-described ‘mismatch’ problem cases

for unqualified approaches (invoked, as we’ve seen, by Brown and Pooley (2004) as part

of their critique of UGA), Myrvold (2019, §8) suggests that there are not really mis-

matches in such cases, when one attends to the ‘real’ dynamics associated with the spa-

tiotemporal structure in the KPMs (to be clear: Myrvold himself does not deploy the

KPM/DPM terminology). To which we respond: while it’s true that invoking an ana-

lytic spacetime–dynamics connection serves to blunt the mystery as to how this coinci-

dence could arise, it’s worth tempering this with a degree of caution. The reason for this

is that if spacetime symmetries just are dynamical symmetries, then the former cease to

6
Anyhow, the counterparts view identifies explanatory connections between spacetime structure and

dynamics that go beyond (mis)matches between symmetries. For example, in Weatherall’s analysis of the

Geroch–Jang theorem, the principle that free bodies follow timelike geodesics can be explained from ge-

ometric and dynamical assumptions that don’t involve considerations about symmetries. See Weatherall

(2017) and Acuña (2025a).

7
Our suggestion here draws a sharper line between Myrvold (2019) and Acuña (2016) than does e.g.

Acuña (2025a, §5.3).
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have any independently interesting and valuable role to play in theorising about space-

time theories.
8

Besides, Myrvold’s response to untuned cases seems not to be applica-

ble to the case of Lorentz’s ether theory (see §7). In addition, this ‘analytic connection’

view stands in contrast (and tension) with another outlook on the spacetime–dynamics

connection—one which we’ll now proceed to explore.

5 Representational stipulation and iteration
So far, we’ve explored the qualified/unqualified distinction in the context of well-tuned

theories—i.e., theories whose spacetime symmetries and dynamical symmetries coin-

cide in their DPMs. What we’d like to consider in this section is what happens when

this assumption is relaxed, and (more specifically) how one might arrive at a well-tuned

theory even when beginning from a starting point whereby one does not have such a

theory.

Let’s take for granted, in the spirit of proposals made recently by Fletcher (2025),

that whenever one is presented with the models of some spacetime theory, one has to

make an initial stipulation as to what in those models represents spacetime, i.e. what

represents intervals of distances and times. We can schematise this as follows (now us-

ing the notation of Read (2023a, ch. 3) deployed in the context of a discussion of Belot

(2011)): if the KPMs of the theory in question are given by tuples ⟨M,O1, . . . , On⟩
where as usual M is a differentiable manifold and the Oi are geometric object fields

on M , and dynamics are given by some differential equations for the Oi, then one

proceeds in the interpretation of this theory by stipulating that one of these objects

(or combination thereof—but for simplicity we’ll set aside that case) represents (space-

time) geometry, and accordingly marks it with a superscript ‘G’, so writing the KPMs

⟨M,O1, . . . , O
G
i , . . . , On⟩. One can then inquire as to the coincidence (or otherwise)

of the symmetries of OG
i and of the dynamics—one can inquire, in other words, as to

whether the theory is well-tuned, in the sense in which we have been using this term in

this paper.
9

8
Cf. the critiques of ‘epistemic’ approaches to symmetries presented by Read and Møller-Nielsen

(2020b), who worry that by saying (as does e.g. Dasgupta (2016)) that symmetries just are those maps

from models of a theory to its models which preserve empirical content, one ceases to afford the notion

of a symmetry transformation any independently interesting role to play in theorising about physical

theories.

9
Depending upon which suchOi is selected as being ‘geometrical’, it might be difficult to make sense

of its symmetries. For example, how to make sense of the symmetries of a dynamical metric field? (Cf.

footnote 3.) And if this object so selected is in fact not any kind of metric field, then one cannot cash out

its symmetries in terms of its isometries, but will have to recourse to some other notion, and it might not
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Given that the initial geometrical stipulation was arbitrary, there is no reason in gen-

eral to think that this will be the case—the initial geometrical stipulation might well be

an ‘educated guess’, but also might be one which in fact violates Earman’s symmetry

principles.
10

However, as one becomes better acquainted with the theory, one might

come to identify in it what physicists call ‘hidden symmetries’—symmetries of the dy-

namics which were not initially obvious or well-appreciated—and in turn come to re-
calibrate one’s initial geometrical stipulation in order to bring it into line with (what

one now understands to be) the dynamical symmetries of the theory.
11

Here is a concrete example. Take the Trautman gauge symmetry of Newtonian

gravity set in Galilean spacetime: simultaneously redefining the affine connection and

gravitational field of this theory in specific and compensating ways yields a distinct

spacetime model which is nevertheless empirically equivalent to the original model.

Plausibly, prior to the work of Trautman (1965), this transformation would have counted

as hidden—even though, naturally, it does not now so count! One can indeed take more

recent work on the interpretation of Newtonian gravity in light of Trautman gauge

symmetry—e.g. (Knox 2014; Read and Møller-Nielsen 2020a)—to exactly offer and in-

vite an updating of what we take the geometrical structure of Newtonian physics to be

(in this case, to invite us to move to the framework of Newton–Cartan spacetimes) in

light of spacetime–dynamics symmetry mismatches in one’s original interpretation of

the theory.

Ultimately, the hope is that one will eventually converge, via a process of reflective

equilibrium, to an understanding of the geometrical structure of a given theory which

renders it well-tuned, in the sense (to repeat) that Earman’s principles are satisfied in

its DPMs. This narrative we take to be consonant with the arguments made regard-

ing ‘hermeneutic circle reasoning’ in the presence of symmetries by Read and Møller-

Nielsen (2020b) (although in the latter case the focus was updating one’s understand-

ing of the empirical content of a theory—rather than its spacetime symmetries—in an

iterative process). Although we have simply by stipulation restricted to the case of well-

tuned theories in the preceding sections of this article, it is interesting (in our view) to see

that this restriction can be relaxed, and that a plausible account as to how nevertheless

we might equilibrate to such an interpretation of spacetime theories (thereby making

the initial stipulation a more reasonable one) is available. Although well-tunedness as

be obvious what that should be.

10
Of course, this is not possible on e.g. the approach of Myrvold (2019) discussed above, which to

our minds raises questions about that approach and how it might be reconciled with the outlook on the

representation of geometry in physical theories being considered here, and by Fletcher (2025).

11
The notion of a hidden symmetry was discussed in the philosophical literature only surprisingly

recently, by Bielińska and Jacobs (2024); for further discussion of the notion, see Read (2025).

12



a goal has epistemic and pragmatic appeal, it is salutary and cautious not to promote it

to an a priori principle in spacetime theorising.
12

6 Explanation
So far in this article, we’ve teased apart the qualified/unqualified distinction from the

dynamical/geometrical distinction, and have also seen how the ‘counterparts view’ of

Acuña (2025a) is accommodated quite naturally in this framework. What we have not

yet done, however, is say much about different notions of explanation which might be

in play—in this section we turn to these matters.
13

A nuanced understanding of the issue of the connection between geometric struc-

ture and dynamics in spacetime theories benefits from fine-graining different explana-

tory claims. First, of course, we have the question that is central to the debate: the

direction of the arrow of explanation between spacetime structure and the form of dy-

namical laws. A second kind of explanatory arrow runs from theory to phenomena.

Here geometricists and dynamicists diverge with respect to what features of the the-

ory—spacetime structure or dynamical laws—bear the epistemic load in the explana-

tion of the behaviour of physical systems. Third—the least explored level—there is the

possibility of an explanatory arrow which runs from empirical regularities exhibited by

phenomena to certain aspects of a spacetime theory.

We have already characterised the different stances in the debate with respect to the

first level of explanation, but we now want to make the connection with the second, as

well as to add some evaluative remarks. The UGAist asserts that the spacetime struc-

ture determined by the geometric objects postulated in the KPMs of a given theory en-

forces that the DPMs be well-tuned, and that lack of well-tunedness is a metaphysical

impossibility. When it comes to the second level of explanation (i.e., that from theory

to phenomena), however, the UGAist might go further, averring that explanations of

the physical behaviour of material systems (e.g., rods and clocks) essentially and primor-

dially rely on the corresponding geometric structure. For example, per the UGA-style

reading of the passage from Maudlin which we quoted in §1, the UGAist might state

that it is the structure of Minkowski spacetime that explains Lorentz contraction and

time dilation of rods and clocks (respectively). Dynamical details can be added into

12
As a final point: perhaps having a well-tuned theory in this sense is not the be-all-and-end-all. For

example, the ether theory was not well-tuned (dynamics were Lorentz invariant but the spacetime had

a preferred frame), yet for much of the 19
th

century was taken to have various explanatory merits. (For

more on the ether theory, see e.g. Acuña (2014) and Bradley (2021).)

13
This section can, therefore, be understood as picking up on themes from Read (2020b).
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those explanations, but in any case since it is the geometry of the theory that explains

the form of the dynamics; dynamical explanations of (in this case) characteristic special

relativistic effects are epistemically parasitic on the geometric explanation.

The UDAist inverts the arrow of explanation in the first level, and inverts the epis-

temic hierarchy in the second one. As we saw, in special relativity this approach (at least

as we find it in Brown (2005, ch. 8)) states that Minkowskian geometrical structure is

but a dispensable codification of Poincaré invariant dynamical laws. Accordingly, in

the second of level of explanation from theory to phenomena, the UDAist states that

explanations of Lorentz contraction and time dilation are given by a purely dynamical

account. Descriptions and explanations of these phenomena in terms of Minkowski

structure are parasitic on the dynamical ones, and ultimately reducible to them—hence

UDA’s claim (see Brown (2005)) that moving rods contract and moving clocks run slow

because of how they are made, not because of the spacetime structure into which they

are embedded.

Despite the opposite direction of the explanatory arrow in the first level and the

inverted epistemic hierarchy in the second, UGA and UDA agree that well-tuning is not

a contingent matter: as we have explained, symmetry mismatches are metaphysically

impossible on both unqualified views. For unqualified approaches to be defensible,

well-tuning must be a matter of either metaphysical or logical necessity, but as we have

seen it is rather obscure how this can be so.

Our description of the qualified versions of dynamicism and geometricism in terms

of DPMs in a class of KPMs clarifies that they are not affected by the problem cases and

‘How is this explanation supposed to work?’ charges which we have discussed in the pre-

vious sections of this article. Both QGA and QDA consider well-tuning in the DPMs

to be a contingent feature in spacetime theories. Both stances still claim that there is an

arrow with a preferred direction joining dynamics and spacetime structure in the first

level of explanation (and of course the direction of this arrow will be reversed depending

upon whether one is a QGAist or QDAist), and therefore propose an epistemic hier-

archy in the second level of explanation from theory to phenomena (which, again, will

differ depending on which of the two qualified positions is endorsed). But, evidently,

they are inoculated against the specific problems faced by unqualified approaches.

For qualified approaches—both QGA and QDA—a direction for the arrow of ex-

planation at the first level can’t be established by arguments involving metaphysical or

logical necessity. Thus, in the qualified approaches, the grounds for a preferred direc-

tion for the arrow, and for a specific epistemic hierarchy of explanations, must refer

to other kinds of considerations. For example, a prior commitment to causal expla-

nations in the spirit of Salmon (1984), or ‘constructive explanations’ in the sense of ap-

14



pealing ‘constructive theories’ (see Read (2020b)),
14

might naturally lead to a preference

for dynamical explanations of phenomena, and thereby to QDA. On the other hand, a

prior commitment to explanation in the unificationist spirit of Kitcher (1989), like the

‘structural explanations’ of Dorato and Felline (2010) or the ‘geometric explanations’ of

Nerlich (2010), might lead naturally to a preference for geometrical–kinematical expla-

nations of phenomena, and thereby to QGA. Finally, prior commitments in the epis-

temology of explanation might also be connected to stances regarding the ontology of

spacetime: relationalists would naturally tend to adopt QDA, whereas substantivalists

might opt for QGA.
15

Summing up this section so far, then, we have that: (i) UGA and UDA are unvi-

able for similar reasons, and (ii) QGA and QDA are legitimate stances, but claims of a

preferred arrow of explanation in the first level, and claims of a hierarchy between dy-

namical and geometric explanations in the second level, must be grounded on ulterior

commitments (e.g., about explanation or spacetime ontology). The counterparts view

of Acuña (2014, 2025a,b), on the other hand, adopts a qualified and pragmatic concep-

tion of explanation. In this approach, claims of a preferred direction for the arrow in

the first level of explanation, or a preference for dynamical over geometric explanations

of the phenomena, are always indexed to a certain epistemic context: it all depends on

the specific why-questions we address. (Obviously, this is in the spirit of the pragmatic

approach to explanation famously offered by van Fraassen (1980).) Thus, a general com-

mitment to a specific form of scientific explanation is discarded, so although the coun-

terparts view adopts qualified explanations, it opposes both QGA and QDA.
16

As indicated above, the third (and least explored) stripe of explanation runs from

phenomena to theory, rather than we other way around. Here, we don’t mean a naı̈ve

inductivist conception of scientific theorizing; rather, the idea is that starting out from

conceptualizing phenomenological regularities in a certain way, general theoretical prin-

ciples of a spacetime theory can be derived via conceptual–deductive analysis. One

obvious example of this is given by the Ehlers–Pirani–Schild ‘constructive axiomatiza-

tion’ of the kinematic structure of general relativity, on which see Adlam et al. (2025).

From axioms that encode some phenomenological regularities exhibited by light rays

and freely-falling particles, expressed in highly economical geometric principles, Ehlers

et al. (2012) derive the kinematical structure of general relativity. As Adlam et al. (2025)

explain, this approach is congenial to QDA as we describe it here. A fortiori, the coun-

14
For more on Einstein’s 1919 distinction between theories of principle and constructive theories, see

Howard and Giovanelli (2025) and Brown (2005).

15
We take all of these points to be in the spirit of, and consistent with, Acuña (2016) and Read (2020b).

16
The adoption of the counterparts view might lead to the adoption of a certain conception of the

ontology of spacetime, but that’s for another occasion.
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Figure 2: Bell’s thought experiment of the rockets.

terparts view, in the appropriate pragmatic context of explanation, can recognize an

epistemic value in the constructive axiomatics approach.
17

As another example, we sug-

gest that Einstein’s original approach in the formulation of special relativity (Einstein

1905) can be understood as an instance of explanation of aspects of a spacetime the-

ory starting out from empirical regularities. Einstein’s two postulates (plus suitable as-

sumptions), which refer to such regularities, in the end yield a derivation of the Lorentz

transformations. In other words, the empirical principles in a sense explain why special

relativity is a Lorentz invariant theory.

7 Illustration via Bell’s rockets
In this section, our goal is to illustrate many of the distinctions between qualified and

unqualified approaches, and different kinds of explanation, with reference to a specific

and famous thought experiment in special relativity due to Bell (2004)—namely, his

17
‘Constructive’ here differs from ‘constructive theories’ in the sense of Einstein (1919). Einstein had

in mind explanations of phenomena based on theories that feature a model of the microstructure and

dynamics of matter. Here we have the erection of the kinematical structure of relativity theory from

basic, empirically-informed axioms, which as explained by Adlam et al. (2025) is in fact more akin to a

‘principle theory’, in Einstein’s terminology.

16



thought experiment of the rockets.
18

Recall that the details of this thought experiment are as follows. Let S be an iner-

tial frame in which two spaceships B and C are at rest, separated by a distance d. At

time t0 the spaceships, which are joined by a taut rope of length l, launch with identical

acceleration programs (no deceleration). At a later time tf , the spaceships stop accel-

erating and continue moving with final constant velocity vf in S. Now, the physical

behaviour of the rope after t0 is a characteristic phenomenon in special relativity, and

can be explained both in a kinematical and in a dynamical way. Let’s begin with the

kinematical account. We idealize the spaceships as point particles, so their trajectories

are two non-inertial parallel worldlines B and C during the acceleration time. In frame

S, the distance between the spaceships is at all times d, but after tf the length of the

rope contracts by the relativistic factor γ−1(vf ). Thus, the rope gets stretched, and de-

pending on its internal constitution, the acceleration time, and the value of vf , it can

break. In S ′
, i.e. the inertial frame in which the ships are at rest once they have stopped

accelerating (notice that in S ′
ship C stops accelerating before ship B), the distance be-

tween them is d ·γ(vf ) (where this time vf is the relative velocity between the framesS
and S ′

), so the rope gets stretched in the same measure as in S (and it can break under

same suitable conditions, of course).

What happens during the acceleration period can also be accounted for in kinemat-

ical terms. Let us pick an arbitrary event b on worldlineB during the acceleration time.

We take the tangent four-velocity vector vb at that event and identify the inertial frame

KB that moves with velocity vb in S, so the tangent vector vb lies on the t-axis of KB .

We determine the simultaneity hyperplane in KB on which b lies, and the event c in C
that is simultaneous with b in that hyperplane. The tangent four-velocity vector vc at c
is not parallel to vb. That is, for an observer in ship B at the instant in which b occurs

ship C is moving away. We can construct the analogous frame KC from an arbitrary

event in C during the acceleration time, to find that for an observer in ship C , at the

instant of that event, ship B is moving away. In both KB and KC , thus, the rope gets

stretched. The events in B and C from which we build KB and KC , respectively, are

arbitrarily chosen, and since we assume that there is no deceleration, as time goes ac-

cording to the proper time of both B and C , the rope gets progressively stretched (the

angle between the vectors vb and vc increases) until reaching the measure of stretch as

determined in frames S and S ′
after the ships stop accelerating.

The kinematical account thus sketched shows that a taut rope joining two space-

ships with identical acceleration programs will be stretched. However, it doesn’t tell us

whether or not it will break, nor when it will break if indeed it does. In the kinemati-

18
For more on this thought experiment, see Fernflores (2011), Flores (2005), and Read (2023b).
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cal account, the rope is ‘generic’ in the sense that its material constitution is abstracted,

so its internal dynamics during the acceleration time are left unspecified. The dynami-

cal account of the thought experiment focuses precisely on those abstracted elements.

That is, an explanation of this type features a description of the microstructural con-

stitution of the rope, and it requires a theory that governs its internal dynamics during

the acceleration time.

The dynamical account of Bell (2004) uses Maxwellian electrodynamics to describe

the electron-nucleus structure of the atoms that constitute the rope. Using this theory,

he shows that (under suitable assumptions for the acceleration program) in frame S,

for each atom in the rope the longitudinal radius of the electron gets contracted by a

factor γ−1(v) and its period gets dilated by a factor γ(v). To obtain these results, an

expression for the field produced by the nucleus must be found, and also an equation

for the motion of the electron in that field. Given the Lorentz contraction to which

the atoms constituting the rope are subjected, the internal forces in the rope during the

acceleration of the spaceships can be calculated (we need the relevant properties of the

material of the rope, and the masses of the spaceships for this, of course), and then if

and when the rope breaks can be predicted.

Bell’s approach has a pedagogical goal, and he is aware that a dynamical account

based on Maxwellian electrodynamics is not satisfactory—ultimately, of course, one

will require recourse to quantum theory. However, an important point is that for guar-

anteeing coherence with the kinematical explanation presented above, the laws in the

theory invoked in a dynamical explanation must be Poincaré invariant.

For the reasons explained in the previous section, we think that both unqualified

approaches are unviable. The UGA states that in the kinematical explanation, it is

Minkowski geometry that performs all the work (so the dynamical account is parasitic

on the kinematic one). But as we’ve seen, there are just no firm grounds on which to

defend that Minkowski structure enforces dynamics—either in a metaphysical or in a

logical way—to be Poincaré invariant.

A similar objection can levelled against the UDA, which is also at best unclear and

at worst unviable. This is clear when we compare it with the dynamical explanation of

the Bell rocket setup that Lorentz’s ether theory yields, which is also based on Poincaré

invariant laws, but in a Galilean spacetime structure. Let us assume that S is an ether

rest frame. This means that the rope stretches and eventually breaks because of internal

forces due to the motion of the rope across the ether. However, in frameS ′
the dynami-

cal account for the stretching of the rope results from a kinematical deception. The real
distance between the ships is d, but due to deceived simultaneity determined by clocks

in motion through the ether (which measure local time, not real time) and due to the

Lorentz contraction of measuring rods, the measured distance between the ships when

18



they stop accelerating in S ′
is d · γ(vf ). Thus, even if we explain the stretching of the

rope in terms of its internal microstructure and dynamics in frameS ′
, such description

relies on a ‘kinematical conspiracy’. In short, in the Lorentz theory the true dynamical

explanation is formulated only in the privileged frameS. We can see then that although

both special relativity and the Lorentz ether theory explain Bell’s scenario in terms of

Poincaré invariant dynamical laws, the resulting dynamical explanations are very dif-

ferent. A special relativistic dynamical explanation in terms of Poincaré invariant dy-

namics essentially requires a Minkowski kinematic structure. Therefore, the claim that

in special relativity Minkowski spacetime structure is only a dispensable codification of

Poincaré invariance seems unjustified. For the same reason, the claim that the kinematic

explanation of Bell’s scenario is dispensable and parasitic on the dynamical account is

equally unwarranted.

As for the qualified approaches, precisely because these approaches are qualified the

asserted epistemic hierarchy cannot be a matter of metaphysical necessity nor of mere

conceptual analysis. Background views about the ontology of spacetime, commitments

to empiricist epistemologies, or to specific types of explanation in science, are the sort

of motivations, in the qualified views, for a defense that the stretching and eventual

breaking of the rope in Bell’s scenario is fundamentally a matter of dynamics or of ge-

ometry. As we suggested in the previous section, a prior preference for explanations of

a constructive type (e.g., motivated by Salmon’s conception of explanation) might lead

to QDA and to the view that the correct and fundamental explanation of Bell’s ships

is the dynamical one, whereas a prior preference for a structuralist view on explanation

might lead to QGA, and to asserting that Bell’s thought experiment is satisfactorily ex-

plained in kinematic terms.

The counterparts view, on the other hand, assumes a qualified–pragmatic view

about explanatory connections between dynamics and geometry in spacetime theories.

Thus, in the case of Bell’s scenario, this stance does not commit to a fundamental ex-

planatory asymmetry. The dynamical or the kinematical account is the satisfactory and

appropriate explanation of the behaviour of the rope depending on what is the why-

question addressed. If we are interested in generic aspects of special relativity—e.g.,

if we are interested in what de Regt (2017) dubs ‘understanding a theory’—kinematic

aspects of the explanation in Bell’s spaceships are crucial. On the other hand, if our

question concerns when a specific rope in a Bell-type scenario breaks, the dynamical

explanation is the correct approach.
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8 Close
Let’s wrap up. In this article, we’ve articulated one possible way of understanding

the qualified/unqualified distinction which was introduced by Read (2020a) into the

dynamical/geometical debate—namely, in terms of the kinematics/dynamics distinc-

tion; moreover, we’ve seen that on this way of understanding the distinction, the qual-

ified/unqualified distinction turns out to be orthogonal to the dynamical/geometrical

debate. While unqualified approaches in general are implausible (for reasons identified

by Read (2020a)), qualified approaches are not so easily dismissed—but both QGA and

QDA have interesting contrasts with the ‘counterparts view’ of Acuña (2016, 2025a,b),

which takes a more pragmatic attitude towards scientific explanation. We’ve explored

in detail how these qualified views differ with respect to the explanatory accounts which

they offer in the framework of special relativity, and have illustrated these with respect

to Bell’s thought experiment of the rockets.

Twenty years on from Brown (2005), it’s remarkable that there remains fine-grained

structure to resolve in the dynamical/geometrical debate. And yet, we hope that this

paper—following in particular in the wake of prior studies by Acuña (2016, 2025a,b)

and Read (2020a,b)—makes evident that this is indeed the case, and that there remains

much to be learnt from continued study of explanatory issues in the foundations of

spacetime theories.
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Bielińska, Marta and Jacobs, Caspar (2024). A Philosophical Introduction to Hidden
Symmetries in Physics. url: https://philsci-archive.pitt.edu/23922/.

Bradley, Clara (2021). “The Non-Equivalence of Einstein and Lorentz”.British Journal
for the Philosophy of Science 72.4, pp. 1039–1059. doi: 10.1093/bjps/axz014.

Brown, Harvey R and Pooley, Oliver (2001). “The origin of the spacetime metric: Bell’s

‘Lorentzian pedagogy’ and its significance in general relativity”. Physics meets phi-
losophy at the Planck scale, pp. 256–272.

Brown, Harvey R. (2005).Physical Relativity: Space-Time Structure FromaDynamical
Perspective. Oxford University Press UK.

Brown, Harvey R. and Pooley, Oliver (2004). “Minkowski Space-Time: A Glorious

Non-Entity”. In:TheOntology of Spacetime. Ed. by Dennis Dieks. Elsevier, pp. 67–

89.

Brown, Harvey R. and Read, James (2022). “The Dynamical Approach to Spacetime

Theories”. In: The Routledge Companion to Philosophy of Physics. Ed. by Eleanor

Knox and Alastair Wilson. Routledge.

Dasgupta, Shamik (2016). “Symmetry as an Epistemic Notion”. British Journal for the
Philosophy of Science 67.3, pp. 837–878. doi: 10.1093/bjps/axu049.

Dorato, Maruo and Felline, Laura (2010). “Structural Explanations in Minkowski Space-

time: which account of models?” In: Space, Time andSpacetime. Physical and philo-
sophical implications ofMinkowski’s unification of space and time. Srpinger.

Earman, John (1989). World Enough and Spacetime. Cambridge, MA: MIT press.

21

https://api.semanticscholar.org/CorpusID:275038849
https://api.semanticscholar.org/CorpusID:275038849
https://doi.org/10.1017/CBO9780511815676.011
https://philsci-archive.pitt.edu/23922/
https://doi.org/10.1093/bjps/axz014
https://doi.org/10.1093/bjps/axu049


Ehlers, Jürgen, Pirani, Felix AE, and Schild, Alfred (2012). “Republication of: The ge-

ometry of free fall and light propagation”.GeneralRelativity andGravitation 44.6,

pp. 1587–1609.

Einstein, A. (Jan. 1905). “Zur Elektrodynamik bewegter Körper”. Annalen der Physik
322.10, pp. 891–921. doi: 10.1002/andp.19053221004.

Einstein, Albert (1919). “What is the Theory of Relativity?” The Times.
Fernflores, Francisco (2011). “Bell’s Spaceships Problem and the Foundations of Special

Relativity”. International Studies in the Philosophy of Science.
Fletcher, Samuel C and Weatherall, James Owen (2023a). “The Local Validity of Special

Relativity, Part 1: Geometry”. Philosophy of Physics 1.

— (2023b). “The Local Validity of Special Relativity, Part 2: Matter Dynamics”. Phi-
losophy of Physics 1.

Fletcher, Samuel C. (2020). “Apprxomate local Poincaré spacetime symmetry in gen-
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— (2025). Foundations of General Relativity. Elements in the Philosophy of Physics.

Cambridge: Cambridge University Press. isbn: 9781108949286. doi: DOI : 10 .

1017/9781108954082. url:https://www.cambridge.org/core/product/

00EFDFCE622638B5AEEF786C8D70DD33.

Flores, Francisco (2005). “Bell’s Spacehips: a useful relativistic paradox”. Physics Educa-
tion.

Howard, Don and Giovanelli, Marco (2025). “Einstein’s Philosophy of Science”. In:

The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2025.

Kitcher, Philip (1989). “Explanatory Unification and the Causal Structure of the World”.

In:Minnesota Studies in the Philosophy of Science. Ed. by P. Kitcher and W. Salmon.

Vol. 13. Minnesota: University of Minnesota Press, pp. 410–503.

Knox, Eleanor (2014). “Newtonian Spacetime Structure in Light of the Equivalence

Principle”. British Journal for the Philosophy of Science 65.4, pp. 863–880. doi: 10.

1093/bjps/axt037.

March, Eleanor (forthcoming). “Categorical Equivalence and the Kinematics-Dynamics

Distinction”. British Journal for the Philosophy of Science. doi: 10.1086/734035.

Maudlin, Tim (2012). Philosophy of Physics: Space and Time. Princeton, NJ: Princeton

University Press.

Myrvold, Wayne C. (2019). “How Could Relativity Be Anything Other Than Physi-

cal?” Studies inHistory and Philosophy of Science Part B: Studies inHistory and Phi-
losophy of Modern Physics 67, pp. 137–143. doi: 10.1016/j.shpsb.2017.05.

007.

22

https://doi.org/10.1002/andp.19053221004
https://doi.org/DOI: 10.1017/9781108954082
https://doi.org/DOI: 10.1017/9781108954082
https://www.cambridge.org/core/product/00EFDFCE622638B5AEEF786C8D70DD33
https://www.cambridge.org/core/product/00EFDFCE622638B5AEEF786C8D70DD33
https://doi.org/10.1093/bjps/axt037
https://doi.org/10.1093/bjps/axt037
https://doi.org/10.1086/734035
https://doi.org/10.1016/j.shpsb.2017.05.007
https://doi.org/10.1016/j.shpsb.2017.05.007


Nerlich, Graham (2010). “Why Spacetime is not a Hidden Cause: a realist story”. In:

Space, Time and Spacetime: physical and philosophical implications of Minkowski’s
unification of space and time. Springer.

Pitts, J. Brian (2012). “The Nontriviality of Trivial General Covariance: How Electrons

Restrict ‘Time’ Coordinates, Spinors Fit Into Tensor Calculus, and
7
16

of a Tetrad

is Surplus Structure”. Studies in History and Philosophy of Science Part B: Studies in
History andPhilosophy ofModernPhysics 43.1, pp. 1–24. doi:10.1016/j.shpsb.

2011.11.001.

Read, James (2020a). “Explanation, Geometry, and Conspiracy in Relativity Theory”.

In:Thinking About Space and Time: 100 Years of Applying and Interpreting General
Relativity. Ed. by T. Sauer C. Beisbart and C. W”uthrich. Vol. 15. Einstein Studies.

Basel: Birkhäuser.
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