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Abstract

Marletto and Vedral [Phys. Rev. Lett. 125, 040401 (2020)] propose
that the Aharonov-Bohm (AB) phase is locally mediated by entangle-
ment between a charged particle and the quantized electromagnetic
field, asserting gauge independence for non-closed paths. Using quan-
tum electrodynamics (QED), we critically analyze their model and
demonstrate that the AB phase arises from the interaction with the
vector potential A, not from entanglement, which is merely a byprod-
uct of the QED framework. We show that their field-based energy
formulation, intended to reflect local electromagnetic interactions, is
mathematically flawed due to an incorrect prefactor and involves fields
inside the solenoid, failing to support local mediation of the phase. Its
equivalence to qv ·A holds only in the Coulomb gauge, undermining
their claim of a gauge-independent local mechanism. Furthermore, we
confirm that the AB phase is gauge-dependent for non-closed paths,
contradicting their assertion. Our analysis reaffirms the semi-classical
interpretation, where the AB phase is driven by the vector potential
A, with entanglement playing no causal role in its generation.

1 Introduction

The Aharonov-Bohm (AB) effect [1] demonstrates that a charged particle’s
wavefunction acquires a phase due to the vector potential A, even in regions
where electromagnetic fields vanish. For a closed path, the phase is:

ϕAB =
q

ℏ

∮
A · dl = qΦ

ℏ
, (1)

where q is the charge of the particle and Φ is the magnetic flux. This phe-
nomenon, often interpreted as evidence of the physical significance of gauge
potentials, has prompted extensive discussions regarding its local versus non-
local nature, given that the phase depends on the flux enclosed by the path,
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which may suggest a non-local interaction. In their recent work, Marletto
and Vedral [2] present a quantum field theory (QFT) model to address the
AB effect, proposing that the phase is locally mediated through entangle-
ment between the charged particle and the quantized electromagnetic field or
photons. They further claim that this phase is gauge-independent, even for
non-closed paths, and detectable via local measurements, challenging the
traditional view that the phase is inherently tied to the gauge-dependent
vector potential and measurable only upon path closure.

In this comment, we carefully examine Marletto and Vedral’s model, fo-
cusing on their derivation of the interaction energy, their field-based energy
formulation, the role of entanglement, and the gauge properties of the phase.
Using quantum electrodynamics (QED), we demonstrate that the AB phase
arises from the coupling between the charge’s current and the solenoid’s
current via the photon propagator, with the vector potential A serving as
an effective description. We find that the phase remains gauge-dependent
for non-closed paths, contrary to their assertion, and that their field-based
energy does not mediate the AB phase. Additionally, we argue that entan-
glement, while present in the QED framework, is not the primary driver
of the phase, which is fundamentally governed by the interaction with the
vector potential A. Our analysis seeks to clarify the mechanisms underlying
the AB effect and reaffirm its conventional interpretation within QED.

2 Marletto and Vedral’s Model

Marletto and Vedral [2] model a charged particle (charge q, mass m) in
a superposition of paths around a solenoid, using qubits for the charge
(|0⟩C , |1⟩C) and solenoid (|0⟩S , |1⟩S). The electromagnetic field is quantized

with photon operators ak, a
†
k. Their Hamiltonian in the Coulomb gauge is:

HAB = ECq
(C)
z + ESq

(S)
z +

∫
d3kℏωka

†
kak

+

∫
d3kgk

q

m
p · uk

(
ake

ik·rc + a†ke
−ik·rc

)
q(C)
z

+

∫
d3k

∫
d3xgkj · uk

(
ake

ik·x + a†ke
−ik·x

)
q(S)z , (2)

where p is the charge’s momentum operator, rc is its position, and j(x− rs)
is the solenoid’s current density centered at rs. The coupling constant is

gk =
√

ℏ
2ϵ0ωkV

, and uk is the photon polarization vector satisfying k ·uk = 0.

The vector potential is:

A(x) =

∫
d3kgkuk

(
ake

ik·x + a†ke
−ik·x

)
. (3)
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They compute the phase from the transition amplitude:

⟨1|C⟨0|F ⟨1|S exp

(
− i

ℏ
HABτ

)
|1⟩C |0⟩F |1⟩S = exp {−i (ξ + ϕ(rc, rs))} . (4)

where τ is set to 1. The phase ϕ(rc, rs) is computed from the interaction
Hamiltonian using the second-order term of the time-ordered exponential.

The interaction terms are:

Hint =

∫
d3kgk

q

m
p · uk

(
ake

ik·rc + a†ke
−ik·rc

)
q(C)
z

+

∫
d3k

∫
d3xgkj · uk

(
ake

ik·x + a†ke
−ik·x

)
q(S)z . (5)

The second-order term of the transition amplitude gives:

ϕ =
q

m

µ0
4πℏ

∫
d3x

p · j(x− rs)

|rc − x|
. (6)

The corresponding interaction energy is:

E = ϕℏ =
q

m
p ·

(
µ0
4π

∫
d3x

j(x− rs)

|rc − x|

)
. (7)

Using p = mv, this becomes:

E = qv ·
(
µ0
4π

∫
d3x

j(x− rs)

|rc − x|

)
. (8)

The vector potential in the Coulomb gauge is defined as

A(rc) =
µ0
4π

∫
d3x

j(x− rs)

|rc − x|
, (9)

so:

E = qv ·A. (10)

For a solenoid with flux Φ = B0πa
2, A = Φ

2π(x2+y2)
(−y, x, 0), and with

v = vŷ:

E =
qvΦx

2π(x2 + y2)
=

qvB0a
2x

2(x2 + y2)
, (11)

yielding the accumulating phase during a time interval:

ϕ =

∫
E
ℏ
dt =

q

ℏ

∫
A · v dt = q

ℏ

∫
A · dl, (12)

which matches the semi-classical AB phase.
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The above derivation in the Coulomb gauge is a specific case. It can
be shown that the interaction energy calculated from the second-order term
of the transition amplitude in QED with a quantized electromagnetic field,
which determines the AB phase, always takes the form qv ·A, where A is
the classical vector potential in the chosen gauge. This holds for all gauges
because the second-order amplitude, governed by the photon propagator
and conserved currents, consistently yields the effective vector potential in-
teraction.

3 Critique of the Claims

3.1 Marletto and Vedral’s Field-Based Energy Proposal

Marletto and Vedral propose an alternative formulation of the interaction
energy as a field overlap integral:

Efield =
1

2

∫
V

(
B0 ·Bc

µ0
+ ϵ0Es ·Ec

)
d3r, (13)

where B0 is the solenoid’s magnetic field, Bc is the field generated by the
moving charge, and Es and Ec are the electric fields of the solenoid and
the particle, respectively. They claim this energy reflects a local electro-
magnetic (EM) field interaction that mediates the AB phase, independent
of the vector potential A. We demonstrate that this formulation is flawed,
both mathematically and physically, and that the AB phase is fundamen-
tally driven by A, not local EM fields, which vanish along the charge’s path.
Furthermore, we provide a detailed proof that their field-based energy is
equivalent to the standard interaction energy qv · A only in the Coulomb
gauge, explicitly highlighting where this gauge is used.

3.1.1 Mathematical Critique of the Field-Based Energy

The 1
2 prefactor in Eq. (13) is inappropriate for the interaction energy be-

tween two distinct sources (the solenoid and the charged particle). In electro-
magnetic theory, the interaction energy between two systems with magnetic
fields B0 (solenoid) and Bc (charged particle) and electric fields Es and Ec

is given by:

Efield =
1

µ0

∫
V
B0 ·Bcd

3r+ ϵ0

∫
V
Es ·Ecd

3r. (14)

The 1
2 prefactor, typically used for the total field energy of a single system,

leads to an underestimation of the interaction energy by a factor of 2, making
Marletto and Vedral’s formulation quantitatively incorrect.
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3.1.2 Equivalence to qv ·A in the Coulomb Gauge

It can be demonstrated that the proposed field-based energy is equivalent
to the standard interaction energy qv ·A only in the Coulomb gauge.

For a solenoid with steady current, the electric field Es = 0, simplifying
the interaction energy to:

Efield =
1

µ0

∫
V
B0 ·Bcd

3r, (15)

where B0 = B0ẑ for r < a (inside the solenoid, with radius a) and B0 = 0
for r > a, and Bc is the magnetic field produced by the charged particle
(charge q, velocity v = vŷ) at position rc = (x, y, z).

To prove that Efield is equivalent to the standard interaction energy qv ·A
in the Coulomb gauge, we evaluate Eq. (15) using a vector identity and
explicitly note the use of the Coulomb gauge. The magnetic field Bc =
∇ × Ac, where Ac is the vector potential of the charged particle. We use
the vector identity:

B0 ·Bc = B0 · (∇×Ac) = ∇ · (Ac ×B0) + µ0Ac · js, (16)

where js is the solenoid’s current density, and we have used ∇×B0 = µ0js
inside the solenoid (since Es = 0). Integrating over the volume V :∫

V
B0 ·Bcd

3r =

∫
∂V

(Ac ×B0) · dS+ µ0

∫
V
Ac · jsd3r, (17)

where the first term is a surface integral over the boundary ∂V . SinceB0 = 0
outside the solenoid (r > a), the surface integral vanishes (since V encloses
the solenoid and extends to a region where B0 = 0). Thus:

Efield =
1

µ0

∫
V
B0 ·Bcd

3r =

∫
V
Ac · jsd3r. (18)

Now we need the vector potential Ac of the charged particle. In the
Coulomb gauge (∇·Ac = 0), the vector potential for a point charge q moving
with velocity v at position rc is approximately (in the non-relativistic limit):

Ac(r) =
µ0qv

4π|r− rc|
, (19)

where r is the field point. Substituting into Eq. (18):

Efield =

∫
V

(
µ0qv

4π|r− rc|

)
· js(r)d3r. (20)

The solenoid’s vector potential at the charge’s position rc is:

As(rc) =
µ0
4π

∫
js(r)

|r− rc|
d3r, (21)
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which is also defined in the Coulomb gauge (∇ ·As = 0). Comparing this
with Eq. (20), we see:

Efield = qv ·
(
µ0
4π

∫
js(r)

|r− rc|
d3r

)
= qv ·As(rc). (22)

Thus, in the Coulomb gauge, the field-based energy reduces to the standard
interaction energy:

Efield = qv ·As, (23)

matching Eq. (10) in the original model, confirming the equivalence in the
Coulomb gauge.

However, in non-Coulomb gauges (A′
s = As + ∇χ), As includes addi-

tional terms, and thus the equivalence Efield = qv ·As does not hold. This
means that the equivalence between the field-based energy and the stan-
dard interaction energy is gauge-specific, and the field-based energy is not
consistent with the standard interaction energy in QED for non-Coulomb
gauges.

3.1.3 Physical Critique of Local EM Field Mediation

Marletto and Vedral’s claim that Efield reflects a local EM field interaction
mediating the AB phase is also problematic. In the AB effect, the charged
particle travels in a region where the EM fields vanish (B = ∇ × A = 0,
E = 0 for r > a), but the vector potential A is non-zero. The field-based
energy Efield involves B0, which exists only inside the solenoid (r < a), not
at the charge’s position (r > a). Thus, it cannot represent a local field
interaction at the charge’s location. The AB phase arises from the phase
integral:

ϕ =
q

ℏ

∫
A · dl, (24)

which depends on local A, not on local EM fields.
To sum up, the field-based energy proposed by Marletto and Vedral is

equivalent to the standard interaction energy only in the Coulomb gauge.
Moreover, even in this specific gauge, the equivalence does not support the
claim of local EM field mediation of the AB effect, as no such fields exist
in the charge’s path. Thus, the field-based energy cannot replace the vector
potential A as the local mediator of the AB effect.

3.2 Gauge Dependence of the AB Phase for Non-Closed
Paths

Marletto and Vedral also assert that their derived phase is gauge-independent,
even for non-closed paths, which we show to be incorrect by analyzing
their phase expression. Their phase, derived from the interaction energy
E = qv ·A (see (10) and (11)), is given by:
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ϕ =

∫
E
ℏ
dt =

e

ℏ

∫
C
A · dl, (25)

for a path C from r1 to r2. In their QED framework, this phase arises from
the second-order amplitude involving the photon propagator:

S(2) ∝
∫
d4x1d

4x2j
µ(x1)Dµν(x1 − x2)j

ν(x2), (26)

which reconstructs the classical vector potential A. Under a gauge trans-
formation A′ = A+∇χ, the phase becomes:

ϕ′ =
e

ℏ

∫
(A+∇χ) · v dt = ϕ− e

ℏ

∫
∇χ · dl = ϕ− e

ℏ
[χ(r2)− χ(r1)]. (27)

For non-closed paths (r1 ̸= r2), χ(r2) − χ(r1) ̸= 0 in general, making the
phase gauge-dependent. Higher-order QED corrections, such as vertex cor-
rections, modify the coupling constant (δZe ∼ α ≈ 1

137) but do not eliminate
the A-dependent term, preserving gauge dependence. Thus, Marletto and
Vedral’s phase is not gauge-independent for non-closed paths, contradicting
their claim.

4 Entanglement is Not the Primary Cause of the
AB Phase

Marletto and Vedral’s central claim is that the AB phase arises from local
entanglement between the charged particle and the photon field. While
their QED model does indeed produce such entanglement, we demonstrate
that this entanglement is merely a consequence of the interaction formalism
rather than the physical mechanism responsible for the AB phase. The
phase is determined by the vector potential A, with entanglement playing
no causal role.

4.1 The Origin of the Phase

The interaction Hamiltonian in their model,

Hint =
q

m
p ·A(rc)q

(C)
z +

∫
d3x j(x− rs) ·A(x)q(S)z , (28)

couples the charged particle’s momentum p to the quantized vector potential
A. For a particle in a superposition of left (|L⟩C) and right (|R⟩C) paths
around the solenoid, this interaction generates path-dependent phases:

ϕL =
q

ℏ
v ·A(rL)τ, ϕR =

q

ℏ
v ·A(rR)τ, (29)
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where τ is the interaction time. The phase difference,

∆ϕ = ϕR − ϕL =
q

ℏ

∮
A · dl, (30)

matches the standard AB phase and depends only on the A-field.

4.2 Incidental Nature of Entanglement

The system’s post-interaction state is:

|ψ⟩ = 1√
2

(
eiϕL |L⟩C |χL⟩F + eiϕR |R⟩C |χR⟩F

)
|1⟩S , (31)

where |χL⟩F and |χR⟩F are photon states associated with each path. Tracing
out the photon field yields the reduced density matrix for the charge:

ρC = TrF (|ψ⟩⟨ψ|) = 1

2

(
|L⟩⟨L|+ |R⟩⟨R|+ ei∆ϕ⟨χL|χR⟩F |L⟩⟨R|+ h.c.

)
.

(32)
Crucially, in the AB regime, the photon field perturbation is negligible
(|χL⟩F ≈ |χR⟩F ), so ⟨χL|χR⟩F ≈ 1. Then the off-diagonal terms (|L⟩⟨R|)
retain the phase ∆ϕ independent of the photon overlap. Thus, while entan-
glement exists, it does not influence the observable phase.

4.3 Semiclassical Consistency

The AB phase can be derived without invoking entanglement: In the path

integral formulation, the phase arises from exp
(
iq
ℏ
∫
A · dl

)
, with no ref-

erence to photon states, and the semiclassical treatment [1] uses only the
classical A-field. This reinforces that entanglement in Marletto and Vedral’s
model is not a physical requirement.

To sum up, while Marletto and Vedral’s model formally introduces en-
tanglement between the charge and photon field, this entanglement: (1)
Does not determine the AB phase (which is fixed by A); (2) Has negligible
effect on observables (⟨χL|χR⟩F ≈ 1); and (3) Is absent in simpler deriva-
tions of the effect. Thus, the AB phase remains a manifestation of the vector
potential’s role, not quantum correlations with the photon field.

5 Conclusion

Our analysis of Marletto and Vedral’s quantum field theory model of the
Aharonov-Bohm (AB) effect reveals several critical points. Their asser-
tion that the AB phase is locally mediated by entanglement and gauge-
independent for non-closed paths does not hold under scrutiny. Through
a quantum electrodynamics (QED) framework, we demonstrate that the
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phase originates from the coupling between the charged particle’s current
and the solenoid’s current via the photon propagator, with the vector po-
tential A providing an effective description of the phase shift. Contrary to
their claims, we find that the phase is gauge-dependent for non-closed paths,
aligning with the conventional understanding of the AB effect. Furthermore,
their proposed field-based energy is irrelevant to the phase’s generation.
While entanglement appears in the QED description, it is incidental rather
than causal, as the phase is fundamentally driven by the interaction of the
charged particle with the quantized electromagnetic field. Our analysis re-
inforces the conventional explanation of the AB effect in the semi-classical
picture.
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