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Abstract

Recent results have shown that singularities can be avoided from the general rela-
tivistic standpoint in Lorentzian-Euclidean black holes by means of the transition
from a Lorentzian to an Euclidean region where time loses its physical meaning
and becomes imaginary. This dynamical mechanism, dubbed “atemporality”, pre-
vents the emergence of black hole singularities and the violation of conservation
laws. In this paper, the notion of atemporality together with a detailed discussion
of its implications is presented from a philosophical perspective. The main result
consists in showing that atemporality is naturally related to conservation laws.
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1 Introduction

In his beautiful masterpiece, Bangs, Crunches, Whimpers, and Shrieks: Singularities
and Acausalities in Relativistic Spacetimes, John Earman spelled out the philosophical
implications of Einstein’s relativity [1]. The book focuses on the reconstruction of the
problem of singularities that plagued general relativity (GR) and the strong connection
of singularities with the notion of acausality. Earman’s work influenced a generation
of philosophers of physics and can be considered as a fundamental contribution for the
understanding of the foundations of relativity. In the last decade, indeed, the physics
of black holes, with regard to both relativistic and quantum effects attracted atten-
tion of philosophers (see [2] and references therein), giving rise to a lively debate on
the foundations of black holes physics beyond the problem of singularities. However,
the latter still plagues relativity, despite physicists’ attempts to remove them (see for
instance [3], [4]), resulting in a deeper reflection on the foundations of relativity and
causality, as well as on the implications for both Quantum Cosmology and a theory
of Quantum Gravity.1 Among the best-known procedures to avoid singularities, we
find the Wick rotation [9]. The latter is widely employed in quantum mechanics and
statistical mechanics to find out solutions in Minkowski spacetime from solutions in
Euclidean space. It consists in a transformation substituting an imaginary variable, i.
e., the time variable, with a real one. It is called “rotation” because complex numbers
can be represented in a plane as vectors and the multiplication of a complex number by
the imaginary unit is equivalent to a rotating vector. In General Relativity, it implies
the insertion of an imaginary time beyond the event horizon of a singularity and it was
also applied in the context of the Hartle-Hawking No Boundary Conditions in Quan-
tum Cosmology [10]. In proposals appealing to the insertion of imaginary time through
the Wick rotation, one finds models that mainly rely on inserting ad hoc mechanisms
resulting in toy models that necessarily imply ad hoc solutions, thereby casting doubts
on the effective possibility of signature change and singularity avoidance in GR and
in some models of Quantum Cosmology. It is beyond our scope to deal in detail with
approaches removing the singularity in Quantum Gravity and Quantum Cosmology,
but with respect to this debate, we want to draw attention on [11], where a solution
of the Einstein field equations represents a Lorentzian-Euclidean black hole.2 In this
self-gravitating system, the singularity is naturally avoided by means of a mechanism
that is defined in terms of atemporality. This concept bears with it relevant conse-
quences for theoretical physics and the philosophy of science, which we are going to
spell out in this paper. The Lorentzian-Euclidean solution differs from Schwarzschild’s
because in the former the singularity is avoided in a natural way: it is worth saying
that the structure is geodesically complete and the dynamical mechanism labelled as
‘atemporality’ allows one to define a signature-change transition from a Lorentzian to
an Euclidean region. Before proceeding, it is worth considering that the solution pre-
sented in [11] is one of a broader class where singularities can be avoided. This class

1Indeed, one of the most relevant objectives of Quantum Gravity approaches, stemming for their distinct
character from GR framework, is to show that they are successful in removing singularities, not only in
black hole physics, but also in cosmological models (see [5], [6], [7], [8]).

2Our main objective in this paper is to present the conceptual implication of the Lorentzian-Euclidean
black hole and atemporality rather than showing whether other black hole spacetimes, e.g. Kerr BH are
consistent.
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of solutions is fully consistent with the presence of conservation laws and constitutes
the bulk of an approach that one can dub “Singularity–Free Physics”. The remark-
able result presented in [11] is that in the relativistic context, the singularity does not
appear in the model of the black hole, because no classical in-falling massive body
can reach the singularity. Any massive particle stops at the event horizon because, if
entering it, conservation laws would be violated. As we shall see, atemporality can be
defined as the dynamical mechanism avoiding that an infalling body, approaching the
event horizon, assumes an imaginary radial velocity. And it cannot be otherwise, if one
does not want to violate causality and energy conservation in a self-gravitating system
like a black hole. In this paper, we explore the fascinating idea that the Lorentzian-
Euclidean black hole is only a particular case in which atemporality operates. The
latter is a more general concept descending from conservation laws. It is worth noting
that the concept of atemporality can find fruitful applications in other areas of philos-
ophy of science even beyond the specific example of stationary black holes. We shall
proceed as follows: Section 2 is a brief summary of the Lorentzian-Euclidean black
hole solution presented by [11]. In Section 3, we spell out the concept of atemporality
presented in [11] and relate it with the concept of measurement.3 Section 4 is devoted
to the discussion of conservation laws in order to show that atemporality descends
directly from Noether symmetries. In Section 5, after stating the general theorem of
atemporality, we discuss the perspective of a Singularity–Free Physics. Concluding
remarks are reported in Section 6.

2 The Lorentzian-Euclidean Black Hole

In [11], a solution of the vacuum Einstein field equations dubbed “Lorentzian-
Euclidean black hole” points to the fact that the singularity can be avoided because
the Kretschmann curvature invariant results to be finite and not exploding as for stan-
dard black holes. This peculiarity is due to the fact that a massive particle approaching
the event horizon cannot enter it otherwise its time becomes imaginary. Furthermore,
a proper observer and a coordinate observer take an infinite (real) time to reach the
horizon. Thus, they always remain causally connected in the exterior solution
which is geodesically complete.

It is worth noticing that the standard Schwarzschild metric is a particular case
of this more general class of Lorentzian-Euclidean solutions showing the signature
change: the metric assumes the usual Lorentzian signature outside the event horizon,
it is degenerate at r = 2M , and it displays an Euclidean signature at r < 2M . Within
this picture, which will be scrutinized in its foundations in another paper, the event
horizon is understood as change surface, where the transition between the Lorentzian
and Euclidean regimes occurs. According to the Schwarzschild coordinates {t, r, θ, ϕ},
the Lorentzian-Euclidean Schwarzschild metric results as

ds2 = −ε

(
1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2Ω2, (1)

3Throughout the paper, we always refer to relativistic measurement and assume that time is dependent
on reference frames.
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where Ω2 = dθ2 + sin2 θ dϕ2 and

ε = sign

(
1− 2M

r

)
= 2H

(
1− 2M

r

)
− 1, (2)

and the step function H (1− 2M/r) is normalized in such a way that H(0) = 1/2.
The metric undergoes a signature change at the event horizon. Indeed, the function
ε allows one to divide the spacetime manifold V into two regions V+ and V− (i.e.
V = V+ ∪ V−) whose common boundary is represented by the change surface.

Σ : r = 2M, (3)

coinciding with the event horizon. The domain V+ is characterized by the value ε = 1
and pertains to the Lorentzian regime, where the metric is hyperbolic. At Σ, where
ε = 0, the metric becomes degenerate being

det gµν = −ε
(
r2 sin θ

)2
. (4)

In V−, where ε = −1, the metric assumes an ultrahyperbolic signature and exhibits
Euclidean structure, i.e. it has the same features as the Euclidean Schwarzschild met-
ric. Technically, the Lorentzian-Euclidean Schwarzschild metric can be written in the
Gullstrand-Painlevé coordinates [11] and it does not blow up at the change surface
(3). Thus, the change surface (3) does not represent a surface layer and no impulsive
wave is generated in spacetime. This implies that it is possible to study the behavior
of orbits approaching the event horizon. In particular, radially in-falling massive par-
ticles, due to their simple structure, allow one to deduce some crucial aspects of the
Lorentzian-Euclidean black hole geometry.

For example, the Lorentzian-Euclidean metric implies a degeneration on the change
surface (3). However, it is possible to regularize the Riemann tensor and obtain a
well-behaved Einstein tensor, which amounts to zero. This means that the Lorentzian-
Euclidean metric can be seen as a vacuum solution for an extended version of general
relativity where degenerate metrics are considered. Thus, the dynamics of bodies radi-
ally approaching the event horizon can be investigated for both freely falling particles
and accelerated observers. Furthermore, the coordinates through which we represent
the system are those of gravitational waves, therefore the representational content
and the representational machinery coincide in our work. What we describe is thus
a signature change (transition from Lorentzian to Euclidean region) that is naturally
obtained rather than manually inserted by means of a Wick rotation that generates
imaginary time.

The equations pertaining to the radial geodesic motion are

ṙ2 = ε

(
2M

r

)
− ε

(
1− E2

ε4

)
, (5)
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ṫ =
E

ε2

(
1

1− 2M/r

)
. (6)

Let us consider an observer starting at rest from some finite distance ri > 2M . Then,
from Eq. (5), we obtain

ri =
2M

1− E2
, (7)

which represents a positive-definite length when

0 < E2 < 1. (8)

A first important outcome of the model follows immediately from Eq. (5) that ṙ
attains imaginary values as soon as r < 2M , or equivalently ε = −1. We can further
investigate this point following the standard analysis of [12]. Thus, the radial variable
can be written by means of the relation

r(η) = ri cos
2 (η/2) , (9)

where η ∈ [0, ηH ], ηH < π being the value 4 of η when r = 2M . Therefore, the
equations governing infalling radial geodesics take the form

ṙ = −

√
ε4 sin2 (η/2) + E2 [cos2 (η/2)− ε4]

ε3 cos2 (η/2)
, (10)

ṫ =
E

ε2
cos2 (η/2)

cos2 (η/2)− (1− E2)
. (11)

In view of the constraint (8), one observes that the radial velocity (10) assumes
imaginary values when ε = −1. The same conclusion also applies to the following
derivatives:

σ

η
= (ṙ)

−1 r

η
= ri sin (η/2) cos

2 (η/2)

√
ε3

ε4 sin2 (η/2) + E2 [cos2 (η/2)− ε4]
, (12)

t

η
= ṫ

σ

η
=

E

ε2
ri cos

4 (η/2) sin (η/2)

cos2 (η/2)− (1− E2)

√
ε3

ε4 sin2 (η/2) + E2 [cos2 (η/2)− ε4]
, (13)

which become imaginary if r < 2M .
Let us now consider the motion of a particle that gets to the event horizon. When

ε = 0, one naively obtains, from Eqs. (5) and (6), or equivalently Eqs. (10) and (11),
that both ṙ and ṫ diverge (note that also in the standard Lorentzian-signature pattern
ṫ blows up at the horizon). However, the behaviour of ṙ is in contrast with the situation

4In standard general relativity, one usually assumes η ∈ [0, π]. However, as explained in this section,
radial geodesics cannot enter the black hole horizon.
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in which the motion starts at rest far away from the black hole. In this case, E = ε2

and the radial velocity (5) vanishes on the change surface and becomes imaginary
inside the black hole.

This issue can be solved if we recall that, in the model, the energy is defined as
E = −εgµνξ

µuν , ξµ being the static Killing vector field. This means that for a given
motion having 2M < ri < ∞, one can write E2 = α2ε4, where α2 is some positive-
definite bounded function depending on Eq. (8). Thus, either from Eq. (5) or Eq. (10),
one sees that ṙ becomes zero on the change surface, just like in the scenario having
ri ≫ 2M .

Therefore, infalling particles freely moving in the radial direction have a velocity ṙ
which vanishes at the event horizon and becomes imaginary after crossing it. This can
be interpreted as an indication that the singularity at r = 0 can be evaded because
the observer never reaches it. This scenario can be ascribed to the emergence of an
imaginary time at r < 2M . Indeed, a way to explain the metric signature change in
Eq. (1) consists in supposing that the coordinate time t is no longer a real-valued
variable inside the black hole.

This feature can be related to the concept of atemporality, which thus is described
as the dynamical mechanism that allows one to avoid the black-hole singularity.

A crucial aspect consists in proving that the observer in radial free fall takes an
infinite amount of proper time to stop at the event horizon. Following the above
equations, σ is the proper time in the Lorentzian domain. The behaviour of σ(η) at
r = 2M can be thus inferred by letting ε approach zero. In particular, one finds
lim

ε→0+
σ = +∞ and lim

ε→0−
σ = ∞, with cos(n ηH) finite (n = 3/2, 1, 1/2). The first limit

means that proper time becomes infinite when r = 2M , while the second is consistent
with the fact that σ takes imaginary values for r < 2M . Although it remains true
that the (regularized) Kretschmann curvature invariant K blows up at r = 0, this
investigation shows that this point cannot be reached by infalling radial geodesics.
In other words, since 2M ≤ r(σ) < ∞, K is always bounded along the trajectories
followed by radial geodesics, as its maximum value is

K(r = 2M) = RαβµνR
αβµν =

3

4M4
, (14)

where Rαβµν is the Riemann tensor calculated at r = 2M . This ties in with a crucial
aspects of singularity theorems [13] (see also [14] and references therein): there is no
necessary link between curvature invariants that can be measured (and be therefore
meaningful for GR) and spacetime singularities. In our case, the geodesic structure
is complete. This also holds for the dynamics of radially accelerated particles which
share important similarities with the free-falling case. As shown in [11], the accelerated
observer also halts at the event horizon; moreover, when r < 2M , its radial velocity
becomes imaginary. In other words, just like in the case of the geodesic motion, an
accelerated body takes an infinite amount of proper time to stop at the event horizon;
similarly, a distant observer sees the accelerated particle approaching r = 2M in an
infinite time.
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3 Atemporality and Measurement

In the signature changing metric, the coordinate time t is no longer a real-valued
variable inside the black hole. The singularity is avoided because a massive particle
cannot cross the event horizon and would take an infinite amount of time to reach
it.5 In this picture, atemporality is the natural mechanism explaining the transition
from a real time dominated region to another one where imaginary time is admitted.
In this particular context, atemporality can be defined as follows [11]:

Atemporality is the dynamical mechanism by which an observer pointing towards
the event horizon cannot reach the singularity in r = 0, because real-valued geodesics
and accelerated orbits cannot be prolonged up to there. As a consequence, both the time
variable and radial velocity become imaginary inside the black hole. The parameter
‘measuring’ the degree of atemporality is the Kretschmann scalar K, which is related
to the mass of the black hole.

From a conceptual standpoint, it is worth noticing that atemporality is by no means
associated to concepts, such as eternity, negation of time and the like. Atemporality
is here defined in terms of the process avoiding that classical infalling bodies assume
imaginary radial velocity. It is defined as a dynamical mechanism because it is a
process that naturally descends from the type of complete geodesics that respond
to conservation laws. In other words, any massive object, falling into a black hole,
never crosses the event horizon: it is scattered or orbits around it. Beyond the event
horizon, time becomes imaginary and then causality cannot be defined. In this sense,
atemporality is the mechanism that preserves causality in our world because time, to
be physically defined, must be real.

One might ask, at this point, how to reconcile the dynamics described in this
paper with the view according to which one just avoids the coordinate singularity
by suppressing coordinate time, but still the proper time of the infalling body can
be taken into account once it passes the event horizon and falls towards the physical
singularity. This view is at odd with the Lorentzian-Euclidean spacetime. However,
what is interesting is why it is “wrong” from our perspective. The radial velocity of
the infalling body becomes imaginary beyond the event horizon, the proper time of a
massive body with radial velocity equal to 0 is nothing from the standpoint of a theory
of measurement, such as the theory of general relativity, because real-valued geodesics
cannot be prolonged over the event horizon and thus become “incommensurable”. In
other words, the fundamental ontology of both GR and SR is conserved in our model,
as clocks measuring real time are useless in the Euclidean region. This means that the
Lorentzian-Euclidean spacetime shows that where GR is, no singularity arises, with
all the consequences that it bears for the understanding of relativistic physics and
for Quantum Gravity approaches. The singularity is avoided by a physical process
involving the gravitational field and the dynamics of in-falling particles. Atemporality
is thus intrinsically related to the emergence of imaginary time, thereby pointing to
the non-physical nature of singularities. In other words, atemporality is the signature

5It is worth noticing that the very same notion of singularity and the debates surrounding its existence
is of no use within this new scenario.
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of a mechanism that generates a forbidden inaccessible region on the ground of a
well-defined physical mechanism without arbitrary statements or the appeal to ad hoc
solutions.6 However, in the present paper, we want to suggest that atemporality as
presented in [11] can be related to conservation laws and to the possibility of achieving
important results in building up the foundations of a Singularity–Free Physics.

4 Atemporality from Conservation Laws

The example discussed in Section 2 can be considered as a particular case in a more
general context where atemporality descends from fundamental laws of physics. In the
Lorentzian-Euclidean black hole, atemporality is linked to the structure parameters
of the black hole, such as its size and mass, which define the event horizon. As in
the case of Heisenberg’s Uncertainty Principle, atemporality is the signature of a
limiting rule for measurements and points to a dynamical mechanism that prevents
the loss of causality in the Lorentzian region. In fact, causality is lost when time
becomes imaginary, as it happens when a massive particle enters the black hole, and
no measurement can be performed inside a black hole.

However, the Schwarzschild radius (related to the mass of all self-gravitating bod-
ies) is a conserved quantity [15] and any theory of gravity presents characteristic
lengths related to the existence of Noether symmetries [16–18]. Thus, from the present
perspective, atemporality can be identified with the mechanism by means of which a
conservation law is always conserved. Indeed, the avoidance of the singularity can be
measured by the Kretschmann scalar that is related to the black hole size, i.e., the
larger the black hole, the smaller the value of K at r = 2M (and vice versa), and offers
the possibility of “measuring” the degree of atemporality of the system.

This prediction must be verified, and future observational campaigns can shed new
light on how atemporality can be measured. However, from the conceptual stand-
point, one can already conclude that atemporality works as a natural mechanism
that is implemented in black holes by fixing a boundary condition for a conserva-
tion law which is described by the Kretschmann scalar, i.e., the curvature, and the
Schwarzschild radius. In other words, atemporality corresponds to the process accord-
ing to which conservation laws are not violated in the Lorentzian region and at the
event horizon, thereby ensuring the possibility of performing physically consistent mea-
surements and of conserving causal connection. This amounts to spell out in which
sense atemporality is a “natural” mechanism avoiding the singularity. When consid-
ering in-falling particles freely moving in the radial direction, since one defined the
energy as E = −εgµνξ

µuν , being ξµ a Killing vector, one is selecting a Noether sym-
metry. Consequently, the conservation of energy related to the time translation, is
preserved up to the event horizon. The velocity of the infalling particle ṙ vanishes at
the event horizon and becomes imaginary after having crossed it, because the coordi-
nate time t is no longer a real-valued variable inside the black hole. This means that
the time translation symmetry and the conservation of energy can hold if and only if
the singularity at r = 0 can be evaded. In fact, the observer never reaches r = 0, due to

6It must be noticed that a complete treatment of atemporality in black holes should also take into account
quantum effects. This will be the subject of forthcoming studies.

8



the emergence of an imaginary time: as soon as r < 2M , a change of signature results
and the Lorentzian region becomes Euclidean. In other words, atemporality stems
for a mechanism according to which a conservation law is absolutely preserved other-
wise the system loses its physical meaning. Thus, atemporality amounts to preserving
causality and to the possibility of performing measurements that are relativistically
consistent.

With the above considerations in mind, we can state the following:

Atemporality Theorem: Atemporality is the dynamical mechanism which, by
preserving a conservation law, allows events in a Lorentzian-Euclidean spacetime to
remain causally connected. As a consequence, any singularity is avoided and time can
only be defined through real values. If the conservation law is violated, a singularity
emerges, time becomes imaginary, and relativistic measurements are impossible.

Proof
In the Lorentzian-Euclidean Schwarzschild black hole, any proper observer takes an
infinite time to reach the event horizon. The geodesic structure results as complete
and this implies that energy and momenta are conserved according to Noether’s
theorems. This also means that any particle remains in the region r > 2M . As a
consequence, the Kretschmann curvature invariant is finite and cannot become infi-
nite because observers in free fall and observers with any acceleration approaching
the event horizon cannot reach the singularity at r = 0. In other words, Noether
symmetries are preserved for time t ∈ R and violated for t ∈ I. In this context,
atemporality means that time never becomes imaginary and singularity is avoided. □

This theorem portrays atemporality as playing a fundamental role in physics, if
one considers that Noether symmetries are always related to the existence of conser-
vation laws. As discussed in [17], indeed, physical systems can be consistently defined
if a set of conserved quantities is identified. It is worth noticing that relations between
conservation laws and Noether symmetries have been widely investigated in the phi-
losophy of physics [19–23], but we are now explicitly relating them to specific solutions
of Einstein equations.

5 A New Perspective on Singularity–Free Physics?

We are now in a position to scrutinize the conceptual implications of the previous
considerations. First, it seems possible to identify a natural mechanism dubbed “atem-
porality” applicable to black holes. The remarkable result is that this mechanism is
fully consistent with General Relativity and with conservation laws of physics. This
aspect has important implications on the study of causality (causal interaction) and
the causal structure in the philosophy of spacetime because our model implies that
black holes implement the atemporality mechanism to conserve the causal structure of
spacetime, i.e., events at different space-time points can be connected by causal curves
and causally interact. According to [24], “if the points are connected by a causal curve
then it is possible that some signal travels from one to another (along the curve) while
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at all times moving less than or equal to the maximal possible velocity”. However,
as we have seen, the constraint of energy and momentum dictated by Noether’s the-
orems makes atemporality unavoidable in order to preserve conservation laws: there
cannot be causal interaction between an event at a space-time point and the singular-
ity. This account is not only compatible, but verifies what has been suggested in [25]
and in [24], pp. 111 ff.. In particular, it is clear that causation not only can, but must
be defended in general relativity.

Furthermore, the definition of atemporality as a mechanism to avoid singularities
rules out the long-standing misconception according to which atemporality equates
a static metaphysical notion of eternity. In the last twenty centuries, the notion of
atemporality has designated this concept as the negation of time, being the latter
understood in terms of an absolute container, an a priori subjective form of intu-
ition or as illusion. Thanks to the present approach, we have seen that modeling the
physical world admits both temporal and atemporal forms of representing motion, i.
e., becoming. This result impacts, of course, the philosophy of cosmology, because it
hints to the fact that our universe can be modeled as a system embedding evolving
phenomena, as well as transitions governed by atemporality, i. e., connected topology
or signature change descend from the preservation of conservation laws.

Second, debates in the philosophy of physics [23] have already underscored that
Noether theorems acquire a fundamental meaning for the analysis of the symmetry
groups and the invariants of equations in general relativity [26], as well as for estab-
lishing the status of conservation laws and gauge theory.7 In this sense, they can
be read as necessary principles of physics, but, as the so-called “Noether Symme-
try Approach” [17, 28] has shown, they also provide the heuristic framework to find
exact solutions of the field equations and to implement Extended Theories of Grav-
ity [15, 29]. Furthermore, as Gomes, Roberts, and Butterfield [30] have convincingly
shown, Noether theorems represent the rationale for gauge symmetry to provide a path
to build appropriate dynamical theories. In this sense, it would be interesting to extend
in the future our analysis of atemporality towards these areas of philosophical inves-
tigation. For the time being and within the scope of the present work, we expounded
in which sense we can talk of a derivation of atemporality from conservation laws.
The Lorentzian-Euclidean black hole is a model that not only allows one to explore
the hidden implications of GR, but it also reinterprets the notion of imaginary time
by means of the description of a new dynamics at the event horizon. In this respect,
future research programs should mark a further step with respect to [31] in clarify-
ing the link between general relativity, quantum and statistical mechanics through a
dynamical correspondence. These issues will be discussed in a separate work.

Third, an important part of [11] impacts the field of philosophy of time because
it forces philosophers and physicists to think of imaginary time and atemporality in
new terms. On the one hand, imaginary time should be treated on the same footing as
real time, but it clearly assumes a different meaning. It plays the same role that real
time has in the Lorentzian region, but it does so in the Euclidean one. Furthermore,
imaginary time cannot equate atemporality and its structure differs from that of real

7Brown, in [27], suggested that the explanatory implication from symmetries to conservation laws cannot
be extrapolated from the Noether first theorem, even if symmetries have pragmatic priority assigned and
play a fundamental heuristic role in physics.
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time. Questions concerning structure, derivation and “shape” of imaginary time can
be open, together with the more fundamental question of what imaginary time could
“measure” in a Euclidean region and which ontological status it possesses. On the other
hand, if atemporality is defined in terms of a process or dynamical mechanism, it also
opens the path for the quest of a suitable taxonomy that accounts for its ontological
and/or epistemological status. Put it in simple terms, it could seem a contradictio in
adiecto to talk about a dynamical mechanism in atemporal terms. However, as shown
in [32], it is perfectly possible to think of specific forms of discrete atemporal ordering,
e.g., instantaneity, without contradiction, when one has to talk about phase transitions
such as geometrogenesis in Quantum Gravity scenarios. Thanks to the present work,
one can now add another piece to this taxonomy and talk about atemporal ordering
according to principles of continuous action to be explored in extreme gravitational
conditions in agreement with conservation laws.

6 Conclusions

According to James Read, there are still several open questions in Black Hole physics
that must be addressed, e.g., the study of their thermodynamical nature, a clear
understanding of the conditions under which material fields come to be adapted to a
given spacetime geometry and the understanding of the physics and metaphysics of
singularities in view of singularity resolution in Quantum Gravity or to clarify the black
hole information loss paradox (for a longer list, see [33]). The fact that singularities can
be avoided from the general relativistic standpoint in Lorentzian-Euclidean black holes
by means of atemporality can enrich the list by further stimulating the application of
this concept beyond the case of in-falling massive bodies and stationary black holes.
This dynamical mechanism, dubbed “atemporality”, prevents both the emergence of
black hole singularities and the violation of conservation laws. Essentially, this is due
to the fact that the mechanism itself derives from conservation laws of physics and
consists in preserving the physical meaning of the system only in the region where time
is defined as real. By crossing the event horizon, time becomes imaginary and causality
is lost. As pointed out, this is only a particular case of a more general framework where
conservation laws allow to define a Singularity–Free Physics: it means that as soon as
atemporality prevents that a physical system assumes imaginary time, any singularity
is removed and causality is preserved. In other words, at least at the classical level,
it is impossible that a physical system is not measurable and loses its predictability
(causality in the classical sense of succession of real instants). Thus, the notion of
atemporality is restoring Einstein’s idea that physics responds to a causal structure
of spacetime according to which there is no room for singularities.
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