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Abstract

The inductive risk argument challenges the value-free ideal of science by asserting that scientists should manage
the inductive risks involved in scientific inference through social values, which consists in weighing the social im-
plications of errors when setting evidential thresholds. Most of the previous analyses of the argument fall short
of engaging directly with its core assumptions, and thereby offer limited criticisms. This paper critically examines
the two key premises of the inductive risk argument: the thesis of epistemic insufficiency, which asserts that the
internal standards of science do not suffice to determine evidential thresholds in a non-arbitrary fashion, and the
thesis of legitimate value-encroachment, which asserts that non-epistemic value judgments can justifiably influence
these thresholds. A critical examination of the first thesis shows that the inductive risk argument does not pose
a unique epistemic challenge beyond what is already implied by fallibilism about scientific knowledge, and fails
because the mere assumption of fallibilism does not imply the untenability of value-freedom. This is demonstrated
by showing that the way in which evidential thresholds are set in science is not arbitrary in any sense that would
lend support to the inductive risk argument. Relatedly, value-laden strategies would likely jeopardize the emergence
of a rational consensus by prematurely resolving scientific debates. A critical examination of the thesis of legitimate
value-encroachment shows that incorporating social values into scientific inference as an inductive risk-management
strategy faces a meta-criterion problem, and consequently leads to several serious issues such as wishful thinking,
category mistakes in decision making, or Mannheim-style paradoxes of justification. Consequently, value-laden
strategies for inductive risk management would likely weaken the justification of scientific conclusions.

Keywords: Values in Science, Value-free Ideal, Value Neutrality, Inductive Risk, Evidential Threshold, Pragmatic
Encroachment



1. Introduction

Scientific justification is defeasible and even our best
claims often carry some level of uncertainty. Since this
is the case, scientists are faced with a rather fundamen-
tal problem when they are making inferences based on
their empirical findings: How far should the uncertainty
be reduced before accepting or rejecting scientific hy-
potheses? Additional evidence reduces uncertainty, but
it cannot entail the sufficiency of this reduction. There-
fore, the scientific decision to accept or reject a hypoth-
esis inevitably involves extra-evidential standards. A
centerpiece of scientific normativity is that scientific in-
ference ought to be value-free, and therefore the only
kind of value judgments that can be legitimately used
to manage the risks pertaining to scientific error are
those that are internal to science (epistemic/cognitive
values or standards). This idea has been challenged by
a variety of arguments, among which the inductive risk
argument is arguably one of the strongest to date.

The inductive risk argument against the value-free
ideal of science states that because scientific inferences
are characteristically error-prone, the practical costs of
making an error should influence the evidential stan-
dards for accepting or rejecting scientific claims (Dou-
glas, 2000, 2009; Rudner, 1953). Douglas (2009, p. 97)
expresses it in terms of individual scientific judgment:
“scientists should [weigh the importance of] the poten-
tial social and ethical consequences of error ...and set
burdens of proof accordingly.” ' Rudner (1953, p. 2)’s
original formulation reads:

...since no scientific hypothesis is ever com-
pletely verified, in accepting a hypothesis
the scientist must make the decision that
the evidence is sufficiently strong or that the
probability is sufficiently high to warrant the
acceptance of the hypothesis. Obviously our
decision regarding the evidence and respect-
ing how strong is "strong enough" is going to
be a function of the importance, in the typ-
ically ethical sense, of making a mistake in
accepting or rejecting the hypothesis.

This argument is commonly interpreted as the claim
that scientists, as a general feature of scientific judg-
ment, “have to make value-laden decisions about how
much evidence to demand before they draw conclu-
sions” (Elliott, 2022). Douglas (2009, p. 87) says ex-
plicitly that social values are required at the core of sci-
ence, “not just as a matter of an accurate description of
scientific practice, but as part of an ideal for scientific
reasoning.”

Several authors in various ways have forcefully crit-
icized the inductive risk argument, such as rejecting

the premise that scientists accept or reject hypotheses
(Jeffrey, 1956), rejecting the assumption that if they
do accept hypotheses they must do so without qualifi-
cation, such as conditionalizing their claims or articu-
lating uncertainties (Betz, 2013; Henschen, 2021), dis-
tinguishing between accepting a hypothesis as true and
acting on its basis (Levi, 1960, 1962), further disam-
biguating the notion of ‘acceptance’ into distinct cog-
nitive attitudes, such as endorsing, adopting, or hold-
ing a hypothesis (Lacey, 2015), arguing that value-free
ideal is indispensable for the political legitimacy of sci-
ence (Betz, 2013; Lusk, 2021), or that it is pursuit-
worthy because of its desirable epistemic consequences
(Menon & Stegenga, 2023; Stegenga & Menon, 2023).
Also, due to the emphasis on practical consequences,
the argument from inductive risk can be said to pose a
limited challenge to the value-free ideal of science, one
that primarily concerns cases where (i) there are fore-
seeable practical consequences to accepting or rejecting
scientific claims with a view to real world application
(Elliott, 2011; McMullin, 1982), and (ii) withholding
judgment (Giere, 2003) or deferral (Betz, 2013; Havs-
tad & Brown, 2017) are not desirable. This reading of
the inductive risk argument does not pose a substantial
problem for the value-free ideal beyond the contexts of
scientific policy advice (Steele, 2012) and possibly fast
science (Stegenga, 2024). But, this limited formulation
of the inductive risk overlooks the stronger argument
that the error-prone nature of scientific conclusions re-
quires some form of risk management, and that these
risks cannot be managed solely in terms of epistemic
values.

While we believe that most of these objections still

To use Douglas’ own example for illustration, toxicologists
must decide what level of statistical significance to demand
in order to conclude whether the chemical dioxin under in-
vestigation indeed increased cancer rates in animal experi-
ments. Depending on where they set the significance level,
they trade off the probability for false positive results with
the probability for false negatives (commonly referred to as
error rates), where a false positive means that experiments
detect an increase in cancer rates where there is none (or de-
tect a larger increase than the actual value), a false negative
means a failure to detect a real increase in cancer rates (or
detect a smaller increase than the actual value). Concluding
the carcinogenic effects of dioxin in humans (by extrapola-
tion from animal studies) has the foreseeable practical conse-
quence of increased regulation of the chemical and thereby ex-
cess costs to the industry, where concluding the opposite will
likely lead to weaker regulation and thereby costs related to
public health. Douglas concludes that the toxicologists should
decide the right balance between the error rates based on how
they value these effects, as a function of their social and moral
values as ordinary human beings or citizens.



stand, there has been almost no attempt ? to take on
and criticize the inductive risk argument as a general-
ized claim against the epistemic self-sufficiency of sci-
ence-the capacity of science to manage inductive risks
without appeal to anything other than its internal stan-
dards. 3. While steelmanning the inductive risk argu-
ment, only a successful criticism of this central and gen-
eralized challenge can put this debate finally to rest.
Arguably this lack is one of the reasons why the in-
ductive risk argument against the value-free ideal still
has an intuitive appeal for many. This paper attempts
to take on this challenge by arguing that the induc-
tive risk argument does not suggest the untenability of
the value-free ideal of science any more than what can
be inferred from the thesis of fallibilism about scien-
tific knowledge. We cannot infer the untenability of
the value-free ideal of science merely from fallibilism
about knowledge, hence the inductive risk argument
fails. Moreover, appeal to social values in judgments
of evidential sufficiency would further undermine the
justification of scientific inference, and thus make the
problem (if any) simply worse.

As a generalized challenge to the value-neutrality of
scientific judgment, the argument from inductive risk
can be broadly characterized as an application of the
pragmatic encroachment thesis in epistemology to scien-
tific judgments of evidential sufficiency. * The argument
can be reconstructed as having two key premises. The
first one advances an analogue of the threshold prob-
lem for fallibilism about knowledge against the concept
of evidential sufficiency in science. Fallibilism about
knowledge says that knowledge can be achieved with
less than fully conclusive justification. The threshold
problem is about how to determine the level of justifi-
cation that separates knowledge from lack thereof in a
non-arbitrary way. Douglas (2009) expresses an anal-
ogous challenge for scientific knowledge by saying that
there is no non-arbitrary, non-pragmatic way to decide
when the evidence is sufficient to accept a scientific
claim without considering social values. This gives us
what we will call the thesis of epistemic insufficiency.

Epistemic insufficiency: There is no epistemic ba-
sis on which a threshold of justification that will
cover all instances of scientific knowledge can be
determined.

This leads to the idea of science’s self-insufficiency;
its insufficiency to justify its core practice, scientific in-
ference, by its internal standards alone. Douglas clearly
puts forward this thesis, when she says that purely “in-
ternal standards” —i.e., standards that are “free of social
and ethical values,” such as methodological standards,
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theoretical virtues, or cognitive values— do not help to
decide “what counts as sufficient evidence” in a non-
arbitrary way (Douglas, 2017, also 2000; 2009). Hence,
the internal standards are insufficient for scientific judg-
ment regarding which propositions to accept.

The second key premise of the argument offers the
consideration of social values as a solution to the prob-
lem of epistemic insufficiency, which is analogous to the
impurist solution to the threshold problem: Whether a
subject S knows a proposition p depends not only on
epistemic factors such as evidence or reliability, but also
on the stakes involved in S’s practical reasoning situa-
tion, or how important the truth of p is to S (Fantl &
McGrath, 2002, 2009; Stanley, 2005). Thus, the prag-
matic encroaches on the epistemic. The pragmatic en-
croachment thesis states that practical factors, such as a
subject’s practical interests regarding a certain content
or the stakes involved in falsely affirming or disaffirming
that content, are relevant in determining the epistemic
standards that must be met in order for a subject’s belief
to be sufficiently justified to constitute knowledge (see
Kim, 2017). Applied to the scientific context, this can
be seen as analogous to saying that social values are
relevant to determining whether there is sufficient evi-
dence to accept or reject a scientific hypothesis, which
is equivalent to the inductive risk argument (see also
Miller, 2024). This part of the argument gives us what

2with the possible exception of some discussions in Levi
(Levi, 1960, 1962).

3Inductive risks, broadly construed, are the risks pertaining
to (i) accepting a scientific claim as true when it is in fact false,
and (ii) rejecting a scientific claim as false when it is in fact
true (see also, Hempel, 1960)

4To revisit Douglas’ dioxin research example, shifting the
statistical significance level in either way directly affects how
the theory choice between two alternative dose-response mod-
els is resolved, namely the threshold model and the linear
extrapolation model. The threshold model states that the
carcinogenic effect of dioxin starts at a certain dose of the
chemical (the threshold), below which there is no such effect.
The linear extrapolation model, on the other hand, states that
the dose has a linear relationship with the carcinogenic ef-
fect, meaning that there is no dose threshold below which the
chemical is completely non-carcinogenic. Where the statistical
significance level is set affects both which data patterns will
be considered a response and the shape of the dose-response
curve (Douglas, 2000). What creates the theory choice situa-
tion in such a case is that the studies are not sufficiently pow-
ered (i.e., have sufficient sample size) to be able to generate
the evidence that will distinguish which model or hypothesis
is the correct one. Collecting larger samples has considerably
higher economic costs, which might lead the researchers (or
other parties such as funders, policy makers) to resolve (rather
than ‘solve’) the theory choice situation by making value-laden
judgments.
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we will call the thesis of legitimate value-encroachment.

Legitimate value-encroachment: Social values
are legitimate determinants of where the threshold
of justification for scientific knowledge is to be set.

In conjunction, these two premises are used to con-
clude that the value-free ideal of science is untenable,
and only a value-laden science can legitimately manage
inductive risks. This paper criticizes this conclusion by
disentangling the inductive risk argument against the
value-free ideal of science from the thesis of fallibilism
about scientific knowledge. We argue that there is no
additional epistemic challenge contained in the induc-
tive risk argument which is not found in the thesis of
fallibilism, and since the latter does not imply the un-
tenability of the value-free ideal of science, neither does
the inductive risk argument. Moreover, the positive part
of the inductive risk argument which argues for a value-
laden ideal for science has more serious problems of
its own. Firstly, we reject that thresholds of scientific
justification are arbitrary in several commonly under-
stood senses of arbitrariness that would justify the in-
ductive risk argument, and argue that purely epistemic
considerations suffice to eliminate these. However, non-
arbitrariness in these senses does not imply the impossi-
bility of rational disagreement in science, that is disagree-
ment between scientists on the basis of strictly epistemic
considerations. This stronger thesis would require in
fact to deny the fallibilist nature of scientific knowl-
edge. Since we by default accept the fallibility of sci-
entific knowledge, we also by default accept the pos-
sibility of rational disagreement in science. But neither
the fallibility of scientific knowledge nor the consequent
possibility of rational disagreement in science by them-
selves imply that scientific inference necessitates non-
epistemic value judgments, or that it can be improved
by these. If the critics of the value-free ideal hang their
claim on the bare assumption of fallibilism, their recon-
struction of the value-free ideal is nothing but a reduc-
tio ad absurdum, because it makes the tenability of the
value-free deal dependent on an assumption of infalli-
bilism.

If this is not true, the proponents of the inductive risk
argument should explain what social value-judgments
bring into the picture: If an epistemic problem is unsolv-
able, arguably it is not made any less unsolvable by intro-
ducing non-epistemic elements. There are strong rea-
sons to think that any rational disagreement in science
is transient and thus will eventually give way to rational
consensus, because epistemic value-judgments that un-
derlie disagreements are subordinated to higher-order
shared epistemic values such as truth, and thus them-

selves are subject to epistemic evaluation. But even if
this is but an unfounded hope, we are not justified to
think that value-laden science would be any better, and
there are good reasons to think that it would be much
worse. This is mainly due to the fact that the justifi-
cation of social values, unlike epistemic values, is itself
subjective and thereby disagreements about social val-
ues prevent rational consensus.

The structure of the paper is as follows. In §2 we
explain the context of use for evidential thresholds in
science and the kind of scientific judgments they per-
tain to. In §3 we analyze several commonly understood
senses of arbitrariness and show that scientific eviden-
tial thresholds are not arbitrary in any of these senses.
We conclude that the inductive risk argument miscon-
strues the justification of evidential sufficiency criteria,
particularly the statistical significance thresholds. In §4
we examine another possible interpretation of the thesis
of epistemic insufficiency as the possibility of rational
disagreement about the interpretation of evidence, and
discuss how rational disagreements are resolved in sci-
ence. Section §5 turns to the thesis of legitimate value-
encroachment and tackles the epistemic problems that
emerge if social values are used to set evidential thresh-
olds. We argue that Douglas’ distinction between legit-
imate and illegitimate uses of values in science fails to
hold due to a paradox of meta-criterion. Section §6 dis-
tinguishes between judgments of evidential sufficiency
in the scientific vs practical decision-making contexts
and argues that there is no encroachment between the
two contexts in either way. In §7 we argue that the
thesis of legitimate value-encroachment suffers a meta-
criterion problem of its own, and conclude that value-
laden evidential sufficiency judgments cannot increase
but only undermine the legitimacy of evidential suffi-
ciency judgments.

2. Evidential thresholds and acceptance of scientific
hypotheses

2.1. What is an evidential threshold in scientific
inference?

Scientific (or theoretical) claims are on the level of
phenomena, while empirical observations occur on the
level of data. Phenomena are relatively stable fea-
tures of the universe that are not dependent on partic-
ular observations, while the specific data that are ob-
served depend on details of the experimental procedure
and the measurement device (Woodward, 1989; Wood-
ward, 2000). Consequently, although phenomena are
detected by data, the data never directly or necessarily
entail claims about phenomena (Bogen & Woodward,
1988), because there is always the possibility of error,



for example due to measurement or sampling (Wood-
ward, 1989). Statistical error control is an integral part
of scientific observation where data is known to contain
non-negligible error(see also ‘corrigible data’ in Suppes,
1974). It is a theory of error which enables us to com-
pare alternative scientific hypotheses in a way that the
difference of evidential support cannot be attributed to
variations due to random error (Mayo, 1996). To do
this, scientists estimate a confidence interval and define
an evidential threshold.” An evidential threshold can
thus be seen as one kind of evidential sufficiency crite-
rion. Rudner (1953) and Douglas (2000, 2009) address
the most widely used criterion of evidential sufficiency
in statistics, namely the type 1 error rates, or a-levels,
for determining statistical significance.

2.2. Evidential sufficiency to answer which ques-
tion? Acceptance of evidence vs acceptance of a the-
oretical claim

A statistical significance threshold is used for the ac-
ceptance of evidence, rather than the acceptance of a
scientific claim into the canon. © Scientists use type 1
error rates (i.e., p-values) to decide whether the data
expresses a singular fact (such as whether the patient
outcomes in the experimental condition veritably dif-
fer from those in the control condition), not to decide
between two substantive hypotheses (such as whether
smoking causes cancer or not). This is the difference
between a statistical hypothesis and a scientific claim.
By testing a statistical hypothesis, scientists establish
an evidential link between the data and the substan-
tive hypothesis. The substantive hypothesis or the sci-
entific claim is almost never justified on the basis of a
statistical hypothesis-test alone, because finding a true
positive signal in the data does not rule out all system-
atic sources of error, such as measurement invalidity,
or sufficiently probe the boundary conditions of the sci-
entific claim, such as potential confounders. Statisti-
cal error control is thus only one step in the manage-
ment of error and uncertainty in theory testing Mayo
(2018), Mayo (1996), and Spanos and Mayo (2015).
Accepting a theoretical proposition requires corrobora-
tion through a variety of methods to ensure robustness
and validity, among other concerns. Corroborating evi-
dence is akin (for the sake of analogy) to the concept of
justification beyond reasonable doubt in the legal con-
text. It is hard to see how the thesis of epistemic in-
sufficiency could be relevant here, because corroborat-
ing evidence is obtained for the most part deductively,
via elimination of the relevant alternatives (alternative
explanations of particular data patterns or of the total
evidence). Although people have questioned the purely
deductive status of corroboration, it is at least clear that
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it is not sufficiently similar to the kind of inductive con-
firmation that Rudner and Douglas talk about. As these
authors also admit, the statistical error rates are not the
sole criterion of evidential sufficiency, but it is relatively
easier to discuss the fundamental problems of evidential
sufficiency using statistical error rates. So, for the sake
of argument let’s carry on with statistical significance.
In §3.4 we will return to this in the context of higher-
order uncertainties.

3. Arbitrariness and evidential sufficiency
judgments

3.1. What exactly is arbitrary?

The counter-thesis of the inductive risk argument for
incorporating values into scientific inference is that sci-
entists should manage inductive risk only with appeal to
epistemic considerations.” Douglas (2017) and Douglas
(2021) claims that this is not possible, because epis-
temic considerations do not determine why one stan-
dard of evidence should be preferred rather than the
other—they help determine only the strength of evi-
dence, not whether it is sufficient to accept a hypothe-
sis. Thus, a standard of evidence cannot be set in a non-
arbitrary way (unless we take social values on board).

The first question to address is, what exactly is the
nature of the charge of arbitrariness? In one intuitive
sense of arbitrariness, one can easily avoid it simply by
pre-specifying the evidential sufficiency criterion. Imag-
ine a dart shooter who claims to be a sharpshooter,

SNot all statisticians agree with the practice of producing
dichotomous claims on the basis of evidential thresholds. Peo-
ple who disagree with the use of thresholds also do not need to
engage with the inductive risk argument, as they disagree that
scientists are in the business of accepting or rejecting scientific
hypotheses. Most prominently, this is Jeffrey’s response to the
inductive risk argument (Jeffrey, 1956). That being said, the
majority of scientists across various disciplines use evidential
thresholds to make dichotomous claims about phenomena.

6A statistical significance level arguably enables us to be
able to falsify scientific claims with observations that are
known to contain random error. Because the error associated
with these observations is probabilistic, such error-containing
observations can only be described in probabilistic terms.
Since probabilistic statements (e.g., ‘This is probably a black
swan’) by themselves do not have truth values, they are not
proper “tests” for scientific claims (i.e., universal statements).
Thus, scientists must set an evidential threshold by estimating
a confidence interval, which allows them to formulate obser-
vation statements that can have truth values and potentially
falsify scientific claims (see ‘quasi-basic statements’, (Uygun
Tung et al., 2023)). This has to do with what Popper calls a
methodological choice.

"Douglas (2009) attributes this position to Levi (1960).
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throws 10 darts and hits the bullseye 6 times, and then
defines sharpshooting ability as hitting the bullseye at
least 6 times out of 10. Let us also assume that he
specifies a different success criterion at each bar, de-
pending on his actual score. This kind of arbitrariness is
prevented by specifying any success criteria before the
challenge starts. The same argument can be made with
respect to the statistical significance level, but scientists
already do prevent such arbitrariness when they use the
standard error rates in their field (e.g., « = 0.05 or
0.00003). The counterpoint, then, presumably is that
the standard itself is arbitrary. Elliott (2022) says, “from
a purely epistemic perspective, scientists could just as
well set a 90 percent or a 99 percent statistical signifi-
cance level as opposed to a 95 percent statistical signif-
icance level.”

A slightly more serious charge of arbitrariness thus
says that the variability of evidential thresholds testi-
fies to their arbitrariness. The charge of arbitrariness
in this case would require the selective application of
epistemic standards in determining how much eviden-
tial support is adequate. This could indeed be the case if
each individual hypothesis was tested using a different
evidential threshold, determined in accordance with a
context-dependent weighing of inductive risks—just as
Douglas recommends. On the contrary, the common
practice in science is to use shared standards to prevent
judgments of evidential sufficiency from being context-
dependent. Furthermore, it should also be noted that
the established disciplinary standards regarding the sta-
tistical significance levels particularly in social sciences
provide additional evidence that social values play no
veritable role in determining the evidential thresholds,
as studies with wildly different value outlooks use the
same « levels for making scientific claims. That is, it
is hard to square the claim that evidential sufficiency
thresholds necessarily involve social values, with the
fact that in disciplines such as economics, psychology,
and political science hypotheses with conflicting social
value undertones (e.g., liberal, conservative, feminist,
male supremacist etc.) are subjected to the same evi-
dentiary standards such as @ = 0.05.

Wilholt (2009) and Douglas (2017) say that conven-
tional evidential thresholds may solve part of the prob-
lem, but those conventions vary across fields. The point
is then that the plurality of error thresholds across fields
testifies to their arbitrariness. While statistical sets may
use some standards of evidential sufficiency in some ar-
eas, there is no way to answer this question uniformly
“across all judgments” or “across all fields” (Douglas,
2017) . Douglas (2017) opines that different fields thus
see different trade-offs between false positives and false
negatives as acceptable, where the judgment of accept-

ability reflects “external concerns” with the use of the
knowledge they generate.

This analysis unfortunately displays inadequate un-
derstanding of Neyman-Pearson approach to statistical
inference and how it is actually used by practicing sci-
entists in testing theories. The specific values at which
different fields set their error thresholds vary in accor-
dance with the parameters that go into the calculation
of error rates, such as typical sample sizes, the projected
base rate of true vs false hypotheses etc. Since these
drastically differ from, say, particle physics to psychol-
ogy or economics, the statistical significance levels also
drastically differ (the 5-sigma vs the 1.96-sigma cut-
off). It is not the specific evidential thresholds but the
error estimation functions that are the same across all
fields. Thus, the fact that different fields use different
error thresholds testifies not for but against their arbi-
trariness. It might also be important to note that, when
scientists dispute the specific evidential thresholds in
their field, they do so on the ground of the epistemic
criteria, such as rebalancing the discovery and accu-
racy trade-off and updating the values that should be
assigned to the variables (e.g., prior odds or base rates
of true vs false hypotheses) in error estimation functions
(see Benjamin et al., 2018). Establishing that statisti-
cal significance levels are not arbitrary in any of these
senses, we come to the crux of the problem, which the
proponents of the inductive risk argument actually do
not address, but we will nonetheless.

3.2. A threshold problem for scientific knowledge?

The inductive risk argument maintains that the evi-
dential sufficiency thresholds are necessarily arbitrary.
Beyond the options we eliminated, here are two more
possible interpretations of arbitrariness in this context.
First, the arbitrariness charge can be interpreted as
one of precision: whether we can identify one specific
value that legitimately distinguishes statistical signifi-
cance from non-significance. Second, it can be inter-
preted as a problem of approximation: whether we are
able to roughly estimate where that value should be,
even if the particular value could never be known or
adequately justified.

3.2.1.Arbitrariness as a problem of precision.
The thesis of epistemic insufficiency can be considered
an analogue of the threshold problem for fallibilism if
one interprets it in the precision sense of arbitrary ev-
idential thresholds. Infallibilism about knowledge says
that “one can know that p only if one’s evidence entails
that p,” which means that the “conditional probability of
p on one’s evidence is 1” (J. A. Brown, 2018, p.6). In-
fallibilism clearly invalidates most (if not all) scientific
knowledge. Fallibilism, in rejecting these conditions, is



presumed to hold a threshold view according to which
“one can know that p only if its probability on one’s ev-
idence exceeds some threshold, t, where that probabil-
ity threshold is sufficiently high but less than 1” (ibid.).
The threshold problem for fallibilism consequently asks
what can be given as a “sort of basis or rationale. . . for
fixing this level of justification in a non-arbitrary way”
(Hetherington, 2001; also see Hannon, 2017).

In the context of scientific inference, let us assume
that we accept the Type 1 error of 0.05 to be our ev-
idential threshold as many practicing scientists do. Is
not it reasonable that “God loves the .06 nearly as much
as the .05”? (Rosnow & Rosenthal, 1992). Even if that
may not be so, clearly God would like 0.05001 as much
as 0.04999. How can this mark the difference between
knowing and not-knowing? The fear of arbitrariness
even drives some statisticians to strongly advocate for
the practice of interpreting test statistics as continuous
measures of discrepancy with a model or to compute
continuous measures of evidence (Gibson, 2021; Green-
land & Poole, 2013; Rozeboom, 1960; Wasserstein et
al., 2019).8 If the challenge is whether we can justify a
single value where the evidential thresholds must be set
on purely epistemological grounds, we notoriously can-
not (Gigerenzer, 2004; McShane et al., 2019; Rosnow &
Rosenthal, 1992; Rozeboom, 1960).

The prospects might look bleak for acquiring scien-
tific knowledge by means of statistical inference. From
a purist perspective the issue is obvious: one cannot be
sufficiently justified to reject hypothesis H1 at 0.05001
while accepting a similar hypothesis H2 at 0.04999,
since they might easily have roughly the same truth
value. Hence the impurist solution.

However, once we take this route the problem does
not become any less difficult. Let’s say we shifted the
conventional a-level from 0.05 to 0.09 for studies inves-
tigating whether a certain drug increases the women’s
risk for breast cancer as a side effect, reasoning in light
of feminist values that it is more serious an error if the
studies fail to find an increase in the study participants
when the drug indeed increases the risk, than falsely
concluding an increase when the drug is indeed safe.
How can we justify the difference between 0.0899 and
0.0901 as the delineation between knowing that the
drug is carcinogenic and not-knowing that the drug is
carcinogenic using feminist values? Not only we failed
to solve the threshold problem, we inflated the false
positive risk to the effect that we are less able to know
the drug’s carcinogenic potential, and less justified in
taking any action regarding it. Posing the problem of
arbitrariness as one of precision undermines the falli-
bilist project for anyone, purist or impurist.

The reason is that in the fallibilist framework “is
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justified” and thereby “knows” are vague predicates.
Therefore, they are subject to the Sorites (heap) para-
dox. The original formulation of the paradox is a
modus ponens argument with the following premises
(Williamson, 1994):

- 1 grain is not a heap of sand,

- Adding a single grain to a non-heap entity does
not make it a heap

Following these premises one should reach the un-
controversial conclusion that 2 grains of sand is not a
heap. However, with the repeated application of the
same syllogism (i.e., if N grains of sand is not a heap,
N+1 grains of sand is also not a heap) one reaches an
obviously incorrect conclusion that however big is the
number of the grains, there can never be a heap, hence
the paradox.

There are a substantial number of solutions sug-
gested to the Sorites paradox (Hyde & Raffman, 2017),
but we are not going to delve into these here. The cru-
cial point is that existence of a continuum between two
states does not imply the falsity of a distinction between
them; otherwise we would not be able to use any ‘vague’
concept such as young, old, tall, or short meaningfully.
Statistical significance, as it is used in common scien-
tific reasoning, can similarly be considered a vague con-
cept, meaning that the borderline between significance
and non-significance is somewhat fuzzy. However, the
charge of arbitrariness might just lose its claws if we
cease to insist on the problem of precision.

3.2.2. Arbitrariness as a problem of approxima-
tion. Setting the right statistical significance level can
also be understood as a problem of approximation. The
difficulty of identifying one in practice does not mean
that a real threshold is not conceivable; one corresponds
to an epistemically optimum (i.e., maximally reliable)
value given the statistical testing theory and the param-
eters that define the cognitive constraints of the scien-
tific field. Scientists want to have the maximum num-
ber of true positives and the minimum number of false
negatives they can achieve in the long run given these
constraints. While they may not always be successful in
probing into this optimum value, their methodological
decision regarding a- and B-levels follows an algorithmic
optimization of discovery vs accuracy — two intrinsically
scientific, or internal aims. Missing the mark slightly by
choosing a conventional threshold that is not identical
to the optimum value does not make a fatal difference

8As we discussed elsewhere, they fail to see that the func-
tion of dichotomous statistical inference is epistemological
(i.e., producing testable observation statements that can be
used to falsify theoretical claims) rather than statistical, and
it is not easily replaceable by alternative approaches (Uygun
Tung et al., 2023)
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as long as the conventional thresholds are sufficiently
close to the true optimum.

3.3. The case for shared standards

There is another strong rationale for using a shared
standard, especially one that is not relative to individ-
ual hypotheses. That is, scientists want to be able to in-
formatively compare studies and aggregate knowledge.
However, this is exactly what the proponents of the in-
ductive risk argument want to abolish when they sug-
gest customized or shifting evidential thresholds. We can
give two reasons for this; an epistemological one having
to do with the logic of comparing and combining find-
ings from different studies, and a cognitive one having
to do with scientific communication and division of cog-
nitive labor.

Imagine two scientific hypotheses A and B which we
would like to test with corrigible data. At a statistical
significance level of 0.01, A is accepted and B rejected.
At a statistical significance level of 0.05, both A and B
are accepted. If A is accepted at the level of 0.01, and
B is accepted at that of 0.05, by treating both as eviden-
tially corroborated we violate the logic of knowledge
accumulation as long as we do not justify the difference
in terms of epistemic criteria such as the base rates. This
is not only a matter of scientific communication. Even
a solitary agent like Robinson Crusoe, if set out to do a
scientific investigation, would need to make a method-
ological choice to set a threshold to be able to compare
a study he did in t1 vs t2.

Secondly, a statistical significance of 0.05 seems to
be “low enough such that peers take any claims made
with this error rate seriously, while at the same time
being high enough such that peers will be motivated
to perform an independent replication study to increase
or decrease our confidence in the claim” (Uygun Tung
et al., 2023). Clearly lowering the evidential thresh-
old leads to more probative hypothesis tests and thus
less uncertainty. But this is meaningful only if there are
strong theories in the field which help identify and elim-
inate systematic sources or error, so that researchers fo-
cus on reducing the probabilities of random error. In
a field like psychology where there is not yet a base of
rich background knowledge to control all causal factors
relevant to a phenomenon of interest, gathering huge
samples to lower error possibilities (as a field like high
energy physics can do) does not make much sense. In
this kind of situation, facilitating a faster and more ef-
fective process of “conjectures and refutations” serves to
create a better division of cognitive labor.

3.4. Higher-order uncertainties

At this point one could argue that the argument de-
veloped so far only applies to first-order uncertainties
(i.e., uncertainties pertaining to hypotheses). Some
have argued that higher-order uncertainties (i.e., un-
certainties about uncertainties) are not as tameable as
the first-order uncertainties because of a vicious regress
problem (i.e., infinite or circular), and that higher-
order uncertainties are inevitably non-negligible (M. J.
Brown, 2024; Douglas, 2009; Steel, 2016). Although
we agree that adequately addressing first-order uncer-
tainties does not always imply that higher-order uncer-
tainties are also adequately addressed, we think both
the inevitability of non-negligible higher-order uncer-
tainties and the alleged support this would lend to the
inductive risk argument can be contested. This is be-
cause 1) higher-order uncertainties are unlikely to in-
volve vicious regress (Henschen, 2021, cf.), 2) they can
be managed via systematic higher-order error probing,
and 3) scientists cannot be held accountable for induc-
tive risks that stem from yet unknown sources of error.

Our treatment of higher-order uncertainties tracks
three possible types of error sources; random, system-
atic, and unknown. It has been previously shown
that the first type (i.e., higher-order uncertainties due
to random error) can be handled quite well with
standard experimental and statistical procedures (Hen-
schen, 2021). The infinite regress argument suggests
that instead of accepting the hypothesis that P(HO0) =PO,
one would need to assign a probability P1 to this state-
ment, then another probability P2 to P(P(H0) =P0)=P1,
and so on, indefinitely. In a well-conducted study, where
the statistical distribution assumptions are not violated,
there would be quite precise upper and lower bounds
of probabilities regarding the first-order uncertainty of
random error and the regress is finite because the prob-
ability assignments stop at a reasonable point without
requiring further probability layers (Henschen, 2021).
While occasional instances of circular reasoning may
occur, they do not form a general methodological prob-
lem, because usually experimental design elements are
justified by using criteria other than the experimental
outcomes (Henschen, 2021).

Systematic sources of error concern biases or flaws
that consistently skew results, such as measurement
bias, calibration errors, extraneous factors, observer
bias, or selection bias. Concerns with these kinds of
issues are typically handled with higher-order error-
probing methods in the experimenter’s toolset (see, e.g.,
Galison, 1987; Mayo, 1996). A significant portion of
known sources of error are avoided by means of ex ante
measures built into experimental planning and design,
such as control groups, blinding and proper randomiza-



tion. Others are directly or indirectly probed by means
of post hoc measures such as methodological triangu-
lation, robustness checks, replication studies, or meta-
analyses. Since statistical tests are commonly not ca-
pable of assessing or controlling these kinds or errors,
scientists may not conclude their absence on the sole
basis of observing a statistically significant effect. Thus,
the acceptance of a statistical hypothesis (as decided
by a test procedure with a pre-set significance thresh-
old) cannot and does not directly translate into the ac-
ceptance of the substantive hypothesis or the scientific
claim it is used to test. The justification of statistical
significance thresholds themselves thus have little to do
(if any) with higher-order uncertainties of this kind, as
this is categorically not a problem that can be addressed
by adjusting acceptable error rates or any other algo-
rithmic decision protocol (value-free or not). Higher-
order error probing is characteristically a deliberative
process that requires extensive “experimental knowl-
edge” (Mayo, 1996) and good scientific judgment, thus
it typically takes the form of a piecemeal and collabo-
rative (sometimes interdisciplinary) questioning involv-
ing multiple researchers and possibly specializations.’
Often enough, Duhemian kind of underdetermination
problems are preemted or resolved. When not, ideally
they are not ignored or concealed, which would consti-
tute a breach of epistemic responsibility well before that
of a social one.

Lastly, there may of course also be unknown sources
of error, which require novel error-probing techniques,
scientific discoveries or theoretical advances to be prop-
erly identified or controlled. But this is a feature, rather
than a bug of ampliative reasoning that is characteristic
of science. Since we do not know if there are unknown
sources of error, it is very difficult to conceive how in-
ductive risks that may arise due to these can feature
in an evaluation of epistemic or other responsibilities
(beyond the epistemic responsibility not to assert their
absence).

We can thus say that a threshold problem for scien-
tific knowledge does not emerge at the level of higher-
order uncertainties either. We last turn to a remaining
issue which has not been fully addressed by the preced-
ing.

4. Fallibilism, epistemic value-judgments, and
rational disagreement in science

The fallibility of scientific justification implies, as an
inherent feature, that epistemic value-judgments have
to be made in determining if evidential justification is
sufficient for affirming a scientific proposition. By virtue
of being value-judgments, these are contestable. This
is particularly true when they imply conflicting conclu-
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sions about the phenomenon of interest and when it is
ambiguous how to weigh different epistemic values in
evaluating the existing evidence (Kuhn, 2003). One
way to demonstrate this is through the thesis of the
theory-ladenness of observation, which says that the ev-
idential criteria for the evaluation of scientific theories
are not completely independent from the contents of the
very theories they are used to evaluate (Kuhn, 1970).
Theory-ladenness implies that different theories might
indicate different parts of the existing body of evidence
as more important due to the particular set of epistemic
values they manifest (more or less strongly than other
theories). Since each theory would characterize and
assess evidential support partly in reference to its own
content, evidential sufficiency decisions are in principle
rationally contestable.

However, rationally contestable does not mean arbi-
trary in any sense that could lend support to the induc-
tive risk argument. First of all, when there is such ratio-
nal disagreement in a discipline, scientists defer or con-
ditionalize their judgments (Betz, 2013; Giere, 2003;
Nagel, 1961). The deferral strategy is the usual first line
response. This is because the rational disagreement we
outline here is about the differential weighing of empir-
ical evidence in light of epistemic values (with regards
to salience or importance), and the effect of divergent
epistemic values is inversely proportional to the accu-
mulated evidence (Duhem, 1954, see also). As obser-
vations accumulate and more severe tests of the con-
testing theories are devised, it becomes more and more
likely for evidence to overwhelmingly support a theory
over its alternatives with little room for doubt, no mat-
ter which particular sets of epistemic values are upheld
by contesting theories, as many examples of paradigm
change demonstrate in the history of science.

Secondly, epistemic values are defined with reference
to their truth-conduciveness (Steel, 2010, direct or in-
direct, see) and thus they are open to empirical evalua-
tion, even if only retrospectively. That is, even if we can-
not know at the moment which set of epistemic values is
more truth-conducive than the other in a given context,
we can reach a justified conclusion about this question
over time through increased observation. Hence, even if
they seem arbitrary to us at the moment, a retrospective
evaluation can determine which set of epistemic values
leads to more progress in the Lakatosian sense in the
context of a given scientific question. Therefore, the
charge of arbitrariness, if it is to be accepted at all, is
but rather a temporary issue and strongly tied to not

°For an illustration of how such a procedure might work
even in the absence of extensive experimental and theoretical
knowledge, see our systematic replications framework, (Uy-
gun Tun¢ & Tung, 2023)
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having enough knowledge about a phenomenon.

Furthermore, based on the successful episodes of the-
ory selection in the history of science, it can be argued
that at least in some cases rational disagreement is ev-
idently temporary, i.e., it is probable for rational dis-
agreement to evolve into rational consensus as a re-
sult of mutual critical engagement and additional evi-
dence. This evolutionary process could be interrupted
by the use of social values in scientific inference, which
would eliminate (or at least reduce) the need for seek-
ing critical engagement and additional evidence, and
thus might lead to premature conclusions. Since it is
only retrospectively possible to determine which cases
of rational disagreement will evolve into rational con-
sensus (Lakatos, 1978), it may be argued that using so-
cial values to resolve theory choice, in response to prac-
tical concerns here and now, will be detrimental to the
production of scientific knowledge in the long run by
stunning the growth of at least some theories. One could
therefore argue, in principle, for the exclusion of social
values from scientific inference, even without believing
that all rational disagreements necessarily give way to a
consensus.'?

The first premise of the inductive risk argument, the
epistemic insufficiency thesis, seems to be misguided in
light of the preceding considerations. The argument re-
quires the value-free ideal either to be successfully de-
fended on an infallibilist basis, or to somehow provide
the tools to avoid the logical implications of fallibilism
while still committing to it. This amounts to an un-
successful attempt at reductuo, rather than a fair cri-
tique. However, even if the reader would disagree with
the authors of this paper on the truth of the epistemic
insufficiency thesis, there are equally serious problems
with the second premise, the thesis of legitimate value-
encroachment, which we turn to next.

5. Problems with using non-epistemic values as
evidential sufficiency criteria

The critics of the value-free ideal do not necessarily
deny the ultimate scientific values that value-freedom is
supposed to facilitate, such as veracity. They thus admit
that values may have legitimate and illegitimate uses in
science. At the core of Douglas (2000, 2009)’ demar-
cation strategy between the legitimate and illegitimate
inclusion of non-epistemic values into science lies the
distinction between the direct and indirect roles values
can play in the context of acceptance. Values play a
direct and illegitimate role if they constitute reasons to
accept a scientific claim, thereby playing the same role
evidence plays. However, they play an indirect and le-
gitimate role if they are used to determine how strong
the evidence (or how low the error probabilities) should

be to accept a claim. So, according to the proponents of
the inductive risk argument, the social legitimacy thesis
is valid, since evidence is still the final arbiter of any
scientific inference that uses this strategy.

This strategy encounters a distinct set of problems.
First and foremost, it is not clear what kind of a meta-
criterion determines the extent to which non-epistemic
values are allowed to influence evidential standards.
The problem becomes evident when we realize that if
values are allowed to determine evidential standards for
the acceptance of hypotheses, they may also be used to
arbitrarily increase or decrease those standards. This
will cause evidential standards, such as statistical sig-
nificance thresholds, to lose their intended function to
the effect that it becomes either too easy or too difficult
to confirm a scientific claim, which will in turn license
bad science or more sophisticated forms of science de-
nialism.

If we think in terms of type 1 and type 2 error
probabilities, we see that inflating these error rates be-
yond a level is no different from the situation where
non-epistemic values directly influence scientific con-
clusions. While the exact location of an error control
threshold might be subjected to discussion, we know for
a fact that as type 1 error rates increase it becomes in-
creasingly trivial to provide evidential support for false
hypotheses. Simmons et al. (2011) have shown that one
could even find evidence for factually impossible effects
such as “participants get younger if they listen to When
I'm Sixty-Four by The Beatles instead of Kalimba by Mr.
Scruff” if one simply settles for an elevated type 1 error
rate. Similarly, one might play into the hands of science
denialism just by allowing the type 2 error rate to be el-
evated to a point where the existing body of evidence is
no longer considered as evidence (Steel & Whyte, 2012,
for a related criticism, see). In these examples we do not
see a direct influence of non-epistemic values on scien-
tific conclusions, but the outcomes are no different from
what a direct influence would have produced. Thus, the
allegedly indirect role of determining where to set the
thresholds for acceptable error rates can easily turn into
evidence manufacturing and/or denial.

The question is then, how can the social legitimacy
thesis prevent conclusions that are nothing but wish-
ful thinking with sprinkles of technical jargon? Specifi-

10Tn this context, it can be argued that these kinds of prob-
lems are more likely to be encountered in younger/less mature
disciplines. It can also be argued that there is a serious risk as-
sociated with allowing the social values to be used as criteria
of evidential sufficiency in such disciplines as this may stunt
the epistemic iterative processes (Chang, 2004) that would
help the discipline mature its evidence collection methodolo-
gies.



cally, how shall we determine where an indirect role stops
and a direct role begins non-arbitrarily without appeal to
strictly epistemic criteria? If we accept the need to intro-
duce an epistemic constraint, then it becomes difficult
to say that non-epistemic values indeed play a verita-
ble role. This is because, if the meta-criterion for de-
lineating direct and indirect influences of social values
is strictly epistemic in nature, the argument would ac-
tually turn into a reformulation of the value-free ideal,
instead of its refutation. On the other hand, if we reject
the need to constrain how much weight non-epistemic
values can have in determining where to set the error
control thresholds, then the indirect role evaporates and
we are left only with a direct role, which Douglas crit-
icized as being illegitimate. Thus, Douglas’ distinction
between legitimate and illegitimate uses of social values
in science suffers from a paradox of meta-criterion.

The downstream consequences of the paradox of
meta-criterion become evident when the proposal of
setting value-laden evidence thresholds is regarded as
a strategy to resolve underdetermined theory choice sit-
uations. As a methodological problem, theory choice
requires scientists to reduce the risk of misallocating
empirical support among rival hypotheses, and the only
epistemically rational way to do this is by mitigating the
underdetermination of scientific tests. This route often
takes time, but terminating it prematurely (by using val-
ues in resolving theory choice) not only fails to manage
underdetermination but exacerbates it.

We encounter another problem if we opt to apply the
same strategy to deal with the underdetermination of
scientific tests, namely by using non-epistemic values to
weigh the risks of erroneously rejecting or maintaining a
hypothesis due to false auxiliary assumptions or a false
ceteris paribus clause. Douglas (2000) (p. 565; see also
Biddle and Kukla, 2017) famously extends the inductive
risk argument to apply to all kinds of scientific decisions
preceding the final decision to accept or reject a scien-
tific claim, such as decisions regarding data collection,
analysis and interpretation, or the choice of methodol-
ogy. The problem with applying non-epistemic values
to weigh inductive risks is that regardless of whether
we focus on the epistemic or practical consequences of
error, our risk mitigation strategy should effectively re-
duce the probability of making false auxiliary assump-
tions or making a false ceteris paribus assumption. It
can be easily seen that values are largely irrelevant in
reducing these probabilities. Moreover, if values are
allowed in the selection of instruments, models, pa-
rameters, outlier data points, or background theories
and facts, what prevents these decisions from being ad
hoc? 1If there are no epistemic constraints to prevent
the ad hoc selection of auxiliary assumptions, we can
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easily fall back to the problem of wishful thinking. On
the other hand, if we set epistemic (and hence value-
neutral) meta-criteria to determine the legitimate ex-
tent of social value influences on evidential thresholds,
we manifestly circle back to a value-free position, where
social values are only allowed to influence the initial
preference for weighing some particular epistemic con-
cerns over others, as a subjective decision which is to
be discarded in the long run through collection of more
persuasive evidence (as suggested by, Kuhn, 2003).

6. Epistemic problems require epistemic answers

Last but not least we must address the question: Evi-
dential sufficiency for which decision? There are indeed
not one but two questions:

1) Which evidential threshold would optimally
manage different kinds of error probabilities (so
that the term evidence is meaningfully applicable)?

2) Which level of evidential readiness would be
most optimal to realize objective P in view of the
(social, moral, or political) value V?

As it has been indicated previously by others (most
notably Levi, 1960), this second question is the one the
proponents of the inductive risk argument are indeed
asking, but they present it as if this question has to do
with the interpretation of evidence. Technically speak-
ing, the theory of statistical inference (or hypothesis
testing) and the statistical decision theory (or decision-
making under uncertainty) are distinct, despite having
common historical origins and featuring the term ‘de-
cision’ in relation to a situation involving uncertainty.
A decision in the context of statistical hypothesis test-
ing (to which Both Rudner and Douglas refer) is evi-
dential; it is an aspect of inference (Birnbaum, 1977;
Levi, 1962; Mayo, 1996). A decision in the statistical
decision theory is behavioral, hence much closer to the
literal or intuitive sense of the word. Birnbaum (1977)
compares the two decision schemas to highlight the key
differences. In the context of statistical decision theory,
a typical example of a decision is “place [a given] batch
[of products] in the market” vs “withhold the batch from
the market,” which are concrete actions in the ordinary
sense. In the context of data analysis, a direct applica-
tion of the same schema may lead one to think that the
corresponding actions are “reject HO” vs “do not reject
HO,” where HO is the null hypothesis, whereas a more
appropriate comparison would characterize the decision
options as “reject HO for H1, «, 8” vs’reject H1 for HO,
a, B,” where H1 is the alternative hypothesis, and « and
B are the error probabilities. Using ordinary semantical
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formulations one could express the difference as that
between ‘deciding that evidence E corroborates hypoth-
esis H’ and ‘deciding to act in a certain way that is in ac-
cordance with the truth of H’ (cf. Birnbaum, 1977). Cox
(1958, p.354) similarly characterizes the first as “decid-
ing what types of statements can usefully be made and
exactly what they mean,” whereas “in statistical deci-
sion theory...the possible decisions are considered as
already specified.”

The meaning of ‘acceptance’ in reference to statisti-
cal hypotheses in science corresponds to the inferen-
tial sense of decision and not the behavioral. In Levi
(1960)’s analysis, Rudner (1953)’s conclusion-that evi-
dential sufficiency judgments should reflect the impor-
tance of error-depends on an implicit premise: “To
choose to accept a hypothesis H as true (or to believe
that H is true) is equivalent to choosing to act on the
basis of H relative to some specific objective P.” Without
the pragmatist move to identify the two, the inductive
risk argument is invalid.

One might allude to the fact that the most widely ac-
cepted conceptualization of statistical hypothesis test-
ing, the behavioral account developed by Neyman
(1950, pp.258-259), seems to be compatible with a
pragmatist identification of the above kind. However,
similar to the term ‘decision’, ‘behavior’ also takes on
a special, epistemic meaning in scientific statistical in-
ference. As we explained elsewhere, the most plausi-
ble way to understand the meaning of behavior in the
Neyman-Pearson approach to scientific hypothesis test-
ing is that of considering an observation as expressing a
“singular fact” and acting on the basis of it in an ongoing
process of inquiry (Uygun Tung et al., 2023). Acting on
the basis of H in scientific research means using it as
background knowledge to test a subsequent hypothesis,
where the relevant “objective” is the growth of knowl-
edge through further inquiry-an epistemic one. There-
fore, even if we accept Rudner’s implicit premise, the
question according to which the long term error rates
should be determined in science is still the first ques-
tion (i.e. Which evidential threshold would optimally
manage different kinds of error probabilities so that the
term evidence is meaningfully applicable?) but not the
second.

Another probable source of confusion is that infer-
ential or evidential decisions are not merely about cog-
nitive attitudes or theoretical/methodological commit-
ments in an ongoing process of inquiry but also involve
sharing one’s conclusions with a wider community of
fellow scientists. From one perspective, it is where the
line that demarcates the evidential and behavioral type
of decisions is blurred, because publishing one’s find-
ings is an action with potential ethical responsibilities.

Granting this much, we still have a problematic confla-
tion at our hands, that goes beyond the debate on what
decisions mean in statistical inference. The conflation
concerns essentially different kinds of action, namely
speech and conduct. The categories of speech act and
conduct are distinct, and have very diverse implications
in terms of ethical responsibility. A scientific report,
as a kind of assertion, must be honest and account-
able, namely it must disclose and justify the methods
and standards adopted to collect, analyze, and inter-
pret the data, and should not overclaim, i.e., assert con-
clusions the research procedure does not license. Sci-
entifically informed policy, as conduct, must assess and
evaluate the ethical, economic, social and possibly po-
litical stakes involved, and be in a position to explain
and defend the methods of assessment and the princi-
ples evaluation. This important distinction is completely
neglected even in the more recent formulations of the
inductive risk argument (see, Havstad, 2022)!!. The
responsibility assigned to scientists by the inductive risk
argument is one of conduct, yet publishing your find-
ings is a speech act par excellence, therefore the ethical
responsibilities must be judged accordingly. If the pro-
ponents of the inductive risk argument reject any rel-
evant distinction between the category of speech acts
and that of conduct, a controversial move if not inad-
missible, they must explicitly and successfully argue for
this.

Second, when we have a closer look at the actual
content of speech in scientific publications, we over-
whelmingly see linguistic “stance markers” which con-
vey some degree of uncertainty or conditionality even
if the scientific claims are not explicitly hedged '?. Us-
ing verbs such as ‘suggests’ instead of ‘demonstrates’ or
‘proves’, or adding sentential adverbials such as ‘as far
as we know’ is very typical of scientific jargon, espe-
cially for causal claims or idealized models, because of
the inconclusiveness of scientific justification or the fact
that most scientific knowledge has boundary conditions
in its application. To the extent that a scientific report
transparently and honestly discloses the uncertainties
associated with the claims, as a speech act it cannot be
taken as an assurance (which signals certainty), and it
is at least questionable that it can even be taken as an

"This particular formulation is argued to be valid and
sound by some scholars (M. J. Brown, 2024; M. J. Brown &
Stegenga, 2023, see). However, because the premises 1-4 fail
to distinguish different types of decisions (i.e., inferential and
behavioral) and actions (i.e., speech and conduct) they are
arguably false, and thus the recent formulation can be said to
be valid but not sound.

12Gee also Benton and Van Elswyk (2020) on hedged asser-
tions.



assertion (which signals knowledge)'®>. Consequently,
it is very difficult to see how such a report generates a
responsibility in reference to the risks associated with
the conduct that assumes the truth of what has been
said and commits to act on it.

But nonetheless, the invalidity of the inductive risk
argument does not completely hang on the distinction
between two kinds of decisions or actions, that is be-
tween belief and action or speech and conduct. Even
if we understood both decisions in a somewhat similar
sense, the objectives are completely different in nature:
Any objectives that may feature in setting the eviden-
tial standards for scientific inference are ‘theoretical’ or
‘epistemic’. Due to the difference in the nature of the
objectives the second kind of decision is typically insu-
lated from the first; the stakes influencing it do not en-
croach on the first kind of decision context. For instance,
policy makers sometimes decide to act on the basis of
weak scientific evidence for social considerations, which
does not feed back into science - no scientist endorses or
even pursues a scientific proposition because it is used
as a basis for some societal intervention.

We can speculate that the reverse is also true: The
stakes that might influence epistemic decisions do not
encroach on the pragmatic decision contexts. The pro-
ponents of the pragmatic encroachment thesis derive
their motivation from the epistemic norms of practical
rationality. Hookway (1990, p.139)says about justifica-
tion that “our understanding of the amount of evidence
we require in support of an hypothesis before we can
describe it as justified may reflect the degree of support
that is required before we can feel that we are acting re-
sponsibly when we act upon it.” Similarly, Fantl and Mc-
Grath (2002, p. 78) say that “S is justified in believing
that p only if S is rational to act as if p.” However, engi-
neers use Newtonian mechanics in all kinds of applica-
tions all the while knowing that it is evidently false, and
do not prefer to use the better corroborated alternatives
since these do not increase but decrease practical utility.
Hence, this seems to be an odd way to specify necessary
conditions for knowledge and action. Practical action
has many norms which may be in conflict or tension
with one another. The epistemic norms of action (such
as acting on the basis of knowledge or justified belief)
are not immune to being overridden by moral norms,
for instance if not acting due to insufficient evidence
would create certain harm. In the case of scientific pol-
icy advice, the policy makers might rationally decide,
given various factual and normative considerations, to
act on the basis of merely plausible opinions by the sci-
entific advisers, or they may even rationally decide not
to accept a very narrow error margin that satisfies the
scientific researchers as practically unacceptable.
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Importantly, if the pragmatic considerations affect-
ing the decision making context are allowed to alter
the conditions of epistemic justification, which are then
used to justify practical action per the epistemic norms
of practical rationality, we end up with a vicious type of
circularity. To illustrate, in the error-theoretical frame-
work error control serves risk management, which may
also involve societal risks. If risk-driven concerns are
allowed to influence the decisions pertaining to error
control, which Douglas’ argument implies, error control
may not properly serve risk management. This meta-
risk will arise especially in contexts where epistemic
and non-epistemic values can compete. The balancing
of the type 1 and type 2 error probabilities employs
epistemic values, where scientists try to optimize the
trade-off between discovery and accuracy for a given
research domain. When non-epistemic values are al-
lowed to compete with epistemic values, they will nec-
essarily divert from this epistemic optimum. In the long
run, scientifically informed policy will be less effective
if risk management guides error control rather than be-
ing guided by it. This in turn will be detrimental to
the very non-epistemic values that inform risk manage-
ment judgments. There are important reasons why we
should answer epistemic questions with epistemic an-
swers. Otherwise, we come up with euphemisms for
bias.

We argued that the inductive risk argument fails to
justify the key premise of epistemic insufficiency be-
yond what is entailed by fallibilism about scientific
knowledge, and its second premise of legitimate value-
encroachment suffers a meta-criterion problem. In clos-
ing the paper, let’s cast the net a bit wider. However
unlikely, let’s imagine that a value or set of values are
proposed with the promise of avoiding the problem of
meta-criterion, on the grounds that while themselves
not being epistemic values, they are not epistemically
arbitrary either. This approach would not solve but
create yet another meta-criterion problem, as we argue
next.

13Some authors have suggested that scientific publications
violate or do not conform to the ordinary norms of assertion,
most commonly, the knowledge norm. For instance, Dang and
Bright (2021) argue that scientific publications require nei-
ther belief nor truth nor justification. Dethier (2022) argues,
on the other hand, that some scientific assertions can still be
properly made without being known or justifiably believed:
A scientific proposition can be “advanced” in a publication,
by saying, for instance, that “The evidence provided by the
present study supports P.”
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7. The problem of meta-criterion reappears

Some philosophers take a cognitivist/realist perspec-
tive on social/moral values and reject the primacy of
epistemic values over social values in scientific inference
(M. J. Brown, 2013, 2017). According to this approach,
some social values may be based on better reasons than
others, and to the extent that they are based on better
reasons (rather than subjective preferences), they can
be used as inference criteria like epistemic values (M. J.
Brown, 2017). Good reasons can be empirical as well
as moral, since, according to these scholars, there is a
two-way relationship between social values and empir-
ical theories (Anderson, 2004; Nelson, 1990). Defined
as such, right values are not mere preferences (thus not
associated with wishful thinking) and squarely belong
to any sound scientific reasoning.

The proponents of the right values approach arguably
attribute to social values the uncertainty-reducing func-
tions previously attributed to epistemic values, such as
determining the auxiliary assumptions in a way that
would increase our ability to evaluate competing the-
ories (Kuhn, 2003; Laudan, 1978). Since epistemic
values are defined in terms of being truth-conducive
(Laudan, 1984; McMullin, 1982; also see Steel, 2010
for intrinsic and extrinsic distinction), their uncertainty-
reducing function is relatively uncontroversial, at least
in the long run. Social values by definition have no
intrinsic property of truth-conduciveness, irrespective
of whether they are “right” or not. Even assuming
that right values interact with facts, it is not clear why
it would be better to take the indirect route of ap-
pealing to right values in epistemic inference rather
than directly using the data and epistemic criteria that
have shaped these values. It is therefore questionable
whether social values, even if they are "right," would
constitute the right reasons in the context of scientific
inference.

Furthermore, the uncertainty-reducing function of
right values depends on these systems of values lead-
ing to consistent, or at least converging results when
applied to different test situations. Since there is a clear
meta-criterion for epistemic values (i.e., truth/verisimil-
itude) it can be argued that utilizing epistemic values
would result in increasingly consistent results, at least
in the long run. In terms of social values, there is no
such clear meta-criterion, and finding one may not be
possible. Also, even admitted by other critics of the
value-free ideal, more often than not the implications of
social values for the practical scientific inquiry are very
vague and it is very hard for scientists to conceptualize
and anticipate such implications in a sufficient manner
(de Melo-Martin & Intemann, 2016).

This problem concerns the existence of a value-

independent meta-criterion for the selection of right
values. In the absence of a strictly value-independent
meta-criterion, we encounter a circularity issue, that
is, the argument for the right values would still be de-
pendent on the same or associated values. The issue
of circularity with respect to the choice of right values
can also be conceptualized as in the Mannheim Para-
dox, which was previously formulated in the context of
political ideologies. The Mannheim Paradox points to
the impossibility of a completely ideology-free perspec-
tive when evaluating ideologies (Breiner, 2013; Geertz,
2014; Ricceur, 1986). Since the criteria used to evaluate
the ideologies are themselves necessarily (at least par-
tially) ideological, it is impossible to have a completely
non-ideological position on ideologies. In other words,
the proposition that a value system is the "right" value
system cannot be justified independent of criteria that
are associated with that same value system, and hence
will be necessarily circular.

The circularity issue described here should not be
thought of as a purely logical problem, because it would
also possibly lead to a coordination issue. Ignoring for
the moment the conundrum that it seems impossible to
find a value-independent yet non-epistemic meta-criterion
for choosing the right values, there is also the risk that
the values of the social groups that have an advantage
in the process of determining the “right” values will
be absolutized in the garb of scientific facts. Even a
meta-criterion such as “harm-avoidance” (see Douglas,
2009), on which one might assume that there is a broad
consensus, can be argued to involve some ideological
contestation. Previous studies show that harm avoid-
ance is of different degrees of importance to liberal
and conservative individuals, and that conservatives are
more likely than liberals to use criteria other than harm
in their value judgments (Kivikangas et al., 2021). That
is, in any value trade-off situation liberals tend to weigh
harm-avoidance as more important than other values
compared to conservatives (Graham et al., 2009). From
this perspective one might argue that the adoption of
harm-avoidance as a meta-criterion reflects the predom-
inantly liberal worldview of academics, especially in so-
cial sciences and humanities (Cardiff & Klein, 2005).

8. Conclusion

In this paper, we have investigated the two key
premises of the inductive risk argument against the
value-free ideal of science, the theses of epistemic insuf-
ficiency and legitimate value-encroachment. Our anal-
ysis, particularly regarding the purported arbitrariness
of evidential thresholds, showed that the inductive risk
argument does not demonstrate the untenability of the
value-free ideal of science beyond what can already be



inferred from the thesis of fallibilism regarding scien-
tific knowledge. Since the untenability of the value-free
ideal cannot be deduced solely from fallibilism about
knowledge, the inductive risk argument falls short of
justifying the epistemic insufficiency thesis. Our anal-
ysis also indicates that incorporating social values into
judgments of evidential sufficiency would weaken the
justification of scientific inferences due to lack of a
meta-criterion for the legitimate use of social values in
scientific inference. The problem of meta-criterion leads
to one or more major problems, depending on the ar-
gumentative strategy adopted; namely wishful thinking
(due to failure to indicate a meaningful distinction be-
tween epistemically legitimate and illegitimate uses of
social values), category mistakes in identifying the rel-
evant parameters for decision-making (due to failure to
identify the actual stakes involved in epistemic vs prac-
tical domains), and the Mannheim-style paradoxes of
social legitimacy (due to failure to justify social values
in a non-circular manner). Thus, the thesis of legiti-
mate value-encroachment is wrong, as value-ladenness
exacerbates the inferential risks rather than resolving or
diminishing them.

The ball is now in the court of the proponents of
the inductive risk argument to show if and how the
inductive risk argument 1) poses a distinct epistemic
challenge that cannot already be inferred from fallibil-
ism about knowledge and 2) identify a rational method
for determining a meta-criterion that would not lead
to problems such as wishful thinking, illegitimate en-
croachment between domains, and the Mannheim Para-
dox. As it stands, the inductive risk argument does not
seem to establish the untenability of the value-free ideal
and the need for a value-laden alternative.
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