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Abstract

I introduce Inevitable Actualization (IA), an ontological modality: if (1) the universe’s future
time involves an unbounded sequence of causal trials (H∞) and (2) a state S has a non-zero
physical probability Pn > 0 in trial n such that the sum

∑∞
n=1 Pn diverges, then S is guaranteed

to occur with probability one. IA is developed through a rigorous measure-theoretic foundation,
probabilistic modeling with dependence (under standard mixing conditions) and absorbing-state
exceptions, contrasting IA with classical modalities and modern multiverse theories. Positioned
as a distinct third category alongside necessity and contingency, IA’s unique grounding rests
on temporal structure and probability. I address objections (Boltzmann brains, the measure
problem, and identity duplication) and illustrate IA’s implications for ethics, cosmology, and
personal identity, acknowledging formal challenges.

1 Introduction: IA as Third Modality

Classical metaphysics distinguishes necessity (true in all possible worlds; cannot fail to exist) from
contingency (true in some but not all possible worlds; might fail to exist) (Plantinga, 1974; Lewis,
1986). This paper introduces and defends a third category, Inevitable Actualization (IA), defined
conditionally on the structure of time and probability.

Conditional Thesis: If (a) the universe’s future unfolds through an unbounded sequence
of causal trials τn (H∞), provided the system displays sufficiently fast decay of temporal cor-
relations (φ-mixing; see App F), and (b) a physically possible state S has probability Pn =
P (S occurs in trial τn) such that

∑∞
n=1 Pn diverges (the Persistence Condition, §6.5), then S occurs

with probability one.
While IA exhibits characteristics reminiscent of both necessity (providing a guarantee of eventual

occurrence within its framework) and contingency (being entirely dependent on specific, potentially
falsifiable cosmological conditions like unbounded time), we contend that its unique grounding
mechanism justifies its classification as a distinct ontological category. Unlike classical necessity,
rooted in logic or essential properties, and contingency, rooted in mere possibility within causal
histories, IA’s inevitability arises specifically from the structural interplay of temporal extent and
probabilistic physical laws. Its guarantee is fundamentally conditional, distinguishing it sharply
from unconditional metaphysical necessity. IA is thus a temporal-probabilistic modality. This pa-
per formalizes IA, situates it among existing theories, and explores its philosophical consequences,
leveraging a conditional framework that allows exploration without requiring definitive empirical
proof of infinite time itself (Jaynes, 2003; Norton, 2021). The P (S) > 0 condition refers to the ob-
jective probability within the actual physical system, including any inherent stochasticity (quantum
effects, noise). The concepts of "causal trial" (a discrete time-slice; see §2) and "Minimal Causal
History" are central and require careful definition (§2) to ensure the framework applies coherently
across different physical scales and state complexities. IA applies only if both conditions (H∞ and
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persistence) hold strictly; even a very distant but finite time cutoff or eventual decay of P (S) such
that

∑
Pn <∞ invalidates the guarantee (§6.5).

This paper proceeds as follows:

• §2: Defines "occurrence" rigorously, including "Minimal Causal History", and discusses scope.

• §3: Situates IA within metaphysics (modality, realism).

• §4: Briefly reviews related literature and challenges.

• §5: Develops the measure-theoretic foundations.

• §6: Presents the formal probabilistic model.

• §7: Engages with key objections.

• §8: Explores applications and implications.

• §9: Concludes and outlines future work.

• Appendices: Provide technical details (Apps A-H).

2 Defining "Occurrence" with Causal History

To avoid counting fleeting, physically meaningless fluctuations (like instantaneous Boltzmann Brain
flashes) as genuine realizations, and to ensure we are tracking meaningful states, we refine the
definition of an event’s "occurrence":

Definition: Sustained Occurrence. A trial i (corresponding to a temporal interval [ti, ti+1))
"realizes" state S if and only if:

1. Minimal Causal History: History(State(ti)) ⊇MinimalHistory(S)

2. Sustained Duration: State(t) ∈ Region(S, δ) for all t ∈ [ti, ti + Tmin] ⊂ [ti, ti+1)

• Minimal Causal History: This condition ensures that an occurrence of S is not merely a
configuration that looks like S, but one that has arisen through a physically appropriate path-
way. It refers to the necessary set of antecedent conditions or developmental stages without
which the state S would not be considered a genuine instance of its type. For example, the
state S = "a mature oak tree" requires a history including acorn and seedling stages; a random
atomic configuration resembling an oak (a Boltzmann Tree) lacks this history. Similarly, S =
"a correctly folded protein" requires ribosomal synthesis, not just spontaneous assembly. The
precise specification of MinimalHistory(S) depends heavily on the nature of state S—trivial
for fundamental particles, crucial for complex, evolved, or information-bearing states. Rigor-
ously applying this condition requires defining a measure over the space of possible histories
and demonstrating that the subset satisfying MinimalHistory(S) has positive measure un-
der the physical dynamics; this poses a significant formal challenge, particularly for highly
complex states (see §2.1).

• Sustained Duration (Tmin) & Tolerance (δ): These ensure IA applies to states with
meaningful persistence and avoids issues of exact recurrence (which often has probability zero).
The choice of Tmin and tolerance δ would depend on the specific state S being considered.
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Simple Example: Coin Flips. Consider S = "a run of at least 3 consecutive Heads". Here, a
"trial" is a single coin flip. The state S requires Tmin = 3 trials (flips). The tolerance δ is effectively
zero for the discrete outcome "Heads". The MinimalHistory(S) is simply the two preceding flips
also being Heads. A sequence ...T H H H... realizes S starting at the first H of the run, while ...T
H T H... does not.

Complex Example: If S represents "a conscious thought about Vienna," Tmin might be on
the order of milliseconds or seconds (the minimum duration for such a thought process to complete
coherently), and δ would define the allowable variation in the underlying neural state. In contrast,
if S represents "a stable Helium-4 atom," Tmin could be vastly longer (reflecting its nuclear stability
timescale), and δ would represent small variations in its quantum state (e.g., position, momentum
within certain bounds).

The region Region(S, δ) is assumed to have non-zero measure in the physically accessible phase
space.

2.1 Scope and Extension to Complex States

The formal machinery of IA, particularly the application of the Persistence Condition (
∑
Pn di-

verges) using theorems like Borel-Cantelli, relies on well-defined probabilities Pn for the occurrence
of state S in trial τn. This, in turn, depends on the Sustained Occurrence definition being mathe-
matically tractable.

• Formal Scope: Rigorously demonstrating that a state S satisfies the conditions for IA is most
feasible for coarse-grained, relatively simple states where the phase space region Region(S, δ),
the minimum duration Tmin, and crucially, the MinimalHistory(S) filter can be explic-
itly characterized and shown to have positive probability under the dynamics. The cellular
automaton example (Appendix G) illustrates such a case where history conditions can be
formally imposed. The formal claims of IA, grounded in probability theory, are strongest for
such well-defined states.

• Extension to Complex States (Open Problem): Applying IA rigorously to high-level
macroscopic states, such as "a conscious thought about Vienna" or "a functioning biological or-
ganism," presents significant challenges. Defining the precise phase space region (δ), minimum
duration (Tmin), and especially the set of admissible causal histories (MinimalHistory(S))
in a measurable way is currently intractable. Characterizing the measure over the space of
all possible trajectories (histories) for such complex systems is a profound open problem in
statistical mechanics and complex systems science. Demonstrating that the set of histories sat-
isfying MinimalHistory(S) has positive measure under the physical dynamics—for example,
proving that stable self-replicating polymers can form with non-zero probability in standard
interacting particle models or QFT settings—is a key requirement that remains conjectural
for complex S and is a crucial area for future research (see Future Directions §9).

• Conceptual Applicability: Despite these formal hurdles, IA remains conceptually relevant.
If we assume, as seems physically plausible, that complex states like consciousness do have
some non-zero physical probability of arising through standard causal pathways (satisfying
some implicit MinimalHistory(S)) and can persist for some Tmin, then if those probabilities
satisfy the Persistence Condition (

∑
Pn diverges) in an eternally evolving universe, IA would

still imply their eventual actualization. The philosophical implications explored later (§7,
§8) often hinge on this conceptual applicability to complex states, even pending full formal
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rigor. Future work (§9) must address the challenge of better defining complex states and their
historical constraints within a probabilistic framework.

3 Metaphysical Implications of IA

IA offers a novel perspective on several metaphysical concepts:

• Modality: IA introduces a modality, Tp (Temporal-probabilistic necessity), such that TpS
holds if and only if, under the conditional assumptions of IA (H∞∧

∑
Pn = ∞), the probability

of S occurring is 1. This modality sits between strict logical necessity (□) and possibility (♢),
formalized as: P (∃t : Occurs(S, t)|H∞ ∧

∑
Pn = ∞) = 1.

• Distinction from Logical Necessity and Probability-1: It is crucial to distinguish TpS
from both logical necessity (□S) and simple probability-1 assignment (Pr(S) = 1). Philoso-
phers note that probability 1 does not entail necessity (e.g., a dart hitting a real line has
probability 1 of not hitting the exact point 0, yet this isn’t logically necessary). IA acknowl-
edges this; TpS is explicitly weaker than □S. Furthermore, TpS is stronger than merely
assigning Pr(S) = 1 in some static probability space. The "necessity" of IA arises specifically
from the temporal unfolding over an infinite sequence of trials combined with persistent pos-
sibility. It’s not just that S has measure 1 in some space, but that the dynamics guarantee
its eventual realization in time if the conditions hold. Thus, we maintain the distinction:
□S ̸= (Pr(S) = 1) ̸= TpS. While derived from probability-1 results (like Borel-Cantelli),
Tp denotes a physically grounded guarantee of eventual occurrence, not merely an abstract
measure-theoretic property.

• Contrast with Standard Probabilistic Modalities: While modal logic has incorporated
probability (assigning numerical likelihoods to possible worlds or propositions, Fagin and
Halpern, 1994), IA’s Tp operator differs fundamentally. Standard probabilistic modalities of-
ten treat probability-1 events as ’almost necessary’ within a static framework or interpret
probabilities epistemically (degrees of certainty). IA, however, defines its necessity dynami-
cally and extrinsically. The guarantee TpS arises not merely from P (S) = 1 in some abstract
sense, but specifically from the temporal process—the interplay of persistent positive probabil-
ity Pn > 0 with an unbounded sequence of future trials (H∞), as captured by limit theorems
like Borel-Cantelli. It is the assumed infinite duration of the process that converts a per-
sistent possibility into a probability-1 actuality. This grounding in physical time structure
and objective chance distinguishes IA from epistemic or purely measure-theoretic accounts of
probability-1 necessity.

• Axiomatic Considerations & Distinctness: Developing a formal logic for Tp requires
care due to its conditionality and probabilistic nature. Its properties differ significantly from
standard modal logics (like K, T, S4, S5), solidifying its claim as a distinct modality. The
dramatic failure of Seriality (Axiom D) is seen immediately: consider S = "a fair coin lands
heads" and ¬S = "a fair coin lands tails". Given unbounded flips (H∞) and P (H) > 0, P (T ) >
0 such that

∑
P (H) diverges and

∑
P (T ) diverges, both TpH and TpT hold (both heads and

tails are guaranteed to occur eventually). This violates the principle TpS → ¬Tp¬S (If S
is IA, then ¬S is not IA), which is analogous to the D axiom (□p → ♢p) fundamental to
many standard modal systems. Other standard rules and axioms also fail or require careful
interpretation:
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– RN (Rule of Necessitation): If ⊢ S, then ⊢ TpS fails. Logical truths are not guaran-
teed to occur physically.

– Axiom T: TpS → ♢S holds trivially, but TpS → S fails (IA guarantees eventual, not
present, occurrence).

– Distribution over Conjunction: Tp(S1 ∧ S2) → (TpS1 ∧ TpS2) likely holds, but the
converse (TpS1 ∧ TpS2) → Tp(S1 ∧ S2) fails due to potential anti-correlation.

– Iteration (Axioms 4 & 5): TpS → TpTpS and ¬TpS → Tp¬TpS are unlikely to hold.

These violations show Tp’s axioms form a sui generis system—neither alethic nor deontic. Its
distinct logical structure is dictated by its unique temporal-probabilistic grounding.

Box 1: Proposed Minimal Axiom/Rule Set for Tp (Conjectural)
A starting point for formalizing Tp might include:

– (A1) All propositional tautologies.

– (A2) Distribution over ∧: Tp(ϕ ∧ ψ) → (Tpϕ ∧ Tpψ)
– (R1) Physical Law Necessitation: If ϕ is entailed by the physical laws L assumed

in the model, then ⊢ Tpϕ. (Captures respect for physical constraints; needs precise
formulation).

– (R2) Conditional Modus Ponens: From ⊢ Tp(ϕ → ψ) and ⊢ Tpϕ, infer ⊢ Tpψ.
(Plausible, but requires semantic validation regarding persistence).

Note: This set is minimal and provisional; its soundness and completeness relative to a
suitable history-based semantics remain open questions (see §9).

• Formal Semantics & Non-Reducibility: Further underscoring its distinctness, consider
the path towards a formal semantics and completeness result. A minimal calculus for Tp might
include rules like Modus Ponens (R2 above), perhaps a weakened distribution rule (A2), and
potentially a restricted necessitation rule tied to physical laws (R1). The intended seman-
tics would likely involve models representing physical systems evolving over an unbounded
sequence of trials (perhaps based on probabilistic temporal logic or dynamic logic frame-
works, whose state space consists of histories or paths), where TpS holds iff the probability
of S occurring (given the Persistence Condition

∑
Pn = ∞) is 1. Soundness (provable im-

plies true) seems achievable. Completeness (true implies provable) is more challenging, likely
requiring strong assumptions about the underlying physics expressible within the logic. Cru-
cially, attempting to translate Tp into standard alethic systems (like S4 or S5) seems destined
to fail. Any translation function tr mapping Tp-formulas to standard modal formulas (e.g.,
tr(TpS) = □♢physS or similar) would struggle. Because Tp fundamentally relies on the global
temporal condition H∞ and the asymptotic condition

∑
Pn = ∞—properties not typically

captured by standard Kripke semantics based on world-accessibility—a translation preserving
validity seems unlikely. For instance, the failure of Seriality for Tp contrasts sharply with
its validity in many standard systems (like KD), indicating a deep structural difference that
simple translation cannot bridge without distorting one logic or the other. This suggests
Tp occupies a unique logical space defined by its specific physical preconditions (see Future
Directions §9).
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• Modal Realism: Unlike Lewisian modal realism (Lewis, 1986), which posits concrete parallel
worlds, IA suggests possibilities (with P > 0) are actualized sequentially within a single,
temporally extended causal history (or within each branch of an Everettian multiverse, if
applicable). It offers a form of sequential or temporal modal realism, constrained by the
physics of this universe.

• Grounding: The inevitability described by IA is grounded not in abstract logical relations or
essences, but in the concrete, unfolding structure of physical laws, probability, and assumed
temporal extent. This aligns with causal structuralist or physicalist grounding views (cf.
Schaffer, 2007; Stoljar, 2017).

• Comparison with Grounding Frameworks & Clarification: IA’s grounding differs from
Schaffer’s priority monism (where the cosmos as a whole grounds its parts) in that IA’s guar-
antee arises from the interaction of local probabilistic laws with a global temporal property
(unboundedness). It’s also distinct from simple microphysical grounding, as it relies on statisti-
cal behavior over vast timescales, not just instantaneous micro-configurations. The grounding
base for TpS is explicitly the conjunction of the physical system’s characteristics and the cos-
mological context: ⟨Laws,H∞, Pn⟩, where Laws determine the dynamics and probabilities
Pn, H∞ asserts unbounded trials, and Pn satisfies the Persistence Condition

∑
Pn = ∞.

It is this specific structure ⟨Laws,H∞, Pn⟩ |= TpS that constitutes the grounding relation.
This structural grounding is distinct from the grounding of classical recurrence theorems in
ergodic theory (like Poincaré’s). Those theorems typically rely on measure preservation (e.g.,
Liouville’s theorem) within a bounded phase space volume ensuring a system revisits neigh-
borhoods of past microstates, whereas IA relies on persistent positive physical probability over
an unbounded sequence of trials, guaranteeing the eventual occurrence of specific state types,
potentially in dissipative or evolving systems.

• Epistemic vs. Metaphysical Contingency: The conditional nature of IA ("If H∞ and
Persistence hold...") might lead to the objection that IA collapses into standard contingency,
as the conditions themselves are empirically uncertain. It is vital to distinguish:

– Epistemic Contingency: Our current knowledge about whether H∞ and the Persis-
tence Condition for a given S actually obtain in our universe is incomplete. These are
open scientific questions.

– Metaphysical Status (Given Conditions): IA makes a claim about the modal status
of S assuming the conditions hold. If they hold, IA asserts that S possesses a unique
status—temporal-probabilistic necessity (TpS)—which is stronger than mere contingency
(where S might or might not occur even if possible) but weaker than logical/metaphysical
necessity (where S could not possibly fail to occur). IA explores the consequences of
these physical conditions for modality, rather than asserting the conditions themselves
are necessary.

4 Brief Literature Context and Challenges

IA intersects with and faces challenges from several areas:

• Classical Recurrence Theorems (e.g., Poincaré): While related through the theme of
recurrence, these theorems typically apply to closed, conservative systems returning to neigh-
bourhoods of previous microstates within finite phase spaces. Crucially, classical recurrence
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theorems depend on measure preservation in bounded phase spaces, whereas IA requires only
persistent positive chance over unbounded time. IA differs significantly: it applies to poten-
tially open, evolving, or dissipative systems (like the universe) over unbounded time, guar-
antees the occurrence of specific state types S (potentially complex and defined with causal
history, not just microstates) based on persistent physical P (S) > 0 satisfying

∑
Pn = ∞,

and relies on probabilistic limit theorems (like Borel-Cantelli) over infinite trials rather than
solely on measure preservation in a fixed phase space. The grounding mechanisms are distinct
(§3).

• Cosmology: Models inconsistent with infinite future time (e.g., Big Crunch, Big Rip if
w < −1, certain cyclic models, terminal vacuum decay via Coleman-De Luccia instantons if
the decay rate is too fast) would invalidate IA’s conditional premise H∞. Eternal inflation
models face measure problem critiques (Vilenkin, 2013; Guth, 2007).

• Anthropic Reasoning: The choice of observer priors (Self-Sampling Assumption - SSA vs.
Self-Indication Assumption - SIA) affects predictions, especially regarding Boltzmann Brains
(Bostrom, 2002). We adopt SSA (§7.1) based on arguments favoring typicality.

• Foundations of Probability: Debates about objective chance (propensities) vs. subjective
credence (Bayesianism) vs. frequentism vs. logical interpretations (Norton, 2021; Williamson,
2016) impact the interpretation of P (S) > 0. IA leans towards an objective, law-based
interpretation of probability (propensity or hypothetical frequency).

• Justification of Objective Probability: IA concerns the objective occurrence of events in
the physical world, independent of any observer’s belief state; hence, subjective credence is
inappropriate for defining P (S). While actual frequencies are finite, IA relies on the limiting
behavior implied by physical laws, fitting a hypothetical frequency or propensity interpreta-
tion. Norton’s material theory (Norton, 2021), which denies universal formal rules of induc-
tion and grounds inference in local material facts, poses a challenge. However, IA relies on
mathematical theorems (Borel-Cantelli) that apply broadly given certain formal conditions
(independence/mixing,

∑
Pn = ∞). While the value of P (S) and the satisfaction of the

conditions are material facts determined by physics, the implication (probability 1 occurrence
given the conditions) seems to follow from the formal structure of probability itself, suggest-
ing the material theory might be too restrictive here, or that the "material fact" includes the
mathematical structure of probability applicable to the physical system.

5 Measure-Theoretic Foundations

Handling infinities requires careful measure theory (Kolmogorov, 1956):

5.1 Normalized Temporal Measure (µT )

To apply standard probability theorems (like Borel-Cantelli) over infinite time, we often discretize
the future into a countable sequence of "trials" n = 1, 2, ... (see Appendix C for construction).
Assigning positive weights wn > 0 (e.g., reflecting proper time duration, scale factor expansion, or
observer density within trial n) defines a measure µW based on these weights. The total measure is
W =

∑∞
k=1wk.

Two cases arise:
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1. Finite Total Measure (W < ∞): If the sum of weights converges (e.g., using observer
density µO in standard ΛCDM), we must normalize to define a standard probability measure
µT (n) = wn/W . Standard probability theory, including expectation values and convergence
theorems, can then be applied directly to this normalized measure µT .

2. Infinite Total Measure (W = ∞): If the sum of weights diverges (e.g., using uniform
weights or proper time in eternal expansion), normalization over the entire infinite sequence
is impossible. In this scenario, establishing IA does not require normalization. Instead, we
rely directly on limit theorems applicable to sequences of events. The key tool is the second
Borel-Cantelli Lemma (§6.1), which guarantees occurrence with probability 1 provided the
sum of probabilities

∑
Pn diverges, regardless of whether the underlying weighting measure

µW is finite. Calculations of relative frequencies or expectations in this case require careful
limiting procedures over finite intervals.

5.2 Spacetime Volume (µV ) vs. Observer-Moment (µO) Measures

• µV : In eternally expanding universes, the 4-volume measure grows without bound. Using
this naively often leads to paradoxes like the youngness paradox or Boltzmann Brain (BB)
dominance, as late-time, low-density fluctuations occupy vastly more volume.

• µO: Measures weighted by the density of observers or complexity (e.g., based on entropy
production or computational capacity) often yield finite integrals (W <∞ case above), peaked
during eras of structure formation (Page, 2008; Carroll, 2017). This provides a more physically
motivated weighting for typicality arguments (like SSA).

IA’s Approach: IA’s core claim relies on P (S) > 0 over an unbounded sequence of trials,
regardless of weighting. However, when addressing objections like BBs (§7.1) or calculating relative
frequencies, using a physically motivated measure like µT weighted by µO (often falling into the
W <∞ case) becomes crucial.

5.3 Quantitative µO Dominance Over Boltzmann Brains (BBs)

Using standard ΛCDM parameters (H0,Ωm,ΩΛ), the integrated observer-moment measure
∫
µOdt

is finite (W < ∞) and overwhelmingly dominated by the matter/structure-formation era (t ≈ few
Gyr). Estimates comparing the measure for ordered observers arising through standard evolution
versus spontaneously fluctuated, sustained BBs in the far future vacuum show the former dominates
by many orders of magnitude (see Appendix E for quantitative estimate), justifying the use of SSA
without predicting we are BBs (Carroll, 2017; Page, 2008; Aguirre and Tegmark, 2011). This
resolves a major challenge for eternal cosmologies.

6 Formal Probabilistic Model of Actualization

6.1 Lemma for Independent Trials (Second Borel-Cantelli Lemma)

Let En be a sequence of independent events in a probability space. (The use of a countable sequence
derived from potentially continuous time is justified in Appendix C). If

∑∞
n=1 P (En) diverges, then

P (En occurs infinitely often) = 1. Since IA requires only at least one occurrence, the condition∑
Pn = ∞ (where Pn = P (En)) is the crucial requirement. The probability of En never occurring is

P (∩∞
n=1E

c
n) = limN→∞

∏N
n=1(1−P (En)). If

∑
P (En) diverges, this product limit goes to 0. Thus,
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P (En occurs at least once) = 1. (This lemma applies directly even if the underlying temporal
measure µW is infinite, as discussed in §5.1). Note that while this establishes occurrence with
probability 1, it does not mean occurrence is logically necessary; it remains physically possible
(though probability 0) for the event never to occur, analogous to a dart randomly thrown at a line
segment never hitting a specific pre-chosen point.

6.2 Dependent Trials & Mixing Conditions

IA can hold even with dependencies, provided the dependencies weaken sufficiently over time such
that the system doesn’t get permanently stuck avoiding state S. Standard results from probability
theory (Appendix F) show that IA holds under various mixing conditions (e.g., φ-mixing or α-
mixing with coefficients decaying sufficiently quickly, such as

∑
ϕ(n) < ∞), which ensure that the

state of the system at one time becomes increasingly independent of its state far in the past. A
concise summary is that if probabilities Pn sum to infinity and temporal correlations decay fast
enough (e.g.,

∑
ϕ(n) <∞), IA holds (see App F).

6.3 Relation of Mixing Conditions to Physical Processes

Whether complex physical systems satisfy specific mixing conditions is often difficult to establish
rigorously. Physical intuition suggests that processes like quantum decoherence and cosmic ex-
pansion (related to cosmic no-hair theorems) should lead to an effective loss of memory of initial
microstates for coarse-grained observables over sufficiently long timescales, which is the hallmark of
mixing behavior. For example, quantum fluctuations in a stable vacuum (like de Sitter space, §6.6)
might be expected to exhibit strong mixing properties, potentially satisfying Doeblin-like conditions
(Appendix F) for transitions between coarse-grained states. Some theoretical work supports mixing-
like behavior for interacting fields in expanding spacetimes (Bovier and Eckhoff, 2019). However,
rigorously demonstrating that the full dynamics of quantum fields in curved spacetime satisfy the
specific mathematical requirements of Doeblin or φ-mixing remains a significant, unresolved tech-
nical challenge. In cases where strong conditions fail (e.g., non-uniform dynamics across different
regions), weaker mixing might still suffice for IA if the persistence condition (

∑
Pn diverges) holds.

6.4 Scope regarding Chaos

It is crucial to distinguish mathematical idealizations from physical reality. In a purely deterministic
chaotic model without noise, a specific state S corresponding to a measure-zero set might have
P (S) = 0, rendering IA inapplicable to that specific state. However, IA applies to physical systems.
Any real physical system exhibiting chaos is subject to inherent stochasticity (quantum fluctuations,
thermal noise, imperfect precision). This physical noise effectively ensures that any open region
Region(S, δ) (§2) corresponding to state S has a persistent physical probability P (S) > 0 of being
entered, as long as it is dynamically accessible. Therefore, IA’s scope includes physically realized
chaotic dynamics, guaranteeing eventual actualization of states S (defined with non-zero tolerance
δ) under its core conditions (H∞ and persistence

∑
Pn diverges). The simulation in Appendix B

explicitly includes noise to model this physical reality.

6.5 Absorbing States and the Persistence Condition (Formalized)

IA crucially relies on the Persistence Condition, now framed quantitatively. The probabilistic argu-
ments (like Borel-Cantelli) require that the sum of probabilities

∑
Pn diverges. If the probabilities
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Pn = P (S occurs in trial τn) decrease sufficiently quickly such that the sum converges (
∑
Pn <∞),

then the guarantee of occurrence (probability 1) is lost, even if Pn remains positive for all n.
Persistence Condition (Formal): Let Pn = P (S occurs in trial τn). IA holds for state S

only if
∑∞

n=1 Pn diverges.

• Note on Sufficiency vs. Necessity: This condition is sufficient for probability-1 occurrence
via the second Borel-Cantelli lemma (for independent or suitably mixing trials). While simpler
conditions like Pn = p > 0 obviously satisfy this, the divergence of the sum is the core
requirement. Conversely, if

∑
Pn < ∞, the first Borel-Cantelli lemma implies S occurs only

finitely often with probability 1, thus failing IA.

• Example: If Pn = p > 0 (constant probability),
∑
Pn diverges. If Pn = c/n,

∑
Pn diverges

(harmonic series). But if Pn = c/n1+ε for ε > 0, then
∑
Pn <∞ (p-series converges), and IA

fails despite Pn > 0 for all n.

• Failure Theorem (Converse of IA): If
∑∞

n=1 Pn <∞, then the probability that S occurs
only finitely many times is 1 (by the first Borel-Cantelli Lemma), and thus the probability
of S occurring at least once is not guaranteed to be 1. This occurs if the probabilities Pn

diminish too rapidly, for example, if the system approaches an absorbing state where S becomes
increasingly unlikely, even if never strictly impossible. Crucially, applying IA to a specific state
S requires demonstrating the absence of any physical mechanism (like decay into a truly stable
vacuum or terminal heat death) that would cause

∑
Pn for that S to converge.

6.6 Sketch of Quantum Resurrection (Persistence via Fluctuations)

In spacetimes with a persistent positive vacuum energy (like de Sitter space, potentially our far
future), quantum field theory suggests non-zero (though exponentially suppressed) rates for tun-
nelling between vacuum states or nucleating configurations via instantons (Coleman and De Luccia,
1980) or Gibbons-Hawking fluctuations. For any state S allowed by conservation laws, there might
be a rate Γ(S) ∼ exp(−Action(S)) > 0 for its spontaneous formation (Carroll and Chen, 2004). If
such fluctuations persist indefinitely (i.e., the de Sitter vacuum itself is stable or sufficiently long-
lived) with a roughly constant rate Γ(S) per unit time (or per appropriate trial definition), then
the probability Pn in trial τn of duration ∆tn would be approximately Γ(S)∆tn. If the trials cover
infinite future time (

∑
∆tn = ∞), then

∑
Pn would typically diverge, satisfying the Persistence

Condition (Formal) (§6.5) and guaranteeing IA for any physically possible state S.

• Scale of Γ(S): While theoretically non-zero, the rate Γ(S) for macroscopic states (like a
galaxy, let alone a brain) formed purely by vacuum fluctuations is hyper-exponentially sup-
pressed, involving factors like e−1060 or far smaller. This timescale vastly exceeds the current
age of the universe, rendering such spontaneous formation practically impossible to observe.
However, for the formal Persistence Condition, only Γ(S) > 0 is required, regardless of mag-
nitude, if the vacuum persists eternally. The IA framework thus highlights the profound
difference between theoretical possibility over infinite time and practical likelihood within
finite horizons.

• Status and Interpretation: These calculations are typically performed using semiclassi-
cal approximations (Euclidean path integrals, instantons) in quantum field theory in curved
spacetime. Their application to the entire universe state or complex macroscopic objects is
highly speculative. Key challenges include: defining the state S precisely within QFT, han-
dling gravitational effects (quantum gravity), ensuring the calculated rate isn’t zero due to
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hidden symmetries or conservation laws, and interpreting probabilities derived from Euclidean
actions in a Lorentzian universe. Furthermore, the timescales (∼ exp(1/ℏ)) are often hyper-
astronomical, making empirical verification impossible. Nonetheless, within the standard
theoretical framework (QFT + GR), these non-zero probabilities are predicted, providing a
potential, albeit theoretical, basis for the Persistence Condition for many states S in an eternal
de Sitter-like future.

7 Engagement with Objections

7.1 Boltzmann Brains (BBs)

• Problem: In eternally fluctuating universes, naive application of IA combined with spacetime
volume weighting (µV ) seems to predict that randomly fluctuated observers (BBs) should
vastly outnumber evolved observers, contradicting our experience (the "measure problem").

• Resolution:

– Sustained Occurrence Definition (§2): Filters out instantaneous, non-functional BB
flashes. Requires BBs to persist long enough for coherent thought (Tmin) and possess
the minimal causal history appropriate for an observer state.

– Physically Motivated Measure (µO, §5.3): Adopting SSA and weighting by observer-
moment density (µO) rather than raw volume (µV ) shows that evolved observers domi-
nate the measure within standard cosmological models (ΛCDM). The conditions under
which we’d expect to be typical observers align with our observations (see Appendix
E for quantitative discussion). IA itself doesn’t predict BB dominance; the prediction
arises from combining IA’s premise with a problematic measure. Note that the core IA
theorem—that S occurs with probability 1 if H∞ and

∑
Pn = ∞ hold—is independent of

the choice of weighting measure (µW ). The choice of measure (like µO) becomes crucial
only when making typicality arguments or calculating relative frequencies, as needed to
address the BB objection.

7.2 Modal Hybridity

• Objection: IA seems to inappropriately mix objective physical probability (chance) with the
concept of necessity, which is typically seen as non-probabilistic (logical, metaphysical). Is it
a category error?

• Response: IA’s modality (Tp) is explicitly defined as temporal-probabilistic and conditional.
It does not claim logical or metaphysical necessity in the traditional sense. Its necessity arises
from the structure of time and probability laws within the assumed physical framework. The
distinct grounding mechanism (physical structure) versus classical necessity (logic/essence)
justifies its classification as a separate category (see §3). It represents a structural guarantee
emerging from dynamics under specific physical assumptions.

7.3 Identity Duplication and Moral Aggregation

• Problem: IA seems to imply the inevitable recurrence of states physically identical to oneself,
leading to infinite duplicates. This challenges notions of unique personal identity and creates
paradoxes for ethical theories involving aggregation of utility/value over infinite populations.
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• Identity: IA guarantees recurrence of a state type. Whether this constitutes recurrence of
the same person depends on the theory of personal identity. IA forces engagement with these
theories:

– Closest Continuer (Nozick, 1974): If survival requires unique causal continuity, IA
implies that infinitely many distinct individuals, qualitatively identical to you (or past
versions of you), will exist in the future, but none are you. Survival remains linear and
unique.

– Psychological Continuity (Parfit, 1984): If survival is constituted by Relation R
(overlapping chains of strong psychological connectedness), IA makes Parfit’s branching
scenarios physically plausible under its conditions. It’s possible that multiple future indi-
viduals could bear Relation R to your current state (if duplicates form from fluctuations
based on your information). Identity might be one-many, or the concept of identity might
be less important than the holding of Relation R. IA suggests survival (as Relation R)
could be widespread and recurrent.

– Biological/Physical Continuity (Olson, 1997): Requires continuous physical real-
ization of the human animal. Spontaneously generated duplicates via IA would be dis-
tinct organisms, regardless of psychological similarity. Survival requires uninterrupted
physical history.

– Conclusion on Identity & Ethical Relevance: IA does not dictate which theory
is correct but highlights the consequences of each. It suggests that if its conditions
hold, scenarios involving perfect duplicates are not merely hypothetical but physically
guaranteed, making the choice of identity criterion practically relevant for understanding
future existence. Crucially, this choice can impact ethical calculations (§8.2): whether
future IA-generated instances count as "self" or "other" could influence the application
of discount rates, the aggregation of utilities, and the weighting of risks associated with
duplication versus lineage extinction.

• Ethics (Infinite Utility): Standard utilitarian aggregation fails with infinite identical lives.
Resolutions include:

– Temporal Discounting: Applying a discount factor (exponential γ = exp(−λ∆t) or
hyperbolic γ = 1/(1 + k∆t)) to future utilities can yield finite total utility Utotal =∑
γnUn <∞, restoring comparability (Bostrom, 2011).

– Agent-Relative Duties: Focus on local, agent-centered duties (Kant, 1785) which
apply coherently to each instance/duplicate.

– Average Utilitarianism (Risky): Can lead to repugnant conclusions but avoids some
paradoxes.

– Fanatical Decision Theories: Some argue for embracing infinite ethics (e.g., Bostrom’s
Astronomical Waste).

Discounting appears the most common approach for preserving standard decision theory.

8 Applications and Implications

8.1 Cosmological Forecasts and Tests

IA’s conditional premise (H∞: unbounded future trials) is linked to cosmological parameters, pri-
marily the dark energy equation of state w = P/ρ.
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• If w = −1 (cosmological constant Λ), the universe likely expands forever (de Sitter future),
supporting H∞.

• If w < −1 (phantom energy), a Big Rip singularity occurs in finite time, falsifying H∞.

• If w > −1 (quintessence, decaying dark energy), future evolution depends on the potential;
eternal expansion is possible but not guaranteed. Furthermore, even if proper time is infinite, if
the integrated observer density

∫
µOdt converges (e.g., due to structure decay), the persistence

condition
∑
Pn = ∞ might fail for states S tied to observers, thus invalidating IA for such

states.

• Cyclic models (e.g., Penrose’s CCC, Steinhardt-Turok) offer alternative paths to H∞.

• Vacuum Decay: The possibility of our current vacuum state being metastable (Coleman and
De Luccia, 1980) provides another potential falsifier. Detection of an impending or ongoing
vacuum decay event (e.g., through observation of expanding bubbles of true vacuum or a
sudden, drastic change in measured dark energy density or fundamental constants) would
imply a finite future for our current cosmic epoch, thereby falsifying the H∞ condition within
this epoch and negating IA for states requiring its persistence. Quantifying the required
stability involves comparing the vacuum decay timescale Tdecay with the timescale Trecurrence
over which relevant probabilities Pn sum to infinity; IA requires Tdecay to be effectively infinite
relative to the process ensuring

∑
Pn diverges.

• Observational Tests: Future surveys like Euclid, LSST (Vera C. Rubin Observatory), and
DESI aim to constrain w to σ(w) ≈ 0.01 − 0.02 and measure spatial curvature Ωk. Confir-
mation of w ≈ −1 and Ωk ≈ 0 would strengthen the empirical case for IA’s premise within
ΛCDM. Detecting cyclic signatures (e.g., CMB anomalies) or evidence of vacuum instability
would challenge it.

8.2 Ethics and Decision Theory in Infinite Settings

If IA holds, ethics must grapple with infinity. While the inevitability of recurrence might initially
seem to undermine the significance of actions, standard decision theory faces severe problems (diver-
gence, paradoxes) when dealing with infinite expected utilities (cf. Pascal’s Mugging). IA motivates
exploring frameworks that handle infinity coherently.

• Discounting & Convergence: One standard approach (§7.3) is temporal discounting. Ap-
plying a discount factor γ < 1 ensures the sum of future utilities

∑
γnUn converges, allowing

comparison between infinite prospects. Formally, even if Un = U > 0 for all n, the geometric
series

∑∞
n=0 γ

nU = U/(1 − γ) is finite for 0 ≤ γ < 1. This rescues expected utility maxi-
mization from paralysis by infinities. However, the choice of discount rate can be contentious,
and alternatives like lexical superiority (prioritizing preventing the worst outcomes absolutely,
cf. Greaves, 2017; Beckstead, 2013) or critical-level utilitarianism offer different ways to han-
dle infinite stakes, though often with their own challenges (e.g., extreme sensitivity to small
probabilities or violations of continuity axioms).

• "Inevitable Utilitarianism" / Robustness Frameworks: The realization that certain
outcomes (both good and bad) are guaranteed if P > 0 persists might shift focus from max-
imizing probability of indefinite survival to other goals. A framework accepting IA, perhaps
termed "Inevitable Utilitarianism" or "Robustness-Focused Consequentialism," could priori-
tize:
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– Maximizing Discounted Utility: As formally sketched above. This appears the most
tractable approach for adapting standard consequentialism.

– Maximizing Intra-Trial Value: Focusing on maximizing the quality, complexity, or du-
ration of flourishing within each "cycle" of existence between inevitable (but perhaps
extremely rare) catastrophic resets or fluctuations. The goal shifts from preventing the
inevitable to making each instance of existence as valuable as possible.

– Prioritizing Resilience and Recovery: Investing in measures that increase the speed and
fidelity of recovery after catastrophic events, minimizing the duration of low-value states.

– Accelerating Positive States: Focusing efforts on bringing about desirable states sooner,
given that their eventual occurrence (if P > 0) is guaranteed but the timing is not.

Such frameworks acknowledge the inevitability implied by IA while providing a coherent basis
for ethical decision-making focused on achievable goals like near-term well-being, resilience,
and the quality of existence within potentially recurrent cosmic epochs. While alternatives
exist (e.g., focusing on average utility, facing its own paradoxes, or adopting lexical rankings),
adapting discounted utility or focusing on intra-trial value/resilience seem the most promising
avenues for developing a practical calculus under IA.

• Value of Creation: Does IA diminish the value of creating something new if it was "in-
evitable" anyway? Perhaps value lies in accelerating the inevitable or in the creative act
itself.

8.3 Personal Identity and Subjective Experience

IA intensifies questions about the self:

• Recurrence vs. Immortality: Does guaranteed recurrence of your state type (§7.3) con-
stitute a form of immortality? Depends on identity theory.

• Subjective Probability: In Everettian (MWI) interpretations, IA might apply within
branches. Combined with quantum suicide thought experiments and subjective probabil-
ity arguments (e.g., Wallace, 2012), it touches on how observers should anticipate their future
experiences in branching realities.

9 Conclusion and Future Work

Inevitable Actualization (IA) offers a rigorously defined, conditional ontological modality distinct
from classical necessity and contingency. Its unique grounding in the assumed structure of un-
bounded time and persistent, non-zero physical probabilities justifies its status as a third category.
By integrating metaphysics, probability theory, measure theory, and cosmology, IA provides a frame-
work for analyzing the guaranteed eventual realization of physically possible states under specific,
potentially testable cosmological assumptions. While conditional, its implications for cosmology,
ethics, and personal identity are profound.

Future Directions:

• Empirical Cosmology: Continued refinement of constraints on w,Ωk, and dark energy
evolution; searches for evidence of cyclic cosmologies or deviations from ΛCDM.
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• Theoretical Physics: Rigorous QFT calculations of fluctuation/resurrection rates (Γ(S))
in realistic spacetimes; deeper analysis of the measure problem in eternal inflation and devel-
opment of predictive measures (e.g., causal diamond measure, stationary measure); rigorous
demonstration of mixing properties (or lack thereof) in relevant cosmological models.

• Philosophy: Formal development of modal logic axioms and history-based semantics (per-
haps adapting probabilistic temporal or dynamic logic) for Tp, including completeness proofs
for suitable fragments; comparative analysis of infinite ethical frameworks beyond simple dis-
counting (e.g., critical-level, lexical ranking) in the context of IA; detailed analysis of IA’s
interaction with different theories of personal identity and persistence; investigation of IA’s
validity under weaker dependence conditions beyond standard mixing assumptions.

• Computational Modeling: Development and analysis of simulations (e.g., Markov Chain
Monte Carlo, agent-based models) demonstrating state recurrence and mixing properties (φ-
mixing) in complex systems relevant to IA (extending Appendix B).

• Refining State Definition: Developing clearer criteria for defining State S, including its
minimal causal history and relevant Tmin/δ (§2), especially for complex biological or conscious
states; proving the existence of positive-measure history sets satisfying MinimalHistory(S)
in non-trivial physical or computational models (e.g., QFT on lattices, complex automata,
self-replicating polymer models).
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A Metaphysical Background Details

This appendix elaborates on the metaphysical context assumed or engaged by IA.

• Modality & Possible Worlds: Briefly contrasts IA’s conditional, single-universe (or single-
branch) temporal modality Tp with standard possible worlds semantics (Lewis, 1986; Plantinga,
1974). Discusses how IA relates to concepts like Kripkean necessity (rigid designation across
time vs. worlds) and Leibnizian compossibility (physical laws define the compossible states
within IA’s framework).

• Grounding: Expands on §3 by detailing how IA aligns with physicalist or structuralist
grounding frameworks. Argues that the "inevitability" is grounded in the causal powers en-
coded in physical laws operating over an unbounded temporal structure, rather than abstract
entities or essences. Contrasts with necessitarian views of laws versus Humean views.

• Realism: Discusses the type of realism IA entails – a realism about the future potential states
dictated by physical law and probability, actualized sequentially in time, distinct from Lewis’s
realism about concrete parallel worlds.

B Computational φ-Mixing Simulation Sketch

This appendix provides a conceptual sketch for simulating state recurrence in a system exhibiting
mixing properties, illustrating §6.3.

• Concept: Use a simple chaotic map (e.g., the logistic map with added noise) as a proxy for a
complex system. Define a "state S" as the system residing within a specific sub-interval of its
phase space. Simulate the map over many iterations and track how often the system enters
state S.

• Python Sketch (Conceptual Skeleton):

Listing 1: Conceptual Python sketch for logistic map simulation.
1 import numpy as np
2 import matplotlib.pyplot as plt # Assuming plots are desired
3

4 def logistic_map_noisy(x, r, noise_std_dev):
5 """Applies the logistic map with added Gaussian noise."""
6 # Ensure x stays within bounds [0, 1] after map application
7 next_x_deterministic = r * x * (1 - x)
8 # Add noise , ensuring result is clipped to [0, 1]
9 noise = np.random.normal(0, noise_std_dev)

10 next_x_noisy = np.clip(next_x_deterministic + noise , 0, 1)
11 return next_x_noisy
12

13 # Parameters (Illustrative)
14 r_chaotic = 3.9 # Parameter for chaotic behavior
15 noise_level = 0.01 # Standard deviation of Gaussian noise
16 num_trials = 100000 # Number of iterations
17 initial_state = 0.5 # Starting point
18 state_S_interval = (0.8, 0.85) # Define State S region
19 min_duration_T_min = 3 # Minimum steps to stay in S
20
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21 # --- Simulation Loop & Analysis Omitted for Brevity ---
22 # (Full notebook available in supplementary material)
23 # The loop would iterate num_trials times , applying logistic_map_noisy

,
24 # tracking the trajectory , and counting entries into state_S_interval
25 # satisfying the T_min duration condition.
26 # Final print statements would report frequencies.
27 # Plotting code would visualize the trajectory and state S region.
28

29 print(f"Conceptual simulation sketch for {num_trials} trials.")
30 print(f"State S defined as interval {state_S_interval} with T_min = {

min_duration_T_min }.")
31 print("Analysis code (omitted) would calculate occurrence frequencies.

")
32 print("Plotting code (omitted) would visualize results.")
33 print("(Full notebook available in supplementary material .)")

• Discussion: This simulation would illustrate how even in a chaotic system, a state S defined
by an interval (non-zero measure) is revisited. The noise term explicitly models physical
stochasticity, ensuring P (S) > 0 is maintained (preventing the system from getting stuck in
periodic windows of measure zero indefinitely). Analyzing the frequency and waiting times
between occurrences relates to the concepts in IA and mixing. The ’sustained occurrence’
check implements Definition 2.

C Formal Temporal Measure Construction

This appendix details the construction of the normalized temporal measure µT used in §5.1 and
clarifies the definition of a "trial".

• Discretization of Time and Defining "Trials": Assume the future temporal evolution
can be partitioned into a countably infinite sequence of disjoint "trials" τ = {τ1, τ2, τ3, ...}.
Each trial τn corresponds to a time interval [tn, tn+1). The key requirements are that ∪τn
covers the entire relevant future and that the partitioning is suitable for assigning probabilities
P (S in τn).

• Scale of Trials: The scale or duration of a trial (tn+1 − tn) is not fixed by the IA framework
itself; it is flexible and context-dependent, chosen based on the nature of the state S and the
physical process under consideration.

– Example 1: If S is a specific particle interaction, τn might correspond to very short
durations, perhaps related to fundamental timescales like the Planck time or interaction
times.

– Example 2: If S is the formation of a star of a certain type, τn might correspond to
millions or billions of years, reflecting stellar evolution timescales.

– Example 3: If S is a specific configuration within a chaotic system, τn might be chosen
based on the system’s characteristic Lyapunov time or mixing time.

The crucial point is that a suitable countable partitioning covering the unbounded future must
exist for the mathematical framework (esp. Borel-Cantelli lemmas) to apply. The specific
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choice of scale affects the value P (S in τn) but not the validity of the limit theorems if the
persistence condition holds.

• Countability from Continuity: Even if underlying physical time t is continuous (uncount-
able), we can always construct a relevant countable partition τ . For instance, we can choose
intervals τn = [n∆t, (n+ 1)∆t) for some fixed ∆t, or select a sequence of rational time points
qn dense in the future and define intervals around them. Since any physical state S requires
a minimum duration Tmin > 0 for its sustained occurrence (§2), its probability is associated
with non-zero time intervals. If P (S) persists over an unbounded continuous future, its inte-
grated probability over a suitable countable partition covering that future will still satisfy the
conditions (

∑
Pn diverges) for Borel-Cantelli. The countability requirement is a feature of

the mathematical tool, not necessarily a claim about the fundamental structure of time itself.
This reliance on countable additivity via partitioning also sidesteps potential issues raised by
Hájek [2003] regarding the non-occurrence of probability-1 events in truly uncountable sample
spaces, as IA operates on the limit behavior of a countable sequence of trials.

• Assigning Weights: Assign a positive weight wn > 0 to each trial τn. This weight can
represent:

– Duration: wn = tn+1 − tn (proper time).

– Expansion: wn = a(tn+1)− a(tn) (change in scale factor).

– Observer Density: wn =
∫ tn+1

tn
ρO(t)dt, where ρO(t) is an observer-moment density (§5.2).

– Uniform: wn = 1 for all n (simple counting measure).

• Total Measure: Calculate the total weight W =
∑∞

n=1wn.

• Normalization:

– Case 1: Convergent Sum (W < ∞): If the total weight is finite, we must normalize
the weights wn to define a standard probability measure µT (τn) = wn/W . This allows
the direct application of standard probability theory, including expectation values and
convergence theorems relative to µT . This case is relevant when using measures like
observer density µO in ΛCDM cosmology.

– Case 2: Divergent Sum (W = ∞): If the total weight is infinite (e.g., using uniform
weights or proper time duration in eternal expansion), normalization over the entire
infinite sequence is impossible. In this scenario, establishing IA does not require nor-
malization of the weights. Instead, IA relies directly on limit theorems applicable to
sequences of events, primarily the second Borel-Cantelli lemma (§6.1). This lemma re-
quires

∑
P (S in τn) diverge but operates directly on the probabilities P (S in τn) without

needing the underlying weighting measure µW (defined by the wn) to be finite or nor-
malized. Calculations of relative frequencies or expectations in this infinite measure case
require more careful limiting procedures (e.g., considering ratios over increasingly large
finite intervals).

• Measure Space: Formally, we construct a measure space (τ,P(τ), µW ) where τ is the set of
trials, P(τ) is the power set (sigma-algebra), and µW is the measure defined by µW ({τn}) =
wn. Probability statements are then made using µW either directly (if finite and normalized
to µT ) or via limit theorems (like Borel-Cantelli) if µW is infinite.
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D Glossary (Trimmed)

• IA (Inevitable Actualization): The core concept: a conditional modality guaranteeing
eventual occurrence (probability 1) if time is unbounded (H∞) and the state has persistent,
non-zero physical probability (Pn > 0) such that

∑
Pn diverges.

• Minimal Causal History: The necessary antecedent conditions for a state S to be a genuine
instance of its type (§2).

• Mixing (φ-mixing / α-mixing): Properties describing the decay of statistical dependence
over time, sufficient (if fast enough) for IA under dependence (App F).

• Modality Tp: The temporal-probabilistic necessity operator defined by IA, distinct from
classical necessity (□) and possibility (♢).

• Persistence Condition: The requirement
∑∞

n=1 Pn diverges for IA to hold (§6.5).

• Sustained Occurrence: Realization requiring persistence (Tmin) and minimal causal history
(§2).

• Trial (τn): A discrete segment of future time used for probabilistic analysis (App C).

E Quantitative Estimate for BB Dominance

Section 5.3 notes that observer-moment weighting (µO) resolves the Boltzmann Brain problem
predicted by naive volume weighting (µV ). The quantitative estimates supporting this rely on
comparing the integrated measure for evolved observers versus BBs. While model-dependent, typical
calculations (e.g., Carroll, 2017, Page, 2008, Aguirre and Tegmark, 2011) find that the ratio of the
measure for ordered observers (concentrated in the structure formation era) to that for sustained
BBs (dominant in the far-future vacuum) is extremely large.

Sketch of Calculation:

• Let Mord =
∫
early µO(t)dt be the total measure associated with ordinary observers, dominated

by the structure-formation era. This is finite in standard models.

• Let ΓBB be the nucleation rate of sustained BBs per unit 4-volume in the late-time vacuum.
This is expected to be incredibly small, ΓBB ∼ e−SBB where SBB ≫ 1.

• Let µBB(t) be the observer-moment density associated with BBs at late times. This might be
approximated as µBB(t) ≈ ΓBB × (factors related to volume/expansion).

• The total measure for BBs is MBB =
∫∞
late µBB(t)dt.

• The crucial comparison is the ratio R =MBB/Mord.

Using plausible physical parameters and assumptions about the duration needed for a BB to
count as an observer (Tmin), calculations find R to be vastly less than 1. For instance, Carroll
[2017] estimates the suppression factor e−SBB can be smaller than 10−1068 . Even accounting for
the potentially infinite duration of the vacuum phase, when combined with appropriate regulators
or measure choices (like scale-factor cutoff or causal patch measures, which effectively make the
total measure finite or give finite relative weights), the contribution from BBs remains negligible
compared to ordinary observers. Figures for the ratio Mord/MBB often exceed 1020 or much more.
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This vast difference means that even if BBs occur via IA in the infinite future, their contribution to
the total observer-moment measure is negligible compared to observers like us, validating the use
of SSA based on typicality within the µO measure.

F Technical Details on Dependent Trials (Mixing Conditions)

Section 6.2 notes that IA can hold even when trials are dependent, provided dependencies weaken
sufficiently over time. This appendix briefly outlines two relevant conditions and presents a unified
theorem.

• Doeblin Condition (Uniform Ergodicity): As mentioned in §6.3, this is a strong condition
typically applied to Markov chains. If the sequence of states forms a Markov chain on a state
space X, it satisfies the Doeblin condition if there exists a probability measure φ on X, an
integer m ≥ 1, and ε > 0 such that the probability of transitioning from any state x to any
measurable set A in m steps is bounded below: Pm(x,A) ≥ εφ(A). This ensures the process
mixes rapidly and explores the entire state space (relative to φ) uniformly, preventing it from
getting stuck. If φ(Region(S)) > 0, the system will inevitably enter the region corresponding
to state S.

• φ-Mixing: This is a weaker condition applicable to more general stochastic processes. It
requires that the statistical dependence between events separated by time n decays to zero
as n → ∞. Specifically, let Fk be the sigma-algebra generated by trials up to k, and Gk+n

be the sigma-algebra generated by trials from k + n onwards. The process is φ-mixing if the
φ-mixing coefficient, φ(n) = supk supA∈Fk,B∈Gk+n,P (A)>0 |P (B|A) − P (B)|, goes to zero as
n → ∞. If φ(n) decays sufficiently quickly (e.g.,

∑
φ(n) < ∞) and P (S) remains bounded

below by ε > 0 in appropriate blocks of trials, recurrence results similar to the independent
case (and thus IA) can often be established (Bradley, 2005).

Unified Theorem for IA under Mixing: The core result needed for IA extends the second
Borel-Cantelli lemma to dependent sequences. A standard result (e.g., see Petrov, 1995, ch. IV,
§19, or similar results for α-mixing or φ-mixing sequences) states:

Theorem (IA-Mix). Let (Ω,F , P ) carry a stochastic process {Xn}n≥1. Let A be a measurable
set representing state S, and let En be the event Xn ∈ A. Let Pn = P (En). If the sequence {En} is
φ-mixing with

∑∞
n=1 φ(n) < ∞ (or satisfies similar mixing conditions like α-mixing with sufficient

decay rate) and if
∑∞

n=1 Pn diverges, then P (En occurs infinitely often) = 1.

• Proof Sketch: The proofs typically involve bounding the variance of the sum of indicator
functions SN =

∑N
n=1 I(En). Mixing conditions allow one to control the covariance terms

Cov(I(Ei), I(Ej)) such that they decay rapidly as |i − j| increases. Under conditions like∑
φ(n) < ∞, one can show that V ar(SN ) grows slower than (E[SN ])2 = (

∑
Pn)

2. Using
Chebyshev-like inequalities (e.g., Chung’s lemma), this implies that SN/E[SN ] → 1 in prob-
ability. Since E[SN ] =

∑
Pn → ∞, this means SN → ∞ in probability, which under these

conditions implies SN → ∞ almost surely (i.e., infinitely many En occur with probability 1).

This theorem shows that as long as the probabilities Pn sum to infinity and the dependencies
decay sufficiently quickly, the conclusion of the second Borel-Cantelli lemma holds, ensuring IA.
The independent case corresponds to φ(n) = 0 for n ≥ 1.
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G Formal Example of State Filter (Cellular Automaton)

To illustrate the Minimal Causal History and Sustained Duration conditions (§2) more formally,
consider a simple 1D stochastic cellular automaton (CA). This provides a setting where these con-
ditions, particularly the history filter, can be made precise, unlike the more challenging case of
complex macroscopic states (§2.1).

• State Space: Each site i can be in state 0 or 1. The state of the system at time t is the
sequence σ(t) = {σi(t)}.

• Dynamics: The state at time t + 1 depends probabilistically on the states at t in a local
neighborhood (e.g., σi(t + 1) depends on σi−1(t), σi(t), σi+1(t)). Assume some non-trivial
stochasticity (e.g., rules are probabilistic, or there’s random noise flipping bits).

• Target State S: Let S be the specific pattern "11011" appearing centered at site j. Region(S, δ)
corresponds to configurations where σj−2 = 1, σj−1 = 1, σj = 0, σj+1 = 1, σj+2 = 1. Here,
tolerance δ = 0 as the state is discrete.

• Sustained Duration Tmin: We might require the pattern to persist for, say, Tmin = 2 time
steps. This means the pattern "11011" must exist at time t and t+ 1.

• Minimal Causal History MinimalHistory(S): Suppose this specific pattern S is known
only to arise reliably from a specific precursor pattern S’ = "01110" centered at j at time
t − 1 according to the CA rules (other paths are possible but have negligible probability or
violate physical constraints represented by the rules). Then, MinimalHistory(S) would be
the requirement that the configuration at time t − 1 matched S’. This condition defines a
measurable set in the space of path histories.

• Sustained Occurrence: An occurrence of S at trial i (time ti) requires:

1. The pattern "01110" was present at ti − 1.
2. The pattern "11011" is present at ti and ti + 1.

This explicitly filters out instances of "11011" that arise from different histories or are too
fleeting, illustrating how the definition applies measurable conditions on the system’s trajec-
tory. Demonstrating P (S occurs) > 0 involves showing that the precursor S’ has a non-zero
probability and that the transition S’ → S followed by S persisting for Tmin steps also has
non-zero probability under the stochastic dynamics.

H Worked Example (Markov Chain)

To illustrate IA more concretely, consider a simple 3-state Markov chain with states {A,B, S}. Let
S be the target state. Assume transitions occur at discrete time steps (trials).

Transition Probabilities:

• From A: P (A→ A) = 0.5, P (A→ B) = 0.5, P (A→ S) = 0

• From B: P (B → A) = 0.1, P (B → B) = 0.8, P (B → S) = 0.1

• From S: P (S → A) = 0.6, P (S → B) = 0.4, P (S → S) = 0

Analysis:
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1. This chain is irreducible (all states communicate) and aperiodic (can return to a state in
varying numbers of steps).

2. Since it’s a finite irreducible aperiodic Markov chain, it possesses a unique stationary distri-
bution π = (πA, πB, πS) where πX > 0 for all X. This means the long-run fraction of time
spent in each state is positive.

3. Let Pn = P (State is S at trial n). As n→ ∞, Pn → πS > 0.

4. Persistence Condition: Since Pn converges to a positive constant πS , the sum
∑∞

n=1 Pn

clearly diverges (as it behaves like
∑
πS = ∞).

5. Mixing: Finite irreducible aperiodic Markov chains are strongly mixing (e.g., geometrically
ergodic, which implies strong mixing conditions like φ-mixing with exponentially decaying
coefficients).

Conclusion: The conditions for IA are met (unbounded trials, persistence via
∑
Pn diverges,

and mixing). Therefore, TpS holds: the system is guaranteed (with probability 1) to enter state S
at least once (and in fact, infinitely often). This simple example shows how positive recurrence to
state S, even if P (S → S) = 0, combined with the ability to always eventually reach S from other
states, ensures the divergence of

∑
Pn required for IA.
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