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Abstract

Lagrangian and Hamiltonian mechanics are widely held to be two distinct but equivalent

ways of formulating classical theories. Barrett (2019) makes this intuition precise by showing

that under a certain characterization of their structure, the two theories are categorically equiv-

alent. However, Barrett only shows equivalence between “hyperregular” models of Lagrangian

and Hamiltonian mechanics. While hyperregularity characterizes a large class of theories, it

does not characterize the class of gauge theories. In this paper, I consider whether one can ex-

tend Barrett’s results to show that Lagrangian and Hamiltonian formulations of gauge theories

are equivalent. I argue that there is a precise sense in which one can, and I illustrate that explor-

ing this question highlights several interesting questions about the way that one can construct

models of Hamiltonian mechanics from models of Lagrangian mechanics and vice versa, about

the role that constraints play, and the definition and interpretation of gauge transformations.
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1 Introduction

Lagrangian and Hamiltonian mechanics are widely held to be two distinct but equivalent ways of

formulating classical theories. While there have been challenges to this view in the philosoph-

ical literature by North (2009) and Curiel (2014), Barrett (2019) makes the intuition that these

frameworks are equivalent precise by showing that under a certain natural characterization of the

structure of Lagrangian and Hamiltonian mechanics, they are theoretically equivalent under the

standard of theoretical equivalence given by categorical equivalence.

However, Barrett’s equivalence result is restricted in an important way: he only shows equiv-

alence between “hyperregular” models of Lagrangian and Hamiltonian mechanics. While hy-

perregularity characterizes a large class of theories, it does not characterize the class of gauge

theories: theories that have local symmetries arising from Noether’s Second Theorem. Instead,

gauge theories fall under the class of “irregular” models. The question of whether Lagrangian and

Hamiltonian gauge theories are (categorically) equivalent has not been discussed directly in the

philosophical literature, despite the fact that it bears on other debates that are prominent in the

literature. For one, there has been a recent debate about the correct characterization of the gauge

transformations in the Hamiltonian formalism. Several authors have criticized the standard view

on the basis that the resulting theory is inequivalent to the Lagrangian formalism (Pitts (2014a,b),

Gracia & Pons (1988)). Second, an important question in modern physics is how to quantize a

classical gauge system. If the Lagrangian and Hamiltonian characterizations of classical gauge

systems are not equivalent, then one would also not expect the resulting quantized theories to be

equivalent, which would have significant implications for evaluating different methods of quan-

tization. Despite both of these important connections, one fails to find a clear exposition in the

literature of which formulations of Lagrangian and Hamiltonian gauge theories are equivalent and

in what sense.

In this paper, I aim to fill this gap. I demonstrate that the relationship between Lagrangian and

Hamiltonian mechanics is made significantly more complicated when the assumption of hyperreg-

ularity is dropped, and I argue that the literature has so far failed to establish more than a notion
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of dynamical equivalence in the non-hyperregular context. However, I show that one can extend

Barrett’s result to prove an equivalence result in the irregular case by constructing hyperregular

models of Lagrangian and Hamiltonian gauge theories through a process known as ‘symplectic

reduction’. In doing so, I argue that the claims in the literature that the standard approach to gauge

transformations renders Hamiltonian mechanics inequivalent to Lagrangain mechanics are false:

there is a natural formulation of Lagrangian mechanics in the irregular context that is equivalent to

the formulation of Hamiltonian mechanics under the standard definition of gauge transformations.

While ultimately the paper supports the equivalence between Lagrangian and Hamiltonian

mechanics in the context of classical gauge theories, exploring the question of whether the two

frameworks are equivalent will highlight several interesting questions about the way that one can

construct models of Lagrangian mechanics from models of Hamiltonian mechanics and vice versa,

about the role that constraints play in relating the kinematics and dynamics of a theory, as well as

the interpretation of gauge transformations.1

In section 2, I spell out the equivalence result in Barrett (2019), paying particular attention to

the parts of the result that require the assumption of hyperregularity. In Section 3, I discuss how

the situation changes when one considers gauge theories and present the constrained Hamiltonian

formulation of gauge theories. In Section 4, I consider some arguments in the literature regarding

equivalence between Lagrangian and Hamiltonian gauge theories, and I discuss why they fall short

of providing an account of theoretical equivalence. In Sections 5 and 6, I show that one can refor-

mulate Lagrangian mechanics as a constraint theory in a way that is analogous to the constrained

Hamiltonian formulation, drawing from the work of Gotay & Nester (1979), and I show that the

models of the reformulated Lagrangian gauge theory are related to the models of the Hamiltonian

constraint theory in a natural way. In Section 7, I prove an equivalence result that extends the result

in Barrett (2019) to the context of gauge theories. Finally, in Section 8 I discuss the upshots of this

equivalence result and some possible responses.
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2 The Regular Case

The standard geometric way of characterizing Lagrangian and Hamiltonian theories is as follows.

Lagrangian mechanics has state space given by the tangent bundle of configuration space, T∗Q,

whose points consist of the pair (qi, q̇i) encoding the generalized positions and velocities of the

particles. The dynamics are given by specifying a Lagrangian function L(qi, q̇i), with equations of

motion given by the Euler-Lagrange equations:
d

dt

∂L

∂q̇i
=

∂L

∂qi
. The fiber derivative of L is called

the Legendre transformation and it is the map FL : T∗Q → T ∗Q from the tangent bundle to

the cotangent bundle that is defined as taking the point (qi, q̇i) to (qi,
∂L
∂q̇i

). We say that the model

(T∗Q,L) is regular if FL is a local diffeomorphism. When FL is a global diffeomorphism, we

say that the model (T∗Q,L) is hyperregular.

Hamiltonian mechanics has as its state space the cotangent bundle of configuration space, T ∗Q,

whose points consist of the pair (qi, pi) encoding the positions and canonical momenta of the

particles. The dynamics is given by specifying a Hamiltonian function H(qi, pi), with dynamical

equations given by Hamilton’s equations:
dqi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H

∂qi
. The fiber derivative of H

is the map FH : T ∗Q → T∗Q from the cotangent bundle to the tangent bundle that is defined as

taking the point (qi, pi) to (qi,
∂H
∂pi

). When FH is a (global) diffeomorphism, we say that the model

(T ∗Q,H) is (hyper)regular.

The cotangent bundle naturally comes equipped with a symplectic (closed, non-degenerate)

two-form ω. We can write the equations of motion in terms of this two-form: ω(XH , ·) =

dH where XH is the vector field associated with the Hamiltonian, which is unique by the non-

degeneracy of the symplectic two-form. The integral curves of XH correspond to solutions. We

can also use this symplectic structure to define a two-form on the tangent bundle, Ω = FL∗(ω).

Ω is symplectic when FL is a (local or global) diffeomorphism. We can then show that the Euler-

Lagrange equations are equivalent to Ω(XE, ·) = dE where XE is the vector field associated with

the energy function E = FL(q̇i)q̇
i − L. The integral curves of XE correspond to solutions.

In discussions on the relationship between Lagrangian and Hamiltonian mechanics, the division

between (hyper)regular and ‘irregular’ models is not often emphasized. For example, while North
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(2009) defends the view that Hamiltonian mechanics has less structure than Lagrangian mechanics,

and Curiel (2014) argues that Lagrangian mechanics better represents the structure of classical

systems than Hamiltonian mechanics, neither of these arguments make explicit reference to the

fact that the relationship between these two theories depends on which kind of system one is

considering. The exception is Barrett (2019), who demonstrates that if one’s criterion of theoretical

equivalence is categorical equivalence, then Lagrangian and Hamiltonian mechanics can be shown

to be equivalent as long as one is only concerned with the hyperregular models.

The question of interest in this paper is whether one can still show that Lagrangian and Hamil-

tonian mechanics are equivalent when one drops the assumption of hyperregularity to allow for

gauge theories. In attempting to answer this question, we will inherit the view that if we can

show that the corresponding theories are categorically equivalent, then we have shown that they

are theoretically equivalent. We do not have space to defend this view here.2 But the core idea

behind categorical equivalence is that for two theories to be equivalent, it should not only be that

one can map models of one theory to models of the other; there should also be agreement about

which models are equivalent to each other i.e. there should be a natural relationship between the

isomorphisms of both theories. Given that our focus is ultimately on Lagrangian and Hamiltonian

gauge theories, it is clear why a categorical approach would be appropriate: part of what we want

to capture is that the theories agree about the gauge symmetries, and the gauge symmetries capture

a notion of equivalence between states/solutions of a theory. However, it will be helpful to first

spell out the way that Barrett (2019) proves categorical equivalence in the hyperregular case in

order to highlight the changes that occur when one allows for gauge theories.

The element missing from our characterization of the theories above in order to define the

relevant categories is the isomorphisms (the structure-preserving maps) between models of the

theories. The structure-preserving maps of tangent space are given by point∗-transformations T∗f ,

defined as follows: given a diffeomorphism f : M1 → M2, T∗f : (qi, q̇i) → (f(qi), f∗(q̇i)). Simi-

larly, the structure-preserving maps on cotangent space are given by point∗-transformations: given

a diffeomorphism f : M1 → M2, T ∗f : (qi, pi) → (f−1(qi), f
∗(pi)). Therefore, we can define
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categories of hyperregular Lagrangian and Hamiltonian models, Lag and Ham, in the following

way:

1. An object in the category Lag is a hyperregular model (T∗Q,L). An arrow (T∗Q1, L1) →

(T∗Q2, L2) is a point∗-transformation T∗f : T∗Q1 → T∗Q2 that preserves the Lagrangian in

the sense that L2 ◦ T∗f = L1.

2. An object in the category Ham is a hyperregular model (T ∗Q,H). An arrow (T ∗Q1, H1) →

(T ∗Q2, H2) is a point∗-transformation T ∗f : T ∗Q1 → T ∗Q2 that preserves the Hamiltonian

in the sense that H2 ◦ T ∗f = H1.

Next, define the functor F that takes a hyperregular model of Lagrangian mechanics to a hy-

perregular model of Hamiltonian mechanics via F : (T∗Q,L) → (T ∗Q,E ◦ FL−1) and that

acts on arrows as F : T∗f → T ∗(f−1).3 Similarly, define the functor G that takes a hyper-

regular model of Hamiltonian mechanics to a hyperregular model of Lagrangian mechanics via

G : (T ∗Q,H) → (T∗Q, (θa(XH)
a − H) ◦ FH−1) where θa is the canonical one-form such that

ωab = −daθb, and that acts on arrows as G : T ∗f → T∗(f
−1) . Then:

Theorem (Barrett (2019)): F : Lag → Ham and G : Ham → Lag are equivalences

that preserve solutions.4

The proof of this theorem relies on hyperregularity in several ways. First, notice that the

functors F and G rely on the maps FL−1 and FH−1 to construct a Hamiltonian model in terms

of a Lagrangian model and vice versa. These maps are only well-defined functions (globally) if

FL and FH are (global) diffeomorphisms. Second, the proof works by showing that F and G

are inverses in the sense that GF (T∗Q,L) = (T∗Q,L), FG(T ∗Q,H) = (T ∗Q,H), and similarly

on arrows. This relies on the fact that FL−1 = FH and FH−1 = FL, which is only true in the

hyperregular context.

Given the importance of hyperregularity in showing that the categories of Lagrangian and

Hamiltonian models are equivalent, one might conclude that the class of irregular Lagrangian
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and Hamiltonian theories cannot be categorically equivalent.5 However, gauge theories do not fall

under the class of hyperregular, or even regular, models, since the Legendre transformation defines

a submanifold of T ∗Q. It would be surprising, and significant, if the class of Lagrangian gauge

theories and the class of Hamiltonian gauge theories were not equivalent. Therefore, our aim will

be to consider whether there is a way to construct the models of Lagrangian and Hamiltonian gauge

theories such that one can extend the above categorical equivalence result to this irregular context.

3 The Irregular Case

The standard approach to gauge theories begins in the Lagrangian context: gauge theories are

theories that have local symmetries arising from Noether’s Second Theorem. The existence of

gauge symmetries in a theory implies that there is underdetermination in the evolution of the sys-

tem; there are multiple possible solutions from some initial state. Given this underdetermination

and the desire for unique evolution, one seeks to distinguish the variables whose evolution is un-

derdetermined (the “gauge variables”) from those whose evolution is not underdetermined (the

“observables”). In the 1960s, work by Dirac (1964) and Bergmann (1961) demonstrated that there

is a Hamiltonian formalism for describing gauge theories that provides a systematic method for

isolating the gauge variables from the observables by connecting the presence of gauge variables

to the presence of constraints on the Hamiltonian variables. This allows one to recover unique dy-

namics for a gauge system and provides the basis for the method of quantization called “canonical

quantization”, which relies on taking the observables to be the quantities that one uses to formulate

a quantum theory. The standard modern treatment of the constrained Hamiltonian formalism can

be found in Henneaux & Teitelboim (1994); we follow their treatment closely here.

We say that a Lagrangian is irregular when the Hessian Wij = ∂L
∂q̇iq̇j

is not invertible i.e.

when it is singular. The gauge theories correspond to those irregular Lagrangian theories whose

Legendre transformation defines a submanifold of T ∗Q called the primary constraint surface Σp,

defined by the satisfaction of a collection of (primary) constraints of the form ϕa(qi, pi) = 0 where
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a = 1, ..., A is the number of primary constraints. It is therefore natural to formulate a Hamiltonian

gauge theory on the primary constraint surface if we want to relate it to the Lagrangian theory.

If we start with a Hamiltonian theory on T ∗Q, then one can specify the theory on the primary

constraint surface in the following way. First, we can define an induced presymplectic (degenerate)

two-form ω̃ = i∗ω where i : Σp → T ∗Q is the inclusion map. The null vector fields of ω̃ are the

vector fields corresponding to the primary first-class constraints, which geometrically correspond

to the primary constraints whose vector field is tangent to the constraint surface (while the second-

class constraints are those constraints whose vector field is not tangent to the constraint surface).

Using this presymplectic two-form, the equations of motion on this submanifold can be written

as ω̃(XH , ·) = dH where H is the Hamiltonian on T ∗Q restricted to the constraint surface (this is

sometimes called the Hamilton-Dirac equation). Notice that since ω̃ is degenerate, the solutions to

this equation of motion are not unique; we can think of this fact as related to the gauge nature of

the theory. In particular, ω̃(XH , ·) = dH only defines XH up to arbitrary combinations of the null

vector fields.

This provides a well-defined theory on the primary constraint surface. However, there are

inconsistencies that can arise with this theory: it may not be that the primary constraints hold at

all points along a solution, which corresponds to the fact that the vector fields XH that define the

solutions to this equation may not be tangent to the constraint surface. In order for the solutions to

be tangent to the constraint surface, it must be that ω̃(XH , Xϕa) = dH(Xϕa) = 0 for vector fields

Xϕa associated with the primary constraints. This may define a further collection of constraints

called secondary constraints, and we can think of these additional constraints as leading to the

specification of a further submanifold.

Continuing this process of requiring that the solutions to the equations of motion are tangent

to the constraint surface terminates in a final constraint surface, (Σf , ω̃f , H|Σf
), defined by the

satisfaction of the full collection of M + S constraints, where the null vector fields of ω̃f are those

M vector fields associated with the M first-class constraints, and S is the number of second-class

constraints. The integral curves of the null vector fields are called the gauge orbits. They are M -
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dimensional surfaces on the constraint surface spanned by the null vector fields. In this way, on the

final constraint surface, the gauge transformations are given by transformations along the integral

curves of the null vector fields associated with the first-class constraints.

Following standard usage, let us define the ‘Total Hamiltonian’ as the equivalence class of

Hamiltonians defined up to arbitrary combinations of primary (first-class) constraints i.e. the

equivalence class of Hamiltonians on the primary constraint surface. Similarly, we define the ‘Ex-

tended Hamiltonian’ as the equivalence class of Hamiltonians defined up to arbitrary combinations

of primary and secondary (first-class) constraints i.e. the equivalence class of Hamiltonians on

the final constraint surface. Going forward, we will use the term ‘Total Hamiltonian formalism’ to

refer to the formulation of irregular Hamiltonian mechanics on the primary constraint surface and

‘Extended Hamiltonian formalism’ to refer to the formulation of irregular Hamiltonian mechanics

on the final constraint surface.

4 Inequivalence Argument

In the previous section, we showed that a Hamiltonian gauge theory is naturally formulated on the

final constraint surface with the Extended Hamiltonian as the equivalence class of Hamiltonians.

However, we also pointed out that if we start with a Lagrangian theory, the Legendre transformation

defines the primary constraint surface, corresponding to the Total Hamiltonian being the right

equivalence class of Hamiltonians (see Figure 1). This fact has led some authors to conclude

that Extended Hamiltonian formalism is inequivalent to the Lagrangian formalism, and that this is

reason to think that the Extended Hamiltonian formalism is mistaken.

For example, Gracia & Pons (1988) state:

“No “extended hamiltonian” is needed, since it would introduce new solutions of the

equations of motion that would break the equivalence between Lagrangian and Hamil-

tonian formalisms”.

Similarly, Pitts (2014b) argues:

9



Figure 1: The irregular case.

“The extended Hamiltonian breaks Hamiltonian-Lagrangian equivalence. Requiring

Hamiltonian-Lagrangian equivalence fixes the supposed ambiguity permitting the ex-

tended Hamiltonian”.

Such claims have been used to argue that the right definition of a gauge transformation in

the Hamiltonian formalism is not given by a transformation relating solutions to the Extended

Hamiltonian, but rather it is a transformation relating solutions to the Total Hamiltonian. And

one can show that the transformations relating solutions to the Total Hamiltonian are not given

by arbitrary combinations of first-class constraints but rather by a particular combination of first-

class constraints, contrary to the standard definition.6 Therefore, the claim that the Lagrangian

formalism is equivalent only to the Total Hamiltonian formalism has significant implications not

only for how one formulates Hamiltonian gauge theories but also for the characterization of the

gauge transformations themselves.

However, to evaluate these claims, we ought to understand the sense of (in)equivalence that is

at stake. This hasn’t been discussed in detail in the literature; indeed, what one finds are references

to certain results that are taken to show that the solutions to the Euler-Lagrange equations are

equivalent to the solutions to the Hamilton-Dirac equations on the primary constraint surface. One

particular result that is widely cited is found in Batlle et al. (1986), so let us spell out this result

and consider the notion of equivalence that it supports.

Theorem (Batlle et al. (1986)): If (qi(t), q̇i(t)) satisfies the Euler-Lagrange equa-

tions, then FL(qi(t), q̇i(t)) satisfies the Hamilton-Dirac equations on the primary con-
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straint surface. Similarly, if (qi(t), pi(t)) satisfies the Hamilton-Dirac equations on the

primary constraint surface, then FL−1(qi(t), pi(t)) satisfies the Euler-Lagrange equa-

tions, where FL−1(qi(t), pi(t)) is constructed via:

q̇i =
∂H

∂pi
+ va(qi, q̇i)

∂ϕa

∂pi

−∂L

∂qi
=

∂H

∂qi
+ va(qi, q̇i)

∂ϕa

∂qi

where ϕa are the primary constraints and va(qi, q̇i) are arbitrary.

The theorem shows that the solutions to the Euler-Lagrange equations map to the solutions to

the Hamilton-Dirac equations on the primary constraint surface and vice versa.7 But notice that

the inverse Legendre transformation maps one point on the primary constraint surface to multiple

points on the tangent space since it is defined in terms of arbitrary functions va. It therefore

maps one solution on the primary constraint surface to multiple solutions on tangent space. If

these solutions are not considered equivalent from the perspective of the Lagrangian formalism,

then this result cannot establish that a Lagrangian gauge theory defined on tangent space and

its corresponding Hamiltonian theory defined on the primary constraint surface have equivalent

solutions.

Moreover, even if we do interpret these solutions as equivalent, it seems that the most that this

theorem can tell us is that there is a dynamical equivalence between Lagrangian mechanics and

Hamiltonian mechanics on the primary constraint surface: the two theories agree on the equiv-

alence classes of solutions. One cannot use Barrett’s result to establish categorical equivalence

since we do not have a way of translating the models and symmetries of one theory to those of

the other. For one, it was important for Barrett’s result that FL−1 = FH , which follows from

the fact that these maps are global diffeomorphisms. The maps between tangent space and the

primary constraint surface do not satisfy this property. Moreover, we have not yet formally defined
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the symmetries – the isomorphisms – of the corresponding theories. The natural account of the

isomorphisms of a Hamiltonian gauge theory is that they are the transformations that preserve the

presymplectic structure of the constraint surface and preserve the Hamiltonian on the constraint

surface. But it isn’t clear how to relate such symmetries to transformations of the points of tangent

space. Therefore, the theorem above is not sufficient to infer theoretical equivalence between La-

grangian gauge theories and Hamiltonian gauge theories defined on the primary constraint surface.

On the other hand, one can use the theorem to argue that there is a dynamical, and therefore

theoretical, inequivalence between a Lagrangian gauge theory and the corresponding Extended

Hamiltonian theory. Indeed, this seems to be the core of the argument that the Extended Hamilto-

nian gets the gauge transformations wrong, from the perspective of the Lagrangian formalism. The

reasoning is as follows. There are distinct solutions in the Total Hamiltonian formalism that are

equivalent in the Extended Hamiltonian formalism: the solutions that are related by vector fields

associated with the secondary first-class constraints. Therefore, the Total Hamiltonian formal-

ism and the Extended Hamiltonian formalism disagree about the equivalence classes of solutions.

Since the Lagrangian formalism has the same equivalence classes of solutions as the Total Hamilto-

nian formalism (under an appropriate interpretation of the Lagrangian formalism), the Lagrangian

formalism is dynamically inequivalent to the Extended Hamiltonian formalism.

However, there are some lingering puzzles. First, there is a sense in which the Total Hamil-

tonian formalism is empirically equivalent to the Extended Hamiltonian formalism: if we take

secondary constraints to be a physical requirement in the Total Hamiltonian formalism, then the

solutions must lie on Σf , and on Σf , the Hamiltonian in the Total Hamiltonian formalism is equiv-

alent to the Hamiltonian in the Extended Hamiltonian formalism. Therefore, although the Total

Hamiltonian theory distinguishes solutions that the Extended Hamiltonian theory does not, the

differences between these solutions cannot be recognized by the structure of the final constraint

surface on which these solutions lie. This suggests that the Total Hamiltonian theory, and corre-

spondingly the Lagrangian theory, distinguishes more solutions than can be distinguished empiri-

cally.
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Second, given that we have motivated two formulations of Hamiltonian mechanics in the

presence of gauge symmetry—the Total Hamiltonian formalism and the Extended Hamiltonian

formalism—it is natural to ask whether, in the context of gauge theories, one could also refor-

mulate Lagrangian mechanics such that the equivalence classes of solutions match the Extended

Hamiltonian formalism. If we could, then this would suggest that the inequivalence that we find

between Lagrangian mechanics and the Extended Hamiltonian formalism is an accident of the way

we set up the Lagrangian formalism in the first place.

These puzzles lead to the following questions: First, can one motivate an alternative formula-

tion of Lagrangian mechanics that captures the same empirical content but is dynamically equiv-

alent to the Extended Hamiltonian formalism? Second, can one provide a stronger account of

theoretical equivalence between formulations of Lagrangian and Hamiltonian gauge theories?

In what follows, I will argue that the answer to both questions is yes: we can both reformulate

Lagrangian mechanics in the presence of gauge symmetry such that the resulting theory is dynam-

ically equivalent to the Extended Hamiltonian formalism, and we can set up an equivalence result

between categories of Lagrangian and Hamiltonian models that naturally capture the content of this

reformulated Lagrangian theory and the Extended Hamiltonian theory. This will refute the claim

that from the perspective of (equivalence with) the Lagrangian formalism, the Total Hamiltonian

formalism is motivated over the Extended Hamiltonian formalism.

More carefully, I first demonstrate, drawing from Gotay & Nester (1979), that one can formu-

late Lagrangian gauge theories on a constraint submanifold of tangent space, and that the relation-

ship between the Lagrangian constraint surface and the Hamiltonian final constraint surface is the

same as the relationship between tangent space and the Hamiltonian primary constraint surface.

I will use this to show that the equivalence classes of solutions of the reformulated Lagrangian

theory match the equivalence classes of solutions of the Extended Hamiltonian formalism.8 Next,

I argue that there is a way to redefine the models of these theories using a process known as re-

duction such that one can set up a categorical equivalence result between classes of models of the

reduced theories. This will demonstrate that the sense in which Lagrangian and Hamiltonian gauge
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theories are equivalent is essentially that their gauge-invariant descriptions are equivalent.

5 Lagrangian Constraint Formalism

To see how we can think of constraints in the Lagrangian formalism, let us start by writing the

Euler-Lagrange equations as:

Wij q̈
j +Ki = 0 (1)

where Wij =
∂2L

∂q̇i∂q̇j
is the Hessian and Ki =

∂2L
∂q̇i∂qj

q̇j − ∂L
∂qi

. The singular case is characterized

by the vanishing of the determinant of Wij . Let us say that the rank of Wij is n −m1 so that Wij

has m1 null vectors, φµ, such that Wijφ
j
µ = 0. We call these “gauge identities” because they hold

at all points in T∗Q.

Contracting the equations of motion with the null vectors, we get:

χµ = Kiφ
i
µ = 0 (2)

We call these the first m1 “Lagrangian constraints”. We now require for consistency that these

constraints are preserved under time evolution i.e. d
dt
χµ = 0. This gives rise to new Lagrangian

constraints χµ′ . We can continue this process until we are left with all of the Lagrangian con-

straints. As in the Hamiltonian case, there are certain constraints whose time evolution allows one

to determine some of the undetermined accelerations; as we will see, these constraints correspond

to the second-class constraints on the Hamiltonian side.

It will be helpful to consider the picture in geometric terms. We can define, as in the regular

case, the Lagrangian state space to be endowed with a two form Ω = FL∗ω that is given in

coordinate form by Ω = ∂2L
∂q̇i∂qj

dqi ∧ dqj + ∂2L
∂q̇i∂q̇j

dqi ∧ dq̇j . When the Hessian Wij = ∂2L
∂q̇i∂q̇j

is

non-invertible, Ω is degenerate and so it is a pre-symplectic two-form.

The geometric equations of motion can be written as before:
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Ω(XE, ·) = dE (3)

Because Ω is not symplectic in the irregular case, there will not be a unique solution to the

equations of motion; indeed there may not be any solution at some points. However, the null

vector fields of Ω allow us to define a submanifold where one can solve the equations at every

point, in the following way. The null vector fields Z of Ω are such that Ω(Z, ·) = 0. So, for the

equations of motion to hold and be tangent to T∗Q, we must have that dE(Z) = 0. This motivates

restricting to the submanifold P1 defined by dE(Z) = 0 for null vector fields Z. We can therefore

think of dE(Z) as constraints.

Next, we require that the solutions to the equations of motion everywhere lie tangent to P1 i.e.

that the constraints hold at all points along a solution. But this is just to require that dE(Y ) = 0

where Y is a null vector field of Ω restricted to P1, which we can write as Ω1. So we should restrict

to a submanifold where in addition dE(Y ) = 0. Therefore, we can think of dE(Y ) as further

constraints.

Reiterating this process, we find a constraint surface Pk for K constraints where the solutions

of the equations of motion Ωk(XE, ·) = dE are tangent to the constraint surface (where E is the

energy function on T∗Q restricted to the points of the constraint surface Pk). The null vector fields

of Ωk correspond to the null vector fields of Ω and the vector fields associated with the constraints.

Therefore, we can think of this formalism as providing a way on the Lagrangian side to associate

constraints with gauge transformations: the vector fields associated with the constraints generate

(a subset of) the gauge transformations, understood as transformations along the integral curves of

the null vector fields.

However, there are some constraints Kiφ
i
µ = 0 that are not accounted for by this geometric

procedure. These are the constraints that do not correspond to null vector fields of the (induced)

presymplectic two-forms. As Gotay & Nester (1980) show, these constraints are determined by re-

quiring that the equation of motion is second-order, which corresponds to requiring that a solution

to the equation of motion, written in coordinate-dependent form as X = αi ∂
∂qi

+βi ∂
∂q̇i

, is such that
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αi = q̇i (this follows from the two-form written in coordinate form above). If constraints of this

kind arise, we can find their time derivative and thereby determine potentially new constraints. So

take the final constraint surface to be given by (Pf ,Ωf , L|Pf
) where Pf is the sub-manifold defined

by the satisfaction of K + J constraints where J is the number of constraints arising from the

second-order condition.

6 Relationship between Final Constraint Surfaces

We have seen that we can construct submanifolds of tangent space in a similar way to the construc-

tion of submanifolds in the Hamiltonian formalism through constraints, and that we can write the

equations of motion intrinsically on these submanifolds. So the natural question is whether the the-

ory defined on the final constraint submanifold on the Lagrangian side is equivalent to the theory

defined on the final Hamiltonian constraint manifold. To present an equivalence result of this kind,

we will start by using the results in Gotay & Nester (1979) to show that the relationship between

the models on the final constraint manifolds is the same as the relationship one finds between the

original Lagrangian model and the model on the primary constraint surface.9

We will restrict ourselves, following Gotay & Nester (1979), to almost regular Lagrangian

models. An almost regular Lagrangian model is associated with two assumptions. First, FL is

a submersion onto its image i.e. its differential is surjective. Second, the fibers FL−1(FL(q, q̇))

are connected submanifolds of T∗Q. These two assumptions guarantee that FL∗(H) = E defines

a single-valued Hamiltonian, since they imply that the energy function E is constant along the

fibers FL−1(FL(q, q̇)).10 We can think of the almost regular Lagrangian models as characterizing

the Lagrangian gauge theories: they are the models of Lagrangian mechanics for which there

is a well-defined corresponding Hamiltonian theory on the primary constraint surface, with the

Hamiltonian related to the energy function via FL∗H = E.

We also assume that we have no ineffective constraints11, which means that there is a clear

separation between first-class and second-class constraints i.e. a first-class constraint does not
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become second-class when considering its evolution and vice versa. To start, we will assume that

we just have first-class constraints on the Hamiltonian side and constraints that correspond to null

vector fields on the Lagrangian side.

Let us first consider the relationship between T∗Q and the primary Hamiltonian surface Σp.

Take ip to be the inclusion map ip : Σp → T ∗Q. Then we can define the Legendre transformation

between T∗Q and Σp, FLp : T∗Q → Σp via ip ◦ FLp = FL. Since FL is assumed to be a

submersion onto its image and its image is precisely Σp, FLp is also a submersion and is surjective

(but not injective nor an immersion). Moreover, take FLp∗ is the pushforward map associated with

Flp. The kernel of FLp∗ (or Ker(FLp∗)) is the collection of vector fields Z on T∗Q such that

FLp∗(Z) is the zero vector everywhere.

Proposition 1: The dimension of the space of null vector fields on T∗Q is equal to the

dimension of the space of null vector fields on Σp plus the dimension of Ker(FLp∗).12

Proposition 1 tells us that for every null vector field on tangent space there is a corresponding

null vector field on the primary Hamiltonian constraint surface, and that every null vector field

on the primary Hamiltonian constraint surface corresponds to a null vector field on tangent space,

but that the relationship is many-to-one from tangent space to the Hamiltonian primary constraint

surface. The reason for this many-to-one relationship is that for any null vector field on tangent

space, adding a vector field in the kernel of FLp∗ (of dimension equal to the number of primary

first-class constraints) gives rise to a distinct null vector field on tangent space that corresponds to

the same null vector field on the Hamiltonian primary constraint surface.

It turns out that the same relationship holds between the final constraint surfaces Pf and Σf .

Define the induced Legendre transformation between these spaces as follows. Define iL : Pf →

T∗Q as the inclusion map from the final Lagrangian constraint surface to the tangent space and

iH : Σf → T ∗Q as the inclusion map from the final Hamiltonian constraint surface to the cotangent

space. Then FLf : Pf → Σf is given implicitly by iH ◦ FLf = FL ◦ iL (see Figure 2).
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Figure 2: Relationship between final constraint surfaces.

Proposition 2: The dimension of the space of null vector fields on Pf is equal to the

dimension of the space of null vector fields on Σf plus the dimension of Ker(FLf∗).13

Proposition 2 tells us that the relationship between null vector fields on the final constraint sur-

faces is also many-to-one from the Lagrangian to the Hamiltonian constraint surface, where the dif-

ference in dimension is given by the dimension of Ker(FLf∗). One can show that Ker(FLf∗) =

Ker(FLp∗), and so the difference in dimension of null vector fields on the final constraint surface

is given by the number of primary first-class constraints.

We can also show how the solutions to the equations of motion on the final constraint surfaces

are related, using the fact that FL∗
f (H) = E on the final constraint surfaces:

Proposition 3: The dimension of the space of solutions to Ωf (XE, ·) = dE on Pf is

equal to the dimension of the space of solutions to ω̃f (XH , ·) = dH on Σf plus the

dimension of Ker(FLf∗).14

Proposition 3 tells us that the relationship between solutions is many-to-one in the sense that

there are distinct solutions on the Lagrangian final constraint surface – related by the addition

of vector fields in Ker(FLf∗) – that correspond to the same solution on the Hamiltonian final

constraint surface. This provides the analogue to the theorem from Batlle et al. (1986) that we

discussed in Section 4 for the final constraint surfaces. We can therefore give a partial response

to the claim that the Extended Hamiltonian formalism is inequivalent to the Lagrangian formal-

ism: there is an alternative formulation of Lagrangian gauge theories whose relationship to the
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Extended Hamiltonian formalism is the same as the relationship between the original formulation

of Lagrangian mechanics and the Total Hamiltonian formalism.

Propositions 1 through 3 also clarify the sense in which certain formulations of Lagrangian and

Hamiltonian gauge theories are dynamically equivalent: they agree on solutions up to null vector

fields. And it is clear why one would want to treat solutions that differ by null vector fields as being

equivalent; such solutions cannot be distinguished by the presymplectic structure of the state space.

More generally, the null vector fields are naturally thought to generate the (gauge) symmetries of

the theories precisely because transformations along the null vector fields leave intact the relevant

structure. This suggests that if we want to set up a categorical equivalence result, we need a way

of characterizing the structure of the theories that includes the redundancy associated with the null

vector fields.

Before turning to this task, let us consider how the situation changes when we also have second-

class constraints on the Hamiltonian side. Since we assumed that there are no ineffective con-

straints, this means that we only need to consider the case where we have primary second-class

constraints, since the time derivative of these constraints will generate any additional second-class

constraints.

We have shown that we can relate the first-class constraints to null vector fields on the La-

grangian side. But since second-class constraints do not correspond to null vector fields, we cannot

relate them to a Lagrangian constraint in the same way. However, it turns out that for every (dis-

tinct) primary second-class Hamiltonian constraint, there is a corresponding (distinct) Lagrangian

constraint whose associated vector field is not null. In particular, the additional Lagrangian con-

straints are the pullback under the (induced) Legendre transformation of the time derivative of a

second-class Hamiltonian constraint (Batlle et al. (1986), Pons (1988)). Generalizing, the final La-

grangian constraint surface will be reduced in dimension by the number of second-class constraints

on the Hamiltonian side. Therefore, the difference in dimension of the final Lagrangian constraint

surface and the final Hamiltonian constraint surface is given by the number of primary first-class

constraints.

19



7 Reduction and Equivalence

Although we now have a picture under which both the Lagrangian formalism and the Hamiltonian

formalism can be written intrinsically on constraint manifolds that are systemically related, we do

not yet have a theoretical equivalence result. The barrier is that we do not have a way to define

a translation from Lagrangian to Hamiltonian models and vice versa via the relationship between

FL, FL−1, FH and FH−1 since the final constraint submanifolds are not of the same dimension.

However, we have seen that there are indications that we should be able to set up an equivalence

result: while the dimensions of the final constraint surfaces are different, the difference seems to

be due to arbitrariness in the Lagrangian formalism coming from the null vector fields in the kernel

of FL∗. More generally, if we take null vector fields to generate symmetries, then it seems that the

two formalisms agree on all symmetry-invariant content.

One way of characterizing the idea that theories agree on all symmetry-invariant content is to

consider whether one can formulate the theories directly in terms of the equivalence classes under

such symmetries. Indeed, there is a well-known construction for specifying a Hamiltonian theory

in terms of the equivalence class of states along the integral curves of the null vector fields called

reduction: the process of reduction defines a manifold that “quotients out” the gauge transforma-

tions.15 This is not a construction that one often finds discussed for a Lagrangian theory.16 However,

we have shown that we can think of a Lagrangian gauge theory in an analogous way to the Hamil-

tonian formalism as defined on a presymplectic manifold. This suggests that we should be able to

equally construct a reduced space for the final Lagrangian constraint surface. The question then

becomes: are the reduced versions of Lagrangian and Hamiltonian gauge theories categorically

equivalent?

The reason that reduction will help us to set up a categorical equivalence result is that one can

show that reduction induces a symplectic two-form on the reduced space. Recall that being sym-

plectic means that the Lagrangian/Hamiltonian models are regular: the two-form is non-degenerate

and so we can, at least locally, define the inverse of the fiber derivatives. Therefore, if we can show

that the Legendre transformation of a reduced Lagrangian model gives rise to a reduced Hamilto-
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nian model and vice versa, then this suggests that we can set up an equivalence result in an exactly

analogous way to Barrett (2019), if we restrict to the hyperregular reduced models.

Consider first a presymplectic Hamiltonian manifold (Σ, ω̃, H) that is foliated by the gauge

orbits at each point. We can define a smooth, differentiable manifold Σ̄ by taking the quotient

of Σ by the kernel of ω̃ i.e. the null vector fields of ω̃. Recall that the integral curves of the

null vector fields define the gauge orbits, and so the points of the quotient manifold are just the

equivalence classes of points along the gauge orbits. This is well-defined since the gauge orbits

foliate the constraint surface in such a way that one can define a transverse manifold that meets

each leaf of the foliation in at most one point i.e. through each point there is only one gauge

orbit.17 Recall that on the final constraint surface, the dimension of the gauge orbits is the number

of first-class constraints M and the dimension of Σf is 2N −M − S where N is the dimension of

configuration space and S is the number of second-class constraints. So the quotient manifold of

the final Hamiltonian constraint surface Σ̄ has dimension 2N − 2M − S.

Define an open, surjective projection map π : Σf → Σ̄ such that we define the reduced two-

form ω̄ via ω̃f = π∗(ω̄), which acts according to ω̄(X̄, Ȳ ) = ω̃f (X, Y ) where X̄ = π∗(X). One

can show that ω̄ is well-defined and is symplectic.18 We can also define a reduced Hamiltonian

H̄ as the value of H on the equivalence class of points along the gauge orbits i.e. H = π∗(H̄).

This is well-defined because H is constant along the gauge orbits on the final constraint surface

(since the solutions to the equations of motion are tangent to the final constraint surface). We can

therefore write the equations of motion on the reduced space in terms of the reduced Hamiltonian

H̄ as ω̄(X̄H̄ , ·) = dH̄ , and the solutions are just the projection of the solutions to the equations of

motion on Σf to Σ̄; they are the solutions defined for the gauge-invariant quantities.

Therefore, there is a well-defined Hamiltonian theory on the reduced space of the final Hamil-

tonian constraint surface in terms of a symplectic two-form and a reduced Hamiltonian function.

However, this only required that we had a presymplectic manifold with a foliation induced by the

null vector fields of the associated two-form and that the Hamiltonian function was constant along

the gauge orbits. Given that the same is true for the Lagrangian final constraint surface, we can
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do the same reduction procedure on the Lagrangian side to produce a reduced Lagrangian space

P̄ with an associated symplectic two-form Ω̄. This space will have dimension 2N − 2K − J

where K is the number of Lagrangian constraints associated with null vector fields and J is the

number of additional Lagrangian constraints. As in the Hamiltonian case, the equations of motion

Ω̄(X̄Ē, ·) = dĒ are well-defined because the energy function E is constant along gauge orbits on

Pf , and so the reduced Lagrangian function L̄ – and consequently the reduced energy function Ē

– are also well-defined.

Let us now turn to the relationship between models of the reduced theory. First, let us consider

the relationship between the dimensions of the reduced spaces corresponding to models on the final

constraint surfaces Pf ,Σf that are related via FLf . Recall that the dimension of the Lagrangian

final constraint surface Pf is equal to the dimension of the Hamiltonian final constraint surface

Σf plus the number of primary first-class constraints. But by Proposition 2, the difference in

dimension of the null vector fields is also given by the number of primary first-class constraints.

Therefore, the dimension of the reduced Lagrangian space P̄ is equal to the dimension of the

reduced Hamiltonian space Σ̄.

Next, define an induced transformation F̄L : P̄ → Σ̄ that satisfies πH ◦ FLf = F̄L ◦ πL

where πH : Σf → Σ̄ and πL : Pf → P̄ are the projection maps. This provides a way to map

from the reduced Lagrangian space to the corresponding reduced Hamiltonian space. Since L̄ is

regular (since the induced two-form is symplectic), the Legendre transformation on P̄ , FL̄, will

be a (local) diffeomorphism. Therefore, since P̄ and Σ̄ have the same dimension, the induced

transformation F̄L is precisely the Legendre transformation on P̄ , FL̄.19 Similarly, since H̄ is

regular, the fiber derivative of H̄ , FH̄ , will be a (local) diffeomorphism and it will map Σ̄ to P̄ .

Using the reduced Legendre transformation, one can also show that the reduced symplectic two-

forms are related via FL̄∗(ω̄) = Ω̄ and the reduced Hamiltonian and energy function are related

via FL̄∗(H̄) = Ē.20

Finally, since (Pf , Lf ) is, by assumption, an almost regular system, (P̄ , L̄) will also be almost

regular. This implies that FL̄ is injective.21 Moreover, the image of FL̄ is Σ̄ by construction of the
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induced transformation so FL̄ is surjective. But this means that FL̄ is a global diffeomorphism,

and so (P̄ , L̄) is in fact a hyperregular system. Therefore, we can define the inverse FL̄−1 : Σ̄ →

P̄ . This allows us to define H̄ = Ē ◦ FL̄−1.

Therefore, for an almost regular Lagrangian model defined on the final constraint surface, we

can construct a reduced model such that this model is hyperregular and its Legendre transformation

is precisely the (hyperregular) reduced model of the corresponding Hamiltonian final constraint

surface. This implies that as long as we are concerned with almost regular Lagrangian models

and their corresponding Hamiltonian models, the reduced formulations of these theories bear ex-

actly the same relationship as hyperregular models of Lagrangian and Hamiltonian mechanics (see

Figure 3).

Figure 3: Relationship between reduced spaces.

We are now at the point where we can set up a categorical equivalence result. Recall that

to do so, we need to define the models and symmetries of the associated theories. In the hyper-

regular case discussed in Section 2, the symmetries were taken to be the point-transformations

that preserved the Lagrangian/Hamiltonian. However, in order for the point-transformations to be

well-defined for the reduced theories, we need that the reduced state space has the structure of a

(co)tangent bundle. This is not guaranteed by the above.22 On the other hand, we do have that the

reduced spaces are symplectic manifolds. Therefore, it seems that the natural notion of symmetry
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is rather given by symplectomorphisms: diffeomorphisms that preserve the symplectic two-form

on the reduced space (and preserve the Lagrangian/Hamiltonian).

In light of this, define the category LagR as having objects (P̄ , Ω̄, L̄) and arrows between

objects (P̄1, Ω̄1, L̄1) and (P̄2, Ω̄2, L̄2) given by symplectomorphisms that preserve the Lagrangian

i.e. diffeomorphisms f : P̄1 → P̄2 such that f ∗(Ω̄2) = Ω̄1 and f ∗(L̄2) = L̄1.

Similarly, define the category HamR as having objects (Σ̄, ω̄, H̄) and arrows between objects

(Σ̄1, ω̄1, H̄1) and (Σ̄2, ω̄2, H̄2) given by symplectomorphisms that preserve the Hamiltonian i.e.

diffeomorphisms g : Σ̄1 → Σ̄2 such that g∗(ω̄2) = ω̄1 and g∗(H̄2) = H̄1.

Define the functor J as taking the object (P̄ , Ω̄, L̄) of LagR to (Σ̄, Ω̄◦FL̄−1, Ē◦FL̄−1) where Σ̄

is the image of P̄ under FL̄ , and that takes arrows f : P̄1 → P̄2 to FL̄2◦f◦FL̄−1
1 . Similarly, define

the functor K as taking objects (Σ̄, ω̄, H̄) of HamR to (P̄ , ω̄ ◦ FH̄−1, (θ̄a(XH̄)
a − H̄) ◦ FH̄−1)

where P̄ is the inverse image of Σ̄ and θ̄ is the reduced one form, and takes arrows g : Σ̄1 → Σ̄2 to

FH̄2 ◦ g ◦ FH̄−1
1 . Then we can show that:

Proposition 4: J : LagR → HamR and K : HamR → LagR are equivalences that

preserve solutions.23

8 Upshots

Proposition 4 provides a sense in which irregular Lagrangian mechanics and irregular Hamiltonian

mechanics are equivalent: one can formulate these theories geometrically on a presymplectic final

constraint manifold such that the hyperregular class of reduced models are categorically equivalent.

This provides an extension to the result in Barrett (2019) that hyperregular Lagrangian and Hamil-

tonian theories are categorically equivalent. Moreover, it has several interesting consequences.

First, we discussed in Section 4 the view that the correct Hamiltonian formulation is the Total

Hamiltonian formalism on the basis that it is dynamically equivalent to the Lagrangian formalism

in the context of gauge theories. But our arguments have suggested that the Extended Hamiltonian

formalism can be motivated in a similar, and even stronger, way: there are reasons to move to
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the final Lagrangian constraint surface from the perspective of the Lagrangian formalism, and not

only are the models formulated on the Lagrangian final constraint surface dynamically equivalent

to models of the Extended Hamiltonian formalism, one can also prove a theoretical equivalence

result between the reduced version of such models.

To deny that Proposition 4 supports the Extended Hamiltonian formalism, one would have to

maintain that there is something mistaken about the Lagrangian constraint formalism we presented.

One avenue might be to argue that we shouldn’t think of Lagrangian constraints as restricting the

state space of Lagrangian mechanics: they should be thought of as dynamical constraints and not

kinematical constraints, and therefore they should not restrict the kinematically possible models

that we use to define the theory. According to this view, the correct formulation of the Lagrangian

models is the usual tangent bundle formulation. Given this, one might argue that we should inter-

pret Proposition 4 as instead providing stronger support for the claim that the Lagrangian formalism

is equivalent to the Total Hamiltonian formalism: we can consider the result in the case where the

reduced models are formulated by taking the reduction of the tangent bundle/primary constraint

surface models.

Setting aside the subtleties of taking reduction to happen at the level of the tangent bun-

dle/primary constraint surface24, I think that the discussion in this paper shows that there are good

reasons to take the formulation on the final Lagrangian constraint surface to be well-motivated.

First, the Lagrangian constraints are motivated in an identical way to the secondary Hamiltonian

constraints: they are required for the equations of motion to be well-defined everywhere. There-

fore, although one could take the points off the final Lagrangian constraint surface to be “kinemat-

ically possible”, there is a sense in which they play no role in the empirical content of the theory.

Second, given that the Lagrangian constraints give rise to null vector fields in the same way as

Hamiltonian constraints do, they are important for capturing the redundancy that a Lagrangian

theory has. In other words, the reason that one would want to formulate the Lagrangian theory on

the final constraint surface is for the same reason one would want to formulate the Hamiltonian

theory on the final constraint surface: it provides an intrinsic characterization of the dynamics and
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the symmetries of a theory.

Another reason that Proposition 4 is significant is that it goes against some commonly found

remarks in the literature. For example, Earman (2002) says: “Is there then some non-question

begging and systematic way to identify gauge freedom and to characterize the observables? The

answer is yes, but specifying the details involves a switch from the Lagrangian to the constrained

Hamiltonian formalism.” The geometric formulation shows that one can provide the same charac-

terization from the Lagrangian side: the observables are the functions that are constant along the

null vector fields of the associated two-form, and these are equivalent to the Hamiltonian observ-

ables. Moreover, on the usual understanding of gauge theories, one starts with a Lagrangian gauge

theory and uses it to define the Hamiltonian one. Proposition 4 suggests that one could equally

start with a Hamiltonian theory with constraints, reduce the final constraint surface, and use this to

define the corresponding (reduced) Lagrangian theory.

However, there are several subtleties with the equivalence result given by Proposition 4. For

one, we restricted to a subset of the irregular Lagrangian models, the ‘almost regular’ ones, and

then considered the corresponding Hamiltonian models defined via the Legendre transformation.

While we argued that the almost regular Lagrangian models and the corresponding Hamiltonian

models have hyperregular reduced models, we did not show that this exhausts the class of hyperreg-

ular reduced models. It would therefore be interesting to consider whether there are hyperregular

reduced models that cannot be thought of as coming from a ‘gauge theory’ in the sense of being

an almost regular Lagrangian model or its corresponding Hamiltonian model. Moreover, ‘almost

regularity’ referred to the Lagrangian model, but there doesn’t seem to be a clear Hamiltonian

analogue: the fiber derivative of the Hamiltonian on the primary/final constraint surface does not

construct an almost regular Lagrangian model. Therefore, it seems that we need some alternative

way to characterize the relevant class of gauge theories in Hamiltonian terms.25

Second, we have been assuming that it is adequate to think of Lagrangian gauge theories as

having (pre)symplectic structure. But we defined the associated two-form by pulling back the

(pre)symplectic two-form on the Hamiltonian state space along the Legendre transformation; tan-
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gent space does not come naturally equipped with a (pre)symplectic two-form.26 Therefore, one

might argue that we are enforcing Hamiltonian structure on a Lagrangian theory that it shouldn’t

be taken to have. Whether this is right depends on what one takes to constitute a Lagrangian vs.

Hamiltonian gauge theory, which itself is related to the background debate between North (2009)

and Curiel (2014).

Finally, while symplectic reduction is well-founded, it runs into problems in certain applica-

tions; notably, in the context of time-reparameterization-invariant theories such as General Relativ-

ity where the Hamiltonian function is itself a first-class constraint, symplectic reduction, inasmuch

as it is well-defined27, leads to (a version of) the “Problem of Time”: one ends up with a theory

without a meaningful notion of evolution. This puzzle has led to views that either reject formulat-

ing a gauge theory on the reduced space or extend the formalism in some way.28 On these views,

the symplectic reduced space is not (in all cases) the relevant structure to consider when asking

whether Lagrangian and Hamiltonian gauge theories are equivalent.

I take the claim that the reduced space does not always correctly characterize the content of a

gauge theory to be an important limitation of the argument that Lagrangian and Hamiltonian gauge

theories are equivalent on the basis that their reduced theories are equivalent. However, I see the

results presented here as providing the basis for considering this issue from a new perspective. For

example, one could ask whether the category of models on the final constraint surface (for either

the Lagrangian or Hamiltonian theory) is equivalent to the category of reduced models given by

LagR and HamR. If the answer is yes, then this would suggest that the corresponding Lagrangian

and Hamiltonian theories on the final constraint surface are equivalent. If the answer is no, then the

question about the equivalence between Lagrangian and Hamiltonian gauge theories formulated on

the final constraint surface is left open.

To end, I think the lesson of this paper is that even if cases where one has an intuition that two

theories are equivalent, proving categorical equivalence can be hard, and considering what assump-

tions go into proving categorical equivalence can shed light on what one means by, for example, a

“Lagrangian gauge theory” and a “Hamiltonian gauge theory”, as well as how one should interpret
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such theories if one wants to maintain that they are (or are not) equivalent. Therefore, rather than

this paper providing a definitive answer to whether Lagrangian and Hamiltonian gauge theories

are equivalent, I think one should view it as providing a first step towards using categorical rela-

tionships to shed light on the structure of, and relationship between, Lagrangian and Hamiltonian

gauge theories.

A Appendix

A.1 Proposition 1

First, we show that every null vector field on Σp gets mapped to by a null vector field on T∗Q

via FLp∗. Then, we show that every null vector field on T∗Q maps to a null vector field on Σp

via FLp∗. Finally, we show that the vector fields in Ker(FLp∗) are null vector fields on T∗Q,

which implies that for any null vector field Z on T∗Q, there is another vector field Y on T∗Q such

that FLp∗(Y ) = FLp∗(Z) where the difference between Y, Z lies in the kernel of FLp∗. By the

linearity of FLp∗, this is the only way that one could have distinct null vector fields on T∗Q that

map to the same null vector field on Σp. Therefore, this suffices to show that the dimension of the

space of null vector fields on T∗Q is equal to the dimension of the space of null vector fields on Σp

plus the dimension of Ker(FLp∗).

For the first, suppose that ω̃p(X, ·) = 0 i.e. X is a null vector field on Σp. Since FLp∗ is a sub-

mersion, every vector field X can be written as FLp∗(Z) for some vector field Z on T∗Q. There-

fore, we can write the supposition as ω̃p(FLp∗(Z), ·) = 0. This is equivalent to (FL∗
pω̃p)(Z, ·) = 0.

Since FL∗
pω̃p = Ω, this implies that Z is a null vector field of Ω.

For the second, suppose that Ω(Z, ·) = 0. By the definition of Ω, this means that at all points

x ∈ T∗Q, (FL∗
pω̃p)(Z, ·) = 0. This is equivalent to ω̃p(FLp∗(Z), ·) = 0 at the point FLp(x). Since

FLp is a submersion, this means that at all points y ∈ Σp, ω̃p(FLp∗(Z), ·) = 0 where FLp∗(Z)

is defined in terms of some point x ∈ T∗Q such that y = FLp(x). Therefore, although FLp∗(Z)

is not guaranteed to be a well-defined vector field, one can construct a null vector field on Σp via
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FLp∗(Z) in a point-wise sense.

Finally, to show that Ker(FLp∗) ⊆ Ker(Ω), suppose that Y ∈ Ker(FLp∗). Then, from the

above, Ω(Y, ·) = (FL∗
pω̃p)(Y, ·) = ω̃p(FLp∗(Y ), ·). But FLp∗(Y ) is the zero vector at every point

and so Ω(Y, ·) = 0. Therefore, every vector field in Ker(FLp∗) is a null vector field on T∗Q.

A.2 Proposition 2

We can use a similar proof to that of Proposition 1 if FLf is a (surjective) submersion. To show

that FLf is a submersion, it suffices to show that the number of Lagrangian constraints is equal

to the number of secondary (first-class) Hamiltonian constraints, since each constraint reduces the

dimension of the state space by one.

To see why this is the case, notice that Proposition 1 implies that if dH(X) is a Hamiltonian

constraint where X is a null vector field on Σp, then dE(Z) is a Lagrangian constraint where

X = FLp∗(Z) and E = FL∗
p(H). Similarly, if dE(Z) is a Lagrangian constraint where Z is a

null vector field on T∗Q, then one can construct a Hamiltonian constraint dH(FLp∗(Z)) via point-

wise application of FLp∗(Z). To show that there is only one such Hamiltonian constraint for each

Lagrangian constraint, recall that by the assumption of almost regularity, E is constant along the

fibers FL−1(FL(q, q̇)). This implies that dE(Y ) = 0 for every Y ∈ Ker(FLp∗). Therefore, there

are no Lagrangian constraints of the form dE(Y ) where Y ∈ Ker(FLp∗). Since the difference in

dimension of the space of null vectors is equal to Ker(FLp∗) by Proposition 1, this shows that there

is a one-to-one correspondence between Lagrangian constraints of the form dE(Z) for null vector

fields Z on T∗Q and the first generation of secondary, first-class Hamiltonian constraints defined

on Σp. Reiterating this reasoning, the same will be true of all further constraint submanifolds.

Therefore, since each constraint reduces the dimension of the state space by one, the relationship

between Pf and Σf will be the same relationship as between T∗Q and Σp: the induced Legendre

transformation FLf will be a surjective submersion, where Ker(FLf∗) = Ker(FLp∗).

Therefore, we can use similar reasoning as the proof for Proposition 1 to show that the dimen-

sion of the space of null vector fields on Pf is equal to the dimension of the space of null vector
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fields on Σf plus the dimension of Ker(FLf∗), where Ker(FLf∗) = Ker(FLp∗) is the number

of primary first-class constraints.

A.3 Proposition 3

Similar to the proof of Proposition 1, we first show that every solution on Σf gets mapped to by a

solution on Pf via FLp∗. Then, we show that every solution on Pf maps to a solution on Σf . Since

Ker(FLf∗) ⊆ Ker(Ωf ), if XE is a solution to Ωf (XE, ·) = dE, then so is XE + αiYi where

Yi ∈ Ker(FLf∗) and αi is an arbitrary function on Ωf . Therefore, since FLf∗(XE + αiYi) =

FLf∗(XE), this suffices to show that the dimension of the space of solutions on Pf is equal to the

dimension of the space of solutions on Σf plus the dimension of Ker(FLf∗).

For the first, suppose that ω̃f (XH , ·) = dH . Since FLf is a submersion, every XH can be

written as FLf∗(XE) for some vector field XE on Pf . Therefore, we can write the supposition as

ω̃f (FLf∗(XE), ·) = dH , which is equivalent to (FL∗
f ω̃f )(XE, ·) = FL∗

f (dH). Since FL∗
f ω̃f =

Ωf and FL∗
f (dH) = d(FL∗

fH) = dE , this implies that XE is a solution to Ωf (XE, ·) = dE,

which is the equations of motion on Pf .

For the second, suppose that Ωf (XE, ·) = dE. By the definition of Ωf and E, this means that

at all points x ∈ Pf , (FL∗
f ω̃f )(XE, ·) = FL∗

f (dH). This is equivalent to ω̃f (FLf∗(XE), ·) =

dH at the point FLp(x). Since FLf is a submersion, this means that at all points y ∈ Σf ,

ω̃f (FLf∗(XE), ·) = dH where FLf∗(XE) is defined in terms of some point x ∈ Pf such that

y = FLf (x). This means that FLf∗(XE) is a solution to the equations of motion on Σf at every

point. Therefore, even though FLf∗(XE) is not guaranteed to be a well-defined vector field, one

can construct a solution on Σf via FLf∗(XE) in a point-wise sense.

A.4 Proposition 4

To show that J is a functor, we need to show that J takes objects of LagR to objects of HamR

and arrows to arrows. The first is trivial. To show the second, take an arrow f between objects

(P̄1, Ω̄1, L̄1) and (P̄2, Ω̄2, L̄2). Since f is a symplectomorphism, f ∗Ω̄2 = Ω̄1. Since Ω̄ = FL̄∗ω̄
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by construction, this means that f ∗(FL̄2
∗
ω̄2) = FL̄1

∗
ω̄1. We want to show that FL̄2 ◦ f ◦ FL̄−1

1

is an arrow in HamR. That is, we want to show that (FL̄2 ◦ f ◦ FL̄−1
1 )∗ω̄2 = ω̄1 and (FL̄2 ◦ f ◦

FL̄−1
1 )∗(Ē2 ◦ FL̄2

−1
) = Ē1 ◦ FL̄−1

1 . The first follows from the fact that f ∗(FL̄2
∗
ω̄2) = FL̄1

∗
ω̄1.

The second follows from the fact that f ∗Ē2 = Ē1 since f ∗L̄2 = L̄1. Similar reasoning can be used

to show that K is a functor.

Since FL̄ and FH̄ are global diffeomorphisms, it follows from Abraham & Marsden (1987,

Theorems 3.6.7, 3.6.8) that FL̄−1 = FH̄ and FH̄−1 = FL̄. This implies that the functors J and

K are inverses on objects and on arrows, which suffices to show that J and K are equivalences.

Finally, that J and K preserve solutions follows from Proposition 3, which shows that FLf

preserves solutions up to gauge-equivalence, in combination with the fact that the solutions that

are equivocated through reduction are the gauge-related solutions.

Notes

1. There is a particular philosophical puzzle concerning the Hamiltonian formulation of General Relativity and its gauge

transformations known as the ‘Problem of Time’ (Anderson (2012)) We will not consider this problem directly in

this paper; indeed, given that symplectic reduction is particularly problematic for General Relativity (Belot (2007),

Thébault (2012)), the equivalence result will be less straightforward in this case. However, we will comment on it

briefly in Section 8.

2. Categorical equivalence as an account of theoretical equivalence has been developed and defended in several places,

including Halvorson (2012, 2016), Halvorson & Tsementzis (2017), Weatherall (2016, 2017), Barrett (2015a,b, 2019).

3. A functor is a structure-preserving map between categories that takes objects to objects and arrows to arrows.

4. Functors realize an equivalence between categories when they are full, faithful, and essentially surjective. For details,

see, for example, Weatherall (2016). The functors F,G preserve solutions because they preserve the integral curves of

XE and XH (Abraham & Marsden (1987, Theorem 3.6.2)).

5. Indeed, in a footnote (16), Barrett (2019) says: “One can, of course, consider the more general case, but I conjecture

that there the theories will be inequivalent according to any reasonable standard of equivalence.”
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6. For more discussion on this debate, see Pitts (2014b), Pons (2005), Pooley & Wallace (2022).

7. One can therefore see this theorem as the analogue of Theorem 3.6.2 in Abraham & Marsden (1987), which Barrett

(2019) uses as part of the proof of equivalence in the hyperregular case (see footnote 3), in the context of gauge

theories.

8. In Gryb & Thébault (2023, ch.8) it is argued that the symmetries of the Extended Hamiltonian can be motivated from

the Lagrangian perspective through careful consideration of Noether’s Second Theorem. I take this to be complemen-

tary to the argument presented here. The reason for using the formalism in Gotay & Nester (1979) is that it directly

allows us to compare the geometric structure of the two theories. However, it would be interesting to explore the extent

to which the results here agree with the analysis in Gryb & Thébault (2023).

9. Although the core content of the results in this section can be found in Gotay & Nester (1979), they do not discuss in

detail the kind of equivalence that these results imply, nor do they draw the implications that we do here for the debate

about the Total vs. Extended Hamiltonian.

10. The proof can be found in Gotay & Nester (1979).

11. An ineffective constraint is one whose gradient vanishes weakly. For discussion, see Gotay & Nester (1984).

12. See A.1 for proof.

13. See A.2 for proof.

14. See A.3 for proof.

15. The procedure for reduction that we consider here is drawn from Henneaux & Teitelboim (1994), Souriau (1997).

However, reduction often refers to a (more general) procedure sometimes called “Marsden-Weinstein reduction” due

to its development by Marsden & Weinstein (1974). While these procedures are related, I leave to future work the

question of how the arguments here can be cast in terms of Marsden-Weinstein reduction. For further discussion

on Marsden-Weinstein reduction and its relation to Lagrangian and Hamiltonian approaches to gauge theories, see

Butterfield (2006), Belot (2007).

16. An exception is Pons et al. (1999).

17. See Souriau (1997) §5 and §9 for details.
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18. It is well-defined since the value of ω̃f doesn’t depend on which point along the gauge orbit one considers. It is closed

since ω̃f is closed and π is a surjective submersion, and it is non-degenerate since Ker(ω̄) = Ker(ω̃f )/Ker(ω̃f ) = 0.

19. For further discussion of the properties that the Lagrangian theory must satisfy in order for the reduced Legendre

transformation to be well-defined and correspond to the induced transformation between reduced spaces, see Cantrijn

et al. (1986).

20. To see this, notice that π∗
L(FL̄∗ω̄) = FL∗

f (π
∗
H ω̄) = FL∗

f ω̃f = Ωf . Since πL is a surjective submersion, this implies

that FL̄∗(ω̄) = Ω̄. The second follows by similar reasoning.

21. The reason is that for an almost regular system, the image of the Legendre transformation is the leaf space of the

foliation generated by the kernel of the pushforward of the Legendre transformation. When a system is regular, this

kernel is zero, and so it must be injective.

22. Moreover, even if one could think of the reduced state space as having the structure of a (co)tangent space, it isn’t clear

that one would want the symmetries to be given by point-transformations. In particular, Barrett (2015b) shows that

there are point∗-transformations that don’t preserve any symplectic two-form on T∗Q. Given that the symplectic two-

form is an integral part of the construction of these reduced models, one might conclude that point∗-transformations

are not the relevant symmetries to consider for the reduced Lagrangian models.

23. See A.4 for proof.

24. In particular, the solutions to the equations of motion are not tangent to the constraint surface in the case where there

are Lagrangian/secondary constraints that are not represented in the structure of the state space, and so the reduced

equations of motion are not well-defined. See Pons et al. (1999) for further discussion.

25. For example, is it the case that any regular Hamiltonian theory with the addition of constraints gives rise to a constraint

surface model that is the Legendre transformation of some almost regular Lagrangian model?

26. For details, see Barrett (2015a).

27. In the case of General Relativity, there are barriers to applying reduction because the transformations generated by the

constraints do not form a Lie group. For further discussion, see Thébault (2012), Gryb & Thébault (2016a).

28. For different views of this kind, see Rovelli (2004, 2002), Barbour & Foster (2008), Gryb & Thébault (2012, 2016b).

For further discussion, see Thébault (2012).
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pp. 1–13.

Gotay, M. J. & Nester, J. M. (1984), ‘Apartheid in the dirac theory of constraints’, Journal of

Physics A: Mathematical and General 17(15), 3063.

Gracia, X. & Pons, J. (1988), ‘Gauge generators, dirac’s conjecture, and degrees of freedom for

constrained systems’, Annals of Physics 187(2), 355–368.
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