
Spacetime’s Gauge Reality:

Testing Loop Quantum Gravity with the AB Effect

Shan Gao
Research Center for Philosophy of Science and Technology,

Shanxi University, Taiyuan 030006, P. R. China
E-mail: gaoshan2017@sxu.edu.cn.

April 29, 2025

Abstract

The gravitational Aharonov-Bohm (AB) effect, where quantum particles acquire phase
shifts in curvature-free regions due to a gauge-fixed metric perturbation hµν , highlights
the intriguing gauge dependence of spacetime. This study explores whether Loop Quan-
tum Gravity (LQG), which views spacetime as emerging from SU(2)- and diffeomorphism-
invariant spin networks, can accommodate this effect. The AB effect suggests that LQG
should incorporate gauge dependence at the quantum level, which appears challenging within
its relational, gauge-invariant framework. Potential modifications to LQG, such as intro-
ducing gauge-fixing constraints or effective fields, may require assumptions aligned with
substantivalism, potentially diverging from its emergent paradigm. These results invite a
thoughtful reconsideration of spacetime’s ontological status, encouraging a dialogue between
relational and substantivalist perspectives in quantum gravity.

1 Introduction

The quest to understand the nature of spacetime—whether it emerges from fundamental rela-
tions or exists as an independent entity—is a central theme in modern theoretical physics. This
question becomes particularly compelling in efforts to unify quantum theory and general rel-
ativity, where different approaches offer diverse perspectives. Loop Quantum Gravity (LQG),
a prominent framework for quantum gravity, suggests that spacetime emerges from discrete,
SU(2)- and diffeomorphism-invariant spin networks, with quantized geometric observables like
area and volume [4]. In contrast, substantivalist views propose that spacetime possesses an
intrinsic, independent reality. The gravitational Aharonov-Bohm (AB) effect offers a valuable
empirical perspective to explore this debate, as it shows that quantum particles experience mea-
surable phase shifts in regions without spacetime curvature, influenced solely by a gauge-fixed
metric perturbation hµν [3]. This phenomenon invites us to consider whether spacetime’s gauge-
dependent metric is a physically significant property, rather than a mathematical construct.

In the weak-field regime of general relativity, the metric is approximated as gµν = ηµν +hµν ,
where hµν represents gravitational perturbations. The AB effect reveals that, even in the
absence of curvature (Rρ

σµν = 0), a carefully chosen hµν induces measurable quantum phase
shifts, similar to the electromagnetic AB effect, where the gauge-dependent vector potential Aµ

affects phases in field-free regions. In LQG, the classical metric gµν emerges statistically in the
semiclassical limit, without inherent gauge dependence. However, the AB effect suggests that
the gauge-fixed hµν—and thus spacetime’s physical state—must be reflected at the quantum
level. This poses an intriguing challenge for LQG, as its invariant framework may struggle to
incorporate such gauge-dependent quantum states without modifications that could affect its
relational ontology.
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This paper examines whether LQG can account for the gravitational AB effect, suggest-
ing that substantivalism—the view that spacetime is a fundamental entity with a gauge-fixed
metric—may align more naturally with this phenomenon. We explore the following points:

� The AB effect’s phase shift relies on a gauge-fixed hµν as the physical state (Section 2),
which may be difficult to reconcile with LQG’s emergent, invariant framework (Section 4).

� Potential modifications to LQG to accommodate this requirement (Section 5) may intro-
duce substantivalist assumptions, such as background metrics or effective fields, which
could diverge from its relational foundations.

� The empirical reality of the AB effect encourages a substantivalist perspective, prompting
further reflection on relational ontologies (Section 6).

By exploring this interplay, we aim to contribute to a broader conversation about quantum
gravity, inviting a reconsideration of spacetime’s ontological foundations and suggesting avenues
for future theoretical and experimental exploration (Section 7).

2 Physical Reality of Gauge-Fixed Metrics

The AB effect offers a fascinating perspective on gauge-invariant ontologies by highlighting
the physical significance of gauge-dependent potentials. In the electromagnetic AB effect, a
compelling analysis shows that the phase shift, expressed as ϕAB = 1

T

∫ T
0 eΦ(t) dt in the gener-

alized case with time-varying flux, cannot be fully explained by gauge-invariant quantities like
magnetic flux Φ [1]. Such explanations, which predict an instantaneous phase at interference,
face challenges due to issues of nonlocality and discontinuity, unable to account for the local,
path-dependent influence of the vector potential Aµ, fixed in the Lorenz gauge (∂µA

µ = 0).
This insight finds a parallel in general relativity (GR): the gravitational AB effect induces a
phase shift via the metric perturbation hµν in regions without curvature (Rρ

σµν = 0), suggesting
that a gauge-fixed hµν may play a physically significant role, akin to Aµ’s role in quantum me-
chanics. By drawing this connection between electromagnetism and GR, we explore how hµν ’s
determinacy might reshape our understanding of GR’s ontology.

In the weak-field limit of GR, the metric is approximated as:

gµν = ηµν + hµν , |hµν | ≪ 1, (1)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric, and hµν represents small perturbations.
For a static gravitational source, the Newtonian potential is:

V = −GM
r
. (2)

This corresponds to the metric component:

h00 ≈
2V

c2
, (3)

reflecting time dilation in the weak field. The gravitational AB effect manifests as a phase shift
for a particle (mass m) traversing two interferometer paths L1 and L2 over time T :

ϕg =
m

ℏ

∫ T

0
[V1 − V2] dt, (4)

where ℏ is the reduced Planck constant, and V1 and V2 are the gravitational potentials along the
two paths. This phase, measurable through neutron or atom interferometry, arises despite van-
ishing curvature along the paths, mirroring the electromagnetic AB effect’s field-free dynamics
[3].
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For general, time-varying fields in curvature-free regions (Rρ
σµν = 0), a more comprehensive

phase is proposed [1]:

ϕg =
m

2ℏ

[∫
x1(t)

hµν(x, t)u
µdxν −

∫
x2(t)

hµν(x, t)u
µdxν

]
, (5)

where uµ = dxµ/dτ is the four-velocity, and the integrals are taken over the paths x1(t) and
x2(t) from t = 0 to T . In the static, weak-field limit with h00 ≈ 2V

c2
and other components

negligible, and assuming non-relativistic motion (u0 ≈ 1, ui ≈ dxi/dt), this reduces to:

ϕg ≈ m

2ℏ

∫ T

0
[h00(x1(t))− h00(x2(t))] dt ≈

m

ℏ

∫ T

0
[V1 − V2] dt, (6)

matching Equation (4). Equation (5) captures contributions from all metric components in
dynamic scenarios.

The phase’s dependence on hµν requires gauge fixing to ensure a consistent, observable
effect. Without a fixed gauge, diffeomorphic hµν configurations could lead to varying phases,
complicating empirical predictions. The harmonic gauge:

∂µ(
√
−ggµν) = 0, (7)

or a Proca-like condition inspired by massive gravity [1]:

∂µhµν = ∂νh, (8)

provides the necessary determinacy. The Proca-like gauge, reducing degrees of freedom to five
in massive gravity, aligns with boundary conditions (e.g., asymptotic flatness, hµν → 0) to yield
a unique hµν , similar to the Lorenz gauge’s role in fixing Aµ. This determinacy is essential:
just as Aµ’s continuous influence in the electromagnetic AB effect requires a specific gauge to
avoid ambiguity, the gravitational AB effect’s phase relies on a uniquely fixed hµν to reflect
spacetime’s physical state.

This parallel encourages a deeper reflection on spacetime’s ontology. The electromagnetic
AB effect’s analysis suggests that gauge-invariant quantities alone cannot fully explain the
phase’s local, temporal accrual, favoring the physical significance of Aµ. Similarly, the gravita-
tional AB effect challenges the idea that curvature invariants (e.g., Rρ

σµν) fully capture space-
time’s essence, as they vanish along the paths yet the phase persists. A gauge-fixed hµν , whether
in harmonic or Proca-like gauge, appears to mediate the effect, suggesting a substantivalist per-
spective where spacetime’s geometry has intrinsic reality, beyond relational constructs. This
view invites a reconsideration of emergent theories that prioritize gauge-invariant quantities,
aligning GR with the potential-centric ontology established in electromagnetism [1].

The gravitational AB effect thus extends the insights from electromagnetism, offering a
unified perspective on gauge theories. Future experiments, leveraging advanced tools like LIGO
or atom interferometry with dynamic sources, could further explore time-varying hµν ’s phase
contributions, testing this ontology. Identifying the optimal gauge-fixing condition may help
universalize hµν ’s determinacy, reinforcing its role as spacetime’s physical state, much like Aµ

in the Lorenz gauge anchors the electromagnetic AB effect.

3 Gauge-Fixed Metrics in Quantum Gravity

The gravitational AB effect, as discussed in Section 2, relies on a gauge-fixed metric perturbation
hµν to produce a consistent phase shift in quantum interferometry. This empirical requirement
suggests that gauge dependence should be reflected in the quantum theory, posing an intriguing
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challenge for quantum gravity frameworks like LQG, which emphasizes an emergent, gauge-
invariant structure.

In the electromagnetic AB effect, the phase is given by:

ϕEM =
q

ℏ

∮
C
Aµdx

µ, (9)

depending on the gauge-fixed vector potential Aµ, even in regions where Fµν = 0. This gauge
dependence is captured in Quantum Electrodynamics (QED) through:

� Direct Gauge Fixing: Quantizing Aµ in a specific gauge (e.g., Lorenz gauge, ∂µAµ = 0),
where operator constraints ensure ⟨Aµ⟩ reflects the chosen gauge.

� Post-Quantization Fixing: Quantizing all components of Aµ and imposing constraints

(e.g., Gupta-Bleuler condition, ∂µA
(+)
µ |ψ⟩ = 0), selecting states where ⟨Aµ⟩ aligns with

the gauge.

These approaches succeed because Aµ is a fundamental quantum field, allowing its expecta-
tion values to encode gauge dependence, ensuring a consistent phase for both static and dynamic
cases [1]. Similarly, the gravitational AB effect’s quantum nature suggests that the gauge-fixed
hµν , responsible for the phase in Equations (3) or (4), should be represented by quantum ex-
pectation values ⟨hµν⟩. This invites a quantum gravity theory to produce states or operators
that yield a specific hµν in a chosen gauge (e.g., harmonic gauge), reflecting spacetime’s gauge
dependence at the quantum level.

For LQG to accommodate the AB effect, its quantum states should ideally encode the gauge-
specific structure of hµν without relying solely on classical post-processing. This requirement
encourages a careful examination of LQG’s emergent paradigm, where gµν arises statistically, to
assess its compatibility with the quantum-level gauge dependence suggested by the AB effect.

4 LQG’s Challenges with Gauge-Fixed Spacetime

LQG faces difficulties in meeting the gravitational AB effect’s requirement for a gauge-fixed hµν
at the quantum level, given its SU(2) and diffeomorphism-invariant framework, which priori-
tizes relational, emergent geometry. This challenge invites a deeper exploration of how LQG’s
principles align with the empirical demands of the AB effect.

In LQG, spacetime geometry emerges from spin networks, quantum states defined on ab-
stract graphs labeled by SU(2) representations [4]. These networks encode relational geometry
through holonomies of the Ashtekar connection Ai

a and fluxes of the conjugate triad Ea
i , satis-

fying:

� SU(2) Invariance: The Gauss constraint, DaE
a
i = 0, ensures invariance under local

SU(2) gauge transformations.

� Diffeomorphism Invariance: Physical states are invariant under spatial coordinate
transformations, upholding background independence.

Geometric observables, such as areas quantized as:

A = 8πγℓ2P
√
j(j + 1), (10)

where γ is the Immirzi parameter and ℓP is the Planck length, are relational and gauge-invariant,
capturing interactions without coordinate dependence [4]. The classical metric gµν emerges sta-
tistically in the semiclassical limit (ℏ → 0) through coarse-graining, approximating the smooth
geometry of general relativity.

To account for the AB effect, LQG would need to produce quantum states whose expectation
values yield a gauge-fixed hµν , such as h00 ≈ −2V/c2, to drive the phase in Equations (3) or
(4). However, LQG’s framework presents several considerations:
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� Emergent Metric: Unlike QED, where Aµ is a fundamental quantum field, gµν or hµν
in LQG is an emergent, statistical construct, not a quantum operator. Expectation values
⟨gµν⟩ arise only semiclassically, potentially lacking the quantum-level gauge dependence
needed for ⟨hµν⟩.

� Diffeomorphism Invariance: Gauge fixing hµν (e.g., harmonic gauge) requires a co-
ordinate system, which may conflict with LQG’s background-independent approach. In
QED, U(1) gauge fixing is internal, preserving spacetime symmetries, but gravitational
gauge fixing introduces coordinate dependence, challenging LQG’s relational paradigm.

� Relational Observables: LQG’s observables, such as areas and volumes, are SU(2) and
diffeomorphism-invariant, lacking the tensorial, gauge-dependent structure of hµν . The
AB phase requires specific components (e.g., h00), which may not be derivable from LQG’s
invariant quantities.

� Invariant Quantum States: LQG’s spin networks are constrained to be SU(2) and
diffeomorphism-invariant, limiting their ability to encode gauge-specific expectation values
like ⟨hµν⟩. Unlike QED, where states can reflect gauge choices (e.g., via Gupta-Bleuler),
LQG’s invariance may restrict such flexibility without introducing a background metric.

This tension arises from the nature of LQG’s physical states. In classical general relativity,
the metric gµν includes non-physical gauge degrees of freedom under diffeomorphisms, gµν →
gµν + Lξgµν , which are resolved by gauge fixing to produce a specific hµν for the AB effect. In
contrast, LQG’s physical spin network states, being solutions to the diffeomorphism constraint,
inherently exclude these non-physical freedoms, generating only gauge-invariant quantities in
the semiclassical limit. As a result, LQG may struggle to produce the full gµν with its gauge-
dependent components, as required by the AB effect. To address this, LQG would need to
incorporate a gauge-fixed gµν in its quantum states or produce a gauge-fixed ⟨hµν⟩ at the
quantum level, a task that appears to challenge its invariant framework, as explored in Section 5.

While semiclassical coarse-graining might yield a statistical ⟨gµν⟩, which could be gauge-fixed
classically to compute the AB phase, this approach may not fully capture the quantum-level
gauge dependence required by the AB effect’s quantum nature. Reformulating the phase using
LQG’s invariant quantities, such as holonomies, also faces challenges, as these lack the gauge-
dependent tensor structure of hµν needed to couple to the potential in curvature-free regions.

In summary, LQG’s core principles present challenges in accommodating the AB effect’s re-
quirement for a gauge-fixed metric, encouraging a thoughtful exploration of whether spacetime’s
gauge-dependent structure aligns more closely with a substantivalist perspective.

5 Modifying LQG: A Substantivalist Turn?

Section 4 highlighted the challenges LQG faces in producing a gauge-fixed ⟨hµν⟩ at the quantum
level due to its SU(2) and diffeomorphism-invariant framework. Here, we consider whether LQG
can be adapted to meet the gravitational AB effect’s requirements, exploring the implications
for its relational paradigm.

To align with the AB effect’s need for a gauge-fixed hµν , such as h00 ≈ −2V/c2 in Equa-
tions (3) or (4), LQG would need to incorporate gauge dependence into its quantum states.
Possible approaches include:

� Introducing Gauge-Fixing Constraints: New constraints could be developed to select
spin network states that yield expectation values ⟨hµν⟩ in a specific gauge, similar to QED’s
Gupta-Bleuler condition. This would require defining a quantum operator for hµν , which
is emergent in LQG, not fundamental. Such an operator might necessitate a background
metric to define coordinate-dependent components, potentially conflicting with LQG’s
background-independent approach.
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� Incorporating Effective Fields: Introducing effective fields that mimic a gauge-fixed
hµν could enable LQG to couple to the AB phase. These fields would act as fundamental
entities, akin to QED’s Aµ, but their inclusion might suggest a metric-like structure at the
quantum level, aligning more closely with substantivalism than LQG’s relational geometry.

� Modifying Coarse-Graining: Adjusting the coarse-graining process to produce a gauge-
fixed ⟨gµν⟩ directly at the semiclassical limit could be considered. However, this approach
may not encode gauge dependence in the quantum states, as required by the AB effect’s
quantum nature, which demands quantum-level gauge fixing for a determinate phase.

Each approach presents significant considerations. Adding gauge-fixing constraints or ef-
fective fields would likely require a fundamental metric-like entity, which could diverge from
LQG’s emergent paradigm, where geometry arises from SU(2)-invariant holonomies and fluxes.
Such changes might align LQG more closely with substantivalism, suggesting that spacetime
possesses intrinsic, gauge-dependent properties, contrary to LQG’s relational ontology [4]. Re-
formulating the AB phase using invariant quantities, such as path-ordered holonomies, may also
be insufficient, as these lack the tensorial structure of hµν needed to couple to the gravitational
potential in curvature-free regions.

Moreover, such modifications could impact LQG’s predictive framework. For example, in-
troducing a background metric to define gauge-fixed states might affect the quantization of
geometric observables, such as areas:

A = 8πγℓ2P
√
j(j + 1), (11)

potentially altering LQG’s predictions of granularity and superpositions [4]. Thus, adapting
LQG to accommodate the AB effect may require reconsidering its core principles, suggesting
that the gauge-fixed hµν ’s significance may favor a substantivalist view of spacetime.

6 Implications for Spacetime Ontology

The gravitational AB effect’s reliance on a gauge-fixed hµν , as established in earlier sections, and
the challenges LQG faces in accommodating this requirement (Section 5), invite a thoughtful
reconsideration of spacetime’s ontology. These results encourage a substantivalist perspective,
which views spacetime as a fundamental entity with intrinsic properties, over relationalism,
which sees spacetime as emerging from relations among physical entities.

Substantivalism posits that spacetime, characterized by the metric gµν , exists independently
with gauge-dependent properties encoded in hµν . The AB effect’s dependence on a specific
gauge-fixed hµν to produce a determinate phase (Section 2) suggests that spacetime may carry
intrinsic, gauge-dependent information, beyond relational roles [3]. This contrasts with LQG’s
relational ontology, where spacetime emerges from SU(2)- and diffeomorphism-invariant spin
networks, and physical observables lack the tensorial structure of hµν [4].

The hole argument in general relativity, which supports relationalism by equating diffeomor-
phic metrics [2], is brought into question by the AB effect. If diffeomorphic hµν configurations
were physically equivalent, the phase’s reliance on a unique gauge might be merely conventional.
Instead, the empirical necessity of a specific hµν suggests that gauge dependence is intrinsic,
encouraging a substantivalist perspective over relationalism’s view that spacetime properties are
fully captured by diffeomorphism-invariant relations. Section 5 supports this by showing that
LQG’s attempts to incorporate gauge dependence may require a fundamental metric-like entity,
aligning with substantivalism and challenging relationalism’s premise of emergent spacetime.

This tension extends to other relational quantum gravity approaches, such as causal set the-
ory, which also emphasize invariant structures [4]. The AB effect suggests that theories denying
spacetime’s fundamental nature must address gauge-dependent phenomena at the quantum
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level, a challenge that relational frameworks may find difficult without adopting substantivalist
assumptions. For instance, introducing effective fields or background metrics, as explored in
Section 5, implicitly assumes a substantival spacetime, highlighting the complexities of main-
taining a purely relational ontology.

The substantivalist perspective also invites broader philosophical reflection:

� Ontological Priority: The AB effect suggests that the metric’s gauge-dependent struc-
ture may be a primary ontological feature, indicating that spacetime’s reality includes
intrinsic properties tied to specific gauge choices.

� Empirical Constraints: The effect provides an empirical basis for considering substanti-
valism, as it requires a physical state (hµν) that relational theories like LQG may struggle
to produce without significant revisions.

� Theoretical Implications: Theories treating spacetime as a fundamental entity may
better accommodate the AB effect’s gauge dependence, encouraging further exploration
of their philosophical and theoretical merits [4].

Thus, the AB effect’s implications encourage a substantivalist view, inviting a deeper explo-
ration of relationalism’s ability to describe spacetime’s physical reality and fostering a dialogue
about quantum gravity’s ontological foundations.

7 Conclusions and Future Directions

The gravitational Aharonov-Bohm (AB) effect, which relies on a gauge-fixed metric perturba-
tion hµν to produce a phase shift in curvature-free regions (Section 2), presents an intriguing
challenge for Loop Quantum Gravity (LQG). As explored in Sections 3 and 4, LQG’s SU(2)-
and diffeomorphism-invariant framework faces difficulties in encoding the gauge dependence of
hµν at the quantum level due to its emphasis on emergent, relational geometry. Potential mod-
ifications to LQG (Section 5) may require fundamental changes, such as background metrics
or effective fields, which align more closely with substantivalism, diverging from LQG’s rela-
tional paradigm. This interplay, coupled with the AB effect’s support for spacetime’s intrinsic
gauge-dependent properties (Section 6), encourages a substantivalist perspective over relational
ontologies in quantum gravity.

The AB effect suggests that spacetime, characterized by a gauge-fixed hµν , may be a fun-
damental entity rather than an emergent construct. By questioning the equivalence of diffeo-
morphic metrics posited by the hole argument, the effect supports a substantivalist view where
spacetime’s gauge dependence is intrinsic. LQG’s challenges in addressing this requirement
invite a thoughtful reconsideration of quantum gravity’s ontological foundations.

Future directions to explore these insights include:

� Refining LQG’s Framework: Investigate modifications to LQG that incorporate gauge-
dependent structures at the quantum level, such as novel constraints or effective fields,
while assessing their impact on predictions like quantized geometry (Equation (5)). Such
efforts could clarify whether LQG can adapt without fully adopting substantivalist as-
sumptions [4].

� Empirical Validation: Design experiments to test LQG’s relational predictions, such as
granularity or superpositions in quantum geometry, against gauge-dependent phenomena
like the AB effect. Precision measurements of phase shifts in varied gravitational fields
could further inform relational theories [3].
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� Alternative Quantum Gravity Theories: Explore other frameworks, such as string
theory or causal set theory, to assess their ability to accommodate gauge-dependent ef-
fects. Comparative analyses could shed light on the ontological commitments required for
quantum gravity [4].

� Philosophical Reassessment: Deepen the exploration of substantivalism versus rela-
tionalism by examining other gauge-dependent phenomena in quantum gravity contexts.
Revisiting the hole argument in light of empirical constraints from the AB effect could
refine spacetime ontology [2].

The gravitational AB effect highlights the interplay between emergent and fundamental
views of spacetime, encouraging a collaborative reevaluation of quantum gravity’s theoretical
and philosophical foundations. By emphasizing the significance of spacetime’s gauge depen-
dence, it offers a valuable perspective for developing a consistent theory of quantum gravity.
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