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Abstract

Measuring diversity in microbial ecology and microbiome studies is fraught with
challenges, rendering the assessment of its ”real-world” value nearly impossible.
The instability of taxonomic classification, difficulty in isolating individuals, and
reliance on DNA-based methods and statistical tools all contribute to the com-
plexity of measuring diversity reliably. This manuscript explores the underlying
philosophical issues, relating them to the measurement problem in philosophy.
I argue that traditional philosophical accounts of measurement, including rep-
resentational, operationalist, and realist approaches, are insufficient to address
these issues. Instead, I examine these challenges through the lens of a model-
based perspective on measurement, which can remain agnostic about entities
and property ontologies, clarify the role of assumptions in diversity measure-
ment, and provide solutions for justifying measurement procedures. This work
emphasizes the importance of calibration and clearly defining measurement pur-
poses, providing avenues for scientists to improve their measurement procedures.
Ultimately, I contribute to a deeper understanding of the challenges and oppor-
tunities in measuring microbial diversity by bridging the gap between philosophy
and scientific practice.
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1 Introduction

Microbial ecology studies microorganisms (bacteria, Archea, and fungi) and their criti-

cal role in environmental processes (Falkowski, Fenchel, & Delong, 2008). Additionally,

microorganisms colonize all animals, including humans, and the human gut micro-

biome has been linked to various health and disease phenotypes (Berg et al., 2020).

As a result, microbiologists have warned that microorganisms are closely linked to

change at a global scale. Microbial diversity is supposed to be associated with a cer-

tain stability of the community, understood as the community’s capacity to answer

some internal or external disturbances, its stability over time, etc. (Normand, Duran,

Le Roux, Morris, & Poggiale, 2015; Shade, 2017). Fluctuations in microbial diver-

sity and activities could impact other organisms’ resilience and ability to respond to

climate change (Cavicchioli et al., 2019) and to health perturbations (Doré, Tap, &

Ehrlich, 2017).

Microbial ecology and microbiome studies need to compare and rank the diversity

of two or several communities. However, measuring diversity is challenging. The notion

is fundamentally broad, as discussed in conservation biology (Maclaurin & Sterelny,

2008; Santana, 2014; Sarkar & Margules, 2002), and the delineation of a community

and an area is arbitrary (Mittelbach & McGill, 2019). Consequentially, researchers

have developed statistical indices that aggregate different facets of the notion of diver-

sity. While it is already difficult in this situation to choose which index is the best

to capture diversity, microbial ecology and microbiome studies display specific issues,

making assessing diversity’s ‘real/world’ value almost impossible. In section 2, I focus

on these issues: the necessity of delineating local and global areas, microorganismal iso-

lation, fluctuating classification, and the lack of a consensual species concept. Amplicon

sequencing/metagenomics (AS/MGS) measuring practices worsen these issues.

In section 3, I propose that these specific issues are related to the fundamental

problem of measurement (Reiss, 2008, 64) and examine several philosophical accounts
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to solve these issues. I argue that all of the traditional accounts – representational,

operationalist, and realist – have general limitations that found echoes in the measure-

ment of microbial diversity. Diversity measurement in microbial ecology also presents

specific challenges for these accounts.

Given these limitations, I argue that the model-based account is more adapted to

the problem of measuring microbial diversity (section 4). First, it can remain agnostic

about entities and property ontologies. Second, the appeal to models can help clarify

the role of different assumptions in the retrieved value for the quantity diversity. This,

in turn, can help scientists to reflect on their measures and identify their needs to

develop reliable diversity measurement procedures.

In section 5, using this account, I ground in a conceptual framework solutions

emerging (but not widely accepted and even less widely used) from the scientific

community: the idea of calibration. The model-based account emphasizes the cali-

bration procedure’s role in increasing the measurements’ reliability. Current practices

(AS/MGS) are still under development (Parker, 2017) or at the pre-measurement stage

(Frigerio, Giordani, & Mari, 2010). Moreover, I point to and develop a more original

solution of integrating systematically the purpose of measurement in the measurement

procedure model. The purpose constrains the choice of the diversity index.

2 Specific Issues About Measuring Diversity in

Microbial Ecology1

The intuitive idea about microbial diversity at a spatial scale can be illustrated by

the difference one perceives between an assemblage of microorganisms in the human

gut and an assemblage of microorganisms in a yogurt. The intuition is that the first

assemblage contains more microorganisms in number and kind (probably billions) than

the second assemblage (often only two microorganisms). The former is more diverse

1From now on in this manuscript, I consider microbiome studies to be part of microbial ecology if not
specified explicitly otherwise.
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than the latter. Diversity also has a time component. The intuition is the one we have

when we use antibiotics: there will be a change in the community after the treatment.

Microbial ecologists want to assess these changes in terms of the number of individuals,

the number of kinds of individuals, and also which kind is affected by the perturbation.

In this section, I summarize these intuitions in three diversity-related questions:

(A) How many taxa compose this community? (B) How are these taxa distributed?

and (C) How different are these taxa? I focus on specific issues of microbial ecology: the

necessity of delineating local and global areas, microorganismal isolation, fluctuating

classification, and the lack of a consensual species concept that deepens these issues.

They are worsened by the amplicon sequencing/metagenomics (AS/MGS) measuring

practices. All these issues force scientists to make choices that influence diversity

measurement.

Local versus Global Area Issue Three measurements of diversity are tradition-

ally used. The α-diversity is the diversity found at a very local scale. The γ-diversity

is the diversity at a bigger scale than the one delineated for α-diversity. How big

is left open, that is, the difference in spatial scale between α- and γ-diversity, can

vary across studies and is somewhat arbitrary. Finally, the β-diversity represents how

quickly species composition changes across regional sites. It is often expressed as a

turnover or a rate of change between α- (local spatial scale) and γ- (bigger spatial

scale) diversity (Mittelbach & McGill, 2019).

In microbial ecology and microbiome studies, there is no consensus on the definition

of local versus global area. For this specific point, I need to separate microbial ecology

in general and microbiome studies. On the one hand, the definition of “local” in

microbial communities is ambiguous. Indeed, a lot of environments, such as the soil, are

highly heterogeneous even at a tiny scale “so that environmental samples (e.g., a soil

core) are often already a mixture of local communities.” (Normand et al., 2015, 266).

So, the relative spatial scale between α- and γ-diversity is unclear. Consequentially, the
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calculation of β-diversity, i.e., how quickly species composition changes across sites, is

also vague, and the distinction between α- and β-diversity is rarely used in microbial

ecology.

On the other hand, this distinction is sometimes used in microbiome studies. For

example, what the authors Daybog and Kolodny call “the microbiome β-diversity

conundrum” concerns conflicting findings on the relationship between the diversity of

a host’s microbiome and its fitness. The conundrum bears on the fact that different

healthy individuals in the same population have different microbiome compositions,

while the evolutionary assumption is that if a trait is beneficial for a population, it

should not vary so much and should be conserved (Daybog & Kolodny, 2023). So in

this study, the local community for which α-diversity is measured is the individual

host, and the β-diversity is the diversity difference between two hosts. However, other

studies compute β-diversity for expressing differences between both individuals and

human groups (Chong et al., 2015). In both types of studies, the γ-diversity is not used,

creating confusion about what β-diversity actually measures. Overall, the ambiguity

surrounding the use of these measurements hinders comparisons between studies.

Taxa Delineation Issue Species richness, S (but also Shannon index, H ′, and

all other indices), is sensitive to the concept used to delineate taxa. This is one of

the central issues in measuring diversity in microbial ecology, especially at the species

level, because of the ambiguity of this concept2. In the case of microorganisms, the

traditional definition of species, such as the biological species concept considering

species as reproductively isolated groups, does not hold because bacteria is a group

where sexuality is rare and atypical (Normand et al., 2015). Many bacterial species are

distinguished, but it is difficult to link them to a particular species concept3. Therefore,

answering diversity-related question (A) is difficult. The risk associated with errors

2It is not my aim here to discuss the species concept in microbiology in detail. I am only outlining the
points related to the problem of measuring diversity.

3Microbial taxonomists tend to use a concept close to the phylogenetic species concept, considering
species to be ancestral individuals sharing relevant ancestors. However, this classification has inconsistencies
with several polyphyletic taxa (Hugenholtz, Chuvochina, Oren, Parks, & Soo, 2021).
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in taxa delineation is an overestimation or underestimation of the richness of the

community. Additionally, without a clear way of distinguishing taxa, it is also difficult

to count how many individuals pertained to a given taxa with risks of misattributing

a species to an individual. This situation impairs the possibility of reliably answering

question (B). Finally, without a clear concept for taxa delineation, it is difficult to

assess question (C), how far individuals in a community are from each other.

Unstable Microbial Classification The consequence of the difficulties of delin-

eating taxa is a fluctuating microbial classification with a regular changing of the

terminology within the taxonomy. So far, in 2024, only 36,240 taxon names are validly

published, and an additional 12,951 are published but not valid4. The validity depends

on the International Code of Nomenclature of Prokaryotes (ICPN) “the document

that contains the internationally accepted rules that regulate the naming of prokaryotic

taxa.” (Oren, 2024, 1). Moreover, the names changed, and in recent years, reclassifi-

cations have been proposed for several genera and species. For example, since 2018,

more than 2,500 names have changed5. These reclassifications include microorganisms

of industrial or medical importance (Oren, 2024). This is an issue for measuring diver-

sity. First, even if a species might be isolated, it might be that the individual has no

name or label. Without a name or label that attaches it to an organized classifica-

tion, it is difficult to assess how different the isolated individual is from the others in

the community. Hence, the information about the qualitative question (C) of how dif-

ferent these taxa are and what they are is unanswered. Second, this fluctuation can

change the classification by adding or subtracting species. Two microorganisms con-

sidered different species at time t can be regarded as the same species at time t + 1.

This is an issue for the quantitative questions (A) and (B) and for comparing studies

measuring diversity at different times.

4https://lpsn.dsmz.de/statistics/figure/130, consulted 14/03/2024
5https://lpsn.dsmz.de/statistics/figure/20, consulted 14/03/2024
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Microorganism Isolation Issue Another related problem is the difficulties of

isolating microorganisms.

The rules of the ICNP only apply to cultivated prokaryotes. [...], as of 1 January 2001, the

valid publication of the name of a new species must include the designation of a type strain,

and a viable culture of that strain must be deposited in at least two publicly accessible

culture collections in different countries from which subcultures must be available. (Oren,

2024, 3)

Most microorganisms are uncultivated. Thus, it is challenging to obtain an isolated

specimen (= type strain) for each species discovered in a given microbiome and comply

with the ICNP rule. It is then challenging to have a stable and encompassing clas-

sification. Additionally, the microorganism isolation issue also impacts the answer to

question (B) about the distribution of each taxon. If individuals are not well delineated,

the evenness information of diversity is inaccessible.

Illustration This situation is worsened by the practices used to obtain the equiv-

alent of the observation tables that usually register diversity information (for each

species encountered, the number of individuals is registered): meta-barcoding (now

called amplicon-sequencing, AS) and meta-genomics (MGS). Diversity assessment in

microbiology uses AS/MGS methods because cultivation-based methods underesti-

mate microbial diversity (Hugenholtz, Goebel, & Pace, 1998). Amplicon sequencing

relies on methods similar to DNA barcoding6, with the significant difference being

the pooling of the DNA of the individuals of the studied community. Once the DNA

sequences have been computerized, they are analyzed and sorted according to their

variations. Various mathematical and statistical tools are available, leading to differ-

ent bioinformatic pipelines. The assumptions are: 1) the molecular marker tracks the

patterns of variation that result from multiple evolutionary processes (Lowe & Ingram,

6DNA barcoding is the practice of selecting particular stretches of DNA and using specific sequences of
nucleotides contained in them as indicators of the species identity of the organism from which the DNA
was derived.
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2023, 32), and 2) statistical methods allow scientists to distinguish between natu-

ral variation, i.e., from evolutionary processes and artifactual variation, i.e., caused

by the AS method itself. Groups of DNA sequences emerge from this sorting. These

groups correspond to the taxonomic level of the analysis, and the number of groups is

the value associated with taxonomic diversity. A simplification of the steps of the AS

analysis is available in Figure 1.

Fig. 1 Simplified representation of the steps of the amplicon sequencing method. Created in BioRender
Created in BioRender. Potiron, A. (2025) https://BioRender.com/f61f354.

In AS and other MGS methods, there is no direct access to the individuals. Tax-

onomic identification by DNA barcoding associates one barcode or molecular marker

with one individual. In AS, all individuals are mixed so that the DNA retrieved

is not linked anymore to a physical, tangible, and observable individual. It is a

methodological substitution for microbial observation, which disrupts the link between

microorganisms and their DNA. This is related to the microorganism isolation issue

because the AS method i) cannot always link a given DNA sequence to a known

microorganism, and ii) it has been shown that sometimes it is unwise to equate the
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sequence of one gene to one microorganism individual as this individual can pos-

sess several copies of the same gene and these copies might vary in their sequences

(McLaren, Nearing, Willis, Lloyd, & Callahan, 2022).

There is a tension with these methods that deepens the issues of taxa delineation

and unstable microbial classification. On the one hand, while traditional ecology relies

on the descriptor ”species” for measuring diversity, ”species” is rarely used as a first

descriptor in microbial ecology. “This problem of the taxonomic level to use is con-

stant in the field of microbial ecology. [...], thus the widespread use of the term OTU

(Operational Taxonomic Unit)” (Normand et al., 2015, 286). The concept of OTU

results from different aggregation procedures used in different software for individuals

or groups of microorganisms (Sneath, 2005). The definition of an OTU would be “a

group of phylogenetically related organisms used in a study without specifying its tax-

onomic rank.” (Normand et al., 2015, 285). OTUs are bioinformatic proxies for taxa.

An essential factor to consider is then the resolution power of available techniques.

Given the range of mathematical and statistical tools available, the method chosen

and its assumptions impact the inquiry’s conclusions and, here, the value assigned to

the parameter diversity. For example, the threshold at which two DNA sequences are

considered as belonging to the same OTU can vary. It has been traditionally accepted

that a threshold of 97% of similarity for a given molecular marker is enough to dis-

tinguish between species. More recently, it has been argued that this threshold might

not be enough and should be 100%. This is the case for Amplicon Sequence Variants

(ASV). That is, two DNA sequences of the same molecular marker are considered to

belong to the same group only when their sequence is exactly – 100% – the same.

This situation adds another layer of difficulties to the taxa delineation issue. Indeed,

researchers need to make choices not only on how to delineate species but also on

how to delineate these bioinformatic proxies. Depending on this threshold, the value

assigned to the diversity property will vary. Additionally, OTUs and ASVs may track
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different taxonomic levels, e.g., genus, species, strains which adds assumptions about

which taxonomic level is best suited for measuring diversity in relation to the stability

of the community.

On the other hand, microbial ecology and, particularly, microbiome studies often

try to link those bioinformatic proxies to the traditional Linnaean taxonomy through

local or online databases. This is done for at least three reasons.

First, by analogy with the measurement of length using feet and meters, the mea-

surement of diversity could keep OTUs, ASVs, species, or others as units. Contrary

to feet and meters, there is no direct and consistent equivalence between OTUs and

ASVs or between OTUs/ASVs and species. This means that studies using different

units are not directly comparable. Hence, referring to the Linnean taxonomy is a way

to use only one reference unit and compare studies between them.

However, the taxonomic level may be different. For example, one OTU/ASV can be

identified at the genus level, while another is identifiable at the species level. Beyond

the difficulty of identifying these DNA sequences, this situation signifies that the

granularity of the measure is not consistent. It is as if the length of a set of objects was

measured using both centimeters and meters, but here, one does not have a simple

way of converting one into another, i.e., genus into species.

Second, traditional ecology is about species. One of the reasons is that beyond the

number found for the measurement of diversity (e.g., five species), the measure is also

supposed to give some ecological information about the community (see, as a mini-

mum, questions (B) and (C) above). If the name Escherichia coli is well-documented,

OTU1 (which the DNA sequence attached to it will differ between studies) is not.

To do that, researchers rely on accumulated and organized knowledge: the Linnaean

taxonomy stored in databases (Reimer et al., 2021; Schoch et al., 2020) and used in

articles (Rosonovski et al., 2023).
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Third, going a bit beyond the numerical value attributed to the parameter diversity,

the possibility to link an OTU/ASV to known taxa (family, genus, or species depending

on the resolution of the molecular marker chosen) opens another inferential layer, the

possibility to have access to some function of the OTUs/ASVs. One hypothesis is that

maybe it is at the level of the functions that diversity explains stability. Suppose a

given OTU/ASV is identified as a known genus with known properties. In that case,

the researcher can infer that the OTU/ASV in her community shares these properties,

notably some metabolic functions. But this step encounters several problems. The

association between a sequence of a molecular marker and a species depends on the

completeness of the database used to make this association. Moreover, the molecular

marker chosen might not be tuned enough to detect a difference at the species level

or, on the contrary, can detect variations between strains depending on the species

(McLaren & Callahan, 2018). That is, there is no reliable way of linking an organism

to its functions through its belonging to a given OTU/ASV.

The last issue with MGS is the lack of reflexivity that arises from using bioin-

formatic pipelines. The lack of reflexivity is at two levels. The first is an absence of

reflection on why it is necessary (or not) to measure diversity. The second level is

on which indices to choose and what kind of corrections will be needed depending

on the context (including the natural environment observed and the research ques-

tion). In other words, those indices are often calculated without clear enunciation of

a hypothesis to test, without purpose in microbial ecology in general (Shade, 2017)

and microbiome studies (Reese & Dunn, 2018). This situation is saillant in MGS.

DNA sequencing technologies increased the amount of data, and their digital format

made them readily amenable to computer-helped statistical analysis. Bioinformatic

pipelines make the calculation of various diversity indices easily accessible (it is doable

by calling one function in a code). The problems are several depending on the back-

ground knowledge and skills of the researchers. First, these functions often present
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too many choices of indices. For example, the function calculating the α-diversity in

the phyloseq R package produces a graphic with seven indices7. There is no empiri-

cal constraint on how to choose among them, and the researchers need to appeal to

some other justification. Second, the bioinformatic pipelines and even the functions

calculating several diversity indices may appear as ”black-boxed” for non-specialists8.

Moreover, the question is specialist in what? Indeed, these functions embed statistical

and ecological assumptions.

Measurement of diversity in microbial ecology and microbiome studies is not as

stable and consistent as length or temperature. I argue that this situation is similar

to the “fundamental problem of measurement” and seek help in the main available

philosophical accounts of measurement. After evaluating them and describing their

problems in the case of microbial ecology and microbiome studies, I argue that the

philosophical model-based account of measurement is the best to account for diver-

sity measurement in microbial ecology. It clarifies some of the measurement issues

encountered and grounds or develops solutions.

3 Philosophical Accounts of Measurement and Their

Problems

There are numerous issues arising from the diversity measurement. First, even when

the categories (taxa) are well-defined and individuals are accessible, it is a challenge

to measure diversity. Several indices are used to aggregate different information

about diversity. Second, in microbial ecology, the situation is worse. The specific

issues of the taxa delineation, unstable classification, and microorganism isolation

make independent access to the real-world value of diversity challenging. Thus, it is

difficult to know how close the diversity value measured is to the actual value (or if

7https://joey711.github.io/phyloseq/plot richness-examples.html, consulted 05/02/2025
8I am not saying that the information about the detailed calculus is never accessible, but it is not directly

available while using those packages and thus it necessitates an extra effort from the researcher to have
access to this information. Additionally, statistical and/or ecological skills are also needed to process and
understand this information.
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there even is an actual value). Third, without access to this real-world value, it is

difficult to know whether the measuring procedure used in microbial ecology (MGS)

is accurate and gives us the correct value for the parameter or even if this parameter

exists. I suggest that it constitutes what Julian Reiss called the “fundamental

problem of measurement”:

To know the value of a variable, we need to know that the measurement procedure asso-

ciated with it is veridical (that is, that the procedure gives the correct result). However,

we need to know the variable’s value to check whether the procedure is veridical. Since

we have no independent access to either the value of the variable or the accuracy of the

procedure, we can never know whether the measurement procedure is veridical or what

the value of the variable is. (Reiss, 2008, 64)

I will follow the historical development of measurement theory (Tal, 2020). I argue

that none of the traditional accounts will solve the measurement problem, and the

best framework in microbiology is the model-based account.

3.1 The Representational Account of Measurement

The central point in the representational account is the idea that relations between

numbers can express relations among objects. The two main aims of this account

are to understand the assumptions behind using mathematical structures to describe

aspects of the empirical world and to analyze the adequacy and limits of using these

mathematical structures. “The representational theory of measurement defines mea-

surement as the construction of mappings from empirical relational structures into

numerical relational structures.” (Krantz, Luce, Suppes, & Tversky, 1971, 9). A mea-

surement scale is “a many-to-one mapping — a homomorphism — from an empirical

to a numerical relational structure, and measurement is the construction of scales.”

(Tal, 2020). Figure 2 gives an example of a homomorphism. The empirical relational

structures are a set of empirical objects associated with the qualitative relations among

them. The numerical relational structures are a set of numbers (e.g., real numbers)
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associated with specific mathematical relations among them (e.g., “greater than”,

addition). A homomorphism is a structure-preserving map between the empirical rela-

tional structures and the numerical relational structure such that the relations between

the elements in the empirical relational structure (e.g., “longer than”) are preserved by

relations between numbers in the numerical relational structure (e.g., “greater than”),

see Figure 2 for an illustration.

Fig. 2 Example of a homomorphism between empirical objects and a set of real numbers. Created in
BioRender. Potiron, A. (2025) https://BioRender.com/c55i883

Measurement, then, is the assignment of numbers to attributes of the phenomenon.

The problem is that relations between numbers, such as equality, do not always cor-

respond to empirical information. The questions then include which assignments are

adequate and under which conditions. The assignment is not random (Reiss, 2008,

65), and “numbers are adequate for expressing magnitudes insofar as algebraic oper-

ations among numbers mirror empirical relations among magnitudes.” (Tal, 2020).

There are two steps for the assignment. The first one is the formulation of axioms that
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describe the qualitative empirical structures. These axioms describe qualitative laws

the phenomenon of interest is supposed to obey. For example, for length, elements of

the empirical structures are longer, smaller, or equal to one another. The second step

uses those axioms to establish logical proof of the adequacy between assigning num-

bers to magnitudes possessing such structures (Tal, 2020). The axioms help derive

two theorems, the representation theorem to “establish a formal similarity between

an empirical and a numerical structure and the uniqueness theorem establishes what

kinds of transformations are permissible on the mapping.” (Reiss, 2008, 65). For exam-

ple, suppose it is true that elements can be ordered by their length. In that case, it

should be possible to derive a function such that, when applied to elements of the

empirical structure, it assigns numbers to these elements that conserve the relation,

e.g., “greater than” to represent “longer than” (see Figure 2).

As noticed elsewhere, the representational theories of measurement have the dis-

advantage of needing a lot of background knowledge. Moreover, the laws of nature

governing the relations among empirical objects need to be stable for the measuring

scale to be relevant (Reiss, 2008, 66). However, this abundance of knowledge and the

stability of it are not always available. Even for the well-known and established length,

mass, time, and others, it has not always been the case that we have much knowledge

and stability. According to Reiss then, the problem with this account is that it: “tells

us what structure an attribute of a phenomenon must have to be measurable given we

have a reliable measurement instrument but it does not tell us where and how to look

for a reliable instrument in the first place.” (Reiss, 2008, 67, original emphasis). In the

case of diversity measurement in microbial ecology and microbiome studies, taxonomic

knowledge is lacking, and the instability of taxonomic classification is an impairment

for the stability of the measure. The empirical relational structure is the relations

among individuals within one or several communities. These relations are “similar to,”

“different from” within a community and “more diverse than,” “less diverse than,”
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or “equally diverse than” between communities. From this, we derived the possibility

of assigning individuals to categories using a nominal scale (taxonomic assignation);

we can also derive the possibility of mapping the relations attached to diversity to a

numerical relational structure “greater than, smaller than, equal to.” The problem I

pinpoint here is with the first part of the measurement. The ordinal scale used is not

stable. That is, the function that assigns a category to an individual is not stable, as is

the homomorphism. In the case of the Linnaean taxonomy, it is evident that the scale

is not stable – see above section 2. The scale is also unstable when using bioinformatic

proxies – that is, ”OTU1” in one study is different from ”OTU1” in another one. For

ASVs, the DNA sequence is unique, so, in principle, the ordinal scale could be stable;

that is, the DNA sequence would be the scale, but it is not widely used and could be

impractical (the units would be entire DNA sequences – or we could use labels, hence

Linnaean taxonomy). The general problem is the comparison between studies.

Moreover, when comparing the diversity of two communities, there is no stable

series of tests for which one can be sure that the results will always agree about the

ranking between the two communities. That is, it is possible in one series of tests

that a community is more diverse than the other and vice versa in another series of

tests. Taking several samples of the same community is an attempt at stabilizing the

series, but it is never guaranteed. This is so because, in AS, sample analysis is seldom

reproducible. It is physically impossible to re-analyze the same set of samples in the

same manner because it is a disruptive practice. The procedure itself destroys the

initial mixes of microorganisms by extracting their DNA. What can be done at best is

to repeat the series of tests on samples judged similar enough to the initial experiment

to represent the same communities9. Yet, even when doing so, the protocols used to

extract, amplify, and sequence the DNA introduce errors. The same can be said about

9In this sense, it is similar to other samples (e.g., water from the same spring) for which one needs to
assume a certain similarity between them for the sake of the analysis. In the case of a water sample, for
example, it is possible to re-analyze the same sample even if it may happen that the sample has changed
over time (e.g., contamination). The case of microbial communities is peculiar because the targeted living
system is destroyed to be studied and analyzed. So, even if one wanted to re-analyze the sample, it would
be impossible. I thank an anonymous reviewer for pointing out this issue.
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the bioinformatic analysis. Depending on the choices made in this analysis, even if

only one index is calculated, the communities can be ordered differently. For example,

a meta-analysis on nine datasets obtained from the gut microbiome of lean and obese

rats (four datasets) and mice (five datasets) shows discordant results for α-diversity

measures using the Shannon index (see table 1 for the formula). I follow the authors

of this study, and I comment on these results by grouping both animals. In three of

the nine datasets, the microbial community of the gut in obese rodents is ranked more

diverse than the microbial community of the gut in lean rodents. In one of them, the

inverse ranking is obtained, and in all the others (five out of nine), the communities

are similarly diverse (Jiao et al., 2018, 247).

One minimal condition of a measurable attribute of a phenomenon is that the

objects or phenomena that have the attribute can be ordered. For example, in the

case of length, the elements of the empirical relational structure should be able to be

ordered according to the attribute “length.” Length uses a ratio scale that necessitates

the fixation of a unit, e.g., the length of a standard rod = 1m. By measuring these

elements using the predefined scale, one can say for every element of the empirical

relational structure which element is longer than, smaller than, or equal to. The issue

in microbial ecology is whether communities of microorganisms can be ordered. In

theory, it should be possible to say one community is more diverse than another.

However, without explicit assumptions and hypotheses, it is difficult to tell which

of the two communities is more diverse. First, microbial ecology is subjected to the

general issues of community and spatial area delineation and the problems it poses

in comparing diversity indices between two (or more) communities. Second, microbial

ecology is subjected to specific issues that impact the interpretation of the indices

used to measure diversity. Table 1 illustrates some of these issues.

For the same size area and the same total number of individuals N = 50, in

community C1, the richness S is five taxa, the relative abundance (i.e., the number
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Table 1 Two imagined microbial communities and their associated diversity indices

Number of
Individuals (N)

Taxa
Richness (S)

Relative
Abundance

Chao1
Index1

Shannon
Index2 (H ′)

Community 1 (C1) 50 5 uneven (see Table 2) 6.50 0.46
Community 2 (C2) 50 5 even = 10/50 5.00 1.61

1Chao1 index calculated using R package ‘vegan’ (Oksanen et al., 2024). Chao1 Formula = Sobs +

N
(N1−1)
1 /(2× (N2 + 1)) where N1 and N2 are count of singletons and doubletons respectively.

2Shannon index calculated using R package ‘vegan’ (Oksanen et al., 2024). Shannon formula = H ′ =

−
∑S

i=1 pi ln pi where i ranges between 1 and S and pi is the proportion of individuals belonging to the
i-th species or taxon.

Table 2 Uneven distribution in the microbial community
C1

Taxa (si) s1 s2 s3 s4 s5

Relative Abundance 45/50 2/50 1/50 1/50 1/50

of individuals pertaining to each taxon) is uneven (Table 2), the Chao1 index gives a

diversity of 6.50, and the Shannon index gives a diversity of H ′ = 0.46. In community

C2, the richness S is five taxa, the relative abundance is even (10 individuals among

the 50 individuals (10/50) belong to each of the five taxa), the Chao1 index is equal

to 5.00, and the Shannon index is equal to 1.61. Now, which community is “more

diverse”?

We can imagine principles connecting diversity to more readily observable

attributes. For example, there could be a principle that prescribes that C1 is more

diverse than C2 if and only if SC1 > SC2, that is, the taxonomic richness in C1 is

greater than in C2. In this case, C1 is as diverse for the taxa observed as C2 (this

assumes that the taxa are clearly and reliably delineated and that attributing an indi-

vidual to a given taxon is reliably possible). Alternatively, we can imagine that the

information given in Table 1 is only a sample for each community; thus, the taxonomic

richness S is an incomplete estimation of the taxa richness of both communities. A

similar principle will prescribe that C1 is more diverse than C2 if the richness esti-

mate for an infinite number of samples is higher for C1 than for C2. The Chao1 index
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is this sort of index. In this case, because Chao1C1 > Chao1C2, then community C1

is more diverse than community C2. In addition to the assumptions made for S, this

principle assumes that the relative abundance (needed to compute the Chao1 index)

is known to be reliably measurable. Another principle that can be used to compare

the diversity of two areas of the same size and with relatively similar qualities is to

imagine a law that prescribes that the community C2 is more diverse relative to the

community C1 if and only if the relative abundance for each taxon is more even for

C2 than C1. As the evenness is considered in the Shannon index H ′, it means that

because H ′
C2 > H ′

C1, then community C2 is more diverse than community C1. Again,

this assumes that the relative abundance is known to be reliably measurable.

The three solutions sketched here need additional assumptions to settle the ques-

tion of which community is the more diverse. The first solution assumes a stable

taxonomic classification. However, as mentioned in section 2, classifying microorgan-

isms according to some principles is far from easy. The concept of species is even more

controversial than the notion of diversity because of its widespread significance in biol-

ogy. In microbiology, OTUs and ASVs are used. Let’s suppose that S is expressed in

“OTUs.” This means that both communities have a richness of five OTUs. If these

OTUs are the same for both communities, i.e., the DNA sequences of the five OTUs

in C1 are exactly the same as the DNA sequences of the five OTUs in C2, then the

diversity of C1 and C2 is equal, at least according to S. If they aren’t, some OTUs

may be representative enough of the genus level of a category of microorganisms, while

others are representative enough for the species level. Thus, the measure uses a het-

erogeneous scale, one at the species level and the other at the genus level. Traditional

taxonomy is a hierarchical scale: one can infer the genus level from the species level

but not vice versa. Thus, when one wants to convert to traditional taxonomy, one has

to take the common level, the genus level, and cannot access diversity at the species
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level. This is problematic because one can ask whether the ordering of the communi-

ties C1 and C2 holds when changing the taxa level. It could be that C2 is more diverse

than C1 at the genus level but not at the species level. For example, the five species of

C2 could be from five different genera, while the five species of C1 could be from only

three distinct genera. Therefore, the ordering of communities might differ according

to the level of the taxa chosen. It becomes more challenging to compare the diversity

between two communities.

The two other solutions use part or total information about the relative abundance

(evenness). Yet, this principle assumes that it is possible to delineate individuals reli-

ably. Again, this is difficult to obtain because of the issue of microorganism isolation.

In AS and MGS, the number of DNA sequences per sample is used as a proxy for the

number of individuals per sample. However, it has been shown that it is not always

possible to equate one DNA molecule with one individual microorganism (see section

2).

Finally, the first solution answers the question (A) How many taxa compose this

community? But not question (B) How are these taxa distributed? Nor (C) How

different are these taxa? The two other solutions answer (A) and (B), but not (C).

None of those solutions assess the functions of the communities, while it might be that

C2 is more functionally diverse than C1.

Similar to the case encountered in the price index in economics (Reiss, 2008), the

representational account of measurement cannot settle the question of which commu-

nity is the more diverse. We need an index to measure diversity, but different indices

give different results (Table 1), and the choice of the index matters for the conclusion.

3.2 The Operationalist Account of Measurement

Operationalism is about the meaning and use of quantity terms such as “length” (Tal,

2020). It is more a theory of concept legitimization than a theory of measurement
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(Reiss, 2008, 69). More specifically, it asserts that the meaning of these quantity terms

is determined by the set of operations used for their measurement, “In general, we

mean by any concept nothing more than a set of operations; the concept is synonymous

with the corresponding set of operations.” (Bridgman, 1927, 5, original emphasis). In

the length example, “length” means precisely the set of operations needed to obtain

the value, e.g., the result of the concatenating rigid rods. In the extreme version

of operationalism, different sets of operations measure different quantities. However,

if the results of these different operations agree with experimental error, Bridgman

conceded that it remains meaningful to label with the same name the corresponding

quantities (Bridgman, 1927, 16).

Strong operationalism, as presented here, has several issues. One is that it is diffi-

cult to understand what is part of the set of operations. In the diversity measurement

procedure described above (Section 2, Figure 1), different operations exist to extract

the DNA before it is computerized. For example, scientists can use a mechanical lysis

of the microorganismal membrane (usually performed using tiny rigid rods) or a bio-

logical lysis (using specific enzymes to degrade the microorganismal membrane). The

issue with operationalism is whether these operations are relevant to determining the

meaning of the quantity term’ diversity.’ In an extreme version of it, it does. That is,

two slightly different operations of DNA extraction will lead to two different quan-

tity terms. Then, the question is, how similar do these two operations need to be

considered to play a part in the same set of operations?

A related issue is what an operation is. Or, more precisely, which scientific action

is relevant to be part of the set of operations considered as defining the use of the

quantity term? For example, is it relevant whether the DNA extraction scientist is

wearing white or blue gloves? If we argue that neither of these examples should change

the meaning and use of the quantity term ‘diversity’ because they should not influence
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the measurement result, “we already depart from strict operationalism because we

presuppose that these operations measure the same concept.” (Reiss, 2008, 70).

Another issue with operationalism is known as ‘concept proliferation.’ If each set

of operations corresponds to a different quantity term, science will be full of these

non-related quantity terms. This is not the case in microbial ecology and microbiome

studies. For example, if a mathematical formula counts as an operation, there is a

difference in the operations needed to compute the Shannon index and the Chao1

index (see Table 1 for the equations). However, most researchers consider these two

(and other indices) to measure α-diversity. The quantity term is the same, but not

the methods. Yet, science is full of practices that use various methods to measure the

same quantity term.

A way out of the issue of concept legitimization and toward a theory of mea-

surement is the retention of some aspect of operationalism, e.g., the relevance of the

operations used to measure a quantity in the meaning of that quantity but releas-

ing the reductive pressure of the absolute equality between these operations and the

meaning of the term. Conventionalism is an in-between approach that accepts that

the application of a quantity term is somewhat chosen by convention yet still under

some empirical property either of the attribute to be measured or of the operations

used to measure the quantity (e.g., the physical property of a fluid which variation of

its volume is used to assess the temperature) (Tal, 2020). An example using Table 1

is to decide by convention which of the indices presented here gives the correct quan-

tity for diversity. Without going as far as that, Reese and colleagues have noticed that

Shannon’s index is the most commonly reported diversity index in the studies on gut

microbiomes (36 studies on human and non-human gut microbiomes) they have con-

sidered in their paper (Reese & Dunn, 2018, 4). Moreover, after a comparison with

other indices used in those studies, they suggest that “the data from comparisons of
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Shannon diversity may be the most robust and informative, particularly given the fre-

quency with which this metric is already reported in the field.” (Reese & Dunn, 2018,

7, emphasis added). This suggests that we are not far from a convention emerging

from a natural consensus in the field. Yet, as pointed out elsewhere, “no matter which

procedure is used, it is important that the decision about which index is correct is

socially, and only socially, validated.” (Reiss, 2008, 70).

The problem of the conventionalist solution is a certain fixity that stops the empir-

ical investigation of the justification for measurement procedures. It demands too little

empirical background knowledge for the justification of a specific procedure (Reiss,

2008, 70). How do you provide reasons other than convention and preferably empiri-

cally grounded to justify using specific measurement procedures compared to others?

For example, the Shannon index is often used in microbial ecology and microbiome

studies. However, there is no empirical justification to do so; why not, for example,

use the Simpson index.

Despite its pitfalls, operationalism reminds us that each measurement procedure

has its assumptions and idiosyncrasies and that “it is a fallacy to think different meth-

ods measure the same concept just because we attach the same name to them.” (Reiss,

2008, 71). Although most micro ecologists would agree that diversity as measured by

a richness index, whatever the taxa level, is a slightly different concept from diversity

as measured by the Shannon index (which adds the distribution information). Other

metrics are often compared between themselves as if this difference does not exist or

at least as if they measure the same quantity at the end (see, e.g., Dubois, Girard,

Lapointe, and Shapiro (2017); Schnorr et al. (2014)). Because “there is no universally

accepted, absolute value of diversity for a given community” (Reese & Dunn, 2018,

2), the method used to measure it matters in the meaning of the quantity retrieved.

24



3.3 The Realist Account of Measurement

Realist accounts commit themselves to a particular ontology of the measurement pro-

cedure. Realist accounts consider measurement as the empirical examination of an

objective or mind-independent property and/or relation. Objectivity here means inde-

pendent from the measurer beliefs and conventions. The property is also independent

of the methods and procedures used for measuring it (Tal, 2020). Moreover, the mea-

surement procedure can never lead to the property’s real value. It is only an estimation

that gives approximations of true value. Realist accounts do not consider that the

main aim of measurement procedures is the assignment of values to individual proper-

ties of an object but obtaining knowledge about properties and relations. Most of the

defenders of realism about measurement have also defended some sort of realism about

properties. For example, the property ‘length’ to which relations such as “longer than”

and “sum of” can be attributed exist independently of whether the object to which

we attach this property exists and independently of whether a human is evaluating

and ordering objects.

Realist accounts have been developed against robust versions of operationalism

and conventionalism. The main argument of realists is based on the observation of

the practice of science. They claim that their accounts make sense of several scientific

practices, such as the observation that usually, “quantities are ontologically prior to

the procedure that measures them” (Tal, 2020), or that the scientific discourse is full

of discourses about “measurement accuracy” and “measurement error.” Realists also

claim to better account for the idea that new measurement procedures are better in

the sense of being more accurate than the older ones because the measured values are

closer to the real ones.

If pressed upon, despite the lack of an unambiguous definition of diversity, microbial

ecologists could argue that diversity is an objective property in a sense developed by
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the realists: mind-independent, independent from their beliefs and conventions, inde-

pendent from the methods and procedures used for measuring. At least some authors

have argued that diversity should be considered along those lines, e.g., “diversity is not

good or bad, it simply ‘is’” (Shade, 2017, 1) or the paper entitled “In Nature, There Is

Only Diversity” (McLaren & Callahan, 2018). However, being a realist about diversity

does not solve the issue of choosing between different indices, especially when those

indices give different values and do not correlate. The answer may depend on what

one is a realist about: Is diversity believed to be a simple phenomenon that all the

indices can capture, but these indices are noisy? (as if one was measuring the length

of an object, but all our procedures were inaccurate and prone to error and uncertain-

ties) or is diversity believed to be a complex phenomenon, with each index capturing

a facet of this phenomenon? (Arnillas & Carscadden, 2024). In the first case, combin-

ing in some ways the values of different indices may help. In the second case (closer to

microbial ecology), one needs to choose which facet is the most interesting to answer

the research question and which index (among several) that captures this facet is the

most suitable. Being a realist does not help to answer this situation.

Moreover, these realist positions often forget that diversity is, by definition, depen-

dent on categories. A set of objects can be as diverse as we have categories to classify

them. As mentioned several times in this paper, the idea of diversity depends on the

concept of species or any concepts that delineate taxa (e.g., OTUs/ASVs). Even if we

consider functional diversity, a community can be at maximum as diverse as we have

categories to classify the functions it contains. In theory, we can devise as many func-

tions as we want or as we see fit for our investigation, but this is partly decided by

convention and not empirically. So, advocating a certain objectivity of the quantity

diversity assumes that, in theory, there is an objective and natural way of separat-

ing microorganisms. It is a form of species (or at least taxa) realism. For example,
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McLaren and Callahan (2018) consider that functional variations might be revealed

at the species and/or strain level. But this is already assuming that such levels exist.

3.4 The Model-based Account of Measurement

Model-based account has been developed by studying contemporary work on

metrology (Parker, 2017; Tal, 2020). It follows the International Vocabulary of

Metrology (VIM):

measurement assigns a symbol—the measurement result—to the object under measure-

ment so that the symbol intends to provide descriptive information on the current state

of the object with respect to one of its properties, called the measurand, i.e., the property

intended to be measured (Mari, Carbone, & Petri, 2012, p. 2109, original emphasis).

The model-based account is a development and extension of the information-

theoretic account proposed by van Fraassen. The critical point in both these accounts

is the consideration of two levels in measurement procedures. The first one is the phys-

ical level. The measuring apparatus interacts with an object in a given state. This

interaction is the input of the measuring system. It is encoded in a signal and then

converted to a reading, constituting the system’s output. This reading should reliably

reflect the state (at least in some respect) of the object at the beginning of the inter-

action (van Fraassen, 2008, 150). The second one is an abstract level. Background

theory represents the object’s possible states on a parameter space. The “measurement

outcome” is a location in this space. It is an incomplete representation of the item

measured obtained “by displaying values of some physical parameters that - accord-

ing to the theory governing this context - characterize that object.” (van Fraassen,

2008, 179-80). A measurement outcome can be complex, and measuring procedures

can include calculations and input from a model or theory (van Fraassen, 2008, 177).

The model-based account adds a modeling stage of the measurement procedure.

In the modeling stage, the quantity to be measured (measurand) is idealized. The

model of the measurand
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specifies the relevant structure of the object under measurement, the definition of the

measurand itself in reference conditions (i.e., as if it were measurable by an ideal measuring

system), and the set of quantity values which could be assigned to the measurand Giordani

and Mari (2012).

Moreover, in the modeling stage, the entire measurement procedure is modeled. The

quantities involved in the procedure, their interactions, the conditions of their interac-

tions, and the whole experimental environment—including the measuring system, the

measuring subject, and the empirical surrounding environment—in which the exper-

iment is expected to be performed are idealized. The output of the measurement

procedure then is the measurement result based on the information from the model-

ing stage and the information obtained in calibration. It is associated with a related

uncertainty.

Assigning a specific value to the measurand and a related uncertainty must satisfy

specific epistemic criteria. The model-based account emphasizes calibration, which is

a methodological interpretation of the coherence criterion employed by van Fraassen.

The coherence criterion emphasizes that the assumptions made to pass from the phys-

ical state of the object under measurement to the measurement outcome should be

coherent with the background knowledge or other substantive presuppositions about

the measured quantity (Tal, 2020). Calibration must guarantee consistency by ensur-

ing the traceability of the measurement results to given references. Consistency is

understood as different measurements of the same quantity should be statistically con-

sistent with one another once uncertainties are considered (Parker, 2017, 6). Moreover,

calibration also permits the estimation of uncertainties in a measurement procedure.

It can be part of the measurement procedure itself, so in the modeling stage, scien-

tists will attribute precisely and exhaustively the sources of error and uncertainty in

the measurement procedure or assume in the uses of measuring apparatus or system

already calibrated with available uncertainty estimate (Parker, 2017).
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The model-based account of measurement and the account offered by van Fraassen

share similar ideas, notably the one according to which measurement is relative to

a theory or a model and the notion that coherence and consistency play a role in

measurement. The main difference is that the modeling stage permits the distinction

between relevant aspects of the object under measurement from artifacts produced

during the measurement procedure (Parker, 2017, 6). This is so through the appeal to

a goal of the measurement procedure, which will drive choices made in the modeling

stage.

In summary, “a model of a measurement [procedure] is a representation of how

an instrument or apparatus can be used to learn about the value of a parameter.”

(Parker, 2017, p. 4, ‘process’ changed for ‘procedure’ to remain consistent within the

paper). It should consider the physical interactions that will happen and the data’s

subsequent treatment. It is idealized and does not account for all the tiny details of

an actual measurement procedure. The assumption remains that these idealizations

do not significantly impact the measurement results or are in a range acceptable

for the accuracy demanded by the measurement goal, or these idealizations will be

corrected at some point in the measurement procedure. Depending on the accuracy

level requested, the model of the measurement procedure should also include steps to

correct the deviations between the assumptions of the model and the actual state of

the measurement procedure, complexifying the model.

The representational view of measurement has the drawback of needing a lot of

background knowledge that is lacking in current microbiology investigations. More-

over, the ranking of the communities according to diversity necessitates some stability

of the results, while so far, it is unclear that this is the case in microbial ecology.

Finally, this account can not make sense of the aggregation of different quantities in

one index for measuring diversity (as shown by the analysis of Table 1). The problem
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of the operationalist account is the proliferation of various diversity concepts; this sit-

uation is not observed in the literature. It is also difficult to define exactly what an

operation is and what it contains. One problem with the realist account is that it does

not help choose between different diversity indices. Moreover, many of the measures

used in microbial ecology are a function of the number of species or use the concept

of species in one way or another. This means that being realists about the diversity

property implies being realists about the concept of species. This is an uneasy move

in the microbial world.

The model-based account provides a valuable tool for analyzing the issues in diver-

sity measurement in microbial ecology and microbiome studies. First, it can remain

agnostic about entities and property ontologies. Second, as shown below in section 4,

the appeal to models can help clarify the role of different assumptions in the retrieved

value for the quantity diversity. This can help solve the issue of the lack of reflexivity

in MGS. Finally, I show in section 5 that it grounds scientific solutions in a broader

conceptual framework (i.e., calibration) and develops and extends new solutions to

justify measurement procedures (i.e., the use of the measurement’s purpose).

4 Application of the Model-Based Account to the

Measurement of Diversity in Microbial Ecology

To illustrate the adequation between model-based account and diversity measurement

practices, I will now apply the model-based account of measurement to the assessment

of the diversity of the microorganismal community and schematized in Figure 3.

The modeling stage first idealized the system under measurement. The system

under measurement is the microorganismal community C delineated in a given envi-

ronment. It can be modeled as a collection of DNA sequences obeying the assumption

that one sequence is one individual, C∗. Second, it idealized the measurand, the prop-

erty of interest associated with the system under measurement. The measurand is the
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Fig. 3 Application of the model-based account to the amplicon sequencing method. A. Operative
stage of the measurement procedure. B. Example of a model of the measurement procedure and its
idealizations. Created in BioRender. Potiron, A. (2025) https://BioRender.com/k41m293

diversity, D. The modeler can model the measurand differently, e.g., as the taxonomic

α-diversity understood as the species richness, D∗. This choice will also impact the

measuring scale, e.g., positive integers.

Importantly, these idealizations are not imposed on the inquirer. The modeler has

to choose which idealizations (of the system under measurement and of the measurand)

to use depending on the goal of the measurement, and these choices will lead to

various models for the measurement problem (Giordani & Mari, 2012). For example,

if the goal is to describe global and local diversity patterns of the soil microbiome, one

can measure the variation in the number of species across time (e.g., species loss) or

space (e.g., the latitudinal gradient in biodiversity is the pattern according to which

species richness increases closer to the equator). An index of species richness is suitable
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because changes in abundance and distribution may not be essential information for

these purposes. This is not so if the goal is to assess the impact of local disturbances

on diversity, such as antibiotics. In that case, one wants to estimate how the targeted

treatment has modified the structure of the community. One, therefore, also has to look

at the evenness of the biological community. It is then justified to choose an index of

“heterogeneity,” i.e., an index that combines the information of richness and evenness.

In both cases, various indices exist that measure richness (observed richness, Chao1,

Chao2, etc.) or a mix of richness and evenness (Shannon, Simpson, inverse Shannon,

etc.). The goals can be refined so as to narrow down the number of possible indices.

Moreover, as explained in section 5.2, other criteria, such as available resources and

background knowledge, will constrain the choice of the indices.

Additionally, the measuring instrument can already contain idealizations of the

system under measurement and the measurand. Those idealizations could be more or

less numerous depending on what is integrated into the measuring instrument.

The next step in modeling the measurement procedure is to find an ideal solution.

That is, the empirical and mathematical operations needed to obtain a solution to the

measurement problem are specified. To do so, it is possible to decompose the ideal

problem (C∗, D∗) into a set of more tractable problems. This is an important step

because, again, the modeler can choose how many tractable problems she needs to

solve. For example, several decompositions are possible in AS (Figure 3.B.). The mod-

eler can choose to decompose the problem into two tractable problems by assuming

that a quantity value for D∗ of C∗ can be obtained by first computerizing a collection

of DNA sequences Y ∗ for each sample of C∗, subsequently comparing Y ∗ following

a similarity threshold given by a theory or background assumptions to obtain DNA

sequences representative of one taxon Z∗. The ideal problem (C∗, D∗) is thus decom-

posed into two ideal problems (C∗, Y ∗) and (Y ∗, Z∗). Note that I have omitted all the

operations needed before obtaining computerized DNA sequences from modeling.
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An ideal solution is then sought attainable by ideal measuring instruments, i.e.,

their results are perfectly traceable to appropriate references and by an ideal measure-

ment procedure specifying how these ideal measuring instruments are to be applied

to the system under measurement. Following the decomposition above:

1. An ideal DNA sequencer mS∗ is applied to C∗. The ideal procedure using mS∗

makes no errors, does not contaminate the samples, and respects the original

sample’s abundance and relative distribution.

2. An ideal bioinformatic pipelinemB∗ is applied to Y ∗.mB∗ suggests a perfect way of

grouping elements of Y ∗. The sequences deemed similar are genuinely similar, and

sequences deemed dissimilar are truly dissimilar. Moreover, for each Z∗, a known

reference is associated, e.g., the name of the species to which this DNA sequence

belongs.

The solution to the ideal problem (C∗, D∗) is thus: i) apply mS∗ to C∗ according to

the procedure and find a quantity value y∗ of Y ∗, ii) apply mB∗ to y∗ according to

the procedure and find a quantity value z∗ of Z∗, finally iii) add the number of z∗

obtained following such procedures and find the result, i.e., a quantity value d∗ of D∗.

Then, the operative stage can take place. The operative stage uses the knowledge

provided in the modeling stage to perform the measurement procedure. The first level

is experimental. First, some instances mS and mB of the ideal instruments mS∗ and

mB∗ are obtained. The sequencers used in the measurement procedure are fallible and

thus give sequences that might contain errors or contaminations. The bioinformatics

pipelines have no perfect way of grouping elements of y∗. It groups molecular DNA

according to a similarity threshold at which two DNA sequences of the same molecular

marker are considered similar. The choice of the threshold at which two DNA sequences

are sorted similarly by the bioinformatic pipeline has a considerable impact on the

number of z retrieved and thus on the measure d of C. The threshold might not

reflect the delineation required to identify the taxa. For instance, the threshold might
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be too restrictive; thus, the taxa found do not correspond to any known references.

Moreover, the references might not be complete enough to track all the sequences z∗

representative of taxa.

Once instances mS and mB of the ideal instruments mS∗ and mB∗ are obtained,

the system under measurement, C is coupled with the measuring instruments mS and

a quantity value y of Y is found. Then, mB is coupled with y, and a quantity value z

of Z is found.

The second level of the operative stage is abstract, theoretical, and/or statistical.

It assigns a value to the measurand and is generally accompanied by a related uncer-

tainty. This way, a solution to the measurement problem is found according to the

procedure specified in the ideal solution. The number of z is summed up to obtain the

quantity value d of D. For instance, the lines in the table in Figure 3 are an example

of z. The number of lines gives the taxa richness or α-diversity of the community, C.

In this example, d = 3 is expressed in ASVs with an uncertainty that needs to be

described in terms of the assumptions made throughout the measurement procedure.

I have illustrated in this section that the ontological status of property diversity is

not central. The important thing is how it is idealized when stating the measurement

problem. I have also incorporated a set of assumptions and idealizations needed to

model the entire measurement procedure. This is only a subset because the procedure

includes numerous other steps that are not detailed here. These idealizations need to

be explicitly established if one wants to evaluate the performance of the measurement

procedure. By doing so, the model-based account forces scientists to be aware of these

idealizations and to reflect systematically on them and their justifications in a given

context. The epistemic gain is to pinpoint these idealizations to make clear the choices

scientists need to make. The model-based account can thus help solve the lack of

reflexivity present in MGS in a more systematic way. Finally, I have tiptoed toward

solutions to help scientists choose and construct their measurement models. In the next
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section, I developed in more detail the solutions for calibration of the measurement

procedure and the need for the purpose of the measurement.

5 Solving the Measurement Problem

5.1 Measurement Procedures in Microbial Ecology Need

Calibration

5.1.1 Calibration is the Hallmark of a Reliable Measurement

Procedure

Calibration is needed to achieve consistency (see section 3.4). It is achieved by guaran-

teeing the intersubjectivity of the measurement outcomes. That is, different subjects

in different contexts should be able to interpret the measurement outcomes in the same

way (Frigerio et al., 2010, 142). Calibration standardizes the measurement outcomes

obtained by the different measurement procedures of the same system under measure-

ment. Using calibration procedures permits that even if the measurement procedures

are not exact replications of each other, they produce, in principle, the same (or at

least statistically consistent) results for the same system under measurement.

To achieve intersubjectivity, objectivity must first be met. In the model-based

account, the measurement procedure’s objectivity is understood as the procedure is

independent of the surrounding environment and the evaluating subject. The result

of such a procedure depends on the system under measurement and on the procedure

(Frigerio et al., 2010, 136). The objectivity of the measurement result depends also

on the quality of the interaction between the system under measurement and the

measuring instrument used in the procedure.

Three criteria define how close to objectivity a measurement procedure is: stability,

selectivity, and non-invasiveness. The measuring instrument used in the measurement

procedure should be stable in its interaction with the system under measurement. If
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stability is achieved, the measurement indications are only dependent on the state

of the system under measurement and not also on some internal interference of the

measuring instrument (Frigerio et al., 2010, 136).

Stability is important because it ensures that the measuring instrument(s) are

reliable in two senses: i) the same measuring instrument applied to the same system

under measurement will give the same or similar enough results (statistically consis-

tent), and ii) different measuring instruments applied to the same system should be

statistically consistent with one another once uncertainties are considered. Stability

is part of the reason researcher can rely on their results and the results of others. In

the context of microbial ecology and microbiome studies, this is important because

the extent to which the measurement procedure is stable gives an idea of the extent

to which the results can be relied upon, interpreted by different researchers, and espe-

cially compared to one another. For example, if two studies compare the diversity of

the soil microbiome but the measurement procedure is not stable enough, those two

studies cannot be compared, or only vaguely.

Stability is achieved through the structural possibility of calibrating the measuring

instrument(s) using stable measurement standards (Frigerio et al., 2010, 142). Mea-

surement standards in turn “are instantiations of a given property to which given

property values are conventionally assigned to be used as reference values.” (Frigerio

et al., 2010, 142). Recall that the model-based account of measurement was developed

by studying metrologic systems. Measurement standards are important components

of these systems.

Selectivity has a similar role to stability in ensuring the reliability of the measure.

Selectivity is the idea that the measurement procedure should be able to distinguish

between the effect of the state of the system under measurement and the effect of

the environment when analyzing the measurement indication. So, the measurement

results should only depend on the system under measurement and not also on its
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environment (Frigerio et al., 2010, 137). For example, in AS/MGS, if the environment

or the measurement procedure itself introduces DNA contaminations, the procedure

should be able to distinguish that from the natural DNA variation of the sample so

that the researcher can rely on the result of the measurement.

Finally, the criterion of non-invasiveness tries to answer uncertainties and errors

produced by the potential side-effect of the physical interaction between the measuring

instrument and the system under measurement. The measurement procedure should

be able to interact with the system under measurement without modifying the state

of the system (Frigerio et al., 2010, 137).

5.1.2 Measurement Procedures in Microbial Ecology Are Complex

I use the taxonomy created by Parker (2017). She uses a synthesis between the infor-

mation account presented by van Fraassen (2008) and a model-based account from

Tal (2013) to distinguish three types of measurement: direct, derived, and complex

(Parker, 2017).

A complex measurement procedure involves using different results together from

multiple direct and/or derived measurements. In a direct measurement procedure (e.g.,

rain gauge to measure rainfall depth), there is no explicit symbolic calculation to

obtain a value for the parameter of interest. The value can be corrected (e.g., for the

wind), but the subject matter of the value remains unchanged (e.g., rainfall depth)

(Parker, 2017). By contrast, in a derived measurement procedure, the value assigned

for the parameter of interest is derived from or is calculated from the values measured

for other parameters. The derivation or calculation needs to follow scientific principles

or definitions (Parker, 2017, 9).

In a complex measurement procedure, the measurement outcome is more informa-

tive than any outcome obtained using only a subset of the results obtained by direct

and/or derived measurements. A complex procedure involves additional assumptions
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about how to combine these results in a meaningful way (Parker, 2017, 11). An exam-

ple of a complex measurement procedure is averaging instrument indications from

different calibrated instruments measuring the same parameter. Often, the assumption

is that the individual measurement procedures are independent.

The measurement procedures described in the previous section are complex. It is

the result of the aggregation of several derived measurements. For example, the value

assigned to d in one sample is derived from at least one value z measured for another

parameter Z. The parameter Z measured is the taxa of the individuals; it is qualitative

(to which taxa a given “observed” DNA sequence is assigned), while the targeted

parameter is the parameter diversity D, the number of taxa in a given area. Thus, D

is a composite parameter. The additional scientific principle is the one according to

which the sum of the number of categories in Z reflects D. However, at the end of the

procedure, the quantity value d of C results from aggregating the derived measurement

procedures performed in multiple samples (Figure 3). It is complex because d is more

informative than the outcome obtained using the measurement procedure performed

only on one sample.

Complex measurement procedures are not more difficult in principle to calibrate

than direct procedures (e.g., averaging the weight scale). Nevertheless, the additional

layers of inference embedded in complex measurement procedures imply that more

steps are susceptible to need calibration. It hinges on whether potential errors are

likely to affect the outcome significantly. I will show below that calibration procedures

are indeed challenging in the case of microbial ecology.

5.1.3 Calibration is Underway

As described below, scientists are attempting to calibrate the microbial diversity mea-

surement procedure. The model-based account makes coherent these attempts by

emphasizing the need for calibration. Additionally, by explaining the reasons (reliabil-

ity of the measurement procedure), the model-base account can ground the calibration
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solution in a broader philosophical and conceptual framework that helps address other

issues of measuring microbial diversity (e.g., the lack of reflexivity).

I start by evaluating the diversity measurement procedure regarding the selectivity

and non-invasiveness criteria. In AS and MGS practices, the most significant environ-

mental problem that can impair the diversity measure is the presence of contamination.

The sample was contaminated when DNA that was not initially present in the system

under measurement, the microorganismal community, was retrieved from the sample.

Current practices, though, avoid this quite efficiently, so the procedure is pretty selec-

tive. However, the measurement procedure is highly invasive regarding the system

under measurement (the microorganismal community)10. MGS methods destroy this

system to obtain the DNA of its individual microorganisms. That is, the membranes

of the microorganisms are ruptured to have access to their DNA, which is degraded

by successive DNA amplifications (the microorganisms are long dead at this stage).

Therefore, the criterion of non-invasiveness regarding the system under measurement

is never met. Uncertainties and errors are created at this stage of the procedure (Alteio

et al., 2021; McLaren & Callahan, 2018; Pollock, Glendinning, Wisedchanwet, & Wat-

son, 2018). Thus, the quantity value d refers to the modified state in which the system

is after sampling and DNA extraction instead of the initial, unaffected state of the

system under measurement. The issue is that, from this point, there is no easy way to

connect this measure to the ’real-world’ measure of the system itself.

Moreover, total stability is difficult to achieve in MGS practices. Different samples

of the same community can have different diversity values. For example, in the mate-

rial part of the procedure, i.e., DNA extraction, amplification, and sequencing, the

membrane of some microorganismal species is easier to break than others, making the

10It might not be invasive regarding the environment to be sampled if the sample is tiny (some grams
of soil) or in the case of fecal samples, it is noninvasive regarding the host. However, in both cases, the
procedure is invasive regarding the microbial community. I thank an anonymous reviewer for helping me
precise this point.
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former microorganisms’ DNA easier to access than the latter. It creates a modifica-

tion of the real-world proportion of the species. Similarly, the choice of the molecular

marker used can privilege the representation of specific taxa compared to others. The

measurement procedures for diversity in microorganismal communities using amplicon

sequencing and, more generally, MGS are full of biases and assumptions; for a thor-

ough review of these biases and references, see, e.g., McLaren and Callahan (2018);

McLaren et al. (2022); McLaren, Willis, and Callahan (2019); Pollock et al. (2018).

Several strategies have been attempted to achieve more stability in the physical

part of the measurement procedure. The first one concerns the standardization of the

material part of the procedure (see, e.g., Pollock et al., 2018). This attempt tries to

increase the stability of diversity measurement by minimizing the range of possible

DNA extraction, amplification, and sequencing methods, increasing the intersubjec-

tivity and reliability of the procedure. One issue is that standardization might be

optimized (made stable and reliable) for one particular purpose and not others. The

risk is that scientists might become overconfident. They will use this specific method

for every purpose, thinking it is reliable per se and not only for the particular purpose

for which it has been optimized. A second issue is that even if different standardized

protocols are optimized for other purposes, scientists will still need to judge how close

their research question (the purpose of their measurement) is to the standardization

available in the literature (in the optimistic case where such standardization will ever

exist).

The second strategy uses measurement standards to calibrate the bioinformatic

part of the measurement procedure, mB . Attempts to calibrate this part of the proce-

dure are uncommon, but some can be found in the literature. For example, one study

sampled a community of known composition and abundance (Pauvert et al., 2019).

That is, strains from different species of fungi have been cultured using strains available

in publicly accessible culture collection (= measurement standards). The first steps of
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the procedure are standardized; that is, DNA extraction, amplification, and sequenc-

ing of different samples of this constructed community have been using the same DNA

extraction/amplification kit and protocol and the same location and technology of

sequencers (mS). Then, different available bioinformatic pipelines were tested. None

of the pipelines found the same richness and composition as the original. When quan-

tifying the relative abundance of each species present, finding accurate values became

even more challenging (Pauvert et al., 2019). A similar attempt uses simulated mock

communities instead of material, artificial communities and achieves similar results

(Mathon et al., 2021). In addition, extending their results to different environments

is difficult, even if these procedures could lead to a good approximation of the orig-

inal community. It is difficult to evaluate the uncertainty of the measures precisely.

Outside guessing that the procedure is overestimating diversity or underestimating it,

there is no precise way of knowing how much.

So far, MGS practices to evaluate the diversity of a microbial community are non-

calibrated or pre-measurement practices (Frigerio et al., 2010, p. 132, footnote 7).

Equivalently, they are measuring practice under development, i.e., lacking a reliable

and rigorous process of calibration (Parker, 2017, 22). Although invasive, MGS prac-

tices have a certain degree of objectivity by being mostly selective and partially stable.

However, so far, calibration attempts have failed, and the disciplines don’t yet have

good models of the measurement procedures, so the results obtained are not inter-

subjective and not directly comparable (Reese & Dunn, 2018; Shade, 2017), see also

McLaren and Callahan (2018); McLaren et al. (2019); Pollock et al. (2018). Thus,

the model-based account grounds these attempts in a more encompassing conceptual

framework. It explains the situation in microbial ecology and why scientists are looking

for calibrated procedures even if they are difficult to obtain.
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5.2 Measurement Procedures in Microbial Ecology Need a

Purpose

The model-based account is a goal-oriented framework. As sketched in section 3.4, the

goal of the measurement allows the distinction between artifacts of the measurement

procedure and the relevant aspects of the object under measurement. Notably, the

goal of the measurement procedure is crucial because it gives the specifications of

the measurement procedure, e.g., the types of idealization authorized in the model.

Moreover, achieving this goal justifies the resources employed in the procedure. Thus,

the measurement problem has to be interpreted given the aim of the measurement

(Giordani & Mari, 2012).

Considering the aim of the measurement might seem uncommon in measurement

theory (although see Reiss, 2008) because of the worry of shaping your measurement

procedure according to the result one wants to see. However, I propose here that the

purpose of the inquiry, not a specific result of this inquiry, constrains but does not

entirely determine the choice of the index. The appeal to the aim of measurement

has been made by scientists in general ecology (Magurran, 2004; Vellend, Cornwell,

Magnuson-Ford, & Mooers, 2011) but takes its time to take roots in microbial ecology

(McLaren & Callahan, 2018; Normand et al., 2015; Reese & Dunn, 2018; Shade, 2017).

The goal of the measurement constrains the choice of the diversity index (as

illustrated briefly in section 4). The model-based account clarifies where this choice

happens: in modeling the measurement problem, when the researcher needs to ideal-

ize the system under measurement and the measurand. For example, the aim of the

inquiry can guide scientists toward which kind of indices to choose — simple, hetero-

geneity, more complex, etc. The idea broadly is that all (the few ones I have described

but also many more) these indices are available in a space from which the inquirer

can choose. The purpose of the inquiry narrows down the possibilities by selecting

subset(s) within these indices. The more the purpose is well-defined and precise, the
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smaller the subset is. The purpose of the inquiry acts as an eliminative process, select-

ing a category of indices that are adequate for the purpose by eliminating those that

are not or less adequate.

A minimal criterion for adequacy is that an index’s assumptions and understanding

of diversity do not contradict the purpose and are relevant to the context. Another

criterion will be whether the index helps fulfill the purpose of the measurement, e.g.,

ranking unambiguously two or several communities. Different indices may be adequate

for different purposes, as I have briefly illustrated in section 4.

While the purpose of an inquiry constrains the choice of diversity index, it does not

entirely determine it. Other components will be considered, such as available resources,

background knowledge, and empirical facts about the phenomenon. The availability

and accessibility of material and digital resources, including human resources, equip-

ment, statistical tools, software, and databases, can influence a scientist’s choice of

index, with familiarity and ease of use being essential considerations. For example,

scientists may opt for an index they’re familiar with and can compute using avail-

able software rather than one they’re unsure about (circling back to the issue of lack

of reflexivity). Background knowledge, including the inquirer’s training and under-

standing of different indices, also narrows down the pool of options, while empirical

constraints, such as the specificities of the community under study, further shape the

choice of index. For example, facts about how the natural phylogenetic diversity has

been obtained (e.g., macroevolutionary processes, environmental constraints on fit-

ness, competition for resources, etc.) will influence the form of the cladogram that can

be constructed for a given community. In turn, the form of the cladogram influences

the choice of the index within available phylogenetic indices (Vellend et al., 2011, 195,

200).
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6 Conclusion

In this manuscript, I show how issues specific to microbial ecology and microbiome

studies render assessing the ‘real/world’ value of diversity (if such a thing exists)

almost impossible. The instability of the taxonomic classification and the difficulty

of isolating individuals increase the difficulty of measuring diversity reliably in such

disciplines. In addition, the use of DNA-based methods and statistical tools renders

the assessment of diversity easy to get, with little reflection on the reasons for this

assessment and the problematic interpretation of the value obtained by such princi-

ples. I relate these issues to the measurement problem in philosophy, so I explore the

central positions available in philosophy. After showing that the traditional positions

encounter issues in the case of measuring diversity, I have argued that the more recent

one, the model-based account of measurement, is the best framework to analyze these

issues. The main advantage is that it points towards some solutions for scientists to

justify their measurement procedures. The modelization of the measurement proce-

dures can help solve the issue of the lack of reflexivity in using MGS methods. The

model-based account also grounds solutions developed by scientists (i.e., calibration)

in a comprehensive theoretical framework. Moreover, it points toward the development

of clearly defining their purposes more systematically.

The implications of this analysis are double: it gives some avenues to scientists

to improve their measurement procedures in these disciplines. As already mentioned,

the calibration path is underway, and the extent of its achievements will remain to

be seen in future years. Additionally, it is a successful use of the philosophical model-

based account. Further studies beyond the scope of the one presented here could assess

its usefulness to deal with measurement problems encountered in other disciplines,

like biology (e.g., cancer cell population delineation). It would be interesting to see

how similar or dissimilar these cases would be from measuring diversity in microbial

ecology.
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