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Abstract

In a recent reply to my criticisms (Found. Phys. 55:5, 2025), Carcassi, Old-
ofredi, and Aidala (COA) admitted that their no-go result for ψ-ontic models
is based on the implicit assumption that all states are equally distinguishable,
but insisted that this assumption is a part of the ψ-ontic models defined by
Harrigan and Spekkens, thus maintaining their result’s validity. In this note,
I refute their argument again, emphasizing that the ontological models frame-
work (OMF) does not entail this assumption. I clarify the distinction between
ontological distinctness and experimental distinguishability, showing that the
latter depends on dynamics absent from OMF, and address COA’s broader
claims about quantum statistical mechanics and Bohmian mechanics.

1 Introduction

Last year, Carcassi, Oldofredi, and Aidala (COA) argued that the ψ-ontic models
framework (OMF) defined by Harrigan and Spekkens [1] cannot be consistent with
quantum mechanics (QM) [2]. This was a surprising claim. I subsequently presented
a critical analysis of their no-go result [3], arguing that COA implicitly assume all
ontic states can be distinguished by experiments with certainty—an assumption nei-
ther part of OMF nor consistent with QM. In their recent reply [4], COA conceded
that their result relies on this distinguishability assumption but contended it is in-
herent to OMF, thereby upholding their theorem. Here, I demonstrate that this is
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not the case, refining my critique with additional clarity and responding to their
latest arguments.

2 The Ontological Models Framework

OMF has two fundamental assumptions [5]. First, if a quantum system is prepared
such that QM assigns a wave function to it, then after preparation, the system
possesses a well-defined set of physical properties or an underlying ontic state, rep-
resented by a mathematical object λ. A wave function or pure state corresponds to
a probability distribution p(λ|P ) over the ontic states λ associated with a specific
preparation P , quantifying the likelihood of each ontic state given that preparation.
The probability distributions for two different wave functions may overlap (in ψ-
epistemic models) or not (in ψ-ontic models). A mixture of pure states |ψi⟩ with
probabilities pi is represented by

∑
i pip(λ|Pψi

).
Second, when a measurement is performed, the behavior of the measuring device

is determined by the ontic state λ and the device’s physical properties. For a pro-
jective measurement M , the probability of outcome k is p(k|λ,M), and consistency
with QM requires: ∫

dλ p(k|λ,M)p(λ|P ) = p(k|M,P ), (1)

where p(k|M,P ) is the Born probability. Neither assumption states that all ontic
states can be distinguished experimentally with certainty.

3 COA’s Argument and Their Reply

COA’s no-go theorem hinges on comparing the information entropy of a mixed state
in ψ-ontic models and QM [2]. For a mixture ρ = 1

2
(|ψ⟩⟨ψ|+ |ϕ⟩⟨ϕ|), QM yields the

von Neumann entropy:

HQM(ρ) = −1 + p
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where p = |⟨ψ|ϕ⟩|. In ψ-ontic models, where |ψ⟩ and |ϕ⟩ correspond to distinct ontic
states λψ and λϕ, COA compute the Shannon entropy as:

HOM(ρ) = −1
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ln
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2
= 1, (3)

which differs from HQM(ρ) unless p = 0 (orthogonal states). They conclude that
ψ-ontic models cannot replicate QM.
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In my critique [3], I argued this relies on assuming λψ and λϕ are distinguishable
with certainty, a premise not in OMF. COA’s reply [4] admits this assumption but
asserts it is embedded in OMF, as statistical mixtures are “classical probability
distributions” implying equal distinguishability.

4 Refutation of COA’s Argument

However, OMF does not assume all ontic states are experimentally distinguishable
with certainty, as evident from its two assumptions. COA’s claim that “statistical
mixtures are modeled as classical probability distributions” implies distinguishability
is difficult to follow, and it is unclear whether they intended it as a formal justifica-
tion. They argue that

∑
i pip(λ|Pψi

) treats mixtures as Kolmogorovian probability
measures, where all states are distinguishable [4]. However, this misinterprets OMF.

A key point here is that while all ontic states are distinct in ontology—meaning
they represent different physical realities—this does not imply they are distinguish-
able in experiments. In QM, empirical distinguishability is not an inherent property
of the ontic states themselves but is determined by the dynamics of the system during
measurement interactions. For example, non-orthogonal states, such as |ψ⟩ and |ϕ⟩
with ⟨ψ|ϕ⟩ ≠ 0, cannot be perfectly discriminated due to the linearity of quantum
evolution, which limits the information accessible via measurement. COA’s reply as-
sumes that modeling statistical mixtures as classical probability distributions (e.g.,∑

i pip(λ | Pψi
)) implies equal distinguishability of all ontic states in experiments [4].

However, this conflates ontological distinctness with empirical accessibility, a misstep
not required by OMF. Their definition of a probability measure over ontic states does
not account for the quantum constraint that non-orthogonal states lack perfect dis-
tinguishability, undermining their claim that this assumption is inherent to OMF.

In fact, if OMF implied this (experimental) distinguishability, it would be obvi-
ously inconsistent with QM, where non-orthogonal states are indistinguishable (in
experiments). This basic principle of QM is widely recognized, making it surpris-
ing that COA’s argument hinges on an assumption at odds with it. They did not
pursue this simpler inconsistency proof, suggesting they may not fully endorse this
interpretation of OMF.

Finally, it is worth pointing out that OMF, with its two fundamental assump-
tions, does not include the dynamics for the ontic states and thus is not a complete
theory. Rather, it serves as a general framework designed to clarify the relationship
between the underlying ontology and the predictive formalism of QM, or to explore
how the latter might emerge from objective physical features of the ontic states. Con-
sequently, one cannot compute information entropy directly from an epistemic state
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in OMF without dynamics, as entropy depends on distinguishability. For instance,
consider non-orthogonal states |ψ⟩ and |ϕ⟩ with overlapping p(λ|Pψ) and p(λ|Pϕ).
In QM, their indistinguishability under linear dynamics ensures the von Neumann
entropy reflects this, differing from the Shannon entropy of a classical mixture where
states are fully distinguishable. Without dynamics, OMF cannot resolve this, but
with the Schrödinger dynamics, it aligns with QM.

5 Discussion

COA’s reply suggests that my earlier critique overlooks their broader challenge: that
OMF must reproduce all results of quantum statistical mechanics, thermodynamics,
and information theory, not just entropy [4, Section 3]. However, my argument does
not deny this requirement but highlights that their no-go theorem fails because it
imposes an extraneous distinguishability assumption not inherent to OMF. Without
this assumption, OMF remains open to dynamics (e.g., Schrödinger evolution) that
align it with QM’s predictions, including statistical mechanics. COA’s example of
rotational symmetry in a spin-1/2 mixture further illustrates the need for dynam-
ics—precisely my point—yet they do not show how their classicality assumption is
necessitated by OMF itself. Thus, their critique mischaracterizes my position as
incomplete rather than addressing the core flaw I identify.

COA also claim that Bohmian mechanics may not conform to OMF due to the
nomological status of the wave function [4, Section 4]. However, this overlooks that
OMF is agnostic about specific dynamics or metaphysical commitments. In Bohmian
mechanics, the ontic state (particle positions guided by the wave function) satisfies
OMF’s assumptions: preparation yields a probability distribution over positions, and
measurement outcomes depend deterministically on these states. Whether the wave
function is nomological or ontological is irrelevant to OMF’s structure, suggesting
COA’s exclusion of Bohmian mechanics reflects a misreading of the framework’s
flexibility.

6 Conclusion

Carcassi, Oldofredi, and Aidala’s (COA) no-go theorem for ψ-ontic models hinges on
an assumption of experimental distinguishability of all ontic states, a condition nei-
ther inherent to the ontological models framework (OMF) nor consistent with quan-
tum mechanics (QM). Their reply fails to justify this assumption’s place in OMF,
conflating ontological distinctness with empirical accessibility—a distinction clarified
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by QM’s dynamical constraints. With appropriate dynamics, such as Schrödinger
evolution, ψ-ontic models can align with QM’s predictions, undermining COA’s claim
of incompatibility. Their broader critiques, including Bohmian mechanics’ exclusion,
misread OMF’s flexibility. Thus, far from a definitive no-go result, this analysis
reaffirms the viability of ψ-ontic interpretations within a properly understood frame-
work.

References

[1] Harrigan, N., Spekkens, R.: Einstein, incompleteness, and the epistemic view of
quantum states. Foundations of Physics 40, 125–157 (2010).

[2] Carcassi, G., Oldofredi, A., Aidala, C.A.: On the reality of the quantum state
once again: A no-go theorem for ψ-ontic models. Foundations of Physics 54, 14
(2024).

[3] Gao, S.: On the reality of the quantum state once again: A no-go theorem for
ψ-ontic models? Foundations of Physics 54, 52 (2024).

[4] Carcassi, G., Oldofredi, A., Aidala, C.A.: A no-go theorem for ψ-ontic models?
Yes! Response to criticisms. Foundations of Physics 55, 5 (2025).

[5] Pusey, M., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nature
Physics 8, 475–478 (2012).

Funding Declaration: There was no funding for this work.

5


