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1 Introduction: How many varieties of WFR?

There has been considerable discussion in the philosophical literature of the
past decade or so of a view that has come to be known as “wave function
realism,” which I will abbreviate as WFR. The basic claim of this view is that
quantum theory gives us motivation to think that quantum wave functions
should be thought of as fields on a space of very high (or perhaps infinite)
dimension, and that this space is in some important sense more fundamental
than familiar three-dimensional space or four-dimensional spacetime. Note
that this is much stronger than the mere claim that quantum states represent
something physically real, a claim that I myself have defended (Myrvold
2020a, 2020b).

The view is inspired by remarks made by J. S. Bell, in lectures and con-
versations though not in print, to the effect that, because a wave function for
an N -particle system is a function on a 3N -dimensional space, “somehow our
feeling that we live in 3 + 1 dimensions is an illusion.”1 It entered the philo-
sophical literature in David Albert’s “Elementary Quantum Metaphysics”
(1996),2 and since then has gained some currency. According to Alyssa Ney,
“it has had something of an outsized acceptance in metaphysical circles”
(2021b, xi, fn. 3) although, within philosophy of physics, its advocates “can
be counted on a single hand” (xii).

Albert’s original article gave the impression that the conclusions he drew
followed straightforwardly from taking a realist stance towards quantum me-
chanics; that is, it was suggested that, once the pernicious Copenhagener
Geist has been exorcised, and we allow ourselves to ask what quantum me-
chanics is telling us about the physical world, it follows that the impression
we have of living in a three-dimensional space, or a four-dimensional space-
time, “is somehow flatly illusory” (Albert, 1996, 277).3 We find a similar
conclusion in Loewer (1996), where the position is explicitly motivated by
the enterprise of adapting D. K. Lewis’ Humean supervenience to the quan-
tum context. Criticisms were advanced by Monton (2002) and Lewis (2004).
A significant advance in the discussions was the publication in 2013 of a
volume dedicated to discussions, pro and con, of the view (Ney and Albert,
2013). More recently, WFR has been the subject of a book-length defense

1See Bell (1990), remarks beginning at 1:25:15.
2Reprinted, with modifications, as Albert (2013).
3In Albert’s subsequent expositions (2013; 2015; 2019), talk of illusion has been

dropped. See section 7, below.
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by Alyssa Ney (2021b).
In my article, “What is a Wave Function?” (Myrvold, 2015), I attempted

to undermine the motivation for a view of this sort by invoking a principle
to the effect that ontological conclusions drawn from quantum mechanics
should be compatible with the uncontroversial fact that quantum mechanics
is not a fundamental theory, but a non-relativistic approximation to a more
fundamental theory, quantum field theory. This means that whatever it is in
the physical world that quantum-mechanical wave functions represent must
be approximations to something that is defined in terms of the underlying
quantum field theory. If one accepts that principle, then our thinking about
the ontological status of wave functions should be informed by our under-
standing of how quantum mechanics is obtained, in a non-relativistic regime,
from a quantum field theory. This is relevant to the issue, because quantum-
mechanical wave functions are defined in terms of field operators, φ̂(x), de-
fined on ordinary 4-dimensional spacetime. The N -particle wave-functions
that emerge in a nonrelativistic regime assign numbers to N -tuples of points
in four-dimensional spacetime, not to points in some high-dimensional space
whose relation to ordinary spacetime is obscure.

In this chapter, my aim is not to criticize wave function realism, but to get
clearer about what it is. In particular, I want to ask whether the phrase “wave
function realism” denotes a monolithic position, or whether there are multiple
varieties of wave function realism. One purpose is to point out that, even if
all current proponents of WFR were to agree on all essential points, there
is still at least a potential plurality of wave function realisms—in principle,
at least, there is more than one variety of wave function realism. Another
purpose is to highlight some questions about the nature of the supposed
fundamental space, and the wave functions that are defined on it, that need
to be answered before we know what the position is supposed to amount to.
Until these have been answered, then, as far as explicitly articulated versions
of WFR go, we have, not more than one version of WFR, but less than one.

I will focus on two main axes of distinction. One has to do with the na-
ture of the project. Is it what I will call Interpretive project, one of accepting
standard quantum theory pretty much as we have it, and exploring its impli-
cations for ontology? Or is it a Constructive project, which finds standard
quantum theory wanting in crucial aspects, and seeks to construct a new the-
ory that will satisfy some set of metaphysical constraints? The other has to
do with how radical the claims are that are made about the nature of space-
time. Does the fundamental space on which the wave functions of WFR are
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defined have intrinsic structure corresponding to the low-dimensional space-
time structure? One flavour of WFR, an Extremely Mild one, would have
it that the fundamental space has, as intrinsic structure, a representation of
the symmetry group of the low-dimensional space, and that the dynamics
of the wave function are, as a matter of physical law, required to respect
these symmetries. On such a view, it would be hard to see in what sense
the low-dimensional spatial structure is not fundamental; any sense in which
the low-dimensional spatial structure is non-fundamental would be at best a
highly attenuated one. A more radical view, a Spicy flavour of WFR, would
have it that the fundamental space has no structure at all corresponding to
the low-dimensional spatial structure, and that no conditions are placed on
the dynamics of wave functions that amount to a condition of respecting the
symmetries of some low-dimensional space. According to a Spicy version of
WFR, if it turns out that a wave function evolving on a 3N -dimensional fun-
damental space can be simply represented as a function of N -tuples of points
in a 3-dimensional Euclidean space, evolving according to a dynamical law
that depends only on distances between those N points in the 3-dimensional
space, this is a contingent fact, and there are worlds that are possible, ac-
cording to the theory, in which the wave function has nothing like these
features. On this view, wave functions in general don’t have any relation to
any low-dimensional space or spacetime.

Much of the literature on WFR suggests that proponents of WFR intend
it to be Interpretive and Spicy. As will be explained in sections 4 and 5, there
are serious difficulties faced by a position of this sort, and it is at least prima
facie an untenable combination. Standard quantum theory makes use of the
low-dimensional spatial or spacetime structure to formulate wave functions.
If this structure is stripped away, and we have to do with functions defined
on a high-dimensional space that can be specified without reference to the
low-dimensional structure, these functions will have to be unlike the wave
functions of standard quantum mechanics in crucial ways. That is, a Spicy
version of WFR cannot be merely Interpretive.

There is another way in which WFR, as expounded by its proponents,
departs from standard quantum theory. There is often talk of the wave
function, in the singular, that represents a given quantum state. It’s not
always clear whether this is meant to be taken literally. If it is, this is a
radical departure from standard quantum theory, on which there is no such
thing as the wave function that represents a quantum state. For any quantum
state there is, rather, a veritable cornucopia of wave functions that can be
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used to represent the state; we will explore this cornucopia in section 5,
below.

A quantum state, whatever else it might do, encodes probabilities of
outcomes of experiments. One has a choice of what mathematical apparatus
to employ to do this, and students of quantum mechanics learn a variety of
different ways to represent a quantum state, all agreeing on the probabilities
of outcomes of all possible experiments. Standard quantum theory takes all
of these to be physically equivalent: if two representations of a quantum
state agree on all probabilities of outcomes of any experiments that could in
principle be performed, they are representations of the same quantum state,
and any features that the two representations do not have in common are
thought not to have physical significance. A familiar example of this, often
mentioned in textbooks, is that two wave functions that differ only by a
multiplicative constant represent the same quantum state; changing a wave
function by multiplying it a constant does not correspond to a change in
what is represented by the wave function. Also familiar from textbooks is
freedom of choice of basis; the same quantum state could, for example, be
represented by a position-space wave function, or a momentum-space wave
function.

One could, of course, construct a theory on which two wave functions
representing the same quantum state are not physically equivalent. The
project of doing so is clearly a Constructivist project, not one that is merely
Interpretive.

It does seem to be essential to the WFR project that it have radical im-
plications for our conception of spacetime, that is, that it be Spicy. As I
will argue, it will then also have to be Constructive. This isn’t an objec-
tion. Other avenues of approach to the so-called measurement problem of
quantum mechanics, including hidden-variables approaches and dynamical
collapse theories, are straightforwardly Constructive projects. The point is,
rather, that, if WFR is also a Constructive project, it would be better to be
explicit about this, and to be clear about what the theory to be constructed
is. This would involve answering crucial questions about the structure of
the fundamental space, what it is that the wave functions of WFR assign
to points in that space, and what the dynamical laws are that govern their
evolution. Proponents of WFR have often been somewhat vague on these
points.

There’s another, very substantial lacuna in the literature on WFR. As
David Wallace (2021) has emphasized, expositions of WFR tend to be framed
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in terms of a specific kind of quantum theory, the nonrelativistic quantum
theory of a finite number of spinless particles. This is evidenced by the fact
that it is said that a wave-function assigns a number to points in configuration
space. In standard quantum mechanics, what a configuration-space wave
function assigns to a point in configuration is a vector in the Hilbert space
of total spin for the system. This Hilbert space has dimension equal to the
product of the dimensions of the spin spaces of the individual particles. So,
for example, for a system of N spin-1

2
particles, each particle’s spin-space is a

two-dimensional Hilbert space, and so the total spin-space of the system is a
Hilbert space of dimension 2N . This grows exponentially with N , so, if N is
a mind-bogglingly large number, 2N is exponentially more so. Alternatively,
one could choose a basis for the spin space, and represent a vector in the
spin-space by an ordered list of 2N numbers, yielding 2N wave functions. Any
version of WFR for nonrelativistic quantum mechanics will have to specify
what it is that is assigned to points in configuration space. Is there a single
wave function that assigns, to each point in configuration space, a vector in a
Hilbert space of huge dimension, or is there a huge number of complex-valued
wave functions? Or is it something else, that we haven’t thought of?

If what the wave functions of WFR assign to points in configuration space
are vectors in the total spin-space of the system, this is a version of WFR that
is at least Somewhat Mild, because the Hilbert space representation of spin
is tied up with directions in three-dimensional space. One way to see this is
to consider the spin state of a pair of spin-1/2 particles that is often used to
illustrate entanglement, that is, the singlet state. This is a state that is not a
state of definite spin, in any direction, for either of the component particles,
but is a state of definite total spin for the pair of particles, in any direction.
That is, if spin is measured in the same direction on both of the particles,
the two results have to add up to zero. To even say that—that is, to even
assert that the spin state of the pair of particles is a singlet state—we need
to know how to make sense of same direction in three-dimensional space for
the two spins. (If we measure spin in two different directions, the results are
not guaranteed to add to zero in the singlet state). Furthermore, in standard
quantum mechanics, operators corresponding to spin in three mutually per-
pendicular directions are required to satisfy commutation relations that are
based on the commutation relations for components of angular momentum
in three mutually perpendicular directions in three-dimensional space.4

4I am grateful to James Ladyman for stressing this latter point.
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Of course, non-relativistic quantum mechanics, useful as it is, is not ad-
equate in the relativistic regime. There are a number of arguments in the
literature to the effect that a relativistic quantum theory will have to be
a quantum field theory, that is, a quantum theory of a system of infinitely
many degrees of freedom. What WFR is supposed to say about quantum
field theories remains largely unexplored. Proponents tend to say that the
fundamental space will be infinite-dimensional. But we have yet to see a
concrete proposal as to the structure of this infinite-dimensional fundamental
space. One possibility, for bosonic fields, is that the space on which the wave-
function is to be defined is to be a space of possible field configurations. But
a straightforward reading of that is that it is a space of possible assignments
of field values to points in three-dimensional space or four-dimensional space-
time. If that’s the case, it appears that the structure of the low-dimensional
space is baked into the characterization of the fundamental space, and once
again we have a Mild version of WFR (see §4.3 of Myrvold 2015 for further
discussion).

At any rate, proponents of WFR owe us an account of the fundamental
space for a quantum field theory, its relation to four-dimensional space time,
and its relation to the fundamental space of nonrelativistic quantum mechan-
ics. It won’t do to say that we have one fundamental space for nonrelativistic
quantum mechanics, and another for quantum field theories, with no relation
between the two, because the systems treated of in nonrelativistic quantum
mechanics are also treated of in quantum field theories. When one calculates,
in quantum field theory, the magnetic moment of the electron to astonishing
precision, this is the magnetic moment of the same electron that is dealt with
in elementary quantum-mechanical treatments of the hydrogen atom. What
one is doing, in quantum field theories, is treating of relativistic phenomena
that can be disregarded at low energies; one is not investigating some other
world distinct from that dealt with in nonrelativistic quantum mechanics.

These are matters that will have to be sorted, before we have even one
candidate version of WFR on the table. In this chapter, I will focus on what
seems to be the easiest case for WFR, the case that is invariably used to
motivate the view: the nonrelativistic theory of a finite number of spinless
particles. Readers should bear in mind that answering the questions posed
for this simplest case, though necessary, is not sufficient for the project of
formulating an empirically adequate version of WFR.

Some of what has been said in this introductory section will have been
unclear to some readers. I ask those readers to be patient, and read on. In
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section 2 the potential ambiguities in the structure of the fundamental space
will be spelled out in some detail. In section 3, as a prelude to a discussion
of the dependence of the formulation of wave functions on the structure of
the spacetime within which the theory is formulated, we will first review the
more familiar territory of how this works with classical fields. As we will see
in section 4, much of what is said in connection with classical fields holds also
for quantum wave functions. This will start to give us a sense of the variety
of wave functions that can all represent the same quantum state. We will
outline the full rich abundance of wave function representations of quantum
states in section 5.

2 Varieties of 3N-dimensional space

It is often said that the space on which the wave functions of WFR are defined
is, at least for the case of N distinguishable particles, a 3N -dimensional
space with the structure of a classical configuration space. There is potential
ambiguity here, as there are different 3N -dimensional spaces that could be
meant.

Let’s start with the notion of a configuration of N bodies, treated classi-
cally and nonrelativistically. We might, for example, be engaged in an analy-
sis, within classical physics, of the solar system. Suppose that N bodies—say,
the sun and the major planets, and some finite number of other solar system
objects—have been selected as the ones whose motions we are interested in,
and, at the level of analysis employed, internal structure of the bodies un-
der consideration may be ignored, so that it is enough to keep track of the
motions of the centers of mass of all of the bodies considered.

We model the instantaneous positions of these bodies as an ordered N -
tuple of points in three-dimensional Euclidean space, which we will call E3.
Ordered, because the bodies under consideration have distinguishing char-
acteristics; swapping the positions of Saturn and Jupiter yields a distinct
configuration. The space E3 has a lot of structure. Its structure permits
distinction between smooth curves in the space and jagged ones, and, among
the smooth curves, distinction between straight and curved paths. There is
a notion of rigid displacement, which underwrites judgments of congruence
of regions of this space; two regions are congruent if they can be made to
coincide via a rigid displacement. Given any two pairs of points (a, b) and
(c, d), there is a matter of fact about whether or not the line segment joining
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a and b is congruent to the line segment joining c and d. If they are not
congruent, one of them is shorter than the other, meaning that the shorter
is congruent to a proper part of the longer. It thus makes sense, given the
structure of the space, to say that one line segment is twice as long as an-
other, or n times as long, and this gives us means of saying, for any two line
segments and any natural numbers n, m, whether or not n times the one is
longer, shorter, or the same length as m times the other, and that gives us
the means of associating, with any two line segments, a unique real number
that is the ratio of their lengths. If, we now choose some line segment to
serve us a unit length, we have, for any pair of points, p, q, a unique real
number that is the ratio of the length of the line segment joining p and q
to that of our unit length. Rigid displacements include rotations about any
line, and this permits to assign an angle of intersection to any pair of lines
that intersect. Two lines are perpendicular if their angle of intersection is
one-quarter of a full rotation.

If we choose a point as an origin, a triple of mutually perpendicular
directions in space, and a unit of length, we have a coordinatization of E3 that
indicates points in the space via triples of real numbers, (x, y, z). Because
of the structure of our space, our choice of coordinates only requires three
things: a choice of origin, a choice of three mutually perpendicular directions
from that point, and a choice of unit. If we had a space with less intrinsic
structure, we might still be able to coordinatize it, but this would involve a
greater number of arbitrary choices.

We will call the space (E3)N , which is the set of all ordered N -tuples of
points in E3, the Configuration Space of the system.5 Given a coordinati-
zation of 3D Euclidean space E3, we get an induced coordinatization of the
Configuration Space (E3)N , on which a point in (E3)N is represented by an
ordered N -tuplet of triples of real numbers, that is, something of the form
((x1, y1, z1), . . . , (xN , yN , zN)).

The space (E3)N , being the set of ordered N -tuples of points in E3, in-
herits a lot of structure from it. An element p of (E3)N is an ordered list of
points of E3, and for any such p, there are N(N−1)/2 pairwise distances be-
tween the points in E3 that make it up. The symmetries of three-dimensional
Euclidean space, E3, are transformations—that is, one-one mappings of the

5There is some variance in the literature in how the term “configuration space” is used.
Sometimes it is used for the space of ordered 3N -tuples of real numbers. We will retain
the capitalization as a reminder that the term is being used as defined here, a usage that
may differ from its usage in some other works.
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space to itself—that preserve all distances between points. The symmetries of
Configuration Space are transformations that preserve all of the N(N −1)/2
pairwise distances just mentioned. It should be clear that, given any sym-
metry of E3, there is a corresponding symmetry of (E3)N . That is, all the
symmetries of 3-dimensional Euclidean space are built into the structure of
3N -dimensional Configuration Space.

On the other hand, it makes no sense to ask, of a pair of points p, q in the
Configuration Space (E3)N , representing two different configurations, what
the distance is between those points in Configuration Space. If we pass from
one configuration of planets to another, we can ask, for each of the N planets,
how much its distance has changed, but on Configuration Space there is no
privileged way to combine these to define distance between configurations.6

Things are a bit different if we consider the set of configurations of N clas-
sical objects when some or all of the objects lack any intrinsic characteristics
that distinguish them from each other. Swapping of any two such objects
does not yield a distinct physical state of affairs. The configuration space
for N indistinguishable objects consists of unordered N -tuples of points in
3-dimensional Euclidean space. Its structure is a bit more complicated, as
its topology is not the same as (E3)N . See Goldstein et al. (2005), Maudlin
(2013), and Chen (2017) for discussions of this point.

The 3N -dimensional Configuration Space (E3)N must be distinguished
from 3N -dimensional Euclidean space, E(3N). Both of these are 3N -dimen-
sional spaces. But E(3N) is like E3, and unlike (E3)N , in that, given a pair
of points p, q in E(3N) and a chosen unit of distance, it does make sense
to ask what the distance between p and q is. Given a point chosen as an
origin, 3N mutually perpendicular directions in E(3N), and a line segment
chosen as unit of length, we can coordinatize E(3N) via an ordered 3N -tuplet
of real numbers. Thus, both E(3N) and (E3)N have coordinatizations such
that specification of 3N real numbers is required to specify a point. But the
coordinatizations have different structure; one is an ordered 3N -tuple of real
numbers, the other, an ordered N -tuple of ordered triples of real numbers.

6One could, of course, define metrics on Configuration Space in many ways, if such were
wanted. Here’s how to define a family of such metrics. Given two configurations of the
solar system, we could consider, for each planet, the distance that the planet is displaced
when passing from one configuration to the other. We could then define a distance, δ,
between configurations, by taking the square of δ to be a weighted sum of the squares of
the planetary displacements. But, in the absence of considerations that would imbue a
metric of this sort with physical significance, there’s no point in doing so.
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The two spaces, (E3)N and E(3N) have a lot of built-in structure. Some of
it is metric structure, that is, structure having to do with assigning distances
and areas and volumes. Some of it is topological structure, that is, structure
that, unlike the metric structure, is preserved by all continuous transforma-
tions of the space. And some of it has to do with the distinction between
curves in the space that are smooth and those that are not, between surfaces
that are smooth and those that are not, between mappings of the space to
itself that are smooth and those that are not, and between functions from the
space to RN that are smooth and those that are not. This is the structure
that is preserved by all smooth transformations of the space, and is called
differential structure. A space that has topological structure and differential
structure is called a differentiable manifold. It is n-dimensional if there is a
smooth mapping between the space and Rn (or else it can be covered by a
family of local smooth mappings).7 (E3)N and E(3N) are both 3N -dimensional
differentiable manifolds, each of which has, in addition to differentiable and
topological structure, some metric structure. We can also consider a bare
3N -dimensional differentiable manifold, with no built-in metric structure.

We now have three sorts of 3N -dimensional spaces to play with, which
have very different intrinsic structure: Configuration Space (E3)N , 3N -di-
mensional Euclidean space E(3N), and a bare 3N -dimensional differentiable
manifold. Which, if any, of these spaces is the space on which the wave
functions of WFR, for a system consisting of N distinguishable particles, are
defined?

Standard quantum-mechanical wave functions for a system consisting of
N distinguishable particles are defined on the Configuration Space (E3)N ,
and take advantage of some of the metric structure of that space for their
definition (see secto 4, below). One would expect an Interpretive version of
WFR to follow suit. This would be a Mild flavour, as this would mean that
the 3N -dimensional fundamental space has built into it all the symmetries of
three-dimensional Euclidean space. Some discussions of WFR (see, in partic-
ular, Albert 2015, 2019) suggest that the space on which its wave functions
are defined has no built-in metric structure; all the metric structure there is,
is the emergent, low-dimensional structure. On such a view, the fundamental
space of WFR is just a 3N -dimensional differentiable manifold. This would

7A differentiable manifold can be such that its dimension varies from place to place in
the manifold, but we will not have to deal with manifolds like that, so mention of this
point may be safely relegated to a footnote.

12



be a Very Spicy flavour of WFR. But it could not be merely Interpretive, as
quantum-mechanical wave functions lean heavily on metric structure of the
spaces on which they are defined for their very definition.

3 Preliminaries: Classical fields on space-time

Proponents of WFR often draw an analogy between classical fields and wave
functions. Quantum wave functions are like classical fields in some respects,
and unlike them in others. One area of similarity has to do with the depen-
dence on background spacetime structure of a mathematical representation
of a classical field or a quantum wave function. A specification of a classical
field that permits one to talk about the intensity of the field at a point re-
quires one to invoke features of the metric structure of the space on which it
is defined; a mere differentiable manifold of the appropriate dimension does
not suffice. Quantum wave functions are no different in this respect. To make
this clear, it is helpful to bear in mind the way in which the assignment of
classical field values to points in space relies on metric structure of the back-
ground space. None of what follows will be controversial, or, to most of my
readers, novel. We are, as Wittgenstein would put it, “assembling reminders
for a particular purpose” (Wittgenstein, 1953, §127).

Think, first, of a mass-density or charge-density field on 3-dimensional
Euclidean space. It is the job of such a field to represent a mass or charge
distribution in space. A mass distribution associates with any region of
space you can name a quantity of mass in that region. Obviously, we can’t
specify a quantity of mass just by giving a number; we have to say also what
units we’re using—grams, kilograms, or slugs, for example. Given a choice
of unit of mass—say, kilograms—we have numbers assigned to regions of
space, representing the mass, in kilograms, contained in those regions. What
remains the same, for any choice of units, is the ratio of the numbers assigned
to any pair of regions. That’s where the real physical content lies; a choice of
unit is a choice of a standard mass to which we assign the number one. When
we specify the mass of an object by specifying a number relative to some unit,
that number is the ratio of the mass to the mass of the chosen unit. All this
is obvious, but it will serve as well to bear in mind in what follows: whenever
we use some bit of math to represent something physical, the physical content
of our representation is the stuff that doesn’t vary according to our arbitrary
choices.
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Provided that, at any point p in space, the mass contained in a region
that includes p shrinks to zero as the volume of the region shrinks to zero,
we can represent a mass distribution by a mass density function ρ.8 The
way that the mass density function represents a mass distribution is: for any
region R that is assigned a mass by the mass distribution, the mass contained
in R is the integral of the mass density over that region.

The number that a mass density function assigns to a point in space de-
pends on two things: choice of unit of mass, and choice of unit of volume. The
same mass density might be 1 gram per cubic centimetre, or 1,000 kilograms
per cubic metre. If we have two different mass distributions, represented by
two mass density functions ρ1 and ρ2, the ratio of ρ1 to ρ2 at a given point
will be the same (at least, for almost all points; exceptions on a set of total
volume zero don’t make a difference to the mass distribution represented) no
matter what unit of volume we’re using, and so it’s those ratios that have
physical significance.

You might have been tempted to say that the ratio of ρ1(p) to ρ1(q), for
two different points, has physical significance on its own, but that’s not right,
without further qualification.

Consider the following mass distribution. In each of two nonoverlapping
cubical regions of space, R1 and R2, there is half a kilogram of mass, and
none anywhere else. Within each of these regions the mass is uniformly
distributed, meaning that the amount of mass in any subregion of R1 or R2

is proportional to the volume of the subregion. The sides of the region R2

are twice as long as the sides of R1, and hence the volume of R2 is eight times
the volume of R1.

Let V (R1) and V (R2) be the volumes of the two regions of nonzero mass.
We can define a density function ρA for this mass distribution that is equal
to 1/(2V (R1)) in the interior of R1, to 1/(2V (R2)) in the interior of R2, and
is zero everywhere else. Since the same amount of mass is found in both
R1 and R2, and R2 is larger than R1, the mass is more thinly spread out in
R2 than it is in R1, and our mass density function reflects this; it takes on
smaller values in R2 than it does in R1.

8Distributions that do not have this property, which are said to be singular with respect
to the volume measure, can be represented by elements of a class of mathematical objects
called generalized functions, which generalize the notion of a density function. For the
sake of illustration, we consider a non-singular distribution, which has a density function.
All the conceptual points we’ll make remain intact if one expands the class of distributions
considered to include singular distributions.
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All of this is taking place within Euclidean space, and our characterization
of the mass density function leans heavily on the structure of that space. The
two regions R1 and R2 contain the same total mass, evenly distributed with
the regions, and R2 has eight times the volume of R1, and hence the mass
density within R1 is larger than it is in R2. To say all of this, we are relying
on the fact that we are working within a space that comes with a notion
of rigid displacement, and hence a standard way of comparing volumes of
distinct regions of space.

But we might also consider some nonstandard scheme of assigning vol-
umes to regions. Suppose that someone (call him Bob), uses, instead of stan-
dard rulers, rulers that change their size when moved from place to place.
Suppose that, when transported from R1 to R2, the rulers quadruple in size.
For simplicity, suppose that they don’t change their size when moved about
within these two regions. Judged by Bob’s rulers, the sides of R2 are half
the length of the size of those of R1, and therefore, on this way of measuring,
the volume of R2 is one-eighth of the volume of R1. Bob will judge the mass
to be more spread out in R1 than it is in R2, and hence will write down a
mass density function, ρB, that takes on a smaller value at points in R1 than
it does at points in R2.

So, we have two mass density functions, one defined with respect to a
standard way of assigning volumes to regions of space, and another defined
with respect to Bob’s eccentric system of mensuration. These two mass den-
sity functions agree on the amount of mass present in any region of space.
This illustrates the fact that a mass density function represents a mass dis-
tribution only in conjunction with some way of measuring volume. When
Bob uses his mass density function to calculate the amount of mass in a
given region, he will of course use his own measure of volume to do the in-
tegration. Our original mass density function, paired with the standard way
of measuring volumes, and Bob’s mass density function, paired with Bob’s
eccentric system of assigning volumes to regions of space, represent the same
distribution of mass.

This is not a case of underdetermination of theory; we have two modes
of expression, expressing the same physical facts. Recall that it’s the job of
a mass density function to represent a mass distribution. The two density
functions agree on the amount of mass assigned to any region of space; that is,
they agree on what they’re saying about the distribution of mass in the world.
This illustrates a general point. If you want to know when a difference in the
mathematics used to represent some physical state of affairs corresponds to
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a difference in the physical state of affairs represented, and when it doesn’t,
simply staring at the mathematics will be of no use. There is no purely
formal criterion. You have to think about what the mathematics is being
used for.9

How different can two mass density functions representing a given mass
distribution be, subject only to the constraint that they represent the dis-
tribution with respect to some measure on Euclidean space, that is, some
systematic way of assigning volumes to regions of space? A little reflection
shows that there is very little restriction. Suppose we restrict ourselves to
considering only measures that assign zero volume to every region that has
zero volume on a standard, Euclidean measure. Then, if one density func-
tion is zero everywhere within some region of space, another density function
must be zero almost everywhere within that region (that is, nonzero within
that region on at most a set of points of total volume zero). But this is the
only constraint; subject to this restriction, anything goes, and any function
that is integrable with respect to Euclidean measure can represent any given
mass distribution.

One might be inclined to say that the mass density function that we orig-
inally gave, defined with respect to the usual notion of volume on Euclidean
space, is a respectable one, and that Bob’s is somewhat disreputable. There’s
something right about this, of course, in that the volume measure used for
the original density function respects the symmetries of Euclidean space, as-
signing the same volume to sets related by rigid transport. Another way of
saying this is that it is what is measured by measuring rods that we usually
take (perhaps on the basis of considerations concerning the physics of such
rods) to not change length when transported from place to place. Our abil-
ity to say this depends, of course, on the fact that we are operating within
a space that has symmetries worth respecting! But, even if one grants that
one of these mass density functions is respectable and the other disreputable,
it bears repeating there is no sense in which one of these density functions
is correct and the other incorrect, as they don’t disagree on what they say
about the distribution of mass in space.

Exactly the same considerations apply, of course, to other sorts of den-
sity functions, including charge density functions representing charge distri-
butions, and probability density functions representing probability distribu-
tions. These are defined with respect to some way of assigning volumes to

9File this under Things that should go without saying but unfortunately don’t.
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regions of the space on which they take their values —that is, to what math-
ematicians call a measure. And this means that similar considerations apply
to electromagnetic fields. Maxwell’s equations, in differential form, relate
electric and magnetic fields to charge and current densities. Since the charge
and current densities are defined relative to a measure on the background
space, and change upon change of measure used, the same must be true of
electric and magnetic fields. Another way to see this is that the energy den-
sity associated with electromagnetic radiation is proportional to the square
of the field amplitude.

There’s another way in which electric and magnetic fields are dependent
on background spacetime structure. The force on a charged particle exerted
by electromagnetic fields can be partitioned into a component proportional
to the electric field and independent of the velocity of the particle, and a
component that involves a product of the magnetic field and the particle’s
velocity. The electric field is, therefore, proportional to the force on a charged
particle at rest, that is, a particle with velocity equal to zero. Talk of velocity
of a particle only makes sense once a reference frame is chosen, to be used as
a standard of rest. This means (as Einstein was perhaps the first to really
see clearly) that a partition of the electromagnetic field into an electric field
and a magnetic field is relative to a reference frame. It makes no sense to ask
what the value of an electric field is at some place and time, but only what
its value is relative to some reference frame.

Most of this will be familiar to many readers. Why am I rehearsing it?
Because it is commonly said, by proponents of WFR, that quantum wave
functions are like classical fields, and also that they assign numbers to points
in the fundamental space. But a classical field doesn’t yield a number until
we specify some units of measurement (and for that, we need to know what
sort of physical quantity the field is— a mass density? a charge density? an
electric field?) and also a measure on the space on which it is defined. As we
will see, quantum-mechanical wave functions are like classical fields in this
respect—they are defined with respect to a measure on the underlying space.
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4 The plurality of wave function representa-

tions of a quantum state

The considerations of the previous section, that we brought to bear on clas-
sical fields, apply with equal force to quantum-mechanical wave functions
defined on Configuration Space. This becomes obvious when we consider
that, for any wave function ψ, its squared absolute value, |ψ|2, is a density,
standardly interpreted as a probability density function.

As this fact—not an abstruse one, but built into the structure of elemen-
tary quantum mechanics—about the relativity of a quantum wave function
to a background measure on the space on which it is defined is not always
emphasized in the philosophical literature, it is worthwhile to go through
considerations of the sort discussed in the previous section, and apply them
to wave functions.

For simplicity, let’s discuss the case of a pair of distinguishable spinless
particles. Let R1 and R2 be regions of space as above, and let S1 and S2 be
two nonoverlapping cubical regions of space that are congruent to each other.
We imagine an experiment involving particle “detectors” capable of distin-
guishing the two particles, arrayed over all of space.10 Consider a quantum
state that yields probability 1/2 for “detection” of particle 1 in R1 and parti-
cle 2 in S1, and probability 1/2 for “detection” of particle 1 in R2 and particle
2 in S2, with uniform probability within each region. Let Ω1 be the subset
of the Configuration Space of a pair of particles, consisting of pairs of points
(p1, p2) with p1 in R1 and p2 in S1, and let Ω2 be the subset of Configuration
Space consisting of pairs of points with p1 in R2 and p2 in S2. Let ψA be a
wave function that is zero everywhere except in Ω1 and Ω2, with constant
value 1/

√
2V (R1)V (S1) in Ω1, and constant value 1/

√
2V (R2)V (S2) in Ω2.

Because the probabilities for Ω1 and Ω2 are equal, and Ω2 is larger than Ω1,
the wave function is more “spread out” in Ω2—that is, the amplitude of ψA
is smaller in Ω2 than it is in Ω1.

Bob can also represent this quantum state, using his strange length-
changing rulers, to measure distances (and hence volumes of space). Re-
call that, on Bob’s way of measuring things, the region R2 has a volume that

10The scare-quotes around “detectors” are there to flag the fact that we don’t want to
presume that firing of a “detector” indicates a pre-existing location of a particle. Take
talk of “detection” to mean: an appropriate piece of experimental apparatus, of the sort
usually called a particle detector, yields a positive result.
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is one-eighth that of R1. Bob writes down a wave function ψB that has a con-
stant value 1/

√
2VB(R1)VB(S1) in Ω1, and constant value 1/

√
2VB(R2)VB(S2)

in Ω2, where VB is volume measured by Bob’s rulers. Suppose that Bob’s
rulers don’t change length when moved from S1 to S2. Then, since, by Bob’s
measurements, the volume of R2 is smaller than that of R1, his wave function
is larger in Ω2 than it is in Ω1.

The two wave functions ψA and ψB represent the same quantum state.
This is a point that deserves emphasis. Though they differ as to whether the
amplitude is larger in Ω1 or in Ω2, the two wave functions, ψA and ψB, each
in its own way, represent the same quantum state. There is no such thing as
the wave function that represents a given quantum state. A Configuration
Space wave function does not represent a quantum state on its own, but only
in concert with a measure on Configuration Space.

As with the mass densities, one of these wave functions may be regarded
as more respectable than the other, on the grounds that one of them, and not
the other, is defined with respect to a measure that respects the symmetries
of the space on which it takes its values—in this case, the Configuration Space
of a pair of distinguishable particles, which is the set of ordered pairs of points
in three-dimensional Euclidean space, and which has all the symmetries of
three-dimensional Euclidean space.

If the underlying space is Configuration Space—that is, the set of all
ordered N -tuples of points in Euclidean Space—we can point out that the
measure that Bob has used to define his wave function employs a measure
that doesn’t respect the symmetries of our underlying space, and so regard
Bob’s wave function as somewhat disreputable. If, however, the fundamen-
tal space of WFR has no built-in relation to Euclidean 3D space, and no
other metric structure that yields a notion of rigid displacement, this move
is unavailable.

If I have a wave function on Configuration Space defined with respect
to some measure, that I am using to represent some quantum state, what
restrictions are there on wave functions, that I might choose to define with
respect to some other measure, to represent the same quantum state? The
same considerations that we applied to mass densities in the previous section.
Suppose I have a wave function ψ on Configuration Space that I am using,
in concert with some measure on Configuration Space, to represent some
quantum state, and I want to change the amplitude of the wave function.
There is little restriction on this; any function—subject only to the restriction
that it be equal to zero at the same points that ψ is—can be the amplitude of
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a wave function that, in concert with a suitable choice of measure, represents
the same quantum state that ψ does. As with the mass density functions,
there is no question of one being correct and the other incorrect. The job
of a wave function is to represent a quantum state, and these two functions
represent the same quantum state.

Something similar can be said about the phase of the wave function.
There is another source of freedom in choosing a wave function to represent
a given quantum state, which is called gauge freedom. It is usually not
mentioned in quantum mechanics textbooks until the coupling of charged
particles to applied magnetic fields is discussed, but it is there nonetheless.
We leave discussion of this to the next section, where we outline the full
range of wave function representations of quantum states.

Flexibility in choice of measure used, together with gauge freedom, means
that, given any quantum state, if we want to represent that quantum state
via a wave function on Configuration Space, we can use any function we want,
provided that it is equal to zero at all (or almost all) points in any region of
Configuration Space to which the quantum state assigns probability zero.11

There is also a relativity of wave functions to reference frames, somewhat
reminiscent of the frame-dependence of electric and magnetic fields. Let’s
restrict ourselves to ordinary, non-relativistic quantum mechanics, in Galilean
spacetime. Given a scheme for representing quantum states by wave functions
on Configuration Space, one and the same quantum state will be represented
by different functions, with respect to different reference frames. The effect
of transformations from one reference frame to another leaves the amplitude
at any given point the same, but changes the phase in a way that varies from
point to point (see Levy-Leblond 1963; Brown and Holland 1999).

5 The cornucopia of wave function represen-

tations of quantum states

In the previous section we saw that, even if one privileges wave functions on
Configuration Space, there is a multitude of wave function representations
of any quantum state. But Configuration Space wave functions are not the
only wave functions. In this section we discuss the full range of wave function
representations of a given quantum theory and its states. A wave function

11See Appendix for a more detailed exposition of this point.
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representation of a quantum theory is one kind of Hilbert space representa-
tion; the functions (or, rather, equivalence classes of them) are themselves
vectors in a Hilbert space. This is perhaps worth emphasizing, because in
the WFR literature one sometimes gets the impression that Hilbert space
representations are being contrasted with wave function representations. We
will assume that the reader knows what a Hilbert space is. If you don’t,
pause and consult Ismael (2015). We’ll wait.

In quantum mechanics, the notion of a complete set of dynamical variables
(usually called a complete set of observables) plays a key role. Roughly
speaking, a set of variables is a complete set if a specification of definite values
for all of them uniquely determines the quantum state of the system. For
example, for a system of N distinguishable particles without spin, positions
of all the particles form a complete set, as do momenta of all the particles, or
positions of some and momenta of others. If they have spin, then specification
of positions of all particles does not suffice, as it leaves open their spin values.

The notion of compatible observables also plays a key role. Two observ-
ables are compatible if quantum theory places no limitations on how precisely
they may be simultaneously defined by a quantum state (unlike, say, position
and momentum of a particle, or components of spin in different directions).

To construct a wave function representation of a quantum theory, one
selects a complete set of compatible variables A = {A1, A2, . . . , An}. The set
of possible values a variable can take on is known as its spectrum. A joint
specification of values of all of the variables in A consists of selecting, for
each of those variables, a point in its spectrum, and can be represented by
an ordered n-tuplet (a1, a2, . . . , an). The set of all possible n-tuples of this
sort is the joint spectrum of the variables in A. Call this set ΣA. It is the
space on which our wave functions will take values.

We want to construct a Hilbert space out of functions on ΣA.12 So,
the next step is to choose a measure µ on ΣA, that is, a way of assigning

12There’s a wrinkle, which is of minor importance, and so can be relegated to a footnote.
Though this is not always mentioned in introductory quantum-mechanical textbooks, there
is a difference between functions on ΣA and vectors in a Hilbert space. For any two vectors
u, v in a Hilbert space, if the norm of their difference, ‖u− v‖, is zero, then u = v. If we
define a norm in terms of integration with respect to some measure, this norm, applied to
two functions ψ, φ, might be zero, even if the two functions are not identical, because they
might differ only on a set of total measure zero. For this reason it is usually said that the
elements of our Hilbert space are not functions, but equivalence-classes of functions that
differ at most on a set of measure zero.
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a volume, in a generalized sense, to subsets of ΣA. This will be used to
define an inner product on the set of square integrable functions on ΣA. We
have some freedom in choosing this measure, provided only that it not assign
measure zero to any subset of ΣA that is assigned nonzero probability by some
quantum state. This flexibility in choice of measure is not a merely otiose
mathematical curiosity. In proofs that function representations of Hilbert
spaces exist in the first place, one typically chooses a measure defined by an
appropriate vector to construct one representation. Then, if one likes, one
can make a transformation to a representation in terms of some other measure
(see Reed and Simon 1980, §VII.2 for discussion). In addition, sometimes
what one is interested in is how a given state differs from another state, say,
the ground state of the system. One might then define wave functions with
respect to a measure induced by that state.

This fixes a correspondence between the dynamical variables in the set
A and operators on the Hilbert space of functions on ΣA. Corresponding
to a variable Ai is an operator Âi that is just a multiplication operator.
That is, the effect of the operator Âi, corresponding to physical variable Ai,
on a function ψ(a1, a2, . . . , an) is to multiply the function by ai. Similarly,
for any function F (A1, A2, . . . , An) of these variables, the corresponding op-
erator on the space of functions is the one that multiplies a function by
F (a1, a2, . . . , an).

This doesn’t yet fix a wave-function representation of our quantum the-
ory. In the Hamiltonian formulation of classical mechanics, dynamical vari-
ables come in pairs, consisting of a coordinate and its conjugate momentum.
For example, if the coordinate is an ordinary space coordinate, say, the x-
coordinate (relative to some coordinate system) of the position of a particle,
one can take, as momentum conjugate to that coordinate, ordinary linear
momentum in the x-direction, px. If the coordinate is an angle, one can take
angular momentum as conjugate momentum. What can be taken as a coordi-
nate is fairly general (for this reason, one sees talk of generalized coordinates),
and the distinction between coordinates and their conjugate momenta is not
absolute. We could, for example, take as generalized coordinates the com-
ponents, with respect to some system of spatial coordinates, of some body’s
momentum, {px, py, pz}, and {−x,−y,−z} as momenta conjugate to these
generalized coordinates.

Quantum theory imposes relations, called the canonical commutation re-
lations, on operators corresponding to a coordinate and its conjugate momen-
tum. These are as follows. Given generalized coordinate-momentum pairs
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{(qi, pi)}, to be represented by operators {(q̂i, p̂i)}, we require:

� The operators {q̂i} all commute with each other, as do all the operators
{p̂i}. What this means is that, for any i, j,

q̂i q̂j = q̂j q̂i;

p̂i p̂j = p̂j p̂i.

� For distinct i, j, q̂i commutes with p̂j:

q̂i p̂j = p̂j q̂i.

� The operators corresponding to a coordinate and its conjugate momen-
tum satisfy,

q̂ip̂i − p̂iq̂i = i~ Î ,

where Î is the identity operator, and ~ is Planck’s constant, h, divided
by 2π.

Before we have a function-space representation of our quantum theory, we
have to choose operators on the space of functions to represent the momenta
conjugate to our selected variables {A1, A2, . . . , An}, satisfying the canonical
commutation relations.

Though this typically doesn’t get mentioned in the introductory sections
of a quantum mechanics textbook, we have some freedom in doing so. For
concreteness, suppose that the configuration of a system is represented by
coordinates (x1, x2, . . . , x3N) that can each take the full range of real num-
bers as values. We want to construct a configuration-space wave-function
representation of our quantum theory, that is, a representation on which any
pure quantum state can be represented by a function ψ(x1, x2, . . . , x3N). The
operators (x̂1, x̂2, . . . , x̂3N) corresponding to the position degrees of freedom
are multiplication operators:

x̂iψ(x1, x2, . . . , x3N) = xi ψ(x1, x2, . . . , x3N). (1)

It is easy to check that, for any smooth function α(x1, x2, . . . , x3N), the op-
erators (p̂1, p̂1, . . . , p̂3N) defined by

p̂iψ = −i~ ∂ψ
∂xi

+

(
∂α

∂xi

)
ψ (2)
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satisfy the canonical commutation relations. Moreover, different choices of
the function α yield unitarily equivalent representations of our quantum the-
ory.13 In the literature on such things, there is universal agreement that
unitarily equivalent representations of an algebra of observables are physi-
cally equivalent. The transformation from a representation with one choice
of α to a representation with another choice changes the phase of the wave
function, in such a way that, for any quantum state, we can have the phase
of the corresponding wave-function be any smooth function on Configuration
Space that we want it to be.

All of the wave-function representations, for different choices of α, and
hence different choices of operators to represent the momenta {pi}, are per-
fectly cromulent wave-function representations of one and the same quantum
theory. Here again, it should be emphasized: this is not a case of underde-
termination of theory; it’s a matter of choice of mathematical machinery to
represent quantum states of one and the same theory.

So, to sum up: to get a wave function representation in which all the
quantum states of some system at some time t0 are represented by wave
functions, we need:

1. A choice of complete set of variables (“observables”),A = {A1, A2, . . . , An}.
The set ΣA of n-tuples (a1, a2, . . . , an) of points in the spectra of these
observables will be the space on which our wave functions are defined.

2. A measure µ on ΣA, which allows us to construct a Hilbert space whose
elements are equivalence classes of functions that are square-integrable
with respect to µ, using µ to define the inner product for this Hilbert
space. The measure can be any measure that does not assign measure
zero to any region of ΣA that is assigned nonzero probability by some
quantum state.

3. A choice of operators on this space, satisfying standard commutation
relations, to represent observables that are not functions of the variables
in the chosen set A. This will include the variables conjugate to the
chosen variables.

Even if we restrict ourselves to wave functions on Configuration Space,
for any quantum state Ψ:

13See Appendix for definition, if this is not familiar, and for discussion of this claim.
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1. The freedom we have to choose the measure used to define the inner
product for our wave-function representation means that we can choose
the amplitude of the wave function ψ used to represent Ψ to be any
function we want, with one caveat: If there is a subset ∆ of Configura-
tion space that is assigned probability zero by Ψ and is assigned nonzero
probability by some other state, ψ should be zero almost everywhere
on ∆.

2. The freedom we have to choose the operators representing the momenta
means that we have complete freedom to choose the function that is
the phase of the wave function ψ that we use to represent Ψ.

Changing the wave function used to represent a given quantum state
changes also the wave function used to represent any other quantum state.
Once we choose the dynamical variables that our wave functions are to be
functions of (choosing, for example, a Configuration Space wave function
representation), there is something that all representations have to have in
common. For any two quantum states Ψ1 and Ψ2, different wave-function
representations will agree on the ratio of the corresponding wave functions,
that is, on the ratio of ψ1(x) to ψ2(x), for all (or at least almost all) points x
where ψ2(x) is nonzero. This, as you may recall, is similar to the conclusion
we came to in connection with mass densities.

6 Dynamics

The previous section had to do with representations of the state of a system
at a given time. To represent the state of a system as it evolves with time,
we need Hilbert space representations for the state at different times. This
requires more choices to be made, which gives rise to a further plurality of
representations.

Suppose we have some system evolving in time. Suppose, further, that
we regard some experiments performed at different times as, in an impor-
tant sense, the same experiment, measuring the same observable, at different
times. This could be, for example, a measurement of position with respect to
some reference frame. (Note that this depends on choice of reference frame;
what counts as “same position” at different times will vary with reference
frame.)
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Suppose that we have a Hilbert space representation of the state of the
system at some time t0. We want representations at other times, too. There
are two main choices:

� Schrödinger picture. We use the same operator for what we are count-
ing as the “same observable” at different times. As the state changes,
this means using different vectors to represent the state at different
times.

� Heisenberg picture. We use the same state vector to represent the
state at all times, and use different operators to represent the “same
observable” at different times.

There are, of course, other possible choices, but these are the two most
commonly used in nonrelativistic quantum mechanics.

These are two different ways to construct Hilbert space representations
of evolving states of a single quantum theory. As they agree on probabilities
of outcomes of all possible experiments, they count, in standard quantum
mechanics, as physically equivalent.

One sometimes hears it said that, on the Heisenberg picture, the state
is unchanging. This is false. An unchanging state would mean that the
probabilities of outcomes of an experiment are independent of the time at
which the experiment is performed. What is unchanged is the vector used
to represent the state. But we should always remember that a Hilbert state
vector represents a quantum state only in concert with some choice of ways
to associate operators on the Hilbert space with physical observables.

7 The fundamental arena as a differentiable

manifold

A recurring theme in David Albert’s writings on WFR is that three-dimen-
sional geometrical structure is to be thought of emergent from the behaviour
of the wave function. That is, though there is no three-dimensional geomet-
ric structure built into the structure of the fundamental space or into the
fundamental laws governing the behaviour of the wave function, it could be
that there is a coordinatization (x1, y1, z1, . . . , xN , yN , zN) of the fundamen-
tal space such that the behaviour of the wave function can be simply and
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informatively encapsulated by a law of evolution that depends only on the
N(N − 1)/2 pairwise 3D distances,

dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (3)

Here’s another way to put the point. Let Γ be the fundamental space. The
hypothesis is that there are 3N smooth functions from Γ to the real numbers,
which we will call (x1, y1, z1, . . . , xN , yN , zN), which are such that no two
points in Γ have the same values of all these functions, and which are such
that the evolution of the wave function may be simply described in terms of
the functions dij defined in terms of them.

For instance, the history of the wave function might be simply and infor-
matively encapsulated by saying that it enacts a GRW evolution with respect
to these coordinates. That is, the wave function is, at random moments, mul-
tiplied by a function of the form

fi(x1, y1, z1, . . . , xN , yN , zN ; ai, bi, ci) = e−α((xi−a1)2+(yi−bi)2+(zi−ci)2) (4)

To define the probability rule for the “locations” (ai, bi, ci) of these hits, we
first use the coordinatization (x1, y1, z1, . . . , xN , yN , zN) to define a measure
on the fundamental space, via

dµ = dxidyidzi . . . dxNdyNdzN . (5)

Given a wave function ψ, we then define a probability density for the param-
eters (ai, bi, ci),

p(ai, bi, ci) ∝
∫

Γ

|fi(x; ai, bi, ci)ψ(x)|2dµ. (6)

This yields probabilities for the location of the hits, when the wave function
is ψ.

In between hits, the wave function evolves according to a Schrödinger
equation of the form,

i~
∂ψ

∂t
= −

∑
i

~2

2mi

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
ψ

+
∑
i,j

Vij((xi − xj)2 + (yi − yj)2 + (zi − zj)2). (7)
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A dynamical law of this form is invariant under the set of transformations
that leave all of the functions dij invariant—that is, a group of transforma-
tions isomorphic to the rigid transformations of 3D Euclidean space.

Albert calls the distances dij interaction distances. The space of possible
interaction distances has the structure of 3D Euclidean space. As it is the
interaction distances that play a role in the dynamics, it is these distances
that enter into our descriptions of material objects.

what it is to be a table or a chair or a building or a person is—at
the end of the day—to occupy a certain location in the causal map
of the world. The thing to keep in mind is that the production
of geometrical appearance is—at the end of the day—a matter of
dynamics. (Albert, 2015, 127)

He concludes (rightly, in my opinion) that any intrinsic geometrical structure
that the background space might have plays no physically significant role.

the affine and metrical structure of the background, fundamental,
pre-dynamical space does no explanatory work whatsoever in this
story—and that once that structure is dismantled, the very idea
of anything like a ‘Fundamental Space of the World’ disappears
along with it. (2019, 93)

Albert distinguishes between two structures that, in pre-quantum physics,
had been thought to coincide: a fundamental arena of the world, and the
physically significant geometrical space.

Think of the fundamental arena as a set of points that amounts
to something like the totality of opportunities for things, at any
particular time, to be one way or another. Or you could put it
this way: what we have in mind, what we mean to say, when we
refer to some set of points as the fundamental arena of the world,
is that a specification of what is physically going on, at each one
of those points, at any particular time, amounts to a complete
specification of the physical situation of the world at that time.
(2019, 89–90)

The fundamental arena on which the history of the world unfolds is a high-
dimensional manifold, but it has no intrinsic metric or affine structure.
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The only conception of distance that does any dynamical or pre-
dictive or explanatory work in the theory, . . . , is the 3-dimensional
Pythagorean distance (xk−xj)2+(yk−yj)2+(zk−zj)2. And it de-
serves to be emphasized that there is absolutely nothing approx-
imate or defective or misleading or illusory or otherwise second-
class—on a picture like this one—about our everyday experience
of the geometry of the world as Euclidian and 3-dimensional. On
the sort of picture I have been sketching here, the Euclidian 3-
dimensional geometry of our everyday experience—notwithstanding
that it is something emergent—is (again, and indeed, and on the
contrary) the true and unique and authentic and exact and com-
plete geometry of the world. Period. End of story. (94)

I am in wholehearted agreement with Albert’s remarks on geometric struc-
ture, and I myself have argued that structure that plays no dynamical role
just isn’t metric structure (Myrvold, 2019).

So, the fundamental arena is to be thought of as a bare differentiable
manifold, with no intrinsic metrical or affine structure.

But now that we are dealing with a quantum-mechanical, field-
like wave-function, the thought is that a fundamental differential
manifold, with no affine or geometrical structure at all, will suf-
fice. (Albert, 2019, 9, fn. 8)

This poses a dilemma, however. As we have seen, both classical fields
and quantum-mechanical wave functions require something more than topo-
logical and differential structure for their definition: they require a measure
on the space on which they are defined, which assigns volumes to regions
of that space, and different choices of measure yield different functions. Ei-
ther the wave functions of which Albert speaks are defined with respect to
some measure, or else they are importantly unlike quantum-mechanical wave
functions.

One way to go would be to postulate that the fundamental arena is a
differentiable manifold with a fundamental measure defined on it.

But wait. Once we have the coordinatization of which Albert speaks,
which yields interaction distances dij, which are not intrinsic structure of the
fundamental arena but are picked out by the way that things have happened
to unfold, we can use them to define the measure (5). This measure will
have physical significance, because, for one thing, the integral of |ψ|2 with
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respect to this measure will be conserved as long as the wave function is
evolving according to (7), and, for another, it is integrals with respect to
this measure that are used to define probabilities for the GRW jumps. And
everything that Albert says about background metric structure applies to
the alleged fundamental measure. Any background measure used to define
the wave function, if it is not the one defined by (5), will play no role in the
dynamics, and will not be physically meaningful.

So, we have here a question about the nature of the function of which
Albert speaks, and what it is that it assigns to points in the fundamental
arena. If it’s anything like a quantum-mechanical wave function, it is defined
with respect to some measure, and what function it is will vary (pretty much
arbitrarily!) with choice of measure.

A fundamental measure is not in the spirit of Albert’s overall approach.
The best way, I think, to construe Albert’s proposal is to retain the idea that
the fundamental arena has no intrinsic structure other than topological and
differential structure, and to take it that the function that he calls the wave
function is not anything like a classical field or a quantum-mechanical wave
function. It is frequently said, in the WFR literature, that a wave function
assigns a complex number (or, equivalently, two real numbers, an amplitude
and a phase) to a point in the fundamental arena. I think we should take
that literally. On this proposal, there is a matter of physical fact about what
number the function of which Albert speaks assigns at any given time to any
point in the fundamental area, and this really is just a number. Its square
does not represent a probability density or a stuff-density or any kind of
density at all, because the value of a density is defined only relative to some
measure; it’s not a something-or-other per unit volume, but just a number.

This pure-number valued field would be something sui generis, something
very much unlike either quantum wave functions or classical fields. That isn’t,
in itself, an objection. It is not an objection to classical electrodynamics, in
the modern conception of the subject, that electromagnetic fields are unlike
anything in classical mechanics, and it is not an objection to quantum me-
chanics that quantum wave functions are unlike classical fields or anything
else in pre-quantum physics. But it is true that, on this proposal, wave func-
tion realism should be thought of as a thoroughly Constructive project. We
have come a long way from the original suggestion that it is simply the view
that emerges from taking quantum mechanics realistically.
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8 Wave function realisms

At least four questions must be addressed, before even one version of wave
function realism has been formulated, even for the simplest case of the non-
relativistic theory of a finite number of spinless particles.14

1. What is the structure of the fundamental space?

2. What is it that a wave function assigns to points in this space?

3. Do different wave functions always correspond to physically distinct
states of affairs?

4. What dynamical laws are assumed, for wave functions?

One answer to the first question would be to take literally a phrase that
occurs repeatedly in the literature, that the fundamental space has the struc-
ture of a classical Configuration Space. This would mean that we have all
the structure needed to define standard quantum wave functions, which, as
we have seen, rely heavily on background spacetime structure. It would also
mean that the symmetry group of the fundamental space is the same as the
symmetry group of the low-dimensional space; the structure of the low dimen-
sional space is built into the structure of the high-dimensional fundamental
space. This would be a flavour of WFR that is Very Mild Indeed.

A Spicy version of WFR might have it that, as David Albert suggests,
the fundamental space is a bare 3N -dimensional manifold, with no structure
other than its topological and differential structure. As we have seen, this is
insufficient for defining a quantum-mechanical wave function, which requires,
at minimum, a measure on the joint spectrum of the set of observables chosen
to define the function representation of the state.

A phrase that often occurs in the literature on WFR is “the wave func-
tion,” suggesting that, for any way the world could be, there is such a thing as
the wave function that represents the way that things are. In standard quan-
tum mechanics there is no such thing. As others before me have pointed out,
in standard quantum mechanics, there are multiple wave functions that can
be used to represent a single quantum state. One need not privilege Con-
figuration Space wave functions, and in quantum mechanics one routinely
employs other representations, such as a momentum-space representation.

14The reader can probably think of more.
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Even if we decide that Configuration-Space wave functions have a privileged
status, for any quantum state there are multiple wave functions, as multiply-
ing a wave function by a constant yields a new function that represents the
same quantum state. This doesn’t exhaust the range of Configuration Space
wave functions. A Configuration-Space wave function represents a quantum
state only in conjunction with some measure on Configuration Space, and
some choice of operators to represent the conjugate momenta. Any function
can represent a given quantum state, provided that only that it is zero in the
right places.

It is not always clear whether talk of “the wave function” is to be taken
literally. One option for the Constructivist wave function realist, willing to
depart radically from standard quantum mechanics, is something along the
following lines. There is, indeed, at the fundamental level a unique wave
function that represents the physical state of the world, and it assigns a pure
number to points in the fundamental arena, not defined with respect to some
background measure. All the other wave functions in the cornucopia are at
best calculational tools. A physicist is, of course, free to use whichever wave
function suits a given computational task, but at most one of the many wave
functions that, in standard quantum mechanics, can all represent the same
quantum state, represents what reality is like at the fundamental level. This
would, of course, be a heavily Constructivist position. The underlying theory,
though it might recover the predictions of standard quantum mechanics,
would have a structure very different from standard quantum theory.

Another option would be to argue that all of these wave functions can
be treated on a par by the wave function realist. In recent paper, David
Schroeren has argued that versions of WFR that employ different choices of
representation differ only haecceitistically, and concludes

that the most attractive strategy for the wavefunction realist is
to reconceive of their view as a role-based thesis that is not com-
mitted to a haecceitistic fact about which space is inhabited by
the fundamental field, but rather as the thesis that some appro-
priately structured space plays this role. (Schroeren, 2002, 2)

9 Conclusion

Because standard quantum mechanics (both relativistic and non-relativistic)
relies so heavily on background spacetime structure for its formulation, it
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seems that a theory that would underwrite the conclusions about the struc-
ture of spacetime advocated by a Spicy version of WFR would have to depart
fairly radically from standard quantum theory. That is, a Spicy version of
WFR would also have to be Constructivist.

A project of this sort faces several challenges. One would be to motivate
the departure from standard quantum theory. Despite some of the rhetoric
employed by some proponents of WFR, the project cannot be one of ex-
ploring the metaphysical implications of standard quantum theory. Reasons
for pursuing the project would have to include reasons for making the move
from the Configuration Spaces on which standard quantum wave functions
are defined to high-dimensional spaces with considerably less structure.

Carrying out this project would involve specifying what the structure of
the fundamental space is meant to be. Does it come with a built-in measure of
sizes of regions of the space? If so, what is the relation between this measure
and, say, the usual Euclidean measures on configuration spaces, that are
invoked in the definitions of standard quantum wave functions? Another
question is what the wave functions invoked in WFR assign to points in the
fundamental space. And the fundamental space will have to have whatever
structure is needed to formulate the dynamical laws of evolution of the wave
functions of WFR. What structure this is requires an answer to the question:
what are the dynamical laws of the evolution of these wave functions?

Nothing in what has been said is meant to suggest that the difficulties
involved in answering these questions are insurmountable. But they should
be faced by proponents of WFR, and facing them requires acknowledging
that we don’t yet have even one version of wave function realism on the
table. The project must be regarded as very much a work in progress, a
research programme with the aim of constructing a theory that will conform
to the metaphysical constraints imposed by the proponents of WFR.
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11 Appendix: the plurality of wave-function

representations

This appendix will be a bit more technical than the rest of the paper. It’s
here for those who want to understand the details of what I’ve said. It
will be familiar to some readers, but, since much of this is glossed over in
introductory quantum mechanics textbooks, it’s worth rehearsing here.

11.1 Hilbert spaces from function spaces

Let 〈Γ,G, µ〉 be a measure space. That is, Γ is some non-empty set, G is a
σ-algebra of subsets of Γ, which are the ones we’re going to assign measures
to, and µ is a measure on G, which means that it’s a non-negative, countably
additive set function.

Let L2(Γ, µ) be the set of complex-valued functions on Γ that are square-
integrable with respect to µ. This is obviously a vector space over the complex
numbers. To construct a Hilbert space we first define an inner product

(f, g) =

∫
f ∗g dµ, (8)

which defines a norm
‖f‖ =

√
(f, f). (9)

Next, we define an equivalence relation on L2(Γ, µ):

f ∼ g iff ‖f − g‖ = 0. (10)

Equivalently: f ∼ g iff the set of all points on which the two functions differ
has measure zero. We now define L2(Γ, µ) as the set whose elements are
equivalence classes, under the relation ∼, of elements of L2(Γ, µ).

Given the inner product (8) on L2(Γ, µ), it’s straightforward to define an
inner product on L2(Γ, µ): given equivalence classes ψ, φ in L2(Γ, µ), pick
some element f of ψ and some element g of φ, and apply (8). The space
L2(Γ, µ), equipped with this inner product, is a Hilbert space.

Some might find it distasteful that we are dealing with equivalence classes
of functions, rather than functions. If you don’t like equivalence classes, then
say we’re still dealing with functions, but have agreed to read the equals
sign in any equation that relates two elements of our function space, as the
equivalence relation ∼. That works, too.
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11.2 Unitarily equivalent representations

Suppose we have a quantum theory of some physical system. This involves a
mapping from the dynamical variables of the system (e.g. position, momen-
tum, spin, . . . ) to some set of operators A, which are required to satisfy the
canonical commutation relations. A representation of the quantum theory
on a Hilbert space H involves a mapping π from operators in A to operators
on H that respects the algebraic structure of A. Given such a representa-
tion, any vector ψ in H defines a state of A as follows: the expectation value
of the result of an experiment yielding a value for the physical observable
corresponding to the operator A is given by,15

〈A〉ψ = (ψ, π(A)ψ)/(ψ, ψ). (11)

Given a representation π1 of A on a Hilbert space H1, and a unitary mapping
U : H1 → H2 from H1 to another Hilbert space H2, we can define a new
representation π2, which maps operators in A to operators on H2, via,

π2(A) = Uπ1(A)U−1. (12)

It’s easy to see that the state represented by the vector Uψ in H2 is the same
as the state represented by the vector ψ in H1.

When two Hilbert-space representations of a quantum theory are related
by some unitary U as in (12), they are said to be unitarily equivalent.

Now suppose that we are dealing with a system of N spinless particles,
with Configuration Space (E3)N . Pick some coordinatization of Configura-
tion Space, assigning points in (R3)N to points in (E3)N . Suppose we have
a Configuration Space representation of our theory in terms of functions on
(R3)N , using some measure µ to define our inner product. A natural choice
of measure is

dµ = dx1dx2 . . . dx3N , (13)

but nothing rides on this particular choice. Our Hilbert Space is thus H1 =
L2((E3)N , µ). In this representation, a dynamical variable that is a func-
tion F (x1, x2, . . . , x3N) of the coordinates is represented by a operator F̂ on

15Note that any two vectors that are simply multiples of each other define the same
state. We can, therefore, choose the norm of the vector we’re using arbitrarily, and, for
convenience, it’s often handy to work with vectors of unit norm. But this is a matter of
convenience only. (This footnote is for those who have read, in the metaphysics literature,
that it’s a requirement of quantum mechanics that wave functions be normalized, that is,
that the integral of the square of the wave function over all the space on which it’s defined
be equal to one. This is simply not true.)
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L2((E3)N , µ) whose operation on a function ψ is given by,

(F̂ψ)(x1, x2, . . . , x3N) = F (x1, x2, . . . , x3N)ψ(x1, x2, . . . , x3N). (14)

We assume also that we have chosen appropriate operators (p̂1, p̂2, . . . p̂3N)
on L2((E3)N , µ) to represent the momenta conjugate to the coordinates.

Now choose any function g on (E3)N that is measurable with respect to
µ, and is nonzero everywhere. Define a new measure µg by,

dµg = |g|2dµ. (15)

With this measure in hand, we have another Hilbert space H2 consisting of
equivalence classes of functions that are square-integrable with respect to µg.

We can define a unitary mapping Ug from H1 to H2 via,

Ugψ = ψ/g. (16)

(The reader should pause and check that this is, indeed, unitary.)
If an observableA is represented by an operator π1(A) in theH1-representation,

in the H2 representation we are constructing it is represented by the operator

π2(A) = Ug π1(A)U−1
g (17)

This mapping leaves operators representing observables that are functions
of coordinates unchanged: in both representations, these are multiplication
operators, involving the same functions of coordinates. The momenta trans-
form as,

p̂i → Ug p̂i U
−1
g = p̂i −

(
i~
g

∂g

∂xi

)
(18)

We thus have two unitarily equivalent Configuration Space representations of
our quantum theory: π1 on L2(E3)N , µ), and π2 on L2((E3)N , µg). A quantum
state that is represented by a wave function ψ in the first representation is
represented by a function φ = ψ/g in the second representation.

A special case is the familiar class of gauge transformations, which is
obtained when g is a function that has unit magnitude everywhere, that is,
when it is a function of the form,

g = eiα, (19)
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for some smooth real-value function α. This leaves the measure µ unchanged,
and (18) becomes,

p̂i → p̂i + ~
∂α

∂xi
. (20)

So, how different can two Configuration Space wave functions that repre-
sent the same quantum state be? Take a quantum state that is represented
by a function ψ in one representation. Pick any measurable function φ that
you want, provided only that φ is nonzero wherever ψ is. Define g, for points
where ψ (and hence φ) is nonzero, by

g = ψ/φ. (21)

For points (if there are any) at which ψ is zero, fill out the definition of g any
way you like, in such a way that g is nonzero everywhere. Construct, as above,
a wave-function representation on L2((E3)N , µg). In this representation, uni-
tarily equivalent to the first, the function φ represents the quantum state
that is represented by ψ in our original representation. The new function φ
can be any measurable function you like, as long as it’s nonzero everywhere
ψ is. There really is no such thing as the wave function that represents a
quantum state!

As mentioned in the main text, the transformation Ug leaves the ratios
of wave functions corresponding to two distinct states unchanged. That is,
if we consider two wave functions ψ1, ψ2, and let φi = Ugψi be the wave
functions in the new representation,

φ1(x)

φ2(x)
=
ψ1(x)

ψ2(x)
. (22)

On the principle that what is physically significant in a mathematical repre-
sentation of a physical state of affairs is what doesn’t depend on our arbitrary
choices, it is not the absolute value of a Configuration Space wave function
that is physically significant, but the ratios of two Configuration Space wave
functions representing distinct quantum states.
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