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Abstract: At present, there are at least two set theories motivated by quantum ontology: Décio Krause’s quasi-set 1

theory (Q) and Maria Dalla Chiara and Giuliano Toraldo di Francia’s quasi-set theory (QST). Recent work 2

[Jorge-Holik-Krause, 2023] has established certain links between QST and Pawlak’s rough set theory (RST), 3

showing that both are strong candidates for providing a non-deterministic semantics of N matrices that generalizes 4

those based on ZF. In this work, we show that the new atomless quasi-set theory Q− , recently introduced to 5

account for a quantum property ontology [Krause-Jorge, 2024], has strong structural similarities with QST and 6

RST. We study the level of extensionality that each theory presents, its relation to the Leibniz principle and the 7

rigidity property. We believe that developing common features among these three theories can motivate common 8

fields of research. By revealing shared structures, the developments of each theory can have a positive impact on 9

the others. 10

Keywords: quasi-sets; quasets; rough sets; quantum mechanics; identity; Leibniz’s principle; extensionality 11

(List three to ten pertinent keywords specific to the article; yet reasonably common within the subject discipline.) 12

1. Introduction 13

‘Quantum set theories’ exist from a long time. We can mention those of David Finkelstein (1982) and Gaisi 14

Takeuti (1981).1 But these theories, despite being motivated by quantum physics, do not intend to cope with a 15

possible ontology of quantum entities. ‘Set’ theories trying to cope with a metaphysics of quantum entities were 16

presented by Dalla Chiara and Toraldo di Francia in 1985 (see their 1993) and one of the present authors in 1990 17

(see [6]). The first one, termed quaset theory (QST) is a kind of fuzzy set theory,2 where we have not only two 18

alternatives for an element does belong or not to a set; it can be also ‘more or less inside’. The trick, as we shall 19

see, is to make flexible the notion of membership. Krause’s theory, which has been improved since them, deals 20

with entities that can be completely indistinguishable without collapsing in being just one entity as it would be 21

implied if the standard theory of identity (STI) holds. Below we shall see more details. 22

Among others, mathematician and physicist Yuri Manin (1976) suggested that the usual set theory would 23

not be adequate to treat collections of quantum entities; the same was said by Dalla Chiara and Toraldo di Francia 24

(1986, 1993) in their analysis of the logical structure of quantum physics. As Manin stated, 25

I would like to point out that (. . . ) [set theory] is rather an extrapolation of common-place physics, 26

where we can distinguish things, count them, put them in some order, etc. New quantum physics has 27

shown us models of entities with quite different behaviour. Even ’sets’ of photons in a looking-glass 28

box, or of electrons in a nickel piece are much less Cantorian than the ’set’ of grains of sand. (. . . ) 29

We should consider the possibilities of developing a totally new language to speak about infinity [set 30

theory is known as the theory of the infinite]. [8]. 31

1 Takeuti’s quantum set theory was improved in several aspects by M. Ozawa, see [3,4].
2 In the sense that Weidner considers Fuzzy sets [7], which is not using relations defined in the axiomatics of ZF (as is normally done).
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Dalla Chiara and Toraldo di Francia go in the same direction when they contest the reasonableness of 32

applying a ‘standard’ set theory to the quantum realm: 33

Consider the electrons of an atom. We generally know perfectly well how many electrons there are, 34

but cannot tell which is which. It is customary to talk of the ’set’ of the electrons of that atom. But do 35

they really constitute a set? Certainly not in a classical sense. How can we verify that the collections 36

of electrons that are found around the atoms satisfy, say, the Zermelo-Fraenkel axioms, without being 37

able to distinguish one element from another? [5] 38

In the view of these authors, which is also ours, a quantum set theory should be able not only for expressing 39

the fundamental mathematical notions necessary for the theory, but also for expressing an ontology, that is, a 40

reasonable metaphysics about quantum entities. It is in this direction that we look at quantum sets. 41

The main goal of our work is to establish structural relations between three non-standard ‘set’ theories: the 42

quaset theory QST [10,11], the quasi-set theoryQ [6,12] and the rough set theory RST of Zdzisław Pawlak [13,14]. 43

One of the main trait of both QST and Q is that both, to a greater or lesser degree, depart from extensionality. 44

That is, they are theories without an extensionality axiom like ZF’s or with a weakened extensionality axiom. We 45

will see that the way each theory departs from extensionality allows us to establish certain patterns that link them. 46

On the one hand, Q (quasi-sets) and QST (quasets) theories were motivated by the ontology of quantum 47

entities; as said before, Q intends to deal with collections of entities that may be genuinely indiscernible without 48

being identical, and QST, to account for indeterminate properties of quantum entities. On the other hand, rough 49

set theory can be considered a new mathematical approach to vagueness. At the basis of RST is the assumption 50

that with every object in the universe of discourse we associate certain information (knowledge). Within the 51

framework of this theory, entities characterized by the same information are indiscernible (similar) in view of the 52

information available about them. 53

Our aim is to make explicit some existing links between the formalisms proposed to deal with concepts 54

apparently as different as non-identity entities, indefinite properties and vague concepts. Establishing relations 55

between these set theories may suggest new applications, both logical-mathematical and technological, as well as 56

motivating new developments of each one, suggested by the similarity with the others. After the developments 57

and the links being established, we can turn to the application to quantum theory, but we shall not do that in this 58

paper. 59

2. The QST theory and its extensions 60

First, we will present an adapted version of the original work of Maria Luisa Dalla Chiara (1938-) and 61

Giuliano Toraldo di Francia (1916-2011) given in 1985 (see [5]). We consider the theory presented in [15], 62

which is already an extension of QST but add some further considerations, adapted to the discussions that follow. 63

Anyway, to honor the original contribution, and since its spirit is not modified, we continue to report to the 64

resulting theory as ‘QST’. 65

Next, we will present two possible extensions, originally proposed in [16] within the framework of a 66

non-deterministic semantics of Nmatrices. The latter will allow us to better explain the similarities we wish to 67

highlight. 68

As said before, QST is inspired by the properties of quantum systems. In particular, by the fact that their 69

collections of indistinguishable quanta do not seem to form sets as in usual set theories, where the elements are 70

always distinguishable from each other. The intention of the authors was to capture this particularity of quantum 71

collections through an axiomatic system and use the idea to characterize a formal semantics for certain quantum 72

languages, something that, for them, should not be done in usual extensional set theories of individuals.3 But, 73

instead of pushing the discussion to the analysis of an ontology of indistinguishable but not identical things, they 74

conduced their approach to indeterminacy, to the consideration of situations where extensional objects may do 75

3 Roughly speaking, an individual is an item that can be re-identified as such in different contexts; for instance, despite the tiny differences
due to age and other things, we can identify Donald Trump as being that guy in different situation. This cannot be said of quantum
entities (even traces in a bubble chamber need to be taken with a grain of salt since what we observe are the drops of water and not the
particles themselves).
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not exist, so they need to be dealt only via intensions, that is, the things being viewed as “intensional like entities” 76

[15]. We preserve most of the original theory here but below we enlarge it with necessary axioms and notions to 77

discuss our issues. 78

At the metatheoretical level, QST theory is grounded on a first-order logical language with equality (the 79

use of equality makes a huge difference to Q). Its non-logical language includes the following specific primitive 80

concepts:4 81

1. a monadic predicate: urelement (or ur-object) (O). 82

2. three binary predicates: the positive membership relation (∈), the negative membership relation (<), and 83

the inclusion relation (⊆). 84

When we write ‘x ∈ y’, we mean that x certainly belongs to y , and if x < y, than x certainly does not 85

belong to y. Thus, the negation ¬(x ∈ y) says that it is false that x certainly belongs to y, which (according 86

to the axioms, for example by Axiom 2.2) is not equivalent to saying that x certainly does not belong to y. 87

3. a unary functional symbol: the quasicardinal (qcard). 88

4. a binary functional symbol: the quaset-theoretical intersection (⊓). 89

Definition 2.1. A quaset is something that is not an ur-object:

Q(x) := ¬O(x).

Axiom 2.1. Everything that has elements is a quaset:

∀x∀y (x ∈ y→ Q(y)).

Axiom 2.2. If we know for certain that something does not belong to a quaset, then it is not the case that it 90

belongs with certainty to the given quaset. However, the converse is not true in general: 91

∀x∀y (x < y→ ¬(x ∈ y)).

The above axiom has the consequence that there exist instances of the principle ((x ∈ y) ∨ (x < y)) that are 92

refutable, and therefore the possibility of indeterminate membership relations exists. On the other hand, as its 93

authors suggest [5], the expression knowing for certain can be interpreted as belonging for certain if one does 94

not want to suggest an epistemic reading. 95

For every formula ϕ of ZF (or ZFC), let ϕz be its corresponding formula in QST relativized to sets (quasets 96

that coincide with its qextension). 97

Axiom 2.3. If ϕ is any instance of an axiom of ZF, then ϕz is an axiom of QST. 98

This ensures that QST can be considered a conservative extension of ZF. 99

Axiom 2.4. The inclusion relation between quasets (⊆) is a partial order (reflexive, antisymmetric and transitive). 100

The symbol ‘⊆’ has an intensional meaning, but not necessarily an extensional one. ‘x ⊆ y’ can be read as 101

“the concept x implies the concept y” [5]. 102

Axiom 2.5. The inclusion of quasets implies ‘extensional inclusion’, that is, the inclusion of ZF, but not the other
way around.

∀x∀y(x ⊆ y→ ∀z ((z ∈ x→ z ∈ y) ∧ (z < y→ z < x)).

Definition 2.2 (Weak or indeterminate membership). Let x be a quaset and y be any object. We say that y weakly 103

belongs to x, and we denote it by y ∈− x, if it is neither the case that x belongs with certainty to y nor it is the 104

case that x does not belong with certainty to y: 105

4 Some of the terminology presented does not correspond to the original article by Dalla Chiara and Toraldo di Francia, but was presented
in [15].
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y ∈− x B ¬(y ∈ x) ∧¬(y < x). (1)

From now on, when we say that something x is an element of a quaset y we mean x ∈ y (alternatively, ‘x 106

strongly belongs to y), but not that x ∈− y. In this last case, we say that x weakly belongs to y. 107

Intuitively, if y is something that is not completely inside x, then neither there is absolute certainty about it, 108

nor is it completely outside it. For instance, suppose you are looking to a table in front of you and that there is 109

also a chair touching it. Surely there are electrons in both mobiles, but there are also electrons which cannot be 110

said to belong neither to the chair nor to the table; they are in the ‘intermediary’ region. It is important to realize 111

that in most cases the question of ‘determining’ to which mobile an electron belongs is not an epistemological 112

fault, but a core result from quantum physics. 113

Theorem 2.1. The following holds in QST: 114

∀x∀Qy((x ∈ y) ∨ (x ∈− y) ∨ (x < y)). (2)

Proof: Immediate from the above definitions. 115

The above axioms motivate the following definition, which introduces the notion of the qextension of a 116

quaset x, denoted by qext(x) by means of a binary predicate qext(x, y) meaning ‘the ‘quaset x is the extension of 117

the quaset y’.5 Informally speaking, it is the unique quaset that contains with certainty all the elements of x and 118

with certainty does not contain all other entities, that is, 119

Definition 2.3 (qextension or quasi-extension). Let x and y be quasets. Then,

qext(y, x) B ∀z(z ∈ y↔ z ∈ x) ∧ ∀z(z < y↔ ¬(z ∈ x)).

Alternatively, we will write y = qext(x), that is, qext(x) stands for the quasi-extension of x. With this 120

definition, we can recover Dalla Chiara and Toraldo di Francia’s concept of the extension of a quaset by means of 121

the following theorem, whose proof is immediate. 122

Theorem 2.2 (Dalla Chiara and di Francia’s definition of extension). The extension of a quaset x is the unique 123

quaset that certainly contains all the certain elements of x and certainly does not contain all the other elements: 124

∀Qx∀Qy(y = qext(x)↔ ∀z(z ∈ x↔ z ∈ y) ∧ ∀z(z < y↔ ¬(z ∈ x))). (3)

Proof: Immediate. The unicity follows from the fact stated below that the extension of a quaset is a set, hence 125

obeying the ZF axioms. 126

We can define a monadic predicate Z to represent ‘classical sets’(or simply ‘sets’) within QST. QST’s 127

internal copy of ZF is given by all quasets whose qextension coincides with the quaset itself. That is, 128

Definition 2.4. Z(x) := x = qext(x). 129

Theorem 2.3. The quasi-extension of a quaset x is a set. 130

Proof: Recall that something is a set iff it coincides with its own quasi-extension. Now it is trivial to see that 131

using Axiom 2.2, any quaset x satisfy definition 2.3. 132

Theorem 2.4. Every quaset has a unique quasi-extension. 133

Proof: Since the quasi-extension of a quaset is a set and since sets obey the axioms of ZF, they are unique by 134

extensionality. 135

The expressions ∀QxP(x) and ∃QxR(x) must be interpreted as ∀x(Q(x) → P(x)) and ∃x(Q(x) ∧ R(x)) 136

respectively. 137

5 The introduction of this predicate satisfy the conditions mentioned by Suppes in [17, p.156] and is in conformity with Definition 1 of [5].
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Axiom 2.6. There exists a quaset that necessarily does not contain any element:

∃Qy∀x(x < y).

Theorem 2.5. The empty quaset is a set and it is unique. 138

Proof: Trivial. 139

If ‘∩’ stands for the usual relation of intersection between sets, then the weak conjunction (or quaset- 140

theoretical intersection) between quasets is a primitive concept denoted by ⊓ and we have that 141

Axiom 2.7. The weak conjunction coincides with the usual intersection for the particular case of sets:

∀Qx∀Qy((x ⊓ y ⊆ x ∧ x ⊓ y ⊆ y) ∧ (Z(x) ∧ Z(y)→ x ⊓ y = x ∩ y)).

This means that a separation procedure can be applied. Note that the axioms do not require the existence of 142

proper qua-classes (other than sets, similar to ‘proper classes’ in standard set theory). 143

We will not explain all the axioms that the original version of QST incorporates for quasi-cardinals, since 144

we will not need them for our comparison with the other axiomatic systems. The interested reader can consult 145

them in [10,16]. We will only present one of them, which generalizes the original axiom of the existence of 146

cardinals for quasets. In it, it is not required that every quaset admit a qcardinal. That is, we can have quasets 147

associated with collections without a determined number of elements, as happens in Quantum Field Theory with 148

some collections of photons. 149

Axiom 2.8 (qcardinal).

∀Qx∃Zy(y = qcard(x)) −→ ∃!y(card(y) ∧ y = qcard(x) ∧ (Z(x) −→ y = card(x)))

If the quaset x has a quasicardinal, then its (only) quasicardinal is a cardinal (defined in the classical part of 150

the theory) and coincides with the cardinal of x stricto sensu if x is a set. As recalled above, this axiom does not 151

guarantee that every quaset has a well-defined quasicardinal. 152

For what comes next, it is important to clarify the following: in the theories associated with quantum 153

ontology that we will discuss below (QST,Q, Q−) we cannot derive the propositions associated with the cardinals 154

from the rest of their axioms, as is the case in ZF, where cardinals can be introduced from the axiomatics. For this 155

reason, they must be added as extra axioms. This is because, at least in Q and Q−, the cardinals should not be 156

defined as limit ordinals when the collections admit genuinely indiscernible entities. There are qsets that cannot 157

be related bijectively to any ordinal. 158

A further explanation is this. Usually (for instance, in the von Neumann’s stance), cardinals are particular 159

ordinals. Hence, in attributing a cardinal to a set (in the presence of the Axiom of Choice), one is associating 160

to it also an ordinal, and this entails an ordering of its elements, hence a distinction among them. The idea in 161

both Q and Q− is to have a cardinal, termed a quasi-cardinal (q-cardinal for short) which is not an ordinal. So, a 162

collection of entities simulating a cluster of elementary quantum entities can have a cardinal but its elements 163

continue to be not distinguished from one each other. 164

3. Further extending QST 165

We have extended the original QST already with new notions and postulates. Next we increase the theory 166

with the introduction of other important notions. 167

The formalism of QST was not further developed by its authors or by other researchers from 1998 (when 168

[15] was published) until 2023 (with [16]).6 This is in sharp contrast to the case of Q, where its developments 169

have continued steadily to date (see for instance [19]). Dalla Chiara and Toraldo di Francia intended to use their 170

system as the basis for a semantics of certain languages dealing with quantum entities (see section 4); with a 171

similar objective, the topic has been taken up again in 2023, but this time within the framework of Nmatrices 172

6 We recall that [18] is already an extension of the original theory of [5].
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semantics [16]. This required expanding the original QST to the following ends: to guarantee the existence of 173

non-classical quasets, so extending the expressive power of defining q-functions (non-deterministic valuations), 174

allowing the existence of quasets without a well-defined cardinality (as happens in Q, see [20]), so as to formally 175

characterize the complement of a quaset, etc. We will therefore present the minimal issues concerning two 176

possible extensions. To the interested reader, we recommend [16, s.3.1-3.5]. 177

The following axiom introduces a new binary connective for the union of quasets (⊔), which belongs to the 178

extended non-logical language of QST, where ‘∪’ is the usual union of sets. This axiom can be considered the 179

dual of the weak conjunction axiom of quasets (2.7). 180

Axiom 3.1 (Union of quasets).

∀x∀y((x ⊆ x ⊔ y∧ y ⊆ x ⊔ y) ∧ (Z(x) ∧ Z(y)→ x ⊔ y = x ∪ y)).

The following three axioms will be necessary to characterize quasets and establish relations with rough 181

sets and quasi-sets. But before to state them we need to introduce the notion of the closure of a quaset. This is 182

similar to the notion of the cloud of a quasi-set of Q (7.3). Intuitively, the closure of a quaset x is the quaset of 183

the elements which could be elements of x or which are potential elements of x, that is, the elements which it is 184

false that they certainly do not belong to x. 185

Axiom 3.2 (Schema of Separation). Given a quaset x that is a subquaset of some quaset w and a formula F(z), 186

where z is free, there exists a subquaset y of x whose elements that certainly do not belong to it also certainly do 187

not belong to x (but belong to w) and satisfy the property; in symbols, 188

∀Qw∀Qx(x ⊆ w→ ∃Qy(y ⊆ w∧ ∀z(z ∈ y↔ z ∈ w∧ F(z)))).

Definition 3.1 (Closure of quasets). Let x and w be as in the formulation of the Schema of Separation. Taking 189

F(z) as ¬(z < x), the schema grants the existence of a quaset y whose elements are those elements of w to which 190

it is false to say that they certainly do not belong to x, that is, those elements of w that could be elements of x, or 191

that weakly belong to it. We denote x such a quaset and call it the clausure of x. 192

This axiom has among its consequences that if x ⊆ w, then x ⊆ w. In the weakest extension of QST (QST+) 193

we do not want this consequence; therefore, we will not have this axiom, and the closure of a quaset will be 194

guaranteed by an axiom.7 195

Axiom 3.3 (Closure). Every quaset has a unique closure. 196

∀Qx∃Q!y∀z((z < y↔ z < x) ∧ (z ∈ y↔ ¬(z < x))).

As can be seen, this axiom is a dual of the axiom that allowed us to define the qextension of a quaset (2.3). 197

Several axiom, including those we will introduce below, do not determine the extension of a quaset, but its 198

closure. Anyway, they enable that the extension can vary between the empty quaset and its closure. Thus, it results 199

defined a family of quasets whose elements vary their qextension, but with a fixed closure. These quasets can be 200

discerned by the elements that weakly belong to them and are generated by the axiom of anti-standardization. 201

When the qextensions need to be restricted, some additional restrictions need to be introduced, such as the 202

condition imposed to the qextension of the cartesian product. 203

Some remarks are important at this point to make things clear. First is that the inclusion relation entails 204

(as it is easy to prove) that x ⊆ x→ qext(x) ⊆ x. But by the definition, it results that qext(x) = x. The remark 205

is that qext(x) and x are not the same notion, but dual of one another: every element which certainly weakly 206

belongs to x does not necessarily belongs to qext(x), although surely it certainly belongs to x. Notwithstanding, 207

the converse, namely, x ⊆ qext(x) holds only for sets. Summing up, we have qext(x) ⊆ x for quasets and 208

qext(x) = x for sets. 209

7 Another option is to weaken the Schema of Separation a little; for example, by changing y ⊆ w to y ⊆ w in the consequent of the
conditional.
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It is important to note that both the Schema of Separation and the concept of closure do not belong to the 210

original formulation of QST.8 In the original axiomatics of QST, the separation process could only be performed 211

through the weak conjunction of quasets 2.7. We incorporate them in order to generate some sets that will be of 212

interest in a possible nondeterministic semantics of Nmatrices based on QST or also on RST or Q−. 213

Theorem 3.1. Every quaset x is a subquaset of its closure. 214

Proof: By Axiom 2.2, z < x→ ¬(z ∈ x). Hence z ∈ x→ ¬(z < x), that is, F(z). 215

An immediate consequence of the definition is the following theorem, which is important for the sense of 216

‘unique’ to be introduced below. 217

Theorem 3.2. The closure of a quaset is a set. 218

Proof: By the above definitions, we conclude that for every z, either z ∈ x or z < x. 219

Axiom 3.4 (Partial standardization).

∀Qx∀z∃Qy(z ∈− x −→ (z ∈ y) ∧ (x ⊆ y) ∧ qext(y) = qext(x) ∪ {z} ∧ x = y)).

We can understand partial standardization as a process by which an element that has indeterminate mem- 220

bership in the quaset x comes to belong with certainty to the quaset y, which is a partial standardization of x. 221

This process can be repeated sequentially for each element that has indeterminate membership in the quaset x, 222

culminating when the closure of the quaset is reached. In a way, this axiom allows us to generate all the quasets 223

that are ‘between’ qext(x) and x. Therefore, having this axiom guarantees the existence of the closure of every 224

quaset without the need for the axiom 3.3. The reason we require for the closure axiom is because there will 225

be extensions of QST (see below), such as QS T+, that do not have the standardization or anti-standardization 226

axioms. These axioms are incorporated into stronger extensions, such as QS T
+

. 227

The reverse process, in which elements that belong with certainty to x become indeterminately part of 228

the new quaset y, is called partial anti-standardization. This axiom is the first to guarantee the existence of 229

non-classical quasets, which in the axiomatics of QST are not required by its authors. The original axiomatics 230

is compatible with the absolute absence of non-classical quasets. Given a classical set x, the following axiom 231

guarantees the existence of a quaset y whose qextension and closure do not coincide. 232

Axiom 3.5 (Partial anti-standardization).

∀Qx∀z∃Qw(z ∈ x −→ z ∈− w∧w ⊆ x ∧ qext(x) = qext(w) ∪ {z} ∧ x = w).

Axiom 3.6 (General anti-standardization).

∀Qx∀Qy∃Qγ∀z(y ⊆ x ∧ z ∈ y −→ z ∈− γ ∧ γ ⊆ x ∧ qext(x) = qext(γ) ∪ qext(y) ∧ x = γ ).

This procedure allows all elements of any sub-quaset y ⊆ x to go from belonging with certainty to belonging 233

weakly. From this last axiom, the one of partial anti-standardization can be deduced by taking y = {z}. 234

Definition 3.2. The above axiom allows us to define a quaset (γ), which we will call anti-standardization of x 235

and we will denote it by wx
y . Where it is made explicit that the subquaset y was anti-standardized to the quaset x. 236

The general anti-standardization axiom proves the existence of non-empty quasets with empty qextension.
In the notation presented above, these quasets are denoted as wx

x. The anti-standardization process preserves
the closure of the quaset, changing its qextension between the sets x and ∅. Therefore, we are guaranteed the
existence of quasets whose elements all have weak membership. For every set x in ZF (of the isomorphic copy
containing QST), there exists a unique quaset wx

x, such that

qext(x) = x = wx
x ∧ qext(wx

x) = ∅.

8 The Schema of Separation was also not required this axiom in the formulations presented in [16].
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It can be seen that, by definition, it is true that (for every quaset x) wx
x = wx

qext(x)
. 237

The next axiom is for the power quaset. To physically justify the existence of subquasets of a given quaset. 238

In [5], the authors express: 239

It is intriguing to note that there are even ‘subsets’ inside the ‘set’, each one with its own cardinality. 240

For example, you can say that inside a sodium atom there are two electrons in the shell Is, two electrons 241

in 2s, six electrons in 2p, one electron in 3s. Thus there is a sort of isolation procedure. You can state 242

a property (e.g. having the [azimuthal] quantum number ℓ = 1) and you can tell how many electrons 243

form the ‘subset’ having that property (six), even if you cannot distinguish those electrons from all the 244

others!9
245

Axiom 3.7 (Power quaset).

∀Qx∃Qy∀z((¬(z < y)←→ (z ⊆ x)) ∧ (z ⊆ qext(x) −→ z ∈ y)).

We will denote the power quaset by Pq(x). When x is equal to its qextension (x = qext(x)), this axiom 246

prohibits the power quaset from admitting elements with indeterminate membership. 247

If x = qext(x) and y = Pq(x), then (using the previous axiom)

z ∈− y ≡ ¬(z ∈ y) ∧¬(z < y)⇒ ¬(z < y)⇒ z ⊆ x⇒ z ⊆ qext(x)⇒ z ∈ y.

That is, there cannot exist elements with indeterminate membership in the quaset power of a classical set. 248

So far, the axiom is in agreement with what is classically expected. But let us now consider the following
case: let x, w be two quasets such that they do not coincide with their respective qextensions, but are so that
qext(x) = w. If we want the quaset power for the quaset x, by the axiom 3.7, it should be satisfied:

∀z((¬(z < y)←→ (z ⊆ x)) ∧ (z ⊆ w −→ z ∈ y)).

Since (4) implies that w ⊆ w, it follows that w ∈ y. That is, the candidate power quaset of x includes 249

w (which is a non-classical quaset) within its qextension (since w ∈ y ←→ w ∈ qext(y)). This departs from 250

the classical case where (qext(y) , P(qext(x))). Notice that this axiom does not determine the power quaset 251

univocally, as we had already anticipated. 252

The following axiom can be considered another alternative for the power quaset. 253

Axiom 3.8. ∀Qx∃Qy
(
∀z(¬(z < y)←→ (z ⊆ x)) ∧ (Z(x) −→ y = P(x))

)
. 254

Where P denotes the power set in the sense of ZF. If x is not a classical set, then the axiom 3.8 does not 255

determine the qextension of the power set uniquely. This is because it is not specified which subquasets of x 256

belong with certainty to y. This means that, in the most general case, the power quaset is not uniquely defined. 257

As far as our semantic goals are concerned, this will not cause any problems. Something similar happens in Q, 258

where it is also not provable that this set is unique (see [21]). 259

To clarify this a little bit more, and to see what kind of indefiniteness the power quaset admits, let us analyze 260

further the previous axiom. Since the first term of the conjunction is equivalent to z < y←→ ¬(z ⊆ x), for each 261

quaset x, it is absolutely defined which entities do not surely belong to the power quaset y. The non-uniqueness 262

in the power quaset is due to the entities that have indeterminate membership in y, for which qext(y) is not 263

univocally defined. That is, if y and y′ are two quasets that satisfy the conditions of the previous axiom (power 264

quasets of x), then they only differ in that some elements that have indeterminate membership in one of them 265

belong with certainty to the other (or vice versa). The extreme cases would be when all of them belong with 266

certainty, for example, to y, and indeterminately to y′. 267

9 The quantum numbers of the electrons in the 2p shell are n = 2, ℓ = 1, mℓ ∈ {−1, 0, 1} and ms ∈ {1/2. − 1/2}. The quantum numbers of
all other electrons involve ℓ = 0. So, in saying that the property is ‘having quantum number ℓ = 1’, they authors are referring to the
electrons in that shell.
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With what was said above, given a quaset x, the following is fulfilled: 268

qext(x) ⊆ x ⊆ x. (4)

It can be easily seen that if Aq is a quaset identical to its qextension, then

qext(x) = x = x.

The (4) equation has a very particular consequence. It states that classical quasets (sets) can have non-classical 269

quasets as subqsets. This is a direct consequence of the inclusion of quasets and the definition of closure, which is 270

always a classical set. This peculiarity of quasets has a direct impact on the different possibilities when defining 271

the power quaset. It also reflects an important difference of QST with respect to Q, where classical qsets cannot 272

include non-classical qsets. 273

For each quaset X, we can define a new quaset, AE(X), consisting of all the general anti-standardizations, 274

wx
y . For this, we introduce the following axiom. 275

Axiom 3.9. ∃QΓ(∀Qγ(γ ∈ Γ ↔ γ = wx
y) ∧ Γ = qext(Γ)) 276

Where wx
y satisfies the axiom 3.2. 277

Definition 3.3 (AE(x)). We call the set Γ of the previous axiom the Anti-standardization set of x and denote it 278

by AE(x). 279

If y = ∅ ⊆ x, then wx
∅
= x, which means that anti-standardization is trivial. If y = x ⊆ x, then the 280

anti-standardization is total. It follows from the above that x ∈ AE(x). In the same way as we did with 281

anti-standardization, we can generalize the axiom of partial standardization. 282

To characterize the complement of quasets, we present the following axiom: 283

Definition 3.4 (complementary quasets). Let A and x be quasets such that x ⊆ A. The complement of x relative 284

to Aq, denoted by xc
A (we will dispense with the subscript A when the context is clear), is characterized by: 285

x ⊔ xc = A ∧ x ⊓ xc = ∅ ∧ (xc)c = x (5)

(qext(x))c = qext(xc) ⊔ {y ∈ A : y ∈− x}. (6)

Where the primitives ⊓ and ⊔ are those introduced in 2.7 and 3.1. 286

Axiom 3.10 (Unordered pair quaset). ∀x∀y∃Q z (¬(x < z) ∧¬(y < z)) 287

288

This axiom says that given two entities x and y, whether they are quasets or urelements, there exists a quaset 289

z for which each either belongs with certainty to the quaset z or has indeterminate membership. It does not require 290

that such a quaset be unique, nor does it explain anything about its qextension. If both x and y belonged with 291

certainty to the quaset, one would expect their quasi-cardinality to be greater than or equal to 2. But both could 292

have indeterminate membership in z (along with other elements). We will denote by {x, y}A a quaset that satisfies 293

the previous axiom and whose qextension has at most x, y. This does not imply x ∈ {x, y}A, nor y ∈ {x, y}A, since 294

both could have indeterminate membership. But it does imply that if x′ , x and x′ , y, then ¬(x′ ∈ {x, y}A). The 295

subscript A is due to the fact that we are going to relativize the unordered pair to a classical set A, such that both 296

the elements that belong with certainty to the pair and those that belong indeterminately to it are elements of A 297

(if A were not classical, we could work with its closure). Therefore, we will have {x, y}A ⊆ A and qext(A) = A. 298

We do this in order to have a little more control over the elements that can belong indeterminately. On the other 299

hand, the set A can be directly related to what in section 3 of [22] (and in our next section) is called the cloud of 300

the qset. This concept of Q can be key in establishing an important link between QST and Q. In view of what 301

was mentioned above about the closure of a quaset, we can affirm: 302

qext({x, y}A) ⊆ {x, y}A ⊆ {x, y}A ⊆ A (7)
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Definition 3.5 (Orderer pair). .
(x, y)A := {{x}A, {x, y}A}P(P(A)).

Where the power quaset can be taken as any of those given in 3.7 or 3.8. 303

The definitions of Cartesian product, q-relation and q-function can be found in [16]. 304

3.1. Possible QST extensions 305

This section presents some possible extensions of QST that will be useful for our purposes. We will define 306

two new quaset theories, QS T+ and QS T
+

, as alternative extensions of the original QST axiomatics. One goal 307

is to use these formalisms in the metalanguage of nondeterministic Nmatrices semantics. 308

QST+
309

The language of QS T+ is the original language of QST expanded with a primitive union of quasets symbol 310

(⊔). All the axioms of QST are part of the axioms of QS T+, but this one has extra axioms such as the axioms of 311

generalized cardinal 2.8, union of quasets (3.1), unordered pair (3.10), power quaset (3.7 or 3.8), closure (3.1). 312

Furthermore, conditions such as the one relative to the complement (6) and the one we include below, which 313

determines the qextension of the Cartesian product (8), are considered to be part of the theory. 314

qext(Aq × Bq) = qext(Aq) × qext(Bq) (8)

The consequences of having imposed this condition can be seen in [16] (section 3.4). 315

Therefore, we have that: 316

QS T+ Language = QS T Language + {⊔}
317

QS T+ Axioms = QST Axioms + {Generalized Card (2.8), Union (9), Pairing (3.10),

Power quaset ((3.7) o (3.8)), Closure (3.3)}

QST+ does not have the Schema of Separation (3.2). Instead, it has the axioms (2.7) and (3.3). 318

The additional axioms (3.4) (partial standardization) and (3.5) (partial anti-standardization) allow access to 319

more quasets, which could be useful at some point for purposes beyond semantics. For this reason, we’ll include 320

them as an alternative in what we’ll call QS T
+

. 321

QST
+

322

QS T
+

Language = QS T+ Language

QS T
+

Axioms = QS T+ Axioms + {Schema of Separation (3.2), Partial standardization (3.4),

Partial anti-standardization (3.5)}

If necessary, the general versions of the last two axioms can be used. Versions where the Schema of 323

Separation is weakened can also be considered. 324

4. A glimpse on the application of QST to quantum semantics 325

The main purpose of the quantum set theories mentioned in this paper (QST, Q, Q−) is the discussion of 326

possible semantics for some quantum languages.The possibility of the application of QST to these problems was 327

explored in [10,23]. Due to problems of space, we present only a short resume of the main ideas to show how 328

QST and its extensions. We shall refer to a system with just two indistinguishable components, but the results 329

can be extended to N with no difficulty. 330

Suppose we have a quantum system involving two ‘identical’ systems whose wave functions are ψ1(x) 331

and ψ2(x). Calling the systems p1 and p2, it is clear that {p1, p2} cannot be viewed as a set in the standard 332
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sense since, by hypothesis, the systems are indiscernible. The whole system is represented by the wave function 333

(representing a pure state of the system) ψ = cψ1 + dψ2 in the product space H = H1 ⊗H2 of the Hilbert 334

spaces of the compound systems (which as usual we call ‘particles’), being c and d complex numbers such that 335

c2 + d2 = 1. The Schrödinger equation governs the time evolution of ψ. Let us call L a language for speaking 336

of all of this. The language would encompass monadic predicates Qi to represent the meaningful properties 337

of the single systems. The first problem is that L cannot incorporate individual constants a1 and a2 to name 338

the particles since they are indiscernible and, as said in [5], “microphysics is the land of anonymity”. Proper 339

names do not exist in this realm, and the labels we attach to the particles do not act as rigid designators, which 340

means that they would name the same particle in different contexts (or possible worlds). Even if we mockingly 341

name the particles, say by a1 and a2, these ‘names’ do not identify them as individuals but are just linguistic 342

devices we use to refer to the fact that we have two particles. In Q and Q−, this is expressed by positing that we 343

have a quasi-set whose elements are indistinguishable quantum systems of a kind and that the quasi-cardinality 344

of the whole collection is two; there is no identification. This reflects the idea that when we have a molecule 345

such as H2SO4, we have only the kinds of things being involved (hydrogen, oxygen and sulfur atoms) and their 346

quantities, without particularisation of the atoms (something emphasised by John Dalton in 1808). 347

In QST, identity holds for all entities and hence we would be able, at least in principle, of distinguishing 348

(and name) among the atoms of the same kind. But, even so, we do not wish to compromise the theory with 349

particular (proper) names. As recalled by Dalla Chiara, the problem is not that “whether or not we are allowed to 350

introduce names (. . . ) but rather whether or not we are able to determine a reasonable denotation-function for 351

such names." [23]. To be faithful to quantum physics, we should not be able to think of such names. 352

In this sense, the extension of a predicate Qi should not determine a well-defined subset Ext(Qi) of the 353

domain of entities; when we speak of the property ‘to be an electron’, there are several electron quasets that could 354

be taken as its extension. All we have are the intensions, that is, the descriptions of the involved entities, and it is 355

assumed that these intensions give rise to quasets as their extensions. The problem is that if Qi(a1) is intended to 356

express that ‘particle 1 has the property described by the predicate Qi’ (something that can be described in the 357

formalism), the denotation function (let us call it ‘ϱ’), in associating a quaset ϱ(Qi) to the predicate, does not 358

enable us to know with certainty if the element ϱ(a1) certainly belongs or not to the quaset. By the way, ϱ(a1) 359

does not identify a very specific element of the domain as the referent of the mock name a1. As Dalla Chiara 360

reminds us, 361

“According to a main trend in traditional semantics (from Stuart Mill to Kripke) the use of proper 362

names seems to be essentially connected with an ostensive function. The behaviour of identical 363

particles in QM shows clearly that ‘at this level of reality’ proper names cannot be used in an ostensive 364

way. (. . . ) One might go further and ask: to what extent is our way of arguing about the external 365

world essentially founded on names and predicates? Are these traditional syntactic categories really 366

essential for an adequate logical description of the microworld?” [23]. 367

The semantics Dalla Chiara constructs is a kind of Kripke semantics and interesting results are advanced. 368

The same remarks can be put concerning the applications of Q and of Q− to the same problem. But in this 369

last case, the very notion of identity does not hold for all objects as it happens in QST, so it seems that these 370

theories are more adequate to express a semantic of non-individuals and not only of blurred names and properties. 371

We proceed to present the theories of qsets Q y Q−. 372

Another possible application enters the difficult issue of the interpretation of quantum superpositions. In 373

our account, our idea is still just a guess, so we will only sketch it and leave the development to another paper. 374

In quantum physics, an observable is associated to a self-adjoint operator. The theory also says that a photon 375

can behave either like a particle or like a wave, and can exist in a superposed state of both states, let us call 376

them |P⟩ and |W⟩ for simplicity. Then the superposed state is (in a simplified way) |ϕ⟩ = |P⟩+ |W⟩. As Abner 377

Shimony says, 378

“ If a particle-like property is measured, the photon behaves like a particle, and if a wave-like property 379

is measured, the photon behaves like a wave. Whether the photon is wave– or particle like is indefinite 380

until the experimental arrangement is specified.” (our emphasis) [24] 381
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That is, the state |ϕ⟩ will collapse into either |P⟩ or |W⟩, but before the measurement, the observable not 382

have a definite value, and that it not simply unknown, as says Shimony, “by the scientist who seeks to describe 383

the system”. We can understand this as follows. Let us associate a quaset x to the observable P (particle) and 384

another y to W (wave). The elements of these quasets are the possible values that the observable can assume 385

with certainty when a series of measurements of the observable are made (in a probabilistic sense). The closures 386

of these quasets represent the indefinite values of each observable. This makes more sense if we consider the 387

union of the closure of the quasets, x and y, that is, x ⊔ y. It seems clear that it is indefinite, and not merely 388

unknown, if the elements of this union belong to either x or y, so we may say that this is the quaset associated to 389

the superposition. This way, we can say that we have a quaset theoretical view of a superposition. 390

But notice that this is not so in classical logic, that is, in a set theory such as ZF. In this case, there are 391

no indefinite values; either a quantity has a certain value in a quantum state or it does not; the only accepted 392

ignorance is epistemological. There is no alternative (the Excluded Middle Law holds).10
393

5. The Q and the Q−theories 394

Quasi-set theory Q was proposed to deal with collections of completely indiscernible things. A quasi-set 395

can have as elements entities that cannot be discerned in any way. Other qsets can be formed by discernible 396

entities, and standard sets can be viewed as particular cases of qsets. Thus, in that we call standard sets or just 397

‘sets’ to abbreviate, the elements are always distinct from each other. The meaning of “distinct” will become 398

clear later when we discuss rigid structures. 399

Q is a semi-extensional theory. The expression ‘semi-extensional’ reports to the fact that the theory of 400

quasi-sets do not encompass an Axiom of Extensionality in the usual sense, but a Weak Extensionality Axiom 401

which informally says that qsets comporting ‘the same quantity’ (in terms of quasi-cardinals, see below) of 402

elements of the same kind (indiscernible among them) are indiscernible, as exemplified above (for instance, when 403

we say that two sulfuric acid molecules H2S O4 are indiscernible). 404

The first theory of quasi-sets was a theory with atoms, entities that can be elements of the qsets but which 405

(in principle) do not have elements. This is in accordance with the set theories with atoms, such as the ZFA 406

set theory (Zermelo-Fraenkel with atoms; see [25,26]). In the theory of quasi-sets, it was supposed to be the 407

possibility of existence (the theory does not postulate their existence) of two kinds of atom, the m-atoms, which 408

are supposed to be entities to which the standard theory of identity (STI) does not apply, and the M-atoms, which 409

satisfy the axioms of ZFA, so are entities endowed with identity conditions.11 Collections of these entities, 410

perhaps also involving other qsets, are called quasi-sets. Sets are those qsets whose transitive closure does not 411

contain m-atoms; so, they are those qsets constructed in classical part of the theory. When we restrict the theory 412

to this ‘classical part’, it becomes equivalent to ZFA, and to ZFC if we drop also the M-atoms. 413

A qset may have a quasi-cardinal, something that is intended to express the quantity of elements it has, so 414

that it resembles the cardinals of sets. If x is a qset, then qc(x) expresses its quasi-cardinal, or simply ‘q-cardinal’ 415

for short. 416

The main motivation for the theory is the interpretation that ascribes to quantum entities (electrons, protons, 417

photons, atoms, etc.) an absence of identity. In some situations, m-atoms cannot be distinguished from other 418

m-atoms in any way, and even so they can be counted as numerically distinct. This fact is contrary to what STI 419

says: any mathematical theory encompassing STI and which does not consider any kind of substratum is such 420

that given two entities whatever, they are distinct (different) and this entails that there exists (even if only in 421

principle) a property satisfied by just one of them. But in the interpretation assumed here, quantum entities can 422

sometimes be completely indiscernible, such as bosons in a bosonic condensate (a BEC, see [27,28]). Fermions 423

cannot be in the same quantum state due to obedience to Pauli’s Exclusion Principle, but even if they present a 424

difference, the situation can be one in which we cannot identify which item is which. For instance, if we consider 425

the two electrons of a neutral helium atom, the total pure state is a superposition of states, say, of one electron 426

10 When we say "“Excluded Middle Law" we mean having "∈" and "<" as the only alternatives. What is said in this section can be related to
what is stated in "[16]" about complementary quasets (see section 3.3).

11 STI is formulated standardly as in ZFC: we have a primitive binary predicate ‘=’ subjected to Reflexivity, Substitutivity and Extensionality;
see [12].
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having spin UP in some direction and the other having spin DOWN in the same direction. But ‘to have spin UP’ 427

(or DOWN) cannot be considered as a property of the electrons. In the superposed state, we can say that they do 428

not have particular properties; only the entire system has, say, total spin zero. Only after a measurement of the 429

spin in the chosen direction can we say that one of them has spin UP and the other has spin DOWN, but there is 430

no sense to say something like ‘electron Peter has spin UP’ as if ‘Peter’ were a proper name. The quantum realm 431

is a world of anonymity; proper names do not act as rigid designators [5]. Due to this fact, there is a sense in 432

saying that even fermions can be considered as indiscernible. 433

Even if a qset has only m-atoms as elements, this does not imply that they are all completely indiscernible. 434

m-atoms can differ by some properties, as electrons differ from protons and neutrons, and even quantum things 435

of the same kind, say photons, can differ in polarization among other things. We assume that in quantum theory, 436

two things are of fundamental importance: kinds (of things or items) and quantities. For instance, a proton is 437

considered as being formed by two quarks up and one quark down. No differences between the two quarks up are 438

given. What matters is that they are quarks up and that they are two. No identity is involved (in the sense of STI, 439

which would imply that they present some difference). Kinds and quantities; this is what the theory of quasi-sets 440

enables us to consider. 441

Q−: A quantum set theory without atoms 442

The main difference between the theory presented here and previous proposals is that it does not commit 443

itself to atoms (urelements): it is a ‘pure’ theory [29]. Thus, ‘all we have’ are quasi-sets, which can be regarded 444

as extensions of predicates (in a different sense than in ZFC). Furthermore, the new theory does not resort to 445

cardinals (limit ordinals of ZF) to assign numbers of elements to its collections, thereby avoiding discerning 446

elements due to ordering. 447

Like the rest of the theories that we will discuss in this work, Q−is a formal theory.12 So, despite that we 448

refer to qsets, sets, and other entities, the theory is in principle not compromised with any intuitive sense of these 449

words. The intended interpretation is this: sets are copies of sets in ZFC, the Zermelo-Fraenkel set theory with 450

the Axiom of Choice. Quasi-sets (qsets) are items to which STI does not apply. So, it makes no sense to give an 451

interpretation to expressions such as x = y or ¬(x = y) when at least one of these variables represents a qset. 452

This does not mean that we cannot define the identity for qsets; the problem is that we avoid doing that 453

precisely to be able to express the indiscernibility of qsets, which will be taken as the semi-extensions of formulas 454

with one free variable, which we call properties. So, properties can be indiscernible and this does not mean (as 455

would be implied by STI) that they are the same property. 456

A possible interpretation of indiscernible properties could be this: indiscernible properties would be 457

properties that we can measure repeatedly, say when a physicist reports that she is measuring the same property 458

more than once when, in reality, she is measuring an indiscernible property got by preparing the system in a 459

similar (indiscernible) way. 460

We begin by supposing the existence of an intended universe B (Bereich, as called by Zermelo [30]) whose 461

elements are of three kinds: the quasi-sets (qsets), the sets, and the finite quasi-cardinals (finite q-cardinals). The 462

language L of the theory encompasses the following category of primitive symbols: 463

(i) Standard logical symbols (let us assume negation, ‘¬’, implication ‘→’, and the universal quantifier ‘∀’ as 464

primitive). Improper symbols such as parentheses and commas are also supposed. The other standard 465

propositional connectives (‘∧’, ‘∨’, and ‘↔’), as well as the existential quantifier (‘∃’) are defined as usual. 466

(ii) Individual variables of two kinds: x, y, z, . . . are metavariables for qsets and sets, and m, n, p, . . . are 467

metavariables for finite q-cardinals. 468

It is remarkable that despite the variables x, y, z, . . . being called individual variables, they may range 469

over a domain whose elements are non-individuals, that is, entities devoid of identity conditions, which 470

form our ‘phenomenology’. Furthermore, for the application we have in mind, we should recall what we 471

have said in [20]: “An ontological domain populated exclusively by properties and non-individual bundles 472

12 The minus sign above the letter Q indicates that the atoms are being ruled out.
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of properties cannot be adequately apprehended by any language that includes individual constants and 473

variables.” Anyway, there is no easy sense of starting with a language not comprising individual variables. 474

(iii) An unary predicate symbol S to designate sets. 475

(iv) The equality symbol, ‘=’. 476

(v) The indiscernibility symbol, ‘≡’. 477

(vi) The membership relation ‘∈’. 478

(vii) A binary predicate symbol K. 479

(viii) Three specific primitive symbols to be used with finite q-cardinals: an individual constant 0, a unary 480

functional symbol s and two binary functional symbols, ⊗ and ⊕. 481

The terms of L are the individual variables, the individual constants 0, the expressions of the form s(m) 482

(which we abbreviate writing simply ‘sm’), m ⊕ n and m ⊗ n. 483

Definition 5.1 (Order for q-cardinals).

n ≤ m B ∃p(m = n ⊕ p)

The formulas are defined recursively as usual, with the proviso that the predicate K is used this way: only 484

expressions of the form K(x, m) are formulas. If S (x), then we say that x is a set. We make use of restricted 485

quantifiers; therefore, ∀S xφ stands for ∀x(S (x) → φ), while ∃S xφ abbreviates ∃x(S (x) ∧ φ), where φ is a 486

formula. 487

The logical axioms, that is, the postulates (axiom schema and inference rules) of the underlying logic are 488

those below; we insist in showing them despite being ‘classical’ because of the care we need to enlighten due to 489

the presence of q-cardinals. So, we have the following axiom schemata, where α, β, etc. are formulas and x is a 490

variable: 491

(1) α→ (β→ α) 492

(2) (¬α→ ¬β)→ ((¬α→ β)→ α) 493

(3) (α→ (β→ γ))→ ((α→ β)→ (α→ γ)) 494

(4) ∀u(α→ β) → (α→ ∀uβ), where u is either a variable for quasets or for q-cardinals and does not appear 495

free in α. 496

(5) ∀uα→ α(t), where t is a term free for u in α and of the same kind of u.13 We remark that if α is K(x, m), 497

then the term must be in accordance with the kind of entity it is representing, that is, qsets or sets for x and 498

q-cardinals for m. 499

(6) The inference rules are Modus Ponens and Generalization, that is,

α,α→ β

β
,

α

∀uα
,

where ν is a variable for qsets or for q-cardinals, the standard conditions being observed. 500

(7) ∀S x(x = x) 501

(8) ∀S x∀S y(x = y→ (α(x)→ α(y)) 502

(9) ∀m(m = m) 503

(10) ∀m∀n(m = n→ (α(m)→ α(n)) 504

Standard conditions are imposed for (8) and (10), given the above restrictions mentioned in the case of K(x, m). 505

13 As usual, α(u1, . . . , un) means that the variables ui are among the free variables of α; therefore, α(t1, . . . , tn) is obtained by the substitution
of ui by ti.
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The postulates say that for sets and q-cardinals, the standard postulates of the first-order calculus with 506

equality hold, but for qsets the same calculus without identity holds. Since the notion of equality (or identity 507

since we are not making a difference between these two notions) does not hold for qsets, the Principle of Identity 508

in the form ∀x(x = x) does not apply to either of them. Since this is also called the reflexive rule of identity, this 509

logic enters in the realm of non-reflexive logics ([12]) 510

For the purposes of this article, we do not consider it necessary to explain the axioms corresponding to the 511

q-cardinals. For the same reasons, we will present only the strictly necessary axioms about qsets. Such axioms 512

and their respective reflections can be found in [29]. 513

The basic idea is to suppose a domain comprising quasi-sets, some of them being classified as sets, which 514

will obey the postulates of ZFC. For other qsets, termed ‘pure’ in the next definition, the axioms are as follows. 515

Definition 5.2 (Pure qsets). A ‘pure’ qset is defined as follows using the primitive predicate S : 516

P(x) B ¬S (x).

In other words, a pure qset is an item that is not a set. This makes them do not obey all the ZFC axioms, 517

especially STI. 518

Thus, some specific axioms of Q− are: 519

(1) The ZFC axioms for sets, that is, for items that satisfy the predicate S and the the postulates of first-order 520

Peano arithmetic for finite q-cardinals. 521

(2) ∀S x∀S y(x ≡ y→ x = y) 522

(3) ∃Px(x ≡ x) ∧ ∀x(x ≡ x) 523

(4) ∀x∀y(x ≡ y→ y ≡ x) 524

(5) ∀x∀y∀z(x ≡ y∧ y ≡ z→ x ≡ z) 525

(6) ∀y(S (y)→ ∀x(x ∈ y→ S (x))). 526

The last axiom says that the members of a set are also sets. In saying that the q-cardinals obey the axioms 527

of Peano’s arithmetic, we are identifying then with either 0, s0, ss0, etc. Then we define the q-cardinals (really, 528

‘q-numerals’) 1 B 0, 2 B 1, etc. Notice that these q-cardinals are not ordinals since we are not identifying then 529

with the elements of one of models, namely, with ∅, {∅}, {∅, {∅}}, etc. Of course these ordinals also model the 530

q-cardinals, but they are not to be identified with them. 531

(7) [Separation Schema] Let α(z) be a formula with the variable z free:

∀x∀m(K(x, m)→ ∃y∀z(z ∈ y↔ ∃w∀n(w ∈ x ∧ z ≡ w∧ K(y, n) ∧ n ≤ m) ∧ α(z)))

That q-set y will be denoted by [z : α(z)]x, noting that its q-cardinality must not exceed the q-cardinality of 532

x. Given the qsets x, z ∈ x and let α be the formula defined by α(w) ↔ w ≡ z, then we can infer (from axiom 533

(7)) the existence of a qset [w : z ∈ x ∧w ≡ z]x, which is an equivalence class of indistinguishables from z that 534

are not necessarily in x (although they can be).14 Using the following union axiom, we can gather those classes 535

so that we form the quotient set x/≡, which will be used later. 536

(8) The q-cardinality of any empty set is zero:

∀x(K(x, 0)↔ ¬∃y(y ∈ x)).

The union axiom of Q−can be formulated to obtain a qset
⋃

x from a qset x, whose elements are nonempty 537

qsets. We admit this generalization, but we will formulate it only for qsets. Thus, given x and y, the axiom says 538

that there exists a qset, denoted by x ∪ y, whose elements are indistinguishable from the elements of x or y, and 539

whose q-cardinality is no greater than the sum of the q-cardinalities of x and y. 540

14 We recall that the q-cardinal of that class is no larger than the q-cardinal of x.
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(10) [Union] 541

∀x∀y∃z∀w(w ∈ z↔ ∃w′∃w”((w′ ∈ x ∧w ≡ w′) ∨ (w” ∈ y∧w ≡ w”))∧

∀m∀n(K(x, m) ∧ K(y, n)→ K(z, p) ∧ p ≤ m ⊕ n)).
(9)

The elements of the q-union set x ∪ y need not be elements of any of those sets; it is enough that they are 542

indistinguishable from elements of them. 543

Definition 5.3 (Weak singleton). Let w be a qset and x be an element of w. By means of the condition 544

α(t) ↔ t ∈ w∧ t ≡ x, we get by Separation the qsets of the indiscernible from x which belong to w, which we 545

denote by ‘[x]w’. 546

Then the Axiom of Pairing can be formulated like this: 547

(11)[Pairing] ∀Qw∀x∀y(x ∈ w∧ y ∈ w→ ∃z∀t(t ∈ z↔ (t ∈ [x]w ∨ t ∈ [y]w))) 548

We denote this qset by
[x, y]w.

In principle, nothing tells us about the q-cardinality of that qset, except that it cannot supersede the q- 549

cardinality of w. If x ≡ y, it could be 1. The axiom could be much more general and say that we form [x, y]w, 550

not by taking elements that are in w, but that are indistinguishable from elements of w (as long as we limit their 551

q-cardinality so as not to form proper q-classes). Note that using the above axiom, we can form the elements of 552

the q-set t/≡, namely [x]t, [y]t, etc., for x, y, . . . ∈ t. 553

(13) [Weak Extensionality Axiom, WEA] 554

∀x∀y∀n
(
(∀z ∈ x/≡)(∃w ∈ y/≡)(K(z, n)→ K(w, n))∧

∀u∀v(u ∈ z∧ v ∈ w→ u ≡ v))

∧(∀w ∈ y/≡)(∃z ∈ x/≡)(K(w, n)→ K(z, n)

∧∀u∀v(u ∈ w∧ v ∈ z→ u ≡ v)))→ x ≡ y
) (WEA)

If we use the identity relation (=) instead of the indiscernibility relation, then the equivalence classes of 555

x/≡ will be unitary (same with y/≡) and the axiom reduces to the Axiom of Extensionality of ZFC; in that case, 556

x ≡ y is nothing more than x = y. 557

What does this axiom say? A careful reading will show that it tells us that if qsets x and y have ‘the same 558

number’ (given by q-cardinals) of indiscernible elements, then x and y are indiscernible. The axiom WEA 559

allows us to prove what we said above, that all qsets with no elements are indiscernible. The proof is immediate, 560

recalling that the q-cardinal of such qsets is 0. 561

6. The RST theory 562

As we said, Pawlak’s Rough Sets theory can be considered as a mathematical approximation to vagueness. 563

The theory considers that each entity in its domain is characterized by some (usually incomplete) information 564

and when this information coincides for two different entities, they are indiscernible. The indiscernibility relation 565

generated in this way is the mathematical basis of rough set theory. This understanding of indiscernibility is 566

related to Gottfried Wilhelm von Leibniz’s idea that objects are indiscernible if and only if all available properties 567

take identical values. However, in the rough set approach, indiscernibility is defined relative to a given (possibly 568

incomplete) set of functionals (properties). 569

At the metatheoretical level, RST has a first-order logical language with identity and its object language is 570

that of ZF (although it can be replaced by another base theory).15 The novelty of the theory comes through the 571

structure and conclusions that can be drawn from its “coarse-grained” description. Because of the granularity of 572

15 There are several links between RST and Fuzzy Sets, which will not be discussed here. For the interested reader, we recommend [31,32].
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knowledge, some objects of interest cannot be discerned and appear the same (similar). As a consequence, vague 573

concepts, in contrast to precise concepts, cannot be characterized in terms of information about their elements. 574

Any set of all indiscernible (similar) objects is called an elementary set, and forms a basic granule (atom) of 575

knowledge about the universe. Any union of some elementary sets is referred to as crisp (precise) set– other wise 576

the set is rough (imprecise, vague) (see [14]). 577

Thus, in the proposed approach, we assume that any vague concept is replaced by a pair of precise concepts, 578

called the lower approximation and the upper approximation of the vague concept. The lower approximation 579

consists of all objects that surely belong to the concept, and the upper approximation contains all objects that 580

possibly belong to the concept. The difference between the upper and the lower approximation constitutes the 581

boundary region of the vague concept. Depending on the presentation considered and the formalism used, rough 582

set theory can express vagueness in different ways: by employing a boundary region for each set [14], through 583

uncertainty functions I [33], or also by using certain “membership primitives” [13]. There are many different 584

presentations, as this theory has gained a lot of interest over the years and has achieved applications in multiple 585

areas.16
586

The following presentation follows [14]. 587

LetA = (U, A) (in ZF) be a pair called information system. Where U and A is a set whose elements are 588

nonempty finite sets. The set U is the domain of objects and A is a set of functions (properties or attributes) 589

whose domain is U. That is, if a ∈ A, then a : U → Va, where Va is the set of values corresponding to the 590

attribute a. Every subset B ⊆ A determines a dyadic relation on U called the indiscernibility relation, defined by 591

x I(B) y := ∀a(a ∈ B→ a(x) = a(y)) (10)

where a(x) denotes the value that the attribute a takes on the object x. 592

Hence, I(B) is an equivalence relation for any choice of B (which we assume is nonempty). Being an 593

equivalence relation, it determines a partition of the domain U. We denote the set of all equivalence classes of 594

I(B) by U/B and the particular class containing the element x by B(x) or [x]B. Therefore, considering the data, 595

we generally cannot observe individual objects and must instead reason based on the accessible fragments of 596

knowledge. 597

If (x, y) ∈ I(B) will say that x and y are B-indiscernibles. Equivalence classes of the relation I(B) (or 598

blocks of the partition U/B) are referred to as B-elementary sets or B-elementary granules. The elementary sets 599

are the basic building blocks of our knowledge. The unions of B-elementary sets are called B-definable sets. 600

We now define two operations on any subset X of U. 601

B∗(X) B {x ∈ U : B(x) ⊆ X} (11)

B∗(X) B {x ∈ U : B(x) ∩ X , ∅} (12)

These two sets assigned to each subset X are called B-lower and the B-upper approximation of X, respectively. 602

We call the difference between these sets B-boundary region of X. 603

BNB(X) B B∗(X) \ B∗(X) (13)

B-lower approximation (of X) can be interpreted as the set of all objects that are certain to belong to X in 604

view of B. B-upper approximation can be interpreted as the set of all objects that possibly belong to X in view of 605

B. The boundary region of a set X with respect to B is the set of all objects (in view of B) that cannot be classified 606

as either belonging to X with certainty or belonging to its complement with certainty (fig. 1). 607

We can define two membership relationships as follows [13]: 608

x∈BX := x ∈ B∗(X) (14)

16 We recommend the official Rough Sets website: https://www.roughsets.org/

https://www.roughsets.org/
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Figure 1. The intuitive idea of Rough Sets, a figure inspired by [34].

x∈BX := x ∈ B∗(X) (15)

In the first case, we say that X surely belongs to X in B, while in the second case we say that X possibly 609

belongs to X in B. In this way, it is naturally fulfilled that 610

B∗(X) = {x ∈ U : x∈BX} ; B∗(X) = {x ∈ U : x∈BX}

This last form will be used when comparing this formalism with that of QST. Some of the properties of 611

these approximations are (see more properties in [14]). 612

i) B∗(X) ⊆ X ⊆ B∗(X)

ii) B∗(∅) = B∗(∅) = ∅ ; B∗(U) = B∗(U) = U

iii) B∗(X ∪ Y) = B∗(X) ∪ B∗(Y)

iv) B∗(X ∩ Y) = B∗(X) ∩ B∗(Y) (16)

v) B∗(Xc) = (B∗(X))c

vi) B∗(Xc) = (B∗(X))c

vii) B∗(B∗(X)) = B∗(B∗(X)) = B∗(X)

7. Establishing relationships 613

7.1. Relating QST to RST 614

We can establish several structural relationships between QST and RST through their respective membership 615

relations. If we translate the primitives ‘∈’, ‘<’ of QST by their corresponding membership relations of RST, 616

‘∈B’, ‘<B’ [(14), (15)], then qext(X) and X [(2.3), (3.3)] translate to B∗(X) and B∗(X) [(11), (12)] respectively. 617

For details of this and other translations between QST and RST, see section 3.7 of [16]. 618

We can see the above as follows. Given fixed B and X (not empty), the partition of U generated by I(B)
can be separated into three disjoint and exhaustive regions (a new partition): B∗(X), BNB(X) y U \ B∗(X) (o
(B∗(X))c). It is proven by definition that, for all B and X:

B∗(X) ∩ (B∗(X) \ B∗(X)) ∩ (B∗(X))c = ∅

B∗(X) ∪ (B∗(X) \ B∗(X)) ∪ (B∗(X))c = U

In terms of belongings, it can be expressed as: 619
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∀X∀x
(
x∈BX ∨ x<BX ∨ (¬(x∈BX) ∧¬(x<BX))

)
(17)

with B ⊆ A, where it is verified 620

∀X∀x(x∈BX → ¬(x<BX)) (18)

, but it is false that the inverse implication holds. That is, 621

¬(∀X∀x(¬(x<BX)→ x∈BX)) (19)

This is due to the existence of the BNB(X) zone. 622

These same relationships are expressed in QST as: 623

∀X∀x
(
x ∈ X ∨ x < X ∨ (¬(x ∈ X) ∧¬(x < X))

)
(20)

Where ‘∈’ and ‘<’ are primitives of QST, unlike RST, where they are defined by the equivalence relation I(B). In 624

their intended interpretation, these memberships are read as “x belongs with certainty to the quaset X or x does 625

not belong with certainty to the quaset X or x belongs indeterminately to such a quaset”. 626

We define weak or indeterminate membership ∈− (in QST) through the following expression: 627

y ∈− x B ¬(y ∈ x) ∧¬(y < x). (21)

Then, the equation (20) can be expressed as 628

∀X∀x(x ∈ X ∨ x ∈− X ∨ x < X) (22)

Which reflects the three disjoint regions of the domain, just as in RST. The three regions in QST are 629

characterized by qext(X) (quasi-extension of X (2.3)), qext((X)c)17 (elements that certainly do not belong to the 630

complement of the closure of X (3.1)) and the zone of indeterminacy, which is the analogue of BNB(X) in QST. 631

Before establishing the analogous relations for the case of Q−, we might ask the following: if there is a 632

strong relation between the regions that separate its domains, characterized both by coarse grain and by their 633

membership relations, what is the equivalence relation analogous to I(B) that exists in QST? The equivalence 634

relation for the case of QST is the indiscernibility relation, defined from the intensional operation “⊆” (2.4): 635

xRy := x ≡ y↔ x ⊆ y∧ y ⊆ x.18
636

Another (not necessarily equivalent) way to obtain an indiscernibility relation is:

x ≡ y↔ qext(x) = qext(y) ∧ x = y.

To prove equivalence between these two proposals, some conditions must be imposed that we have not 637

asked for the moment, but that could be considered if necessary. Our intention is to show the possibility of 638

generating the graining in QST from one of its indiscernibility relations. The crucial difference between the 639

proposal in QST and that of RST is that, in the latter theory, the coarse grain can be controlled through B, while 640

in QST it is inherent to its formalism. We could propose QST as a limiting case of RST when the graining cannot 641

be made finer, which would be the same as generating RST, not with a basis in ZF, but in QST. Defining the two 642

approximations of each rough set through quasets, instead of ZF sets.19 In quantum mechanics, this coarse grain 643

limit would be determined by h̄. 644

We will now present the corresponding treatment for Q−. 645

17 The operation qext is applied to (X)c because the complement is defined in QST from its primitives ⊔ and ⊓ (3.4), producing that there
exist entities that have weak membership both to the quaset X and to its complement (see [16, 3.3]). This is the formal correlate of entities
whose state is described by a quantum superposition.

18 Recall that, since the inclusion of quasets is an intentional operation, double inclusion should be interpreted as a double implication, not
as the identity of quasets.

19 This was already developed for the case of fuzzy sets, where fuzzy upper and lower approximations are proposed for each rough set (see
[35,36].
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x N w

Figure 2. A qset x and its cloud N relative to the q-set w.

7.2. Relating QST to Q− 646

A comparison between early versions of Q and QST can be found in [11]. 647

To proceed with our goal, we need to define weak membership (∈∗) in Q−(following [29]). 648

Definition 7.1 (Weak membership). x ∈∗ y B ∃w(w ∈ y∧w ≡ x). 649

If x or y are classical sets, then x ∈ y↔ x ∈∗ y. 650

With that notion, we can talk about potential elements of a qset in the following way. Suppose we have a 651

qset w and let x be one of its sub-q-sets. We then define the Cloud of x relative to w as (intuitively speaking) the 652

qset formed by the elements of w that have indiscernibles in x, that is, that ‘could’ be in x. Intuitively, if we have 653

a sample of an element that can exchange components with other elements or with the environment, then we can 654

talk about entities that could belong to the sample due to the possibility of exchange between entities of the same 655

nature (e.g. electrons for electrons).20
656

We can now define a new concept, weak inclusion (⊆∗). 657

Definition 7.2 (Sub-q-sets). We define sub-q-sets in two ways: 658

1. x ⊆ y B ∀z(z ∈ x→ z ∈ y). 659

2. x ⊆∗ y B ∀z(z ∈ x→ ∃w∀m∀n(w ∈ y∧ z ≡ w∧ K(x, m) ∧ K(y, n)→ m ≤ n)) 660

Some consequences of the preceding definition are the following: 661

a) x ⊆ y→ x ⊆∗ y 662

b) x ⊆∗ y∧ y ⊆∗ x↔ x ≡ y 663

It is immediate to verify that if x is a set, then x ⊆ y↔ x ⊆∗ y. 664

As always, examples taken from situations in the particular sciences are important. Suppose we have a 665

lithium atom, Li, whose electron decay is 1s2 2s1. We can think of a qset with three elements that simulates the 666

electrons of that atom, and also of sub-q-sets of it, for example one containing as an element only the electron 667

that is in the second energy level. In that case, we are thinking of an electron that is in the atom and so we would 668

use the symbol ⊆. But we can also think of the ionization of the atom that would eliminate the outermost electron, 669

giving us a Li+ cation. We can also do the reverse operation, making the cation capture an electron so as to 670

obtain a neutral atom again. In that case, we cannot say either that the captured electron is the same as the one 671

that was eliminated or that the ‘new’ neutral atom is the same as the first. They are indistinguishable. But now, 672

dealing with the first atom and the captured electron, it would be more appropriate to say that the qset formed by 673

the captured electron is a sub-q-set of the first atom in the sense of ⊆∗. 674

Definition 7.3 (Cloud of a qset). Let w be a qset and let x ⊆ w. The cloud of x relative to w is the qset N(x, w)
defined as follows:

[y ∈ w : ∃z ∈ x ∧ z ≡ y]

It is desirable that the q-cardinality of x be maintained. Thus, its cloud would be something like its extension to 675

w. 676

If we consider all clouds of elements of a q-set w, we can define operations between them, such as 677

intersection, complement and union of clouds. What we obtain is a algebra of clouds whose structure is not 678

boolean, as would be the case for subsets of a classical set. The structure obtained is a different lattice, which 679

20 The notion of a cloud of a qset was introduced in [37].
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resembles an orthomodular lattice, as is the case for the algebra of subspaces in quantum physics; the details are 680

in [38]. With clouds, we can also approximate the idea of quasets of Dalla Chiara and Toraldo di Francia [5], as 681

indicated in [16]. 682

Using the definition 7.1 of weak membership, we can rewrite the definition 7.2 of sub-q-set as follows: 683

Definition 7.4 (Sub-q-sets).

x ⊆∗ y := ∀z(z ∈ x→ z ∈∗ y) ∧ ∀m∀n(K(x, m) ∧ K(y, n)→ m ≤ n) (23)

We could also express that the cloud of a qset x, relative to any qset ω, is included (in the sense of ⊆) in the qset y 684

in the following way. If x ⊆ y ⊆ ω, 685

N(x,ω) ⊆ y↔ ∀z(z ∈∗ x↔ z ∈ y)

As we have remarked above, x ⊆∗ y∧ y ⊆∗ x implies indiscernibility between x and y. In [39], a quantum 686

mereology is presented where the notion of “being a physical part of”, denoted by ⊏, which is a primitive of 687

its formalism, can be used in a similar way to obtain an indiscernibility relation between physical systems. In 688

our case, the fundamental primitive concept is the indiscernibility relation (and the membership relation of ZF), 689

with which we define weak membership and weak inclusions between qsets. However, if our primitive concept 690

were to be both memberships (or could also be inclusions), the definition 7.1 could be interpreted as an implicit 691

definition of the concept of indiscernibility. We could also define indiscernibility through the double inclusion of 692

qsets ⊆∗, which in turn rests on the concepts of weak and standard membership. 693

The notion of weak membership allows us to partition the qset universe as follows. Given qsets x and y, we 694

have the following exclusive and exhaustive options: 695

(x ∈ y) ∨ (x < y∧ x ∈∗ y) ∨ (x <∗ y) (24)

Comparing the above equation with (22), we might suggest: 696

i) The membership of Q−(∈) is associated with the corresponding membership of QST. That is, one could 697

associate the qextension of a quaset with the qsets of Q−; The elements that belong with certainty to 698

the quaset are associated with those that belong with certainty to the qset. The role that B∗(X) plays in 699

RST would be played by qext(X) in QST, and X in Q−. We could express the idea (conceptually) as: 700

∈QS T↭∈Q−↭ ∈B 701

ii) Equivalently, we associate <∗ (Q−) with < (QST) and <B (RST). In this way, the Cloud of qsets (relative to 702

a given set) would be associated with the closure of quasets (also relative to a certain set) and with the 703

B-upper-approximation. Entities that do not belong with certainty to a quaset are associated with objects 704

that do not belong weakly to a qset and with those that do not belong to the B-upper approximation. 705

iii) Finally, the entities that in QST belong weakly to a given quaset would be associated with those that belong 706

to BNB(X) and with those that in Q−belong weakly to a qset, but without belonging (they do not belong to 707

the qset, but some entity that is indiscernible does belong to it). 708

This suggested relationship between the “regions” of the three formalisms can be adopted, but not before 709

noting the following difference at the logical level. Let us return to the focus on (22) and (24). In both expressions, 710

the corresponding weak membership associated with its formalism appears (2.2 and 7.1 respectively), but while 711

in QST weak membership satisfies that 712

∀x∀y(x ∈ y→ ¬(x < y))

and consequently
∀x∀y(x < y→ ¬(x ∈ y)).

In Q−, it is verified that 713
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∀x∀y(x ∈ y→ x ∈∗ y)

, and consequently
∀x∀y(x <∗ y→ x < y).

That is, the logical consequences that follow from weak membership (or from which they follow) are 714

different in each case. In QST, membership with certainty implies not membership weakly (as in RST). 715

We could emphasize their similarities if, within the framework of Q−, we proposed from the beginning two 716

primitives of membership, ∈ and <∗, and from them we defined the relations of indiscernibility and subq∗.21
717

Thus, to highlight the similarity with the QST case, we could express the three possibilities as: 718

∀x∀y(x ∈ y∨ (¬(x ∈ y) ∧¬(x <∗ y)) ∨ (x <∗ y)).

This suggests the following definition: 719

x ∈∗ y := ¬(x ∈ y) ∧¬(x <∗ y).22

Thus, we can express the above as: (x ∈ y) ∨ (x ∈∗ y) ∨ (x <∗ y). 720

And in this way, we have to 721

∀x∀y(x ∈ y→ ¬(x < y)) ∧ ∀x∀y(x ∈ y→ ¬(x ∈− y)) [QST]23

∀x∀y(x ∈ y→ ¬(x <∗ y)) ∧ ∀x∀y(x ∈ y→ ¬(x ∈∗ y)) [Q−]

∀x∀Qy((x ∈ y) ∨ (x ∈− y) ∨ (x < y)) [QST]

∀x∀y((x ∈ y) ∨ (x ∈∗ y) ∨ (x <∗ y)) [Q−]

With these membership symbols, the similarity between QST and Q−is best expressed. In terms of this new 722

membership (∈∗), which we could call extra weak, the possibilities of the universe of qsets can now be expressed 723

in a way equivalent to that of QST. This may have interesting consequences for the semantics of quantum logic. 724

In [16], a generalization of the nondeterministic semantics of Nmatrices for the quantum projector lattice in the 725

framework of QST is presented (see also [40–42]). Based on the structural-logical similarities just shown, such 726

results could be extended to Q−and have interesting applications for the Kochen-Specker theorem. A quantum 727

Nmatrix based on Q−could be used to give a semantics that avoids the Kochen-Specker contradiction, due to 728

considering that the projectors associated with the same observable are identical (instead of indiscernible) in 729

different incompatible contexts as shown in [43]. 730

To conclude this section, we will say a few words about the conditions analogous to (16) in QST. 731

To see if the corresponding relationships hold in QST, we need to translate: 732

• B∗(X) to qext(X), 733

• B∗(X) to X, 734

• ZF’s ∪,∩ operations by QST’s ⊔,⊓ operations, 735

• the inclusion of ZF by the respective operation between quasets 736

• and finally, equality between sets by double inclusion of quasets. 737

The proof that such conditions hold (asking for some extra minimal conditions on ⊔ and ⊓ regarding quasi- 738

extension and closure) can be seen in section 3.6 [p.26] and the appendix of [16]. 739

21 Expressing the axioms of Q−formally through two primitives of membership is proposed to make their axiomatic presentations more
similar, but it is not necessary if we only want to highlight the separation of domains presented.

22 En el marco de Q−, ¬(x ∈ y) es equivalente a x < y y ¬(x <∗ y) es equivalente a x ∈∗ y.
23 Remember that inverse implications do not apply in QST.
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The analogous study for the Q−case is not yet fully done. Conditions on clouds of qsets (analogous to 740

B∗(X)) have already been given in [22], but issues regarding weak inclusion (⊆∗) (7.2) remain to be resolved (see 741

a more detailed treatment in [29]). Weak inclusion of qsets implies standard inclusion of qsets, but it remains 742

to be established under what conditions in (16) one should change “⊆” to “⊆∗”. These issues will be further 743

developed in future work. 744

QST and extensions Q− RST
∀x∀yQ((x ∈ y) ∨ (x ∈− y) ∨ (x <
y))

∀x∀y((x ∈ y) ∨ (x ∈∗ y) ∨ (x <∗

y))
∀X∀x(x∈BX ∨ x<BX ∨ x ∈

BNB(X))
x ∈− y := ¬(x ∈ y) ∧¬(x < y) x ∈∗ y := ∃z(z ∈ y ∧ z ≡ x) ; x ∈∗

y := (x < y) ∧ (x ∈∗ y)
x∈BX := x ∈ B∗(X); x∈BX :=
x ∈ B∗(X)

∀x∀y(x ∈ y → ¬(x < y))∀x∀y(x ∈
y→ ¬(x ∈− y))

∀x∀y(x ∈ y → ¬(x <∗

y))∀x∀y(x ∈ y→ ¬(x ∈∗ y))
qext(x) x B∗(X)
x N(x,ω) B∗(X)

Table 1. Summary of the main results obtained by relating these theories

8. Extensionality 745

In this section we will analyze the extensionality of each of the theories involved. This property, in ZF, 746

is stated as an axiom, directly linking the membership primitive (the only non-logical primitive of ZF) with 747

the logical identity of the metatheory. According to this principle, two sets are identical when they share their 748

extensions. Only their extensions come into play to decide whether two sets are identical or not. That is, to decide 749

whether they count as one or not. Therefore, the issue of identity, together with its relation to extensionality, 750

directly affects the cardinality of the entities involved. 751

In certain situations, even in the context of ZF, the meaning of extensionality is not sufficiently clear. 752

According to what has been said above, one could interpret the extensional nature of sets as consisting in the fact 753

that their membership structure uniquely determines their identity. We think that this is not precise enough. To 754

make the idea more precise, it is necessary to distinguish between: criteria of identity and criteria of individuation 755

[44]. In our view, identity is an absolute concept: there is no half-identity; either a thing has identity or it does 756

not, and the latter case, for us, occurs with quantum entities. Individuation is committed to some metaphysical 757

principle that establishes an ontological relation between entities; as J. Lowe says, what individualizes an object 758

is whatever makes the object the singular object that it is, that is, whatever makes it an object, distinct from all 759

others, and the same object that it is in opposition to anything else [44].24
760

It might be thought that the membership structure of a set is what individuates the set, what makes it the set 761

that it is as opposed to any other set. However, this is not exactly what the axiom of extensionality says, since 762

individuation brings with it peculiar extra consequences: if the membership structure is what makes a set the set 763

that it is, then it is reasonable to demand that whenever two sets share the same membership structure they are, in 764

fact, the same set. This implication is not guaranteed by the axiom of extensionality alone (see [45]). 765

Let us consider the following example in ZF without the Regularity axiom: Let the sets A = {B, C}, where 766

B = {B} and C = {C}. Whether we wish to make a claim about the identity or individuality of A or to pronounce 767

on its cardinality, we must decide whether B = C or not. The extensionality axiom is of no use here, since it 768

simply tells us that B = C if and only if B = C. It will not violate extensionality, or any of the other axioms of 769

ZFC (ZFC without the Regularity axiom), whether B and C are unequal or not. Nothing in the formalism allows 770

us to decide. Therefore, assuming that the membership structure is what individualizes the sets and, consequently, 771

that whenever two sets share the same membership structure they are the same set, is not enough to decide in 772

cases like the one presented. When it comes to the set A (Boffa set), it turns out that B and C have the same 773

membership structure (there is a non-trivial automorphism that exchanges the two nodes) even though they are 774

not identical. Something else is needed to know whether B and C are or are not the same set. 775

24 Lowe distinguishes between individuation in two senses; one metaphysical, which is what we are adopting, and one epistemological,
saying that this one presupposes the other.
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The authors of [45] argue against the membership structure being responsible for the individuation of sets. 776

Their position is supported by the fact that there is at least one other plausible candidate in the vicinity: 777

[...] perhaps, for some sets, what makes a set be the very set that it is is its membership structure 778

together with the fact that the set is identical to itself and distinct from any other, with this last fact 779

obtaining in virtue of nothing more fundamental; which is to say, in some cases, membership structure 780

together with primitive identity facts are responsible for set individuation. [45, p.4] 781

The identity of these entities can be determined either by a primitive identity, external to the formalism, 782

or by ontological issues, for example, through a theory of substratum. The moral is that, even in ZF (without 783

regularity) extensionality is not a sufficient criterion of individuation if one wishes that every time two entities 784

satisfy the same criterion of individuation, they are the same entity. The identity must be given (or not) externally. 785

Of course, in the context of ZF whit Regularity, the axiom of Extensionality serves to guarantee that there is just 786

one empty set at the base of the hierarchy of sets and that any identity question concerning sets can ultimately 787

be settled by reference to the empty set through repeated applications of the axiom of Extensionality. For the 788

moment, we will leave the extensionality of ZF and delve into that of QST. 789

QST was presented as an intensional set theory. That is, an axiomatic set theory where neither intensions 790

uniquely determine an extension, nor extensions uniquely determine their intensions. Its motivation is due to the 791

behavior of quantum entities, which in certain circumstances, seem to be represented by intensional sets. This 792

is closely linked to the problem of the identity of quantum entities. Since quantum entities can be considered 793

entities without identity, they defy Leibniz’s principle, and the claim to label them or give them proper names 794

(rigid designators) seems not to be well founded. According to Dalla Chiara and Toraldo Di Francia, since 795

quantum entities are mainly nomological entities, they are better captured by intensional descriptions [5]: 796

The lack of proper names is due fundamentally to the fact that the objects of microphysics are 797

nomological. All their characteristics are fixed by physical law and are identical for objects of one and 798

the same kind. As far as we know today, one electron is identical to another electron, one proton to 799

another proton, and so on. 800

As the authors say, the intension of a term always determines, at least in principle, an extension for the term, but 801

unlike what happens in standard semantics, this extension will not necessarily be unique. For example, once the 802

intension of the term electron is stipulated, we have the possibility of recognizing, by theoretical or experimental 803

means, whether a given physical system is a collection of electrons or not; if so, we can also enumerate all the 804

quantum states available in it. In fact, we can do this in several different ways. To illustrate, the authors take the 805

case of spin. If we consider electrons defined by s = 1/2, m = 9.1 10−28g, q = 4.8 10−10e.s.u., 806

we can choose a z-axis and state how many electrons have sz = +1/2 and how many have sz = −1/2. 807

But we could instead refer to the x-axis, or the y-axis, or any other direction, obtaining different sets of 808

quantum states, all having the same cardinality. We thus arrive at a situation, which is usually believed 809

to be impossible in classical semantics: different extensions can correspond to one and the same 810

intension. Of course, the reverse situation of one and the same extension corresponding to different 811

intensions is trivially possible, as in classical semantics (for instance, instead of giving the mass of a 812

particle, one could give its rest energy). 813

This peculiarity of collections of quantum entities to admit different extensions compatible with a given intension 814

is one of the main motivations of the theory. Systems of microobjects exhibit irreducibly intensional behavior: 815

they generally do not determine precise extensions and are not determined by them. Consequently, a basic feature 816

of QST will be a strong violation of the extensionality principle. 817

Neither the original axiomatization of QST (see [10]) nor its possible extensions (see [16]) have an axiom 818

of extensionality for non-classical quasets. For quasets not belonging to the domain isomorphic to ZF containing 819

QST, we have no principle of extensionality. By what was said in the introduction, the primitive “⊆” of QST 820

must be interpreted intensionally. x ⊆ y must be interpreted as “the concept x implies the concept y”. Therefore, 821
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double inclusion must be interpreted as a double implication between concepts, indicating that such concepts 822

cannot be discerned within the framework of this axiomatic.25
823

RST has in its basic structure the axioms of ZF (in their standard formulations), however after generating 824

the partition associated with the amount of available information, one forgets the extensionality axiom of ZF and 825

goes on to treat as indiscernible certain sets that, after granulation, are shared by both approximations. Even 826

though in ZF they are different sets, they are treated as indiscernible for certain partitions. In the limit, when 827

the available information is the maximum possible and the area of the granulation tends to zero, this criterion 828

of indiscernibility between rough sets is transformed into the extensionality axiom of ZF. Both approximations 829

coincide in this limit, causing the rough set to become a well-defined set. 830

What can we say about the extensionality of Q and Q−? Both are considered semi-extensional theories, 831

which is reflected in the weak extensionality axiom of each. The weak extensionality axiom of Q−(WEA) says 832

that if we have a qset A and we exchange some of its elements for another indiscernible one belonging to its 833

cloud, the new qset is indiscernible from the first. Since these objects have no identity, we cannot say whether or 834

not they are the same. They can be counted as two (or more) genuinely indiscernible entities. Entities that are 835

different only in number. It is in this sense that qset theories are considered semi-extensional. They are invariant 836

under permutation of indiscernibles. Although the corresponding axiom of Q has not been presented, it can be 837

interpreted in the same way for the purposes of this section (see, for example, [6,12,46]). 838

8.1. The relation of indiscernibility 839

The indiscernibility relation is directly linked to the concept of extensionality. In both Q and Q−, this 840

relation is a non-logical primitive that plays a prominent role in the corresponding weak extensionality axioms. 841

In the Qframework, it is an equivalence relation, which does not collapse into congruence due to the existence 842

of m-atoms. That is, m-atoms can be genuinely indiscernible without being identical. The (apparently) only 843

situation where the substitution by indiscernibles doesn’t hold is with respect to the membership relation. In the 844

atomless Q−theory, legitimate qsets are responsible for ensuring that such a relation does not collapse into the 845

identity. 846

Despite not having the logical identity in its metatheoretical language, in Q one can define an “equality” 847

(different from the one we use in axioms (7)-(10)) called extensional (see [11, p.144] and, for the case of Q−, 848

discussion in [29, s.8]). However, this defined equality does not satisfy the requirements required for identity, 849

such as replacement of identicals. We will take an example discussed in [47]. Analyzing the nature of strong 850

singletons, it is stated: even if x′ ≡ x, the theory doesn’t grant that any indistinguishable from x will belong to 851

any strong singleton of x; these strong singletons are indiscernible, not identical, that is, x ≡ x′ , but not x = x′. 852

Immediately afterward, he discusses a possible objection to such a conclusion by suggesting that we could define 853

an identity for m-atoms as follows: let x and y be indiscernible m-atoms and let [x] and [y] be strong singletons 854

of these elements.26 Then we can establish: 855

x =∗ y := x =E y

, where ’=E’ denotes the extensional equality of Q, which for the example we can take as that of ZF. 856

Since both the q-cardinals x and y are equal to 1, we can conclude that their elements are the same, and 857

hence the defined identity would have the properties of the standard identity. But this is a mistake. In the object 858

language of Q, we cannot say that the elements of these strong singletons are ‘the same’, since this requires 859

identity, and then we would be clearly begging the question by assuming that we want to define. Formally, if 860

x =∗ y, we can say that they are ∗ − identical, but never that they are ‘the same’. Moreover, =∗ does not have all 861

the properties of the standard identity; in particular, substitution fails (for details, see [47]). 862

25 Although the original axiomatics of QST might suggest that x ⊆ y ∧ y ⊆ x implies x = y, the treatment given in [16] shows that two
quasets sharing both their qextension and their closure can be considered indiscernible. Within the framework of the extensions of QST
presented in [16], the axiom 2.5 and the definition 2.4 should be weakened to allow double inclusion to be equivalent to indiscernibility
(and not to identity).

26 For the example, we ignore the qsets to which the singletons are relative so as not to run the risk of having their own classes.
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What interests us in this example is the following: in the framework of Q, even with extensional equality, 863

which respects an extensionality axiom, and the regularity axiom, we do not have enough to have a general 864

individuation criterion. This is due to the lack of logical identity for m-atoms.27 Something very similar happened 865

when analyzing the example of the Boffa set in ZF without Regularity. Even though in this context we had 866

identity, the extensionality axiom was not enough to give a good individuation criterion either. That is, we arrive 867

at similar results; on the one hand, with the extensionality axiom, the identity and without regularity and, on the 868

other hand, with a defined extensional identity, which enables an extensionality axiom, and the Regularity axiom, 869

but without logical identity. 870

In Q theory, indiscernibility is interpreted ontologically, that is, as an inherent characteristic of quantum 871

entities (ontological correlate of m-atoms). This could be seen as a direct consequence of interpreting Heisenberg’s 872

uncertainty principle ontologically, rather than epistemically.28 We say this because it contrasts with the epistemic 873

character that indiscernibility acquires in both RST and QST. In RST, it is a direct consequence of the lack of 874

information or “vagueness” about our system, in addition to being a definite (non-primitive) relation. We already 875

said that two rough sets that share their two approximations are considered indiscernible. We also said that 876

there are many alternative presentations of RST. A particular presentation can be seen in [48]. In this work, 877

indiscernibility is characterized by certain sets called the minimal description of the object. Two objects are 878

indiscernible, when they share their minimal descriptions, Md(x) = Md(y). This represents another way of 879

using the available information about the system. Its authors express (p.2): we adopt the view that there is a 880

mutual correspondence between intensions, i.e. properties (or characteristic features) of objects, and extensions, 881

i.e. sets of objects possessing these properties. This contrasts with what has been said regarding extensionality in 882

the case of QST. 883

The target language of QST does not have a symbol for this relation, although we said that, due to the 884

intensional character of the theory, it could be defined, for example, through the double inclusion of quasets. 885

Whatever the way of defining this equivalence relation, it most likely inherits the epistemic character that its two 886

membership primitives (∈, <) have in the intended interpretation. Therefore, neither in QST nor in RST can we 887

speak of genuine indiscernibility. This is directly related to what is called rigid structures (see below). 888

Q−is a special case in this sense, since it allows its indiscernibility to be interpreted both ontologically 889

and epistemically. On the one hand, since it inherits many concepts and structures from its predecessor with 890

atoms Q we could interpret the indiscernibility ontologically. On the other hand, since we could consider 891

expressing the formalism using two primitives of membership (∈, <∗), as in the case of QST, we could interpret 892

the indiscernibility (in this case, no longer primitive, but defined) epistemically. 893

Let us take the following example in Q−. The Separation Schema (axiom 7) allows us to show the existence 894

of q-sets with no elements, which we will call empty, but without the identity we cannot prove their uniqueness. 895

However, due to the Axiom of Weak Extensionality (WEA), we can prove that all such empties are indiscernible. 896

The way to infer the existence of a q-set with no elements is to adopt a contradictory formula, like x . x, together 897

with axiom (3), in the Separation Schema. We will denote the empty q-sets regardless by ‘∅’. Since the identity 898

cannot be used for empty q-sets, and since the postulates of ZFC that hold for sets allow us to derive the existence 899

of an empty set, the only relation we have between empty q-sets and the empty set is indiscernibility, and this can 900

be proved from the definitions and from the axiom of weak extensionality. Does this indiscernibility between the 901

empty set and empty qsets have ontological or epistemic status? 902

8.2. Equivalence relations 903

Let us analyze the following relationships established by definition in RST. 904

x∈BX ↔ x ∈ B∗(X)↔ [x]B ⊆ X ↔ ∀y(yI(B)x→ y ∈ X) (25)

27 It is important to notice that we can define an identity for m-atoms in several distinct ways, but this would be contrary to the idea of the
metaphysics of non-individuals.

28 Recall that in Bohmian Mechanics, this principle is considered a simple epistemic limitation. It has no ontological character, since
Bohmian particles have, at each instant, well-defined position and velocity.
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This formalism was developed to deal with indiscernibility functions that depend on partial knowledge 905

about the properties of entities. That is, to deal with the situation in which we do not have access to the value that 906

all the properties take on the objects of the domain. When the indiscernibility is over all possible properties, as 907

we said before, Leibniz’s principle is fulfilled and the indiscernibility collapses into the identity. Therefore, we 908

will analyze what happens when in the previous expression we replace I(B) by ‘≡’ of Q−. 909

For this, remembering that quantification in RST runs through the finite (bounded) domain U, we will take 910

a fixed qset D (which can be a set) that fulfills the same function in Q−for the purposes of quantification. 911

Therefore, the last expression of the above formula is expressed by: 912

∀y ∈ D(y ≡ x→ y ∈ X).

Where we are considering that X ⊆ D (with the inclusion is that of Q−). 913

The above expression is equivalent to (by 5.3)

[x]D ⊆ X.

Where it is clear, seeing (25), that the singleton of x (relative to D) fulfills the function that, in RST, has the
equivalence class of x associated with B ([x]B or B∗(x)). By the definition of Cloud 7.3, the above can be written
as

N([x]D, D) ⊆ X

So far we have the following: 914

N([x]D, D) ⊆ X ↔ [x]D ⊆ X ↔ ∀y ∈ D(y ≡ x→ y ∈ X) (26)

If we compare this with (25), and we observe the terms that we have not yet related (x∈BX, x ∈ B∗(X)), we 915

can see that we are still associated with the membership ∈B with the concept of Cloud in Q−. In principle, this 916

could surprise us, since we would expect the membership associated with the Cloud to be ∈B. The complete 917

expression, if we express the first two formulas of the first biconditional still in RST 918

x∈BX ↔ x ∈ B∗(X)↔
N([x]D,D)⊆X
[x]D ⊆ X ↔ ∀y(y ≡ x→ y ∈ X) (27)

Let’s focus on the color expression. If we follow the chain of biconditionals coming from the right, the color 919

expression should be translated in Q−as x ∈ X (closure of X). However, if we take into account the biconditional 920

on the left and replace ‘∈B’ by ‘∈’ , the color expression would be rendered in Q−as simply x ∈ X. Therefore, the 921

only way for these replacements (translations into Q−) to be consistent is if, for the indiscernibility relation ‘≡’, 922

the lower and upper approximations agree. 923

The above could be interpreted as follows. If within the framework of RST, we want, on the one hand, 924

to maintain the interpretations ‘∈B’ and ‘∈B’ as surely belongs and possibly belongs and, on the other hand, to 925

admit a genuine indistinguishability relation (with respect to all attributes) as ‘≡’, there is no other option than 926

to collapse both approximations (into the identity). Which leads us to conclude that RST satisfies Leibniz’s 927

principle when all the properties for the indistinguishability relation are taken into account. We will now proceed 928

to analyze this principle. 929

9. Leibniz’s Law 930

According to Quine, the so-called Substitution Principle or, as Quine calls it, the Principle of Indiscernibility 931

of Identicals must always apply: identical objects can be substituted for each other in any context ‘salva veritate’. 932

In this framework, what is meant by identity is a subtle point. We often associate an object with individuality 933

as if this indicated its identity, and we do so through the twin concept of discernibility. Objects are individuals, 934

entities with identity, when we can discern them from others, even if they are similar. But what gives an object 935

its individuality? Can there be two objects that are exactly the same, differing only in that one is one and the 936

other is the other, or, as it is said, that they differ only in number? Leibniz answered this question absolutely 937
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negatively. For him, if two objects are two, there must be a quality, an attribute or property that distinguishes 938

them. He crystallized this in his famous Principle of Identity of Indiscernibles: It is not true that two substances 939

can be completely alike and differ only in number (see [49]). 940

The validity of this principle has been much debated, especially since the advent of quantum mechanics 941

[12]. This principle is built into classical logic and mathematics, meaning that in any theory based on them there 942

can be no absolutely indiscernible entities. What is known as Standard Identity Theory (STI) is the conjunction 943

of these two principles: Leibniz’s principle and the principle of substitution of identicals. Any mathematical 944

theory encompassing STI and which does not consider any kind of substratum is such that given two entities 945

whatever, they are distinct (different) and this entails that there exist (even if only in principle) a property satisfied 946

by just one of them. RST satisfies TSI. This is because it is built on the basis of ZF, which satisfies STI by having 947

(in its standard version) first-order logic with identity in its metalanguage. As its author says in [14, p.6]: 948

This understanding of indiscernibility is related to the idea of Gottfried Wilhelm Leibniz that objects 949

are indiscernible if and only if all available functionals take on them identical values (Leibniz’s Law 950

of Indiscernibility: The Identity of Indiscernibles). However, in the rough set approach indiscernibility 951

is defined relative to a given set of functionals (attributes). 952

That is, the indiscernibility of RST is a consequence of not considering all possible properties for the characteri- 953

zation of its objects when using Leibniz’s principle. The principle holds, but not all properties are taken into 954

account. 955

Let’s see how quantum indiscernibility and Leibniz’s principle are linked within the framework of QST. 956

In [5, s.9], when analyzing Leibniz’s Principle of Identity of Indiscernibles (LP), its authors ask But 957

how (under certain circumstances) can fermions behave at the same time as indistinguishable and Leibnizian 958

particles? Where it is understood that particles are Leibnizian if they satisfy LP; that is, if two particles are 959

distinct, there exists a property that distinguishes them. Intuitively, one might observe that: if two electrons 960

(according to LP) are distinguished by at least one property P, then they are distinguished and therefore cannot be 961

indistinguishable. This observation would be correct in classical logic. However, in quantum logic it may happen 962

that a sentence like ∃P(P(a) ∧ ¬P(b)) is true even if any possible choice of P does not satisfy the formula 963

P(a) ∧¬P(b). 964

The authors consider the two electrons of a Helium atom in its ground state. Let a, b be names for the two 965

electrons of the Helium atom. P+ represents the property having spin up (in a certain direction) and P−, having 966

spin down (in the same direction). The following statement is physically true 967

(P+(a) ∧¬P+(b)) ∨ (P−(a) ∧¬P−(b)).

Therefore, the following instance of LP is also true: 968

¬(a = b) −→ ∃P (P(a) ∧¬P(b)).

However, the truth status of each member of the disjunction (P+(a) ∧ ¬P+(b)) ∨ (P−(a) ∧ ¬P−(b)) is 969

indeterminate, and this holds for any other possible choice of P. Therefore, QST is compatible with the Leibniz 970

principle. 971

We will analyze this principle from another point of view and prove that it is a theorem of QST. 972

Definition 9.1 (Leibiniz’s Law, LL). 29

∀x∀y(¬(x = y)→ ∃Qz(x ∈ z∧¬(y ∈ z)).

First of all, we recall that ¬(y ∈ z) is not equivalent to y < z (see Axiom 2.2). Let us introduce the following 973

additional axiom: 974

Axiom 9.1 (Unitary quaset). ∀x∃Qy∀z(z ∈ y↔ z = x). 975

29 We have modified the original LL of [5] since the particular case put by the authors, namely, ¬(x = y) → x ∈ {x} ∧ y < {x} is a theorem
of QST as it results from what comes next.
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We call such y the unitary quaset of x and denote it by {x}. It has the expected properties; for instance, one 976

can easily prove that {x} = {y} ↔ x = y and that x ∈ {y} iff x = y. In particular, we have the following theorem: 977

Theorem 9.1. For every quaset x, 978

qext({x}) = {x}. (28)

Proof. Let us call y the quasi-extension of {x}. According to the definition, it satisfies the following:

∀z(z ∈ y↔ z ∈ {x}) ∧ ∀z(z < y↔ ¬(z ∈ {x})).

What we need to prove is that x is the only element of y. Suppose there exists w such that w , x and w ∈ y. 979

Hence w ∈ {x} and (the second conjunct) w < {x} iff ¬(w ∈ {x}). But this is a contradiction. 980

Notwithstanding, we remark that the definition of weak membership (definition 7.1) does not forbid that 981

something in addition to x weakly belongs to {x}. 982

Since that QST does not involve the Axiom of Regularity, we can introduce the notion of a fixed thing, 983

inspired in Quine’s individuals, this way (we do not use the word ‘individual’ since the sense we attribute to it is 984

different from Quine): 985

Definition 9.2 (Fixed thing). We call x a fixed thing iff x = {x}. 986

Alternatively, we could say, like Quine, that x is a fixed thing (to him, an individual) iff ∀y(y ∈ x↔ y = x) 987

[50, p.32]. Of course a fixed thing is a quaset. 988

Now, let us turn to the validity of LL in QST for the case of quasets, that is, when both x and y are quasets.30
989

A natural candidate for the quaset z in the definition is in fact {x}, so that we arrive at the particular instance of 990

LL as follows: 991

Theorem 9.2 (Leibiniz’s Law). In QST, we have

∀x∀y(¬(x = y)→ x ∈ {x} ∧ ¬(y ∈ {x})).

Proof: It is sure that x ∈ {x}, and x is the only element that belongs to {x} by the above results. Hence, if ¬(y = x), 992

y cannot be also an element of {x}. 993

A version of LL that does not hold in QST is this: 994

Theorem 9.3 (Failure of a particular LL). This sentence does not hold in QST:

∀x∀y∃z(¬(x = y)→ x ∈− z∧ y < z)).

Proof: Assume that ¬(y = x) and that x ∈− z. We need to show that ¬(y < z). But this is immediate since 995

x ∈− z entails ¬(x ∈ z) ∧¬(x ∈ z) by definition 7.1. Being y , x, ¬(x < z) implies ¬(y < z), what we need. 996

Q and Q−are characterized by admitting genuinely indiscernible entities without being identical, that is, 997

non-individuals (entities without identity). For non-individuals, Leibniz’s principle is not even applicable. It is 998

not that it is false, but that it is not even applicable to non-individuals. Entities without identity can be different 999

only in number. That is, they can be numerically distinct (count as more than one), but share all their properties. 1000

A classic example of this is presented by Bose-Einstein condensates [27,51]. Thus, neither Q nor Q−satisfy STI. 1001

10. Rigid and deformable structures 1002

We will discuss here the mathematical concept of rigid structure, which is closely linked to the topics 1003

discussed above. 1004

30 We remark that Dalla Chiara and Toraldo di Francia do not postulate any axiom that can give the unitary quaset, but they speak of it
anyway. Here we try to circumvent this fact by introducing it.
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As we said, standard quantum mechanics is compatible with an ontology of genuinely indiscernible entities 1005

or non-individuals. If we want our formalisms to capture the essence of non-individuals, they must depart from 1006

standard mathematics, since the latter is adapted from the start to deal with entities with identity, entities for 1007

which the Leibniz principle applies. 1008

In mathematical terms, if we wanted to capture this property of quantum entities, we should not be able to 1009

distinguish things by a property or a relation. If we use a standard mathematical framework such as a standard set 1010

theory (ZF, NBG, NF, etc.), then the distinction is always possible. The problem with using a standard framework 1011

is that we can consider indiscernible elements only within a deformable (non-rigid) structure, that is, a structure 1012

that admits non-trivial automorphisms [26]. But this is a fictitious solution, since it is proved that every structure 1013

inside ZF (or NBG, NF, etc.) can be extended to a rigid structure, where apparently indistinguishable elements are 1014

discernible. Moreover, the entire universe of sets in a theory like ZF is rigid [26, p.66], i.e. standard set theories 1015

are theories of individuals. Their variables are individual and their quantifiers always range over domains of 1016

individuals. In this sense, it can be said that, despite being formal theories, they have an ontological commitment 1017

to individuals. 1018

The main problem with using standard mathematics (based on classical logic) to describe non-individuals 1019

is that any object a can always be discerned from any other entity b. Consider this: take the singleton {a} and 1020

define the identity of a by Ia(x) := x ∈ {a}. This makes it so that only a has this “property”, so there will be a 1021

difference from any other object b, i.e. from any other entity that does not satisfy Ia. This is typical of standard 1022

mathematics, and is expected to be so, since the theory was designed to deal with individuals. Of course, we can 1023

mimic indiscernibles in such frameworks by confining them to deformable (non-rigid) structures. But this is a 1024

trick, since in set theories like the ZFC system, every structure can be extended to a rigid structure, one spanning 1025

only the trivial automorphism. In this extended structure, we realize that the supposedly indiscernible entity is 1026

actually an individual. We recommend [52] to the interested reader. 1027

What can we say about rigidity in Q and Q−? Both of these qset theories allow us to build deformable 1028

structures that cannot be extended to rigid structures. In both of them, the automorphism h(x) ≡ x is a non-trivial 1029

automorphism. The reason for this, as we said above, is that membership is a non-invariant relation under this 1030

automorphism. That is, if x ∈ y and x ≡ x′, then nothing in the formalism ensures that x′ ∈ y. Thus, they seem to 1031

be a good place to accommodate indiscernible entities. 1032

With what has been said above about the extensionality and indiscernibility of RST, the reader will already 1033

suspect that this theory is rigid as ZF. Yes, since every rough set structure can be extended, including the relevant 1034

information, to a structure whose only automorphism is the identity. This, as we have already said, will be 1035

associated with the null area of each of the classes of the grain and with the equivalence relation (identity, 1036

associated with the automorphism h(x) = x). 1037

The most delicate case with respect to this property is represented by QST and its extensions. The link 1038

between QST and rigid structures has hardly been touched upon in the specific literature on the subject. We will 1039

say a few words about it, without claiming that our reasoning is definitive. This topic will have to be further 1040

addressed in future articles. 1041

In the original axiomatization of QST, the argument we applied to standard theories like ZF (using Ia(x)) is 1042

not applicable, since the theory does not have sufficient expressive power. On the one hand, it does not have 1043

a pair axiom for non-classical quasets, that is, for quasets outside the internal copy that QST has of ZF. Its 1044

authors possibly did not include such an axiom so that the same reasoning as in ZF cannot be followed. On the 1045

other hand, it should be noted that since QST is an intensional theory, its properties are not determined by their 1046

extensions. Therefore, if the formalism has to be able to discern distinct entities through properties, it is not 1047

enough to express them extensionally. Properties in QST are not simply expressed through the extension of a set. 1048

The issue of how to express properties in QST (and also in RST) could be related to what in the field of truth 1049

theories is known as Underpill Solution and Overpill Solution (see introduction of [53]). 1050

Extensions of QST (QST+, QS T
+

) incorporate a pair axiom, but looking closely at 3.10, it can be noted that 1051

it does not admit the same treatment as in ZF. This is because the axiom does not guarantee that x ∈ {x}. It does 1052

guarantee that it belongs to its closure, that is, x ∈ {x}. But the pair axiom does not prevent many other objects 1053

from belonging to this closure. Therefore, if a reasoning like ZF’s is to be applied, it must undergo significant 1054
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changes. It remains to carefully analyze what role the standardization axioms 3.4, (and antistandardization 3.5, 1055

3.6) play, since these axioms generate many more sets when changing membership from standard to weak and 1056

vice versa. The expressive power of the theory increases notably with this axiom, which is why it has been left 1057

out of the first extension of QST. 1058

11. Conclusions 1059

We have shown strong links between QST, Q−and RST. We think that these links can motivate new 1060

applications that, for some of them, take advantage of the developments already made in the others. The 1061

common structure inherited by their domains, due to the membership relations, can be used in fields such 1062

as non-deterministic semantics of Nmatrices, where QST has already been introduced. Equivalently, several 1063

topological developments in the RST framework can be transferred (with the necessary care) to Q−or QST. We 1064

also saw some important differences that these theoretical frameworks have in relation to rigid structures and the 1065

Leibniz principle. Several questions are still unresolved, for example: what is the maximum degree of structural 1066

similarity that can be established between these theories? How can we achieve the maximum similarity between 1067

their axiomatic presentations? What possible variants of these theories, of some particular interest, can arise? Can 1068

the concept of non-individuality be used in AI, where RST has several applications? The ontology of identityless 1069

entities motivated by quantum mechanics, which has strong implications for information theory and quantum 1070

computing, could be beneficial when applied to AI. 1071
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