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Abstract 

The interpretation of quantum measurements presents a fundamental challenge in quantum 

mechanics, with concepts such as the Copenhagen Interpretation (CI), Many-Worlds 

Interpretation (MWI), and Bohmian Mechanics (BM) offering distinct perspectives. We propose 

the Branched Hilbert Subspace Interpretation (BHSI), which describes measurement as 

branching the local Hilbert space of a system into decoherent subspaces. We formalize the 

mathematical framework of BHSI using branching and the engaging and disengaging unitary 

operators to relationally and causally update the states of observers. Unlike the MWI, BHSI 

avoids the ontological proliferation of worlds and copies of observers, realizing the Born rule 

based on branch weights. Unlike the CI, BHSI retains the essential features of the MWI: unitary 

evolution and no wavefunction collapse. Unlike the BM, BHSI does not depend on a nonlocal 

structure, which may conflict with relativity. We compare CI, MWI, and BHSI in the double-slit 

experiment, Bell tests, Wigner and his friend, the black hole information paradox, and the 

delayed choice quantum eraser. Additionally, we examine the environmental scale of branching 

in MWI versus BHSI (maximal vs. minimal) and investigate whether recohering branches can be 

realized. Overall, BHSI offers a minimalist, unitarity-preserving, collapse-free, and 

probabilistically inherent alternative interpretation of quantum measurements.  

 

Keywords: Bohmian Mechanics, Born Rule, Branched Hilbert Subspace Interpretation, 

Copenhagen Interpretation, Many-Worlds Interpretation, No-Hiding Theorem 

 

 

1. Introduction 

 

The interpretation of quantum mechanics (QM) has been debated since its inception in 

the 1920s. The theory’s mathematical formalism, such as unitary evolution, superposition, and 

entanglement, yields strikingly non-classical predictions, yet its physical meaning remains 

contested. The Copenhagen Interpretation (CI; Bohr, Heisenberg, Born, Pauli; 1920s-1950s, [1-

3]) provides a mathematically simple framework that aligns with lab observations. However, it 

faces criticism for its undefined wave function collapse, the straightforward postulation of the 

Born rule [4], the cornerstone of QM probabilistic predictions, and the subjective boundary 

separating quantum and classical regimes. The Many-Worlds Interpretation (MWI; Everett, 

DeWitt, Deutsch, Wallace; 1957-present, [5-7]) addresses the measurement problem by 

postulating that all possible quantum measurement outcomes occur in separate, non-interacting 

branches of reality (each branch is a world with a copy of the observer), thereby offering a 

compelling solution by eliminating wavefunction collapse. Still, it encounters significant 

challenges regarding its ontological excess, the lack of a convincing explanation for the Born 

rule, and the preferred basis issue [8-11]. Bohmian Mechanics (BM, Bohm, Bell, Goldstein; 

1952-present; [12-14]), also known as the de Broglie-Bohm pilot-wave theory, resolves the wave 
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collapse issue of CI within a single world, but it relies on hidden variables (actual particle 

positions), and its explicit nonlocality structure may conflict with relativity.    

 

We propose an alternative approach: the Branched Hilbert Subspace Interpretation (BHSI), in 

which measurement splits the local Hilbert space into multiple branches instead of partitioning 

the universe into parallel worlds in the global Hilbert space. Since each possible outcome exists 

and evolves within one branch, no wave function collapses. The observer’s state is updated 

relationally and causally, resulting in one outcome per observation. The Born rule [4] can be 

realized by assigning weight (probability) to each branch based on the initial state represented on 

the basis chosen by the observer. With only one observer in a single world, it does not face the 

ontological challenge of explaining probability in the MWI.  

 

We formalize the mathematical framework of BHSI by defining branching and the engaging and 

disengaging (EGD) unitary operators. We explain how the EGD operator updates the observer's 

state. We compare BHSI with CI and MWI by exploring their implications for interference 

(double-slit experiment [15-17]), nonlocality (Bell tests [18-19]), causal dominance (Wigner’s 

friend) [5,20-21], black hole radiation with the No-Hiding Theory (NHT) [22-23], and the 

delayed choice quantum eraser [24-25]. The last section discusses the nature of branching and 

compares the environmental scale of quantum decoherence [26-28] in MWI vs BHSI (the 

maximal vs. the minimal). Overall, BHSI can be viewed as a lightweight version of MWI, and it 

is interesting to investigate whether BHSI could potentially recohere branched local subspaces. 

 

 

2. Mathematical Framework 

 

In this section, we present the fundamental concepts of BHSI: branching local Hilbert 

spaces, updating (engaging and disengaging) the observer’s state, and the Born rule. 

 

2.1. The Branching, Engaging, and Disengaging Operators  

Assuming the observer chooses to measure an observable Ĝ , the following linear 

combination on the G-basis describes the initial quantum state ([2, p.29]):  

 

2

,1 1
1

ˆ| | , | | , | , | | 1, 0
D

D D

i i i i i i j i j i ii i
i

c g G g g g g g c c
= =

=

 =   =    = =      (1) 

 

The initial Hilbert space is D-dimensional, corresponding to the D possible outcomes of the 

measurement, each with a non-zero probability. The branching operator B̂ is a unitary operator 

that splits the D-dimensional Hilbert space H D into D branches:  
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  (3) 

 

Note that the states |gB,k〉 are mutually decoherent, evolving in different branches, and the 

surrounding environment |E〉L is involved to make them decoherent. The engaging and 

disengaging (EGD) operator Σβ ≡ ΓβTβΛβ is a product of three unitary operators2. The first 

operator is the engaging operator Λβ. It updates the observer’s state from |ready〉 in the 

environment HE to |reads〉 and entangles the observer’s state with the βth subspace. 

 

,, : | ready | reads o E o ST g
             H H      (4) 

 

The operator product Λβ B̂  randomly engages the observer with one branch:  
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To simplify the expression, we have used the following notation: 
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After recording the outcome, operator Tβ changes the observer’s state to |ready〉, then operator 

  disengages him from the branch, ensuring he is prepared for the next engagement.    

 , ,
1

:| reads | ready ; : (span | | ready
D

O O B f S k k B k O
k

T T c g  
=

   =    H H H   (7) 

 

Let U(t) be the time evolution operator of the system, which can be relativistic or not:  

 

( ) | (0) | ( ) , | | (0) , (0), ( ) | (0) | ( )k k B BU t t c c U t t  =          =      (8) 

 

The branching operator B̂ commutes with the time evolution operator: 
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Altogether, a measurement process can be described as a unitary transformation M̂  ( β is a 

random choice): 

 
2  They act like the unitary NOT gate, flipping between the observer’s states [24, p.233]. 
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2.2. The Measurement Process and the Born Rule in BSHI 

The initial Hilbert space is D-dimensional, as Eq. (1) describes. We discuss three cases. 

Case 1: D = 1. The initial normalized state contains only one basis state.  

 

1| | g =             (13) 

 

Since this reflects the observer's measurement basis, the observer consistently records g1, with 

P(g1) =1, by unitarily branching, engaging, and disengaging. Only one branch exists, containing 

|gB,1〉 after the measurement. There is no loss of information or gain of entropy.  

 

Case 2: D ≥ 1. Before the observation, the system (S), the local environment |E〉L, and the state of 

the observer or the apparatus (O) are in the following pre-measurement state: 

 

0 1
| | | ready | , | |

D

O L k kk
E c g

=
  =      =        (14) 

 

According to Eq. (5), branching the system causes its local Hilbert space to split into D parallel 

subspaces, each spanning a basis state. The observer engages with one branch, which has an 

associated weight (chance) based on the initial state, thereby realizing the Born rule: 

 

( , ) 2 2

, ,
1

[span c | (| reads ) ], ( ) | | | | |
D

k

S L S k k b k o S
k

g g P c g

  

=
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The MWI features parallel decoherent worlds within the global Hilbert space. In contrast, the 

BHSI operates minimally, involving only the system's local Hilbert space, minimal environment, 

and the observer's state. The observer (or apparatus) becomes entangled with one branch and 

reads the corresponding outcome with a specific probability. Each branch contains only a single 

basis state, and its evolution adheres to unitarity, similar to the D = 1 case. Therefore, wave 

collapse in the CI is circumvented without the necessity of many worlds in the MWI. After the 

measurement, the observer disengages from the branched system state, as illustrated by Eq. (7): 

  

 ;1
| | | ready | | ready

M

f B O k b k Ok
c g

=
  =    =         (16) 

 

Case 3: D = 2. This is a specific example of Case 2: the initial state consists of only two basis 

states. We aim to use this case to compare step-by-step with the MWI. Assume that Bob is 

observing a qubit. Before the measurement, we have: 

 

MWI: 
2 2

0 0 1 0 1| ( | 0 |1 ) | | , | | | | 1B E     =  +    + =      (17) 

BHSI: 
2 2

0 0 1 0 1| ( | 0 |1 ) | ready | , | | | | 1O LE     =  +    + =     (18) 
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The equation appears similar. The difference is that in MWI, the environment encompasses the 

entire world, including Bob, while BHSI’s minimal environment is |E〉L, including Bob’s state. 

After branching, their states have the following forms: 

 

MWI: 0 0 0 1 1 1 0 1 0 1| | 0 | | |1 | | , | 0 , | 0f B E B E B B E E   =    +            (19) 

BHSI: 
1 ( , ) 2

0
| | (| reads ) , {0,1}, ( ) | |k

B k B Ok
k k P

   

=
  =    =    (20) 

Or:  
(0, ) (1, ) 2

0 1| | 0 (| reads 0 ) |1 (| reads 1 ) , {0,1}, ( ) | |B B O B O P 

       =   +    =  (21) 

 

The BHSI borrows the branching idea from the MWI. However, instead of updating the 

universal wave function in the global Hilbert space, the BHSI only updates the minimal 

environment with Bob’s state in one of the local spaces (see Fig. 1).  After the branching, in the 

MWI, each branch is a real world with a real Bob, which is the end of the observation. In 

contrast, in the BHSI, Bob in the local Hilbert space is not a real person but rather the state of 

Bob as represented through the engaged part of his apparatus. After reading, Bob becomes 

disengaged, as described by Eq. (7). The final state contains two decoherent branches: 

 

BHSI:  
2 2

0 1 0 1| | 0 |1 | | | | 1B B B     =  +  + =       (22) 

 

Assuming Bob reads 1 (λ = 1). During the entire measurement process, Bob experiences three 

stages (before, during, and after the measurement), as described by Eqs (11-12): 

 

0 1| | ready | | 0 |1 | reads 1 | | ready O L B B O B OE     →  +   →       (23) 

 

 
Fig. 1: The Branched Local Hilbert Subspaces 

 



  4/29/2025 

Page 6 of 12 

 

The branched local Hilbert spaces are eventually relocated into the environment at large by 

unitary transformations, complying with the No-Hiding Theorem (NHT, [23]):  

 

: | |  | '  E BU E E   →           (24) 

 

2.3. The Observer’s Local View of the Measurement:  

  In quantum measurements or quantum computing, the observer must repeatedly measure 

the same initial states. Each time, he reads one possible outcome, with the probability predicted 

by the Born rule, which leads to the following density matrix [29, p.53]: 

 
2 2

1 1
| | | |, | | 1

D D

k k k kk k
g c g c

= =
=   =         (25) 

 

Locally, the observer sees that the initial pure state, Eq. (1), with zero von Neumann entropy [29, 

p.179], becomes a mixed state, and its von Neumann entropy is increased to: 

 
2 2

1
( ) Tr( ln ) {| | ln | | } 0

D

k kk
S c c  

=
= − = −        (26) 

 

The observer concludes that his measurement is irreversible because the system's entropy 

increases and certain information is lost. However, in the entire Hilbert space encompassing all 

branches, there is no loss of information or gain in entropy. This is quite similar to the MWI, 

except that MWI consists of many independent, equally real worlds, while BHSI features 

numerous independent local Hilbert subspaces with predictable weights (probabilities). 

 

3. Comparison of CI, MWI, BM, and BHSI 

 

Feature 
Copenhagen 

(CI) 

Many-Worlds 

(MWI) 

Bohmian 

Mechanics (BM) 
 BHSI 

1. Wave 

Collapse? 

Unitarity? 

Yes. Non-

unitary  

No. Fully 

unitary by 

splitting the 

global Hilbert 

space 

No. Fully unitary 

(wavefunction 

guides particles) 

No. Fully 

unitary by 

splitting the 

local Hilbert 

space  

2. Ontology: 

Number of 

Worlds and 

"Me" 

A single world, 

a single “Me.” 

Many real 

worlds, each 

with a “Me.” 

A single world, a 

single “Me.” 

A single world, 

a single “Me.” 

3. Probability: 

The Born Rule 

Fundamental 

postulate (no 

deeper 

explanation) 

Emergent from 

decision theory? 

(self-locating 

uncertainty?) 

Explained by the 

equilibrium 

distributions of 

hidden variables 

Interpreted as 

the weights of 

local Hilbert 

branches.  

4. The Role of 

the Observer 

Passive, external 

to the system, 

and causes 

collapse 

Branching, then 

following one 

world, and all 

worlds are real. 

Passive (particles 

have definite 

positions at all 

times) 

Branching, 

engaging, then 

disengaging 

from one Hilbert 

branch. 
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5. Determinism 

Indeterministic 

(collapse 

introduces 

randomness) 

Deterministic 

(but observers 

experience 

subjective 

randomness) 

Deterministic 

(hidden variables 

define definite 

trajectories) 

Deterministic 

(but observers 

experience local 

randomness) 

6. Information 

Loss 

Yes (collapse 

destroys 

superpositions 

permanently) 

No (information 

persists in 

different worlds) 

No (global wave 

function guides 

particles 

deterministically) 

No (information 

persists in 

different Hilbert 

subspaces)  

7. Can Branches 

Recombine? 

N/A (only one 

world exists) 

No (recoherence 

leads to identity 

crises) 

N/A (only one 

world exists) 

Yes? In theory, 

it is possible. 

8. Locality of 

Physical Laws 

Local (except 

for nonlocal 

collapse) 

Local (no signal 

between 

branches) 

Nonlocal (built-

in by the global 

wave function) 

Local (no faster-

than-light 

action) 

Table 1. Comparison of the Four Interpretations of Measurements  

 

 

4. Comparing BHSI with MWI and CL by Examples 

 

The BHSI is proposed as a “cost-effective” version of the MWI to avoid the collapse 

issue in the CI without the ontological excess of MWI. This section uses several examples to 

illustrate the similarities and differences between the three interpretations. 

 

Example 4.1. The Double-Slit Experiment: It is the most popular experiment to explain the 

particle-wave duality of QM [15-16], including photons, electrons, and large C60 molecules [17]. 

When a particle hits the screen, the local Hilbert space in BHSI splits into uncountable infinite 

branches (in theory), and the observer reads it at one position x.   

 

( , ')
1,  if '  

| ' | ' ' | [| reads ] , ( , ') (continuous case)
0,  if '  

x x

B B O

x x
dx x x x x x

x x


=

  =      = 


  (27) 

2 2 2| | | | ( ) | | ( ) ( ) |B I IIx x x x   =  =  +        (28) 

 

Because of the limitations of the experimental equipment, the integral in Eq. (27-28) should be 

replaced by a discrete summation over tiny pieces Δk:  

 
( , ') 2

' ' ' I II'
| | | [| reads ] , ( ) | ( ) ( ) |k k

B k k k B k O k k k kk
x x x P x x  =       =  +    (29) 

 

The BHSI and MWI rely on branching to maintain unitarity and interference without total 

information loss. In the BHSI, the observer disengages with the system after reading, and the 

interference or probability distribution (the Born rule) can be assigned naturally; however, in the 

MWI, the environment coherent with each piece Δk is a whole world with a real observer. In a 

typical double-slit experiment, tens of thousands of photons hit the screen, and each photon 

updates thousands of branches. Because of the ontological issue, there is no convincing 
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interpretation of probability in MWI yet: Many minds?  Indexicalism? Decision theory? A 

rational bet on a particular result? Or Envariance [8,9]?  

 

The CI can explain the interference by simply assuming the Born rule. Still, each particle’s hit 

causes a wave collapse (FTL action), breaking unitarity and causing information loss. 

 

Example 4.2. The Bell Tests of Entanglement: Applying the Born rule, all three interpretations 

can explain the violation of the Bell inequality [18-19] without spooky actions at a distance 

between the paired particles or the two observers. However, the costs are different. In CI, the 

measurements by Alice and Bob cause two wave collapses (FTL actions), leading to information 

loss. MWI and BHSI have no collapse and no total information loss. But, MWI ends with four 

Hilbert branches of worlds per photon pair, each containing Alice and Bob, while BHSI ends 

with four local Hilbert branches without multiple Alice and Bob.  

 

MWI: Alice and Bob update four worlds per photon pair, each containing an Alice and a Bob: 

 

1 0, 0, 0, 2 1,A 1,A 1,AA :| 0 | Alice | Bob | E , A : |1 | Alice | Bob | Ea A A A a          (30) 

1 0, 0, 0, 2 1,B 1,B 1,BB :| 0 | Alice | Bob | E , B : |1 | AliceE BobE | Eb B B B b          (31) 

 

BHSI: Alice and Bob update four branches per photon pair in their local Hilbert space,  

 
( ,0) ( ,1)

1 2A :| 0 (| reads 0 ) | 0 , A : |1 (| reads 1 ) |1 , {0,1}B a O B a B a O B a

     →    →    (32) 

( ,0) ( ,1)

1 2B :| 0 (| reads 0 ) | 0 ,  B : |1 (| reads 1 ) |1 , {0,1}B b O B b B b O B b

     →    →    (33) 

 

Typically, millions of photon pairs are measured by Alice and Bob in a Bell test. 

  

Example 4.3. Wigner’s Friend Thought Experiment [5, 19-20] is a compelling example 

involving mixed observers. Setup: The Friend (F) observes a qubit state: (∣0⟩ + ∣1⟩)/√2 in a Lab; 

simultaneously, Wagner (W), outside, observes F and the qubit. What occurs? 

 
CI: F collapses the qubit, and W sees what F sees. One collapse. Why? F is the preferred 

observer (he measures the qubit), and F is a classical object that cannot entangle with a qubit.  

 
MWI: F updates two worlds in the global Hilbert space, each containing an F and a W: 

 

1 0 0 0 2 1 1 1H :| 0 | F | W | E , H : |1 | F | W | E             (34) 

 

At the same time, W also updates two worlds, each containing an F and a W, too: 

 

3 0 0 0 4 1 1 1H :| 0 | F | W | E , H : |1 | F | W | E             (35) 

 

There is no collapse, no preferred observer, and F can be entangled with a qubit. Moreover, we 

can set H1 = H3 and H2 = H4, because H1 & H3 (H2 & H4) are physically indistinguishable, 
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leading to one branching, two worlds. No matter whether it is two or four worlds, there is no 

identity conflict. If F and W shake hands, they must see the same result and in the same world. 

 

BHSI: Friend updates two decoherent local branches, engages one, and then disengages:  

 
( ,0) ( ,1)

1 2H :| 0 (| reads 0 ) | 0 , H : |1 (| reads 1 ) |1 , {0,1}B O B B O B

     →    →       (36) 

 

Because Friend measures the qubit, his branching is dominant; the local Hilbert subspaces must 

be updated synchronously with his, so Wagner’s two branches should synchronize with Friend’s: 

 
( ,0) ( ,1)

3 4H :| 0 (| F reads 0 | reads 0 ) | 0 , H : |1 (| F reads 1 | reads 1 ) |1B O B B O B

     →     →    (37) 

 

Wagner will see an outcome of 0/1 if his friend engages with H1/H2. Like the MWI, the process 

is unitary, with no information loss or collapse; the friend’s state can be entangled with a qubit, 

with no preferred observer but a causally dominant branching. Similar to the CI, only one world 

with one Wagner and one Friend; they see the same result and can always shake hands. 

 

Example 4.4. The Black hole information paradox: Hawking’s semi-classical calculations 

suggest that black hole evaporation via Hawking radiation is thermal and random [22]. If so, it 

destroys information about the infalling matter, violating unitarity. MWI and BHSI have their 

own branching structure (global vs. local) for modeling Hawking radiation, which is consistent 

with the No-Hiding theory (NHT, [23]). However, the Hawking radiation in the CI causes 

collapses and information loss, violating the NHT.  

 

Example 4.5. The delayed choice quantum eraser experiments [24-25]: In the MWI and BHSI, 

whether an observer sees the interference depends on which Hilbert branches (already recorded 

when signal photons hit the screen) the observer later chooses based on the path of the idle 

photons (which-way information kept or erased). There is no collapse or retrocausality, but many 

worlds in MWI and many local subspaces in BHSI. In the CI, reality is only settled when the 

measurement is fully completed, so there is no retrocausality, even though partial collapses may 

occur when signal photons hit the screen. 

 

 

5. Branching and Possible Debranching: MWI vs. BHSI  

 

In MWI, each branch is a whole, independent, and real world. Within a world, “objects” 

have definite macroscopic states by fiat [Eq. (1), 8]:  

 

WORLD OBJ. 1 OBJ. 2 OBJ. | | | | |N  =                         (38) 

 

The product state is only for relevant variables for the macroscopic description of the objects. 

There might be some entanglement between weakly coupled variables, which should belong to 

|Φ〉. The universe is expressed as a superposition of all existing worlds: 
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UNIVERSE WORLD| | , 1
M M

i i ii i
   =   =        (39) 

      

Determining how to configure a world with about 1080 particles is hard (preferred basis?), and 

nobody knows how big the total M is, except that it is exponentially growing (just one double-slit 

experiment will add millions of branches). As described in Case 3, Section 2.2, when measuring 

a qubit, one of the branches in Eq. (39) (where the observer lives) is entangled with the two-qubit 

states described in Eqs. (17) and (19), resulting in two independent worlds, each having a Bob. 

Although mathematically possible, recohering the two branches in Eq. (19) or any two in (39) is 

ontologically forbidden (it causes identity crises) and practically impossible for any two worlds.  

 

Contrary to MWI, the branches in the BHSI are local Hilbert subspaces. Based on the quantum 

decoherence theory [26-28], the branching operator in Eq. (3) can be understood as follows: 

 

; ,

1 1 1

ˆ : | | | | | , |
N N N

k k L k k k L k B k L i k L i k

k k k

B c g E c g E c g E E 
= = =

 
   →        

 
     (40) 

 

Here, |E〉L represents the minimal local environment, which directly interacts with the quantum 

system and contains about 10 ~100 particles. Thus, the nature of branching is the same for MWI 

and BHSI. The difference lies in the size of their respective environments: a whole world versus 

the local environment (maximal versus minimal, or 1080 versus 102). Therefore, controlled 

recoherence in BHSI is mathematically, ontologically permissible, and practically conceivable. 

In theory, one may construct a debranching operator for the recoherence of decohered branches:  

 
† †

1 ,1 2 ,2 1 1 1 2 2 2 1 1 2 2( | | ) ( | | | | ) ( | | ) |B B L L LB B E E E            +  =   +   =  +     (41) 

 

This suggests a potential test to differentiate between MWI and BHSI. Experiments such as 

delayed choice and quantum eraser [24-25], quantum error correction [30], or trapped ions 

entangled with photons [31] could be utilized for this purpose. However, the possibility of 

practically debranching the branched local Hilbert spaces before they are relocated within the 

environment remains an open question. 

 

 

6. Conclusion and Discussion 

 

While sidestepping the concept of many worlds and observers, the Branched Hilbert 

Subspace Interpretation (BHSI) retains all the benefits of the Many-Worlds Interpretation 

(MWI), such as unitarity, no collapse, and deterministic evolution. It also preserves all the 

advantages of the Copenhagen Interpretation (CI), offering one world and a single observer 

while circumventing wave collapse. Compared to CI and MWI, BHSI provides a balanced 

perspective: 

 

• Ontological simplicity: No parallel worlds or preferred basis. 

• Unitarity: No collapse, no information loss. 

• Casual dominance: Whoever decoheres the system first defines the branching structure.  

• The Born rule: Probability can be assigned to branches, not simply assumed.  
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• Testability: Predicts standard quantum results with fewer metaphysical commitments. 

 

The BHSI remains a developing framework that requires further mathematical refinement and 

empirical engagement through quantum experiments and thought scenarios. Nevertheless, it 

offers a promising middle ground for those uncomfortable with wavefunction collapse in the CI 

and skeptical of the MWI's ontological commitments. BHSI provides a conceptually coherent 

and physically grounded approach to quantum measurement by preserving unitarity and causal 

consistency within a single-world ontology. 

 

Abbreviations  

 

 BHSI  Branched Hilbert Subspace Interpretation 

 BM  Bohmian Mechanics 

 CI  Copenhagen Interpretation 

 EGD  Engaging and Disengaging 

 FTL  Faster Than Light  

 MWI  Many-Worlds Interpretation 

 NHT  No-Hiding Theorem 

 QM  Quantum Mechanics 
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