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Abstract

Noether’s first theorem demonstrates that continuous symmetries give rise to

conserved quantities (under appropriate conditions). This fact tempts many to

hold that symmetry principles explain conservation laws. Yet there is a puzzle:

the derivation goes both ways. So why does symmetry explain conservation when

the derivation is bidirectional? Lange (2007, 2009) provides an answer: symmetry

principles are meta-laws, and meta-laws explain first-order laws just as first-order

laws explain facts. Using a “non-standard” Lagrangian, Smith (2008) claims that

conservation of angular momentum can hold without rotational symmetry, provid-

ing a counter-example to Lange. In this paper, I show that Smith’s non-standard

Lagrangian fails to serve as a counterexample. However, that doesn’t leave Lange’s

account unchallenged. I argue that the debate between Lange and Smith ultimately

revolves around an ambiguity which, once clarified, leads to a dilemma. Which

symmetry principle explains? Is it the symmetry of the action or the symmetry

of equations of motion? If the former, then the symmetry is no more stable than

conservation laws. Hence, we lose the desired explanatory direction. If the latter,

the symmetry lacks explanatory relevance and fails to exhibit greater stability than

conservation laws. However one disambiguates ‘symmetry’, it remains mysterious

why symmetry principles explain conservation laws.
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1 Introduction

In 1918 Emmy Noether established something remarkable: under appropriate conditions,

continuous symmetries of the action give rise to conserved quantities. This is now known

as Noether’s first theorem. Noether’s theorem has tempted many to think that symmetry

principles explain conservation laws.1 However, the mathematical relationship is in fact

bidirectional: one can derive a conserved quantity from a symmetry, and conversely, a

symmetry from a conserved quantity.2 This poses a puzzle: if the derivation goes both

ways, why do we so often regard symmetry principles as explaining conservation laws,

rather than the reverse?

Marc Lange (2007, 2009) develops an account of laws that he claims can effectively

ground the explanatory direction. For Lange, symmetries are meta-laws that possess a

stronger type of necessity than conservation laws. The necessity is stronger if it is more

nomically stable, where nomic stability is a measure of persistence under counterfactual

perturbations. Crudely, symmetries explain conservation laws because symmetries would

still have held, had the first-order laws been different. Sheldon Smith (2008) argues that

Lange’s account fails. Using a “non-standard” Lagrangian, Smith claims that conser-

vation of angular momentum can hold without rotational symmetry. Hence, symmetry

cannot be more nomically stable than conservation laws.

In this paper, I argue that Smith’s counterexample cannot be used against Lange be-

cause the conserved quantity in the non-standard Lagrangian is not angular momentum.

This doesn’t mean that Lange’s account stands unchallenged, however. I argue that the

debate between Lange and Smith ultimately revolves around an ambiguity which, once

clarified, leads to a dilemma. In particular, we must ask which symmetry principle ex-

plains. Is it the symmetry of equations of motion or the symmetry of the action? If

the symmetry refers to the symmetry of the action, then we fail to achieve the desired

explanatory direction. If the symmetry refers to the symmetry of equations of motion (or

the symmetry of any other first-order laws), then the symmetry is explanatorily irrele-

vant to and is no more stable than conservation laws. Whichever way one disambiguates

1E.g., Wigner (1964), Zee (1986).
2The bijection in the Lagrangian framework only holds for appropriately defined equivalence classes of
both symmetries and conservation laws; see Martinez Alonso (1979) and independently Olver (1986); for
further discussion, see Brown (2022). I thank the anonymous reviewer for prompting this clarification.
In a Hamiltonian framework, the converse theorem can be shown in a more straightforward way; see
Butterfield (2006, Section 5) for Noether’s theorem and its converse in a Hamiltonian framework.
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‘symmetry’, it remains mysterious why symmetry principles explain conservation laws.

Many have responded to Lange (2007, 2009, 2011b) by either accommodating meta-

laws within other accounts of laws (Yudell 2013, Duguid 2023) or proposing alternative

interpretations of symmetry principles (Hicks 2019, Friend 2024). In contrast to these

existing responses, I emphasize the need to make a finer distinction between different

symmetries before determining their modal status and explanatory power.

While the paper primarily addresses the Lange-Smith debate, it also makes two in-

dependent contributions. First, the discussion of symmetries shows that we need an

account of explanation that resolves the dilemma between explanatory asymmetry and

explanatory relevance. Second, the analysis of Smith’s non-standard Lagrangian raises

interesting questions about the physical equivalence of the Euler-Lagrange equations and

Hamilton’s equations of motion.

The paper is structured as follows. Section 2 explains Lange’s account of symmetries

as meta-laws. Section 3 introduces Smith’s alleged counterexample to Lange and argues

that this counterexample does not undermine Lange’s account. In Section 4, I make a

distinction between the symmetry of the action and the symmetry of the equations of

motion. I introduce two criteria for explanation: stability and relevance. I then pose a

dilemma. Which symmetry explains? If we say it’s the symmetry of the action, then the

symmetry fails stability. If we say it’s the symmetry of equations of motion or any other

first-order laws, then the symmetry fails stability and relevance. Either way, we cannot

achieve the desired explanatory direction. Section 5 is the conclusion.3

2 Symmetry as a Langean Meta-law

Symmetries are operations on objects that leave some salient feature of the object un-

changed. The object can be a material or geometrical object as well as a physical law.

Symmetries of laws can refer to many different operations. While space-time translations,

rotations, and Galilean transformations are continuous, time reversal and parity reversal

are discrete. For a system described by dynamical laws, the objects that the symmetry

operation acts on (“laws”) can be ambiguous. Sometimes laws refer to the equations of

3For readers interested in the technical aspects of Noether’s theorem, my analysis of the “non-standard”
Lagrangian in Section 3 offers a fresh contribution to that literature, independent of the metaphysical
debate. Those who are more interested in the metaphysical concerns may wish to skip the technical
details in Section 3 and proceed to Section 4.
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motion and other times the action (functional). Feynman et al. (1963), for instance, often

refers to physical laws as the action. The equations of motion are so closely related to

the action that in many systems one implies the other. We will see however, a distinction

between a symmetry of equations of motion and a symmetry of the action is important

in understanding the explanatory direction.

Given the abstract definition and broad application, a taxonomy of symmetries is

needed in order to identify their distinctive roles in physics. In the Standard Model of

particle physics, symmetry groups are related to the properties of elementary particles;

in Dirac’s theory of constrained Hamiltonian systems, gauge symmetries are related to

constraints that the phase space variables must satisfy. Given the purpose of this paper,

however, I limit my discussion to a particular set of relata: continuous symmetries of

spacetime and conservation laws. I focus exclusively on non-relativistic classical parti-

cle mechanics, where the assumptions underlying Noether’s theorem (and its standard

interpretations) are most straightforwardly satisfied.4

The connection between spacetime symmetries and conservation laws was hinted at

by physicists such as Lagrange (1811) and Hamilton (1834) way before Noether, but

Noether’s first theorem establishes the connection systematically. Textbooks in classical

mechanics commonly say that time translation symmetry “leads to” the conservation of

energy, or that rotational symmetry “results in” the conservation of angular momentum

per Noether’s theorem. Here, the derivation often involves introducing a generic action,

calculating the variation of the action under infinitesimal symmetry transformations,

and then using the Euler-Lagrange equation to show that only boundary terms survive.

If the transformations leave the action invariant (up to a boundary term), we obtain

quantities that are constant along solutions of the equations of motion.5 While the

converse derivation is well-known and often introduced in a Hamiltonian framework,

the explanatory direction, if indicated, is always established in one way but not the

other. That there exists an explanatory direction enjoys a broad consensus among many

4I thank the anonymous reviewer for pointing out this qualification.
5In this paper, I call a transformation a symmetry of the action if it leaves the action invariant up to
a boundary term. Including a boundary term makes the symmetry condition weaker. It turns out, we
only need the weaker condition to derive conserved quantities. Interestingly, this is related to the gauge
freedom associated with the Lagrangian, i.e. the fact that the equations of motion are invariant under a
shift of a Lagrangian by a total time derivative of an arbitrary smooth function (or a total divergence).
Others, e.g., Brown and Holland (2004) and Brown (2022), have referred to the weaker condition as a
“quasi-symmetry” to distinguish it from a “strict” symmetry that leaves the action strictly invariant.
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physicists. For instance, Eugene Wigner in his paper “Symmetry and Conservation Laws”

wrote,

“...the conservation laws for energy and for linear and angular momentum are

direct consequences of the symmetries...” (Wigner, 1964, p.959)

Whereas Wigner did not mention Noether, Anthony Zee in his book “Fearful Symmetry”

endorsed this direction of explanation appealing to Noether’s theorem:

“Conservation of energy and momentum had been known for centuries, but

physicists never linked them explicitly with symmetries...For years, I did not

question where these conservation laws came from; they seemed so basic that

they demanded no explanation. Then I heard about Noether’s insight and I

was profoundly impressed.” (Zee, 1986, p.120-121)

Noether’s theorem and its converse allows us to derive conservation laws from symme-

try principles and symmetry principles from conservation laws. Yet, since explanations

are unidirectional, this raises a puzzle. Why do symmetry principles explain conservation

laws? Houtappel, Van Dam, and Wigner (1965) suggest that symmetry might be a “su-

perlaw”. More recently, Lange (2007, 2009) develops an account of laws that he claims

can effectively ground the explanatory asymmetry. For Lange, symmetries are meta-laws

that possess a stronger type of necessity than conservation laws.

To fully appreciate Lange’s argument, a short detour through his counterfactual ac-

count of laws is needed. On Lange’s view, laws persist under various counterfactual

suppositions in a way that accidental facts do not. This is not simply to say that laws

persist under more counterfactual suppositions. If a counterfactual antecedent is logically

contradictory to a law, then the law would not hold under that particular counterfactual

perturbation. For example, had copper been an electrical insulator, then the law that

copper conducts electricity would not hold. The remedy is to impose a “logical con-

sistency requirement” to restrict the counterfactual antecedents to those ones that are

logically consistent with the conjunction of the laws.

However, it is blatantly circular to distinguish laws from the accidents by stating that

the laws are truths preserved under all counterfactual suppositions logically consistent

with the laws. To remove the circularity, Lange introduces the idea of sub-nomic facts.

Sub-nomic facts can either be laws or accidental facts but they do not declare their
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nomological status. For instance, “it is a law that F=ma” is not a sub-nomic fact, but

“F=ma” is. According to Lange, laws form the largest non-maximal sub-nomically stable

set. The set of laws is non-maximal because if a set of sub-nomic facts contains at least

one accident, then it is sub-nomically stable only if it is the maximal set of all sub-nomic

facts.6 Roughly speaking, a set of sub-nomic facts is sub-nomically stable if and only

if the set’s members would still have held under every sub-nomic supposition consistent

with the set.7 A more precise definition is stated as follows (Lange 2009, p.29 and Lange

2007, p.471):

A sub-nomically stable set. A non-empty and logically closed set Γ of sub-

nomic facts is sub-nomically stable if and only if the sub-nomic facts in Γ

are invariant under all sub-nomic counterfactual suppositions (and all nested

sub-nomic counterfactuals) that are logically consistent with Γ.

Given any sub-nomic claim p that belongs to a stable set Γ and any sub-nomic claim

q logically consistent with Γ, if q were true, then p would still hold. The notion of

sub-nomic stability provides a delicate way to distinguish laws from accidents without

presupposing which facts are laws. The sub-nomic claim “copper conducts electricity”

belongs to a sub-nomically stable set, but the sub-nomic claim “all coins in my pocket

are copper” belongs to a sub-nomically unstable set. With this notion of stability, a

hierarchy is constructed to distinguish claims with various modal forces. On the top,

there is the set of broadly logical truths, and at the bottom the set of all truths that are

nomic or sub-nomic (Lange, 2009, p.116).8 There can be multiple strata in the middle,

which makes room for laws and meta-laws.

Meta-laws are laws of laws. In particular, the relation between meta-laws and laws

mirrors the relation between first-order laws and accidental facts (Lange, 2007, p.478).

6There is a snowball effect – if one accidental fact is included in the set, then more accidental facts need
to be included to guarantee the set’s sub-nomic stability. The process continues and the set ends up
containing all sub-nomic truths. Such a maximal set cannot be a set of laws. For more details, see
Lange (2009).

7In his 2007 paper, Lange uses the term “non-nomic stability” for first-order laws in order to make a
distinction from “nomic stability” that applies to meta-laws. Later in his 2009 book, he replaces the
term “non-nomic stability” with “sub-nomic stability”. They are both defined in the same manner, but
I adopt the later terminology for its interpretive clarity.

8Lange (2009) introduces different kinds of hierarchies. One such hierarchy is the “bossing around”
picture, where sub-nomic facts are governed by laws, which, in turn, are governed by meta-laws, and so
on (p.19). Additionally, there is a pyramid representing exclusively sub-nomic truths, where meta-laws
are not present (p.41). For the purposes of this paper, I employ the one that includes both nomic and
sub-nomic facts (p.116).
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Analogous to sub-nomic stability, nomic stability is defined as the invariance of the mem-

bers of a non-empty and closed set of nomic or sub-nomic facts under all nomic and

sub-nomic counterfactual suppositions that are logically consistent with the set. Meta-

laws form the largest non-maximal set that possesses nomic stability, which is a “stronger”

type of necessity than sub-nomic stability. For Lange, this helps to resolve the puzzle of

explanatory direction.9

A conservation law is a sub-nomic claim that concerns particulars (e.g., the fact that

the total energy of an isolated physical system stays constant over time), while a symmetry

principle is a nomic claim that concerns laws (e.g., the fact F = ma is invariant under

a time translation). Symmetry principles possesses a stronger type of necessity, making

them more stable under counterfactual perturbations: had dynamical laws been different,

symmetry principles would still have held. On the other hand, conservation laws might

not have held under different dynamical laws.

To show this, Lange (2007) uses an interesting example. Imagine a world where the

dynamical laws are such that everything remains at rest if no force acts on it. Following

Wigner (1954), the equations of motion, applying to every particle α would be

mαẋα = − ∂f

∂xα

, mαẏα = − ∂f

∂yα
, mαżα = − ∂f

∂zα
, (1)

where f is some potential. Call this law F = mv, in contrast to Newton’s second law

F = ma. Note that familiar symmetries still hold. Take, for instance, a spatial shift

xα → x′
α = xα + ϵα, where ϵα is a constant. The equations of motion and the “forces”

are unaffected by the spatial shift. The symmetries in space and time, however, are

not accompanied by all conservation laws. While a conserved quantity corresponding

to the total momentum exists (if f is independent of displacements),10 there is no con-

served energy or angular momentum (Wigner 1954).11 It showcases that time translation

symmetry and rotational symmetry are more fundamental – they can hold without the

9It’s helpful to note that Lange takes counterfactuals as primitive, i.e. the ontological bedrock that
grounds laws. Although counterfactual fundamentalism is itself subject to debate, for present purposes,
it suffices to state the idea of Langean meta-law without delving into the specifics of the metaphysics
of counterfactuals. See Woodward, Loewer, Carroll, and Lange (2011).

10In this system, the conserved momentum in the x direction would be Q = mx1 +mx2 + ...+mxn.
11Noether’s theorem guarantees that a conserved quantity follows from a symmetry transformation under
a Lagrangian framework. However, as Wigner (1954) points out, this system cannot be formulated in
a Lagrangian or Hamiltonian framework.
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presence of conservation of energy and angular momentum.12 Furthermore, this example

does not violate Lange’s logical consistency requirement, because the energy and angular

momentum could be conserved (if the universe contained just a single inertial particle

with constant mass) even though they would not be conserved generally. While con-

servation laws and dynamical laws possess sub-nomic stability, symmetry principles as

meta-laws possess nomic stability. Had the dynamical law been F = mv, symmetry

principles would still hold but not conservation laws.13

For people who endorse symmetry principles’ elite status and believe that conservation

laws hold by virtue of continuous symmetries, it makes sense that conservation laws fail

to hold when (global) spacetime symmetries are violated (e.g., in general relativity).

Lange’s exotic route to the explanatory direction might strike them as odd, since it says

that symmetry does not suffice to bring about conservation laws. However, this is exactly

how an “asymmetric” relation can be found. Contrasting the presence of symmetries and

the absence of conservation laws helps to signify the (nomic) stability of symmetries and

in turn elevates their modal status, allowing them to explain conservation laws. To obtain

energy conservation, we still need other conditions regarding the dynamics of the system,

e.g., the energy being represented by the Hamiltonian, the presence of a time-independent

Lagrangian etc. For Lange, the explanatory direction of symmetries is not undermined

by this, because symmetry principles are treated as the “covering law”. It is enough to

show that if further conditions are satisfied, then the symmetry principle explains the

12What about mass conservation, which is not associated with a symmetry? Lange thinks that it follows
from the fact that momentum is conserved in all inertial frames, and is thus still an explandum. See
Lange (2009, p. 220, Note 25). I thank the anonymous reviewer for raising this question.

13One might wonder if we can find a parallel counterfactual that obeys conservation laws yet breaks
symmetry principles. Lange has contemplated this possibility: “had it been a non-vacuous law that
each body always moves at 5m/s in the +x direction”, then symmetry principles would not hold
(Lange, 2007, p.477). However, the very fact that such a law is not invariant under any rotational
transformation violates the logical consistency requirement. Thus, it is not a legitimate counterfactual
supposition that undermines the nomic stability of symmetries. Recall that in the case of first-order
laws, the statement “had copper been an electrical insulator, then the law that copper conducts
electricity would not hold” cannot undermine the sub-nomic stability of the law, exactly because the
requirement of logical consistency (i.e., restricting the counterfactual antecedents to those that are
logically consistent with the conjunction of the laws) shields it from such an attack. The upshot is that
there is a nomic counterfactual supposition (e.g. F = mv) logically consistent with conservation laws
under which some conservation laws fail to hold, but there seems to be no counterfactual supposition
logically consistent with symmetry principles yet “breaks” symmetry principles. One might still look
at the requirement of logical consistency suspiciously – it seems that once we lock in our meta-law
candidate, the requirement of logical consistency would protect it from any counterexamples. Lange
thinks this is not the right way to understand the requirement though. In the F = mv case, the
requirement is fulfilled because conservation laws could hold (e.g., if there were only two particles
sitting at rest in the whole universe) but would not (generally) hold.
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conservation law. Lange (2007, p.478) writes,

When a conservation law is explained by a symmetry principle, the symmetry

principle functions as the “covering law” and the fundamental dynamical law

functions as the “initial condition”. That is, the dynamical law is governed

by the symmetry principle; the symmetry would still have held even if the

dynamical law had not.

A conservation law, thus interpreted, is an “output” obtained from Hempel’s deductive-

nomological model of explanation. It is “governed” by the corresponding symmetry

principle when the right “initial condition” is inserted. Had the “initial condition” been

different, e.g. had the dynamical laws been F = mv , conservation laws would not

hold. Lange stresses that symmetries are not “byproducts” of laws, but “requirements”

that (together with the dynamics) restrict what types of force laws could exist. It is

not an accident that the laws of electromagnetism, laws of gravitational force and other

familiar force laws all obey symmetry principles. Symmetry principles help to explain

conservation laws, just as first-order laws help to explain accidental facts.

3 A Counterexample?

Lange’s argument is ingenious and intricate, but Smith (2008) presents a counterexample.

Smith shows that there is a system in which the Lagrangian does not possess rotational

symmetry and the conserved angular momentum does not correspond to (and thus cannot

be explained by) rotational symmetry. He concludes as follows: if the symmetry of laws

refers to the symmetry of the action, then the conservation of angular momentum can

hold without the corresponding rotational symmetry. Lange’s view, according to Smith,

fails.

In this section, I argue that Smith’s counterexample fails for technical reasons. Read-

ers who are interested in the technical aspects of Noether’s theorem should read on, since

this result has independent value. Readers who are interested solely in the metaphysical

debate may wish to take my conclusion for granted and proceed to Section 4.

Let’s examine Smith’s case.14 The system involves a simple two-dimensional harmonic

14This example is also discussed by Brown and Holland (2004) and Butterfield (2006) as an example
where the variational symmetry and the dynamical symmetry come apart. Smith (2008) also uses other
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oscillator, originally introduced by Morandi et al. (1990). The standard Lagrangian has

conserved angular momentum associated with rotational symmetry, but for the “non-

standard” Lagrangian, the corresponding Noether transformation is not a rotation but a

“squeeze”. The symmetry one associates with a given conservation principle can depend

on the choice of Lagrangian. A two-dimensional harmonic oscillator (with m = 1 and

ω = 1) can be described by the standard Lagrangian

L =
1

2
(q̇21 + q̇22 − q21 − q22), (2)

as well as the “non-standard” Lagrangian

L̃ = q̇1q̇2 − q1q2. (3)

This freedom is possible because two Lagrangians are solution-equivalent, that is, their

Euler-Lagrange equations admit the same solutions. However, they are not gauge-

equivalent. Gauge-equivalent Lagrangians, formed by adding to the Lagrangian a total

time derivative of an arbitrary smooth function, are always included in modern deriva-

tion of conservation laws (and they have the same conserved charge).15 However, the

non-standard Lagrangian (3) is not gauge-equivalent to (2) and has different kinetic and

potential terms. This poses an interesting interpretive question: which Lagriangian ac-

tually describes the system? Smith (2008) argues that there is no reason to privilege one

over the other.

In their original paper, Morandi et al. (1990) point out that the non-standard La-

grangian is invariant under “squeeze” transformations but not rotations, so the conserved

angular momentum is associated with invariance under squeeze. The same conclusion is

drawn by Brown and Holland (2004) and Smith (2008). Weaponizing it as an argument

against Lange, Smith (2008) states, “conservation of angular momentum need not be

associated with invariance under rotations” (p.338). If it is true that there is no philo-

sophically defensible reason to privilege the standard Lagrangian, then we seem to be

able to form a counterfactual that overthrows the ‘rotational symmetry-meta-law’: had

examples (e.g., Lagrangians for damped systems) to show caveats about symmetries of Lagrangian.
Here I focus on the example that serves as the strongest objection to Lange.

15See footnote[5] for the distinction of quasi-symmetry and strict symmetry of the action, which concerns
gauge-equivalent Lagrangians.
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the system been governed by the non-standard Lagrangian L̃, rotational symmetry would

not have held.

This would be a strong objection to Lange, but the conclusion is drawn prematurely.16

In the standard Lagrangian (2), the Hamiltonian (with q̇ in L expressed in terms of the

canonical momentum) takes the usual form

H =
1

2
(p21 + p22 + q21 + q22). (4)

The angular momentum is conserved and associated with the rotational symmetry. This

can be written in terms of the Poisson bracket in a Hamiltonian framework, which provides

a simpler and clearer visualization of Noether’s theorem and its converse.17 The angular

momentum J is a constant of motion because J Poisson-commutes with H:

dJ

dt
= {J,H} = 0, (5)

where J = q1p2 − q2p1 and the Poisson bracket of any two functions f(qi, pi, t) and

g(qi, pi, t) is defined (with the usual summation convention) as

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (6)

The Poisson bracket has nice algebraic properties that directly follow from its definition.

Geometrically, equation (5) says that J is invariant under the flow generated by H on

16A defender of Lange might find a way to accommodate such systems within Lange’s counterfactual
framework even if the counterexample were to work. The response works as follows: the meta-law of
rotational symmetry is not meant to be universal (i.e., applying to all force laws or all Lagrangians),
but only to some subset of them. Rotational symmetry possesses nomic stability in a subset of La-
grangians, instead of all (possible) Lagrangians. There is a sense in which this response deflates the
metaphysical oomph of a symmetry-meta-law. It seems too cheap to simply restrict the scope when-
ever a counterexample surfaces. Since Lange does not commit to any specific symmetry-meta-law but
rather describes the conditions under which symmetry principles are meta-laws, it might be better to
simply acknowledge that rotational symmetry is not a meta-law. (Lange, personal communications,
November 2023)

17One can also adopt a Lagrangian framework, using the vanishing of the Lie derivative of the La-
grangian along the lift to the tangent bundle to obtain a constant of the motion, but this approach as
Butterfield (2006) notes is known to have no straightforward converse (see Brown (2022) for a “non-
straightforward” converse in the Lagrangian framework originally developed by Martinez Alonso (1979)
and Olver (1986) independently and see Butterfield (2006) for a geometrical perspective of Lagrangian
and Hamiltonian formulations). The reason, I suspect, is tied to the gauge freedom of the Lagrangian
and the larger symmetry group associated with canonical transformations in the Hamiltonian. For the
purpose of this paper, I use the Hamiltonian formulation to provide a simpler and clearer construction
of Noether’s theorem and its converse.
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phase space. Since Poisson brackets are anti-symmetric, H is also invariant under the

flow generated by J , which corresponds to rotational symmetry. So we have

dJ

dt
= {J,H} = 0 iff 0 = {H, J} =

dH

ds
. (7)

This is the Hamiltonian version of Noether’s theorem – the quantity is conserved if

and only if the transformation that it generates is a symmetry of the Hamiltonian. A

symmetry of a Hamiltonian is a canonical transformation on phase space that preserves

the Poisson brackets (or equivalently, the structure of Hamilton’s equations).

In the case of the non-standard Lagrangian, the associated Hamiltonian is

H̃ = p1p2 + q1q2. (8)

It’s easy to show that the J associated with the standard Lagrangian does not Poisson-

commute with H̃. This is one way of suggesting that the non-standard Lagrangian is not

invariant under rotation. Let’s denote the conserved quantity, the infinitesimal generator

for the non-standard Lagrangian, J̃ and we find

J̃ = q1p1 − q2p2 (9)

such that {
J̃ , H̃

}
= 0 =

{
H̃, J̃

}
. (10)

On the left, J̃ is invariant under the flow generated by H̃, and H̃ is the generator of time

translation, which means J̃ is conserved. On the right, H̃ is invariant under the flow

generated by J̃ . J̃ generates infinitesimal transformation q → q′ = q + δq, where δq is a

variation with the form δq = ϵ
{
q, J̃

}
. To see what kind of transformation J̃ gives rise

to, we calculate {
q1, J̃

}
= q1, and

{
q2, J̃

}
= −q2. (11)

Indeed, the infinitesimal transformation that J̃ generates looks like a “squeeze” – simul-

taneously scaling up q1 and scaling down q2 (or the other way around) by eλ where λ is

an arbitrary constant:

(q1, q2) → (eλq1, e
−λq2), λ ∈ R. (12)
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According to Morandi et al. (1990), in the case of the non-standard Lagrangian, the

angular momentum is associated with invariance under squeeze. However, this is not

strictly correct because we only know from (10) that J̃ is conserved, but J̃ is not angular

momentum. Brown and Holland (2004, p.7) explain that “[t]he shared Euler-Lagrange

equations ensure conservation of angular momentum”, which nevertheless corresponds

to different transformations in the two Lagrangians. However, as they themselves point

out, the dynamical symmetry associated with equations of motion is different from the

variational symmetry associated with Lagrangians. It is the latter that ensures conserva-

tion laws via Noether’s theorem. A more careful treatment is needed in interpreting the

conserved quantity in the non-standard Lagrangian.

It is true that the two different Lagrangians share the same Euler-Lagrange equations.

Interestingly, however, they have different Hamilton’s equations of motion!18 For the two-

dimensional harmonic oscillator withm = 1 and ω = 1 (and here I switch to subscripts for

both q and p to be clearer), Hamilton’s equations associated with the standard Lagrangian

(2) are

q̇1 = p1 and q̇2 = p2; (13)

ṗ1 = −q1 and ṗ2 = −q2. (14)

Hamilton’s equations associated with the non-standard Lagrangian (3) are

q̇1 = p2 and q̇2 = p1; (15)

ṗ1 = −q2 and ṗ2 = −q1. (16)

The two Lagrangians with different Hamilton’s equations (notice the difference in indices)

nevertheless arrive at the same Euler-Lagrange equations! For both Lagrangians, plugging

m = 1 and ω = 1 back, we find mq̈1 = −mω2q1 and mq̈2 = −mω2q2, which are the

familiar Euler-Lagrange equations for a two-dimensional harmonic oscillator. Perhaps

this is why Morandi et al. (1990) claim “they are indeed only different descriptions of

the same physical system” (p.205 emphasis in original). What does it mean to say

two physical systems are “the same”? Hamilton’s equations describe a system in terms

18Hamilton’s equations can be written in an elegant way in terms of Poisson brackets as q̇i =
{
qi, H

}
,

ṗi = {pi, H}. Using the properties of Poisson brackets, we can derive the equations of motion in a
purely algebraic way (by linearity and the Leibniz rule).
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of 2N first-order ordinary differential equations, whereas the Euler-Lagrange equations

describe a system of N second-order ordinary differential equations (where N denotes the

configurational degrees of freedom). In this case, we obtain different sets of first-order

differential equations, which nevertheless correspond to the same set of second-order

equations.

It would be natural at this point to figure out how the two coordinate systems are

related, if they in fact describe the same physical system.19 We introduce new variables

Q and P to denote the coordinate system for the “non-standard” Lagrangian and leave

q and p for the standard Lagrangian. Comparing (2) and (3), we find

Q1 =
1√
2
(q1 + iq2), (17)

Q2 =
1√
2
(q1 − iq2). (18)

The two systems are related by an analytic continuation. Moreover, the conserved quan-

tity J̃ in the non-standard Lagrangian is also related to the conserved quantity J in the

standard Lagrangian in an interesting way:

J̃ = P1Q1 − P2Q2

= −i(q1p2 − q2p1)

= −iJ.

(19)

Are two systems related by an analytic continuation to be regarded as physically identical?

Do two quantities related by multiplication with the imaginary i represent the same

physical quantity? Smith (2008) argues that if the two Lagrangians describe the same

physical system, there is no reason to privilege one over the other. But that assumption

– the sameness of the physical system – turns out to be non-trivial. It depends, in

part, on whether one treats the Euler–Lagrange equations alone as physically significant,

or whether one takes Hamilton’s equations to be physically significant as well. There

might be an independent reason from quantum mechanics to take Hamilton’s equations

“physically”.20 Smith (2008) holds that one should not “appeal to quantum mechanics

19I thank Raphael Flauger for suggesting the subsequent line of thought.
20In fact, Morandi et al. (1990) discusses the non-standard Lagrangian and its implications both in
classical mechanics and quantum mechanics. In comparison of the two, they suggest that the non-
standard Lagrangians describes “the same classical system, [yet] genuinely different quantum systems”
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to select the privileged classical Lagrangian” (p.343 emphasis in original). It seems that

for Morandi et al. (1990), Brown and Holland (2004) and Smith (2008), to be physically

equivalent is to have the same Euler-Lagrange equations.

But should one care about differences in Hamilton’s equations within classical me-

chanics? I leave the ontological question open, since my argument does not rely on any

particular answer. Still, it’s worth seeing what follows on either view. Suppose one holds

that the standard and non-standard Lagrangians are merely alternative formulations of

the same classical system. Then any symmetry present in one must be present – albeit

in disguise – in the other. In that case, “squeeze invariance” is just a re-description

of rotational invariance, and the non-standard Lagrangian cannot be used to show that

angular momentum conservation can hold without rotational symmetry.

But suppose instead that the two Lagrangians describe different physical systems.

That opens the door to further insight. Classically, it is natural to have variables ex-

pressed only in terms of real numbers in Euler-Lagrange equations in order to have

meaningful physical interpretations. If we require coordinates qi, pi and Qi, Pi to take

only real values, then there’s reason to think that the two Lagrangians – differing as they

do in their symmetries – do not describe the same physical situation. The symmetry

associated with the standard Lagrangian is compact O(2) and the symmetry associated

with the non-standard Lagrangian is non-compact U(1). In one system, all observables

return to the same state after rotation by 2π; in the other system, they do not. There is

no real canonical transformation between the two systems.21 One might use this result

to suggest that these two systems are not physically equivalent.

If we consider the analytic continuation between two coordinate systems, then, topo-

logically, rotations and squeeze transformations take different directions on a complex

cylinder (Figure 1). Using equation (17) and (18) to relate two systems, we see that a

“squeeze” transformation could take the form of “rotation” in qi, pi coordinates if the

“squeeze” parameter λ is not constrained to real values, i.e., (q1, q2) → (eiθq1, e
−iθq2),

for θ ∈ R. This would set Q1 and Q2 to rotate in opposite directions. In this sense,

(p.209 emphasis in original). But we see explicitly that the “i” independently appears at the classical
level and that two systems with different symmetries are not identical either classically or quantum-
mechanically.

21A transformation is canonical iff it leaves the Poisson brackets invariant, which requires
{
qi, pj

}
Q,P

=

δij , where the subscript Q, P means computing the Poisson bracket of coordinates qi, pi in terms of
coordinates Qi, Pi. The transformations here involve imaginary numbers, though the analysis remains
within the classical regime.
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Figure 1: squeeze(λ) and rotation(ϕ) illustrated topologically

the non-standard Lagrangian passes Lange’s logical consistency test. For it to be a real

“squeeze” though, λ ∈ R is required. More importantly, the two Noether charges are not

identical but instead different real sections of a complex quantity. It would be mistaken

to view J̃ as the same conserved quantity as J . The infinitesimal transformation that

J̃ generates is not rotation for λ ∈ R , and, accordingly dJ̃
dt

= 0 does not stand for the

conservation of angular momentum.22

One might think that the invariance under squeeze transformation still implies the

conservation of angular momentum given J̃ = −iJ in (19), even though J̃ is not itself

angular momentum.23 Hence, the non-standard Lagrangian still showcases that the con-

servation of angular momentum can hold without rotational symmetry. However, as far

as dJ̃
dt

= 0 implies the conservation of angular momentum, the invariance under squeeze

also implies the existence of rotational symmetry in the exact same manner! A squeeze

transformation could take the form of a rotation if λ is not constrained to real values.

So long as one holds that the two Lagrangians describe the same physical system, the

conservation of angular momentum and rotational symmetry go hand in hand – merely

represented differently in each formulation. On the other hand, if one takes the two

Lagrangians to describe different physical systems, then the quantity conserved under

the non-standard Lagrangian is not angular momentum. Either way, the non-standard

Lagrangian cannot be used to establish that angular momentum conservation is possible

without rotational symmetry. The upshot is that no genuinely asymmetric mathematical

relation can be extracted from this example.

I’ve argued that Smith’s non-standard Lagrangian cannot serve as a counterexample

22One might still wonder, why different Hamilton’s equations can “share” the same Euler-Lagrange
equations, especially considering the mathematical theorem that for any hyper-regular Lagrangian the
Euler-Lagrange equations are equivalent to Hamilton’s equations. A short answer is that the Hessian
matrices and Legendre transforms differ in these two Lagrangians. This observation provides further
clarification of the alternative interpretation of physical equivalence, which pertains to the same Euler-
Lagrange equations and the same Legendre transforms.

23I thank Niels Linnemann for raising this point.
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to Lange’s account.24 The technical analysis above yields three payoffs. First, the analy-

sis clarifies and re-establishes the symmetric nature of the relation: if the transformation

is a “squeeze”, then the conserved quantity J̃ is not angular momentum; if the conser-

vation of J̃ were to imply the conservation of angular momentum, then invariance under

“squeeze” would also imply rotational symmetry. Hence, the non-standard Lagrangian

cannot show the asymmetric relation that the conservation of angular momentum holds

without rotational symmetry. Second, the analysis helps to disambiguate different notions

of symmetry (which I will discuss in detail in the following section), thereby indicating a

cross-talk in the existing debate. Finally, the analysis raises an interesting question about

the physical equivalence of equations of motion in the form of first-order and second-order

differential equations. The arguments in Section 4 will draw on the first two payoffs from

this discussion. I leave this third and final issue as an open question.

4 Which Symmetry?

For symmetry principles to explain conservation laws, two conditions must be satisfied.

First, symmetry principles must be more stable than conservation laws. Call this sta-

bility. This is established in Section 2 and connected to the idea that explanation is

unidirectional. Second, symmetry principles must be explanatorily relevant. 1+1=2 is

more stable than F = ma, yet 1+1=2 clearly doesn’t explain F = ma. Intuitively, this

is because the truth of 1+1=2 is irrelevant to the truth of F = ma. Call this relevance.

For my purposes, I need not provide complete necessary and sufficient conditions for

explanatory relevance. Instead, I assume that a candidate explanans satisfies relevance

only if the explanandum deductively follows from the explanans, given the appropriate

initial conditions. This is appropriate because Lange (2007) uses Hempel’s deductive-

nomological model of explanation and mirrors it one level up for meta-laws. It allows us

to see how 1+1=2 is explantorily irrelevant to F = ma: there is no deductively valid

inference from 1+1=2 to F = ma.

This section argues that the Lange-Smith debate revolves around an ambiguity. When

we talk about symmetries as explaining conservation laws, which symmetry are we talk-

ing about? After distinguishing three different symmetries that we might be concerned

24While there might be other counterexamples, it is beyond the scope of this paper to discuss the
consequence of every “non-standard” Lagrangian.
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with, I proceed to show that none of these can vindicate the claim that symmetries ex-

plain conservation laws. Specifically, I show that none can simultaneously satisfy both

conditions required for explanation, i.e., stability and relevance.

The first candidate for which symmetry is being said to explain conservation laws

is the symmetry of the action. If the symmetry refers to the symmetry of the action,

however, then the symmetry is not more stable than conservation laws. Why? Because

the symmetry of the action is derivable from conversation laws as per Noether’s (converse)

theorem, even in the case of the non-standard Lagrangian. The two relata always go hand

in hand. This result was established in Section 3. Since the symmetry of the action is no

more stable than conservation laws, it follows that on this interpretation, symmetries do

not explain conservation laws.

The second candidate is the symmetry of the equations of motion. Below I suggest that

there is good reason to think that this interpretation of symmetry too cannot vindicate the

claim that symmetries explain conservation laws. Specifically, I argue that there is reason

to think that symmetries of the equations of motion are both explanatorily irrelevant to

conservation laws and that such symmetries are not more stable than conservation laws.

Since there is thus good reason to think that the conditions of both relevance and stability

are unsatisfied, I conclude that symmetries of equations of motion are unlikely to explain

conservation laws. I take these two issues in turn.

Why think that symmetries of the equations of motion are explanatorily irrelevant

to conservation laws? Well, if we take the equations of motion as the initial conditions

and the symmetry of the equations of motion as the covering law, conservation laws do

not follow deductively. To appreciate this, note that from Noether’s theorem we have

dL = (eom)ϵ+ d
dt
Q, where L stands for Lagrangian, eom stands for equations of motion, ϵ

stands for an infinitesimally small quantity, and Q is the Noether charge or the conserved

quantity. Here, to deductively obtain a conservation law, i.e., d
dt
Q = 0, we need to

assume the symmetry condition dL = 0 and the on-shell condition eom = 0. But this

means the relevant symmetry dL = 0 is the symmetry of the action not the symmetry

of the equations of motion (recall that the action is the integral of a Lagrangian). It is

true that we still need the equations of motion to hold, i.e., eom = 0 in order to obtain

conserved quantities. After all, for a quantity to be conserved is for it to be constant

along its trajectory of motion. However, we do not need the symmetry of equations of
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motion to deductively obtain conservation laws! Hence, just as the truth of 1+1=2 is

explanatorily irrelevant to the truth of F = ma, so too is the symmetry of equations of

motion irrelevant to conservation laws. Or so we might think.25

A defender of Lange might reply as follows: sure, it is the symmetry of the action

which is playing a direct role in the deduction of conservation laws in Noether’s theorem.

However, the symmetry of the action may itself be derivable from the symmetry of the

equations of motion. This is plausible, one might think, if the symmetry of the equations

of motion is more stable and necessary than the symmetry of the action. That is, the

symmetry of equations of motion holds even in cases where the symmetry of the action

and conservation laws do not. If further conditions are satisfied, such as the system

permitting a Lagrangian formulation, the symmetry of the equations of motion implies

both the symmetry of the action and the conservation laws. This, I think, is Lange’s

argument in the strongest form. It finds support in examples like Wigner’s F = mv case.

Hence, even if the symmetry of the equations of motion isn’t playing a direct role in the

derivation it may be necessary for the derivation to go through. According to this reply,

the previous charge of explanatory irrelevance is too strong.

This response, however, rests upon a conjecture. While there is reason to think that

the symmetry of the equations of motion holds more generally than the symmetry of the

action – and that there is often a correlation between the symmetry of the equations

of motion and conservation laws – it is still unclear how the symmetry of the equations

of motion implies both the symmetry of the action and the corresponding conservation

laws.26 Hence, we currently lack grounds for treating symmetries of the equations of

motion as explanatorily prior to conservation laws. Beyond worries about the explanatory

25The symmetry of the equations of motion and the symmetry of the action both play important, yet
different roles, as Brown and Holland (2004) point out. Their terminology is slightly different from
mine. They call the symmetry of the equations of motion “dynamical symmetry” and the symmetry of
the action “variational symmetry”. It might be proper to define variational symmetry as a symmetry
of the Lagrangian rather than a symmetry of the action (see Butterfield 2006). They typically carry the
same meaning, although there is a caveat (due to a Jacobian factor). It is more general to formulate
Noether’s theorem in terms of the action, which is what Noether (1918) originally did. The symmetry
of equations of motion is particularly important in physics because it maps solutions to solutions, but
it is not directly related to a conserved quantity. If the equations of motion of a system follow from
the action, then most of the symmetries of the equations of motion are also symmetries of the action,
but not all. The most common example of a dynamical symmetry in absence of variational symmetry
is the scale transformation. It leaves the equations of motion invariant, but the action obtained from
the rescaled Lagrangian differs from the original action by a multiplicative constant.

26See Brown and Holland (2004, Section 5.2) for the connection between the symmetry of the action and
the symmetry of the equations of motion.
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relevance of symmetries of equations of motion, however, we can also raise concerns about

the superior stability of symmetries of equations of motion, relative to conservation laws.

To show that symmetries of equations of motion are no more stable than conservation

laws, we need find a case where a conservation law holds but the symmetry of equations

of motion does not. Interestingly, Chen’s 2022 “Wentaculus” account provides the basis

for such a case. Wentaculus is a package of density matrix realism combined with a

nomological interpretation of the initial quantum state of the universe. The main idea

involves taking the actual quantum state of the universe as objective and impure (mixed),

using the density matrix formalism. The initial quantum state of the universe at t0

is given by the (normalized) projection onto the Past Hypothesis subspace, which is a

particular low-dimensional subspace in the total Hilbert space. This is known as the initial

projection hypothesis (IPH). The fundamental universal density matrix W then evolves

according to the von Neumann equation. Here the modal status of the initial quantum

state of the world is on a par with laws and the density matrix plays a dynamical role.

On the Everretian formalism, W always evolves deterministically according to the von

Neumann equation.27 Everretian Wentaculus is not time-translation invariant because

the past hypothesis applies at a particular time. The guidance equation in Bohmian

Wentaculus also explicitly violates time-translation symmetry.28

If we accept Chen’s package, then the fundamental equations of motion explicitly vi-

olate time-translation symmetry.29 In both Bohmian and Everretian cases, however, en-

ergy is still conserved (as far as energy in “standard” quantum mechanics is conserved).30

Chen’s Wentaculus or the nomological interpretation may be controversial, but one need

not endorse this particular view to see the purpose of this example though. The upshot

is that the conservation of energy is associated with the symmetry of the action rather

than the symmetry of the equations of motion. The example illustrates that, at least in

27The quantum state at a later time is given by WIPH(t) = e−iHt/ℏWIPH(t0)e
iHt/ℏ, where WIPH(t0) is

specified by the IPH.
28For the Bohmian dynamical law, the guidance equation formulated in terms of the particle configuration
Q and the density matrix is given by

ℏ
mi

Im
∇qiWIPH(q, q

′, t)

WIPH(q, q′, t)
(Q) =

ℏ
mi

Im
∇qi ⟨q| e−iĤt/ℏŴIPH(t0)e

iĤt/ℏ |q′⟩
⟨q| e−iĤt/ℏŴIPH(t0)eiĤt/ℏ |q′⟩

(q = q′ = Q). (20)

29While the fundamental dynamical law violates time-translation symmetry, the derived laws can still
be time-translation invariant. See also Chen (2022) for a relevant discussion on time asymmetry.

30This is because the expected value of energy, given by tr(HWt), is constant over time, assuming the
Hamiltonian is time-independent.
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principle, symmetry of the equations of motion and conservation laws can come apart.31

Altogether, if we interpret the claim that it is the symmetries of equations of motion

that explain conservation laws, then we have two problems. First, symmetries of equations

of motion do not seem explanatorily relevant to conservation laws. Second, symmetries

of equations of motion do not seem more stable than conservation laws.

Lastly, consider a third candidate. According to this interpretation, the symmetries

that explain conservation laws are the symmetries that all first-order laws must obey.

This might be the most direct interpretation of Lange’s own view, since Lange never

explicitly endorses any particular symmetry-meta-law. He thinks it is scientists’ job to

investigate which symmetry principle can be a meta-law (Lange, 2007, p.460). How does

this last interpretation fare? I raise two concerns.

First, we might worry that such a symmetry is too vague to provide explanatory

relevance. In some occasions (Lange, 2009, p.18, p.110), it seems that the symmetry

that all first-order laws must obey would take the form of the principle of relativity:

laws of physics are invariant in different inertial frames of reference. The principle of

relativity states that laws are invariant in different inertial frames but it does not explain

the content of the laws themselves. So even if the principle of relativity satisfies stability,

it does not satisfy relevance: we cannot deductively obtain conservation laws from the

principle of relativity.

My second worry is this: the symmetry of all first-order laws might cast its net

too wide, leaving its claim to superior stability subject to counterexample. Even if one

argues that the explanatory program operates at a coarser level of grain, and my fine

distinctions miss the forest for the trees, counterexamples still abound. Consider the

case of parity symmetry. Before the Wu experiment confirmed its violation in weak

interactions – a hypothesis proposed by Lee and Yang (1956) – most physicists held that

parity symmetry must hold for all fundamental laws and interactions. As Weinberg (2004)

reminds us, many of the symmetry principles we once cherished – like parity symmetry,

isospin symmetry, and Gell-Mann’s SU(3) – turned out to be mere approximations.

Perhaps one might retreat to a narrower reading of this third candidate: continuous

spacetime symmetries (which all laws of physics obey). But this too is on shaky ground.

In general relativity, continuous symmetries of spacetime – and the corresponding con-

31My purpose in invoking this example is not to defend Chen’s package, but to use it to sharpen the
distinction between the two kinds of symmetries.
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servation laws – are contingent. Not all solutions of the Einstein field equations possess

Killing vector fields. In their absence, there is neither spacetime symmetry nor conserved

quantities, at least not in any global sense. Again, stability fails.32

In this section, I’ve examined three different candidates for which symmetry is being

said to explain conservation laws: the symmetry of the action, the symmetry of equations

of motion, and the symmetry that all first-order laws must obey. However, none of them

appears to satisfy both stability and relevance. In sum, we lack any clear way to vindicate

the claim that symmetries explain conservation laws.

5 Conclusion

Lange (2009, 2011b) argues that his account of meta-laws can ground the explanatory

direction of symmetry principles to conservation laws. Existing responses to Lange either

attempt to devise alternative accounts of meta-laws (Yudell 2013, Duguid 2023) or offer

competing interpretations of symmetry principles, e.g., as “maxi-laws” (Hicks 2019) or as

“consequences of the structure of world-making relations” (Friend 2024). If my argument

succeeds, then one should make a finer distinction between different kinds of symmetry

principles before determining their modal status and explanatory power.

In an effort to disambiguate the term “symmetry principles” in the debate between

Lange (2007) and Smith (2008), I have shown that once the symmetry is defined and

identified clearly, the claim that symmetry explains conservation laws collapses. There

is good reason to look under the hood to find out exactly which symmetry is concerned

in each case. It becomes clear, however, that there is a dilemma for anyone who claims

that symmetries are more explanatorily fundamental. If the symmetry principle refers to

the symmetry of the action, then the symmetry is no more stable than conservation laws.

We cannot cook up an asymmetric relation for a preferred explanatory direction from

the mathematical formalism alone in equation (7) or (10), just as we cannot tell whether

32This is what I envision Lange could say in response: There are accidental symmetries as well as meta-
law-like symmetries. Accidental symmetries are by-products of the dynamics, but symmetry-meta-laws
are requirements of the dynamics. If a particular symmetry is shown by physicists to be wrong or
only approximate, then it is not a meta-law. See Lange (2011a) for a similar response concerning
conservation laws. I think the tension still exists though. If Lange’s project is to be understood
semantically, i.e., specifying conditions under which symmetries can be regarded as meta-laws, then
there is a epistemic gap between the semantic and the empirical. See a similar worry in Van Fraassen
(1989, 1993). I will defer the discussion on the metaphysics of laws to another time.
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the length of the flagpole explains the length of the shadow or vice versa purely based on

the trigonometric equation, which treats two lengths on a par. If the symmetry principle

refers to the symmetry of equations of motion or the symmetry of any other laws, then

the symmetry is explanatorily irrelevant to and is no more stable than conservation laws.

We seem to have ended up exactly where we began. Do symmetries explain conser-

vation laws and if so, how? Perhaps, it would be easier at this point to join Brown and

Holland (2004) and Albert (2015) in rejecting the claim that symmetry actually explains.

For Albert, “what actually explains [the conservation of energy is] the fundamental phys-

ical laws of the actual world” (2015 p.14 emphasis in original). For Brown and Holland,

“the real physics is in the Euler-Lagrange equations of motion for the fields, from which

the existence of dynamical symmetries and conservation principles, if any, jointly spring”

(2004 p.10). Brown (2022) has recently shown, on pragmatic grounds, why physicists

often treat symmetries as explanatorily prior (even though they are not fundamentally

explanatory).

Are symmetry principles meta-laws? Even if we found a symmetry-meta-law can-

didate that is nomically stable under counterfactual perturbations, it might not be ex-

planatory relevant to conservation laws. What this suggests is that we must take a closer

look at the connection between modality and explanation. If the motivation to elevate

the modal status of symmetry principles stems from a desire to capture their explana-

tory power, then we must also provide a robust account of explanation. Here, Humean

perspectives may prove fruitful, offering an account of explanation that is flexible enough

to handle the graded modality. For now, I leave this as an open question, deferring its

resolution to future work.
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